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A B S T R A C T

Chemical processes rely on several layers of protection to prevent accidents. One of the most important layers of
protection is human operators. Human errors are a key contributor in a majority of accidents today. Estimation
of human failure probabilities is a challenge due to the numerous drivers of human error, and still heavily
dependent on expert judgment. In this paper, we propose a strategy to estimate the reliability of control room
operators by measuring their control performance on a process simulator. The performance of the operator is
translated to two metrics – margin-of-failure and available-time to respond to process events – which can be
calculated using process operations data that can be generated from training simulator based studies. These
metrics offer a qualitative estimate of operators’ reliability. We conducted a set of experiments involving 128
students of differing capabilities from two different institutions and tasked to control a simulated ethanol pro-
duction plant. Our results demonstrate that differences in the performance of expert vs. novice student operators
can be clearly distinguished using the metrics.

1. Introduction

The chemical industry commonly deals with large quantities of
hazardous materials at extreme conditions, thus taking on severe ha-
zards which have to be appropriately managed. To manage these ha-
zards and prevent accidents, it is important to identify and assess risks
(Kalantarnia et al., 2009). Risk assessment deals with key aspects of
accidents like accident prediction, consequences analysis, and devel-
opment of strategies for emergency preparedness and minimization of
damage (Khan and Abbasi, 1998). In spite of improvements in auto-
mation and technology, accident rates have not been decreasing
(Drogaris, 1993). Accidents occur due to various causation factors such
as pump failure, sensor freezing, valve failure, errors of omission and
commission by humans etc. Of the various causation factors, human
errors are considered to be a key contributor today.

The work of process operators during the normal operation of the
plant is primarily supervisory in nature and mainly involves main-
taining various process variables within pre-specified limits. When
variables cross the safe limits, operators have to take actions to bring
the plant back to normal before untoward outcomes result. Thus,
human operators form an important layer of protection against acci-
dents in a process plant. Occasionally, the operator is unable to control
the process during an abnormal situation. Such failures typically occur

due to human failure (e.g. wrong diagnosis, incorrect action). The risk
associated with a plant is dependent on the performance of human
operators; it is therefore important to determine the likelihood of
human failure.

Human failure may arise due to improper training, lack of experi-
ence, lack of skills, high stress levels, fatigue, sleep deprivation, etc.
Unlike failure rates of equipment and instruments, human failure rates
depend on hard to quantify factors such as interpersonal conditions in
an organization and specific plant. These failure rates can hence vary
widely. A number of methods have been proposed in literature to es-
timate human failure rates, however all of them suffer from various
shortcomings. In this paper, we focus on the reliability of control room
operators and propose a new method that has a potential to estimate
control room operator failure probability using plant operations data.
The rest of this paper is organized as follows: in Section 2, we review
the existing literature for estimating human reliability and identify their
strengths and shortcomings. In Section 3, we propose a simulation and
process data-based approach to estimate human performance. We de-
monstrate the approach in Section 4 using a case study and report re-
sults from experiments involving human participants who play the role
of control room operators.
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2. Literature review

Human error is a mismatch between the demands from a process
and the human capabilities to meet these demands (Embrey et al.,
1994). Human errors are one of the main contributing factors to cata-
strophic accidents in various industries today (Gupta, 2002; Kim and
Bishu, 1996). Over 70% of the accidents in the process industry occur
because of human errors (Leveson, 2004). With advancement in tech-
nology, human errors tend to be proportionally more common than
technological failures; increasing process sophistication and complexity
results in greater challenges to the human operators (Chu et al., 1994).
Hence, it becomes imperative to study human errors to reduce the
number of accidents. However, limited research has been done in un-
derstanding human errors. This is partly attributed to the lack of data
related to human performance (Moura et al., 2014; Grabowski et al.,
2009; IAEA, 1990) – no publicly accessible data banks of human re-
liability exist. Further, there are intrinsic and practical difficulties in
obtaining generalizable human performance related data, key among
them being proprietary and sensitivity issues (Massaiu, 2014). This
leaves human reliability to the subjective judgments of experts (Park
and Lee, 2008) making it prone to error and inconsistency (Massaiu,
2014).

Human reliability statistics addresses issues like the number of
personnel failing to perform given tasks, factors affecting their perfor-
mance, and likelihood of failure. Among these, studies of human failure
probabilities are more common and mostly based on task-level success
and failures (Hollnagel, 1996; Fleming et al., 1975). For example,
human failure assessment has been carried out for human errors during
maintenance operations of pumps (Noroozi et al., 2013, 2014) and
hydrogen refueling stations (Castiglia and Giardina, 2013). Broadly
speaking, human failure analysis techniques can be classified into three
categories: derived-data based techniques like Technique for Human
Error Rate Prediction (THERP) and Human Error Assessment and Re-
duction Technique (HEART), analytical techniques involving pre-
dominantly expert judgments like Success Likelihood Index Method
(SLIM), and simulator-based. However, the boundaries between these
techniques often blur and we find techniques which try to incorporate
various principles from each of the categories to suit a situation. Gen-
erally speaking, the application of expert judgment is common to every
technique.

The first structured method can be traced to Swain (1963) which
was later developed into Technique for Human Error Rate Prediction -
THERP (Swain and Guttmann, 1983). THERP is one of the best known
first generation human reliability analysis methods (Reason, 1990;
Hollnagel, 1996; Kirwan, 1997). The technique involves defining
system failure, listing the human operations, predicting individual error
rates, determining the effects of human errors on the system, and then
recommending necessary changes to reduce failure rates (Swain, 1963).
One of the main features of THERP is the use of Performance Shaping
Factors (PSFs), which describe the general conditions that may influ-
ence the performance of the tasks and consequently the probabilities
(Hollnagel, 1996). Individual error rates are predicted by experts based
on data available in literature as well as on their judgment. Another
technique called Human Error Assessment and Reduction Technique
(HEART) was later developed to analyze personnel tasks at a higher
level compared to THERP, and also allow application to a range of in-
dustries (Williams, 1986). Deacon et al. (2013) developed a framework
for human error analysis of offshore evacuations to identify and analyze
human error risk for critical steps in the escape, evacuation and rescue
process. The framework employed HEART along with other techniques
like hazard and operability (HAZOP), risk matrix, etc. Several other
human reliability techniques, preferred by practitioners were devel-
oped later like Justification of Human Error Data Information (Kirwan
and James, 1989). The reason behind the popularity of these methods
among practitioners is that their output is in the form of event trees or a
probability value which can easily be used in probabilistic risk

assessments (Moura et al., 2014). The above first generation methods
suffer from many limitations. They fail to comprehensively address
errors of commission as distinct from errors of omission. Lack of a
strong theoretical and structural basis also makes them prone to sig-
nificant variations in end results when conducted by different analysts.
The limited experimental data used by some methodologies is not suf-
ficient to statistically support quantification. Finally, the techniques
mainly focused on the task performed by the operators but not the
context in which the tasks are performed. Human cognition is an area
where, to date, scientific understanding is primitive at best. It is evident
that there are numerous determinants to human decision making per-
formance in general, and particularly in the context of human error.
The problem is further compounded by the limited availability of data.
To our knowledge, there is no strong theoretical basis to date which
provides specifically for a deterministic understanding of human cog-
nitive errors. Empirical approaches therefore become interesting, for
instance the generation and analysis of human performance data
through simulator based experiments that has been customized to the
actual system of interest (such as a chemical plant) and carried out by
the actual human users of the actual system (i.e., plant operators), as
proposed in this work.

The intrinsic complexity in collection of human reliability data led
to the development of methods which involved extensive use of expert
judgment (Moura et al., 2014; Grabowski et al., 2009). One such widely
used method is SLIM – Success Likelihood Index Method (Embrey et al.,
1984), which involves a decision-analytic approach to weigh Perfor-
mance shaping factors based on expert judgment. SLIM has been used in
offshore oil and gas industry because of the lack of availability of
human error data bases in that sector. For example, DiMattia et al.
(2005) used it to determine error probabilities for offshore musters. It
has also been modified by incorporating the Analytic Hierarchy Process
(AHP) to address inconsistencies associated with expert judgments e.g.
AHP-SLIM (Park and Lee, 2008). Khan et al. (2006) proposed a tech-
nique called Human Error Probability Index (HEPI), based on SLIM, to
assess human failure probabilities in offshore platform musters. It
should be noted that expert judgment still remains critical in these
methods due to inadequacy of empirical human error data.

Considering the difficulty in obtaining human reliability data,
methods were devised which could empirically generate the required
data so that the error mechanisms could be better understood. When
simulations are feasible, human failure probability was calculated on
the basis of number of successes and failures involved in performing a
particular task. However, quantification of such data, so that it could be
used in probabilistic risk assessments, proved challenging when com-
plex tasks are involved (Massaiu, 2014). It would require a lot of people
and sessions to deal with such complex tasks to generate the data that
could be considered statistically reliable. Further, considering the
complexity in the task, it is difficult to ensure that the conditions (i.e.,
context) around the human operators remain same in all such sessions
so that results from different sessions can be reliably combined (Moray,
1990). Therefore, newer methods involve simulator experiments com-
bined with extensive study of cognitive, psychological and emotional
aspects. Chang and Mosleh (2007) have demonstrated the application
of information, decision, and action in crew context (IDAC) model for
human reliability analysis. IDAC involves modeling the behavior of
operators through a cognitive model. However, such methods are, to
our knowledge, still in their infancy and limited to academic exercises.
Simulator-based studies to understand human performance and errors
have not received much attention in the chemical process community;
however, it has been the subject of many studies in other high-risk
domains such as nuclear power plants. Zhang et al. (2007) demon-
strated the use of simulator studies in nuclear power plants, to de-
termine Human Cognitive Reliability model. They highlight that si-
mulator studies offer the only way by which human operator responses
can be systematically inquired, especially during accident scenarios.
Human error probabilities (HEPs) are typically quantified by beginning
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with a nominal or base HEP (i.e., generic human error rates) and then
modified by PSF coefficient values, which are often treated as multi-
pliers to obtain the case-specific HEP (Boring, 2009). Therefore, iden-
tifying and quantifying the effect of PSFs is a critical step in HRA stu-
dies. Monferini et al. (2013) devised a methodology to relate Human
and Organizational Factors (HOFs) to the response time of operators in
safety critical operations. The main outcome of their study was the
design of virtual experiments that examined correlations between re-
sponse time and Common Performance Conditions (CPCs) variations.
Forester et al. (2014) highlight the strengths and limitations of various
human reliability assessment methodologies and demonstrate the po-
tential of simulator studies. Musharraf et al. (2014) demonstrate a si-
mulation-based virtual experimental technique way to collect human
performance data during offshore emergency evacuation. Their work
seeks to address the scarcity of data corresponding to emergencies in
offshore industries. There is a similar need to develop a methodology to
understand human error during abnormal situations in chemical pro-
cess industries, which are characterized by a diverse set of emergency
scenarios, and where the human operator is often the last layer of
protection. The data obtained can be utilized to estimate human per-
formance at least qualitatively.

In summary, various techniques exist to assess human failure
probabilities. However, most of them are challenged by the lack of
availability of human failure data. Organizational and Safety culture
also plays an important role. Humans may operate differently in dif-
ferent industrial settings. They may even operate and behave differently
in similar settings but in different plants because organizational culture
plays an important role in how an individual behaves and acts. The
deviation in human behavior in terms of diagnosis, decision making and
action varies because of differences in training, organizational safety
culture, design, etc. This makes it unrealistic to analyze human failure
over a broad spectrum of conditions using a single database. Another
consequence of the variety of methods for estimating human error
probabilities is that different human reliability analysis methodologies
often lead to significantly different end results for the same task. This
has been best brought out by the studies done at the Halden Human-
Machine Laboratory as reported by Forester et al. (2014). Thus, it be-
comes imperative to analyze the impact of human actions on the plant
behavior in response to disturbances, failures and untoward situations
using plant specific data. The interaction between the plant behavior
and human performance is best studied empirically. This motivates a
methodology to gauge human performance, and consequently human
reliability, based on easily available, empirical plant-specific data. In
this paper, we propose such a methodology to measure human perfor-
mance experimentally as detailed next.

3. Proposed metrics and methodology

A chemical process plant involves a number of unit operations with
many control loops that ensure that important variables are maintained
at pre-specified values by rejecting disturbances. The role of control
room operator in a modern-day process is primarily one of supervising
the process during normal conditions. The role of the operator can,
however, suddenly become safety critical when something goes wrong
in the process such as equipment or instrument failure. When such
abnormal conditions occur that are beyond the realm of the automatic
control system, the operator has to quickly detect that there is in fact an
abnormality that has occurred, accurately decipher from the available
measurements the root cause of the abnormality, and take corrective
actions to return the process to a safe condition. The control room
operator's ability in situation assessment and recovery is a direct mea-
sure of his/her reliability. In our proposed methodology, we seek to
quantify this ability of the operator.

We propose two metrics as direct measures of the operator's relia-
bility – margin-to-failure and available-time. The margin-to-failure
measures how close the process has been to an unsafe state after an

incident has occurred and the operator has intervened by taking some
action(s) to ensure safety. This is reflected by the time profile of the
variables safety critical process variables (e.g. temperature, pressure,
level, etc) during the course of a safety incident. Safety limits for im-
portant variables are usually predetermined during the process design
stage and various alarms and shutdown logic may be configured to
reflect them. The margin-to-failure of each variable can be calculated
by comparing its extremum value during the course of the incident to
its safe limit. As an illustration, consider a process where temperature is
a safety critical variable. During normal operation a low-level reg-
ulatory (such as PID) controller may manipulate a variable (such as
coolant flow rate) to ensure that the temperature remains in a safe
range. A failure such as a stuck control valve may lead to an increase in
temperature – the operator may typically become aware of the issue
when the high temperature alarm goes off. The operator would take
some time to assess the situation, determine its root cause and then take
recovery action. For instance, when the control valve fails stuck, the
operator may operate an alternate bypass valve manually in order to
reduce the temperature and bring it within the safe limits. The differ-
ence between the shutdown limit and the maximum temperature that
occurred in the reactor during this episode is the margin-to-failure as
illustrated in Fig. 2. It is neither controlled nor a response but an out-
come arising from the operator's actions. The margin-to-failure of the
whole plant can be conservatively defined to be the minimum value of
the margin-to-failure of all the safety critical variables pertinent to that
event. The process operations can be used to determine the margin-to-
failure.

Similarly, the available-time is the difference between the maximum
allowable time for the incident before automatic shutdown is triggered
and the operator's response time defined as the duration from occur-
rence of the first alarm to the clearance of the disturbance characterized
by all variables returning to their normal limits (see Fig. 2). In other
words, available-time is the maximum further duration the operator
could have utilized to stabilize the process without any safety impact.
This can also be calculated from process data for each event.

For example, consider a tank containing hazardous chemicals. We
need to ensure that the tank does not overflow or there is no excessive
pressure inside the tank, so that there is no spillage and consequent
possibility of exposure to toxic chemicals, fire or explosion, etc. To
prevent these, the tank is equipped with a pressure relief valve. Also the
input flow to the tank is controlled to ensure safe limits of level in the
tank. The tank is provided with high level alarm, so in case of un-
expected high-level (e.g. due to some failure in the level control-loop),
the operator can close a manual valve on the feed line. Human error
reflects itself as the operator failing to close the manual valve when
required – this would manifest itself in the form of liquid level in the
tank approaching overflow limits (higher than the level alarm limit).
Also, the speed of the operator's response to stabilize the process and
bring the level below alarm limit is an indication of the operator's re-
liability.

The reliability of the operator based on the above metrics can be
estimated in one of two ways: (1) by mining the historical operations
data especially during plant incidents, and (2) by conducting experi-
ments using the operating training simulator (OTS) that is widely de-
ployed in many chemical plants. We focus on the latter in this paper
since the availability of the historical operations data from emergencies
are limited at best. The necessary experiments can evaluate actual plant
personnel by requiring them to control the plant during a variety of
different scenarios. These different situations may be designed by
studying the various accident scenarios identified in the HAZOP ana-
lysis of the plant. The evolution of the process variables with time is
recorded during the experiments. The recorded data is finally analyzed
to measure operators performance and reliability. We demonstrate this
approach of accessing control room operator's performance in the next
section using a case study involving an ethanol production plant.

M.U. Iqbal, R. Srinivasan Journal of Loss Prevention in the Process Industries 56 (2018) 524–530

526



4. Case study: ethanol production process

In the ethanol production plant, feed of ethene and water enters a
Continuous Stirred Tank Reactor (CSTR) in which an exothermic re-
action takes place resulting in the formation of ethanol. To control the
temperature within the CSTR, a coolant (water) is circulated in the
jacket of the CSTR. The reaction contents are distilled in a distillation
column, where ethanol of required purity is obtained as the top product
while the unreacted raw materials form the bottoms. The process is
controlled to ensure safe operation despite various disturbances. An
operator supervises the control of the process using a distributed con-
trol system (DCS). The interface of the ethanol production plant's DCS is
shown in the Fig. 1. The flow rates in various streams are controlled by
valves, and the values of various process variables (like temperature,
flow rate, etc.) are displayed in the human-machine interface (HMI).
The interested reader is directed to Sharma et al. (2016) for a detailed
description of the HMI used in the experiment. In this process, various
abnormalities can occur. For example, suppose the reactor temperature
starts increasing due to reasons initially unknown to the operator (e.g.
sensor has failed, or a control valve has got stuck). Unless the operator
is able to respond quickly, the temperature may cross acceptable limits,
and lead to an uncontrollable runaway reaction with adverse con-
sequences (reactor damaged, loss of reactor containment, potential for
fire and explosion). Thus there is a need to maintain various process
variables within acceptable safe limits (e.g. alarm limits). Further, a
measure of the operator's reliability is the response time and extent of
deviation of critical process variables from their safe limits. Such data
can be obtained from historical process data. In other words, by ana-
lyzing process operations data during various abnormal conditions, it is
possible to evaluate the reliability of process operators.

We conducted human subject based experiments to study the var-
iation in reliability according to operators' experience level. Our study
included a total of 128 participants who played the role of plant op-
erator for the simulated ethanol production plant. These participants
were graduate and undergraduate students at Indian Institute of
Technology Gandhinagar and National Institute of Technology
Srinagar. The participants were drawn from two different groups – one
set of 76 participants, hereby called novice operators, had no prior
experience in control of the ethanol process nor of any other simulator
based process control experiments. The other set of 52 participants,
called expert operators, had previously operated the simulated process,

although they may not have handled the same disturbance considered
in these experiments. Before the start of the experiment, both sets of
participants were given the same training on how to operate the plant.
The training involved studying an instruction manual and a video de-
monstration of using the HMI to interact with the process. During the
experiment, the operator is tasked to monitor the process and respond
to any disturbance if any process variable deviates outside its alarm
limits. Further, the operator is required to return the process within its
safe operating bounds within a stipulated amount of time (5 min). The
operators are notified of alarms in the HMI by the change in color of the
tag from grey to red. A list of variables in alarm status is also displayed
in the HMI's alarm panel.

Next, we describe a typical failure scenario that has to be handled
by the operator. The reactor temperature is maintained by a feedback
control loop that controls the coolant flow rate to the CSTR. In our case
study, the temperature sensor can suddenly get stuck (i.e. value re-
ported by the sensor does not change) at some instant of time. The
erroneous input to the controller due to the freezing of the temperature
sensor would lead to poor temperature control and a consequent rise or
fall in the CSTR temperature given the exothermic nature of the reac-
tion. When an alarm is triggered, the operator has to quickly take ne-
cessary decisions so as to bring the temperature and other variables
(which are affected by the disturbance) within acceptable limits; else
there would be an automatic shutdown (also considered as a human
failure). If the operator is unable to troubleshoot the root cause of the
disturbance(s) he also has the choice to trigger an emergency shutdown
of the process. This is also considered a failure on the part of the op-
erator.

The reliability of the plant operators to control the process can be
studied by considering the margin-to-failure and the available-time.
The margin-to-failure measures how close a safety critical variable (e.g.
temperature of CSTR) approaches the shutdown limit during the course
of the episode. The process data generated experimentally can be used
to determine the margin-to-failure. Similarly, the available-time is the
difference between the maximum allowable time for the incident before
automatic shutdown is triggered (in our case 5 min) and the operator's
response time defined as the duration from occurrence of the first alarm
to the clearance of the disturbance (characterized by all variables re-
turning to their normal limits). This can also be calculated from process
data for each episode as illustrated in Fig. 2 above. Next, we report our
conclusions from our experimental study.

Fig. 1. Modeled ethanol plant interface.
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4.1. Results

Following the procedure discussed above, for analysis we con-
sidered the CSTR temperature and distillation column temperature and
pressures to be safety critical process variables. Since the temperature
and pressure of the distillation column didn't show much variation in
the disturbances studied here, and their range stayed within safe limits
in all cases, in the following we only consider CSTR temperature for
assessing human performance. From the operations data for each op-
erator, the response times of the operator and the deviation in the
temperature of the CSTR were determined. Out of the 76 novice par-
ticipants that performed the experiment, only 32 (about 42%) were able
to bring the plant to normal after the incident. Similarly, among the 52
expert participants, 28 (about 54%) were able to successfully tackle the
disturbance. The relatively low success rate reflects the overall diffi-
cultly of the task. Further, the higher proportion of success of the expert
operators highlights their higher expertise. Next, the available-time and
margin-to-failure were analyzed for those novice and expert operators
who were successful in completing the task.

Fig. 3 shows a plot of the available-time against margin-to-failure
for the novice operators. The normalized difference between the shut-
down limit for the CSTR temperature, and the maximum temperature
attained during the process of operating the plant is used to calculate
the margin-to-failure. In a similar fashion, the available time is nor-
malized to a scale of 100 based on the difference between actual re-
sponse time and the maximum allowable time. The axes are scaled so
that the results can be compared while determining the human per-
formance based on different key variables for different tasks or pro-
cesses, as required. This helps in generalization. From the figure, it can

be observed that as the available-time is higher, the margin-to-failure is
also more. Consider for example, a data point in the bottom right of the
plot. The available time is around 81 s (on a scale of [0100] seconds)
and the margin-to-failure is 0.74 (on a scale of [0 1]). This shows that
the operator corresponding to whom these values are obtained has not
allowed the temperature to deviate too much and at the same time he
has also been successful in controlling the plant within a short period of
time. The variability in the response times in Fig. 3 also points to have
high variability in response times (i.e. human performance). This means
that variability in the underlying distribution from which human failure
probabilities are sampled is high. This needs to be reflected when such
human failure probabilities are incorporated into risk analysis and
would indicate a higher risk for the plant (Iqbal and Srinivasan, 2016).

We carried out the same analysis with the operations data from the
expert operators. The resulting curve is shown in Fig. 4. The trend for
the expert operators is also similar to that for the novice operators.
However, a comparison of the two classes of operators as shown in
Fig. 5, reveals the following. The trend line for expert operators has
shifted in an anti-clockwise direction, i.e., the margin-to-failure for
expert operators has improved which indicates that these operators
tend to control the plant better and do not allow safety critical variables
to get close to the failure limits. . Whenever a process variable, crosses
its safety limits, the process is exposed to a safety hazard, which has the
potential to result in an unplanned shutdown or accident. Kleindorfer
et al. (2012) have attempted to determine the magnitude of such loss, in
monetary terms, by introducing a new concept of potential safety loss
(PSL); the longer the variables stay outside the acceptable limits more is
the potential of the plant to experience a loss due to safety issues.
Further, the spread in margin-to-failure in the case of expert operators
is noticeably lower than that of the novice operators – 0.60 units for
experts and 0.71 units for novices. This shows less variability in the
performance of the expert operators, and consequently less risk. Thus,

Fig. 2. Process variable trend during a typical experiment.

Fig. 3. Available time vs margin-to-failure curve for novice operators.

Fig. 4. Available time vs. margin-to-failure curve for experienced operators.

Fig. 5. Comparison of model curves for novice and experienced operators.
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this analysis quantifies the benefit that experience offers in perfor-
mance improvement. The gulf between the performances of experi-
enced and novice operators is believed to become more distant and
visible during the complex and more difficult tasks that are encountered
in an industrial setting.

The advantage of the proposed methodology is that we can study
the performance of human operators on plant specific basis from the
plant's operating data. This ensures better validation of human failure
probabilities associated with that plant, as well as devising a better and
targeted strategy to improve human performance. Human reliability
analysis methods and the subsequent probabilistic safety assessments
are challenged by plant-specific organizational factors (Mohaghegh and
Mosleh, 2009) and the interdependencies between organizational issue
creates and safety barriers are not reflected well. The proposed ap-
proach for measurement of plant-specific human performance provides
an (indirect) approach to incorporate organizational, factors like
training, awareness, etc in the reliability estimates. Operator actions,
and hence performance, need to be understood in a contextual manner
i.e. in relation to the people attempting (together), in a particular en-
vironment, to make sense of the system and the environment, and act
on the basis of available (incomplete) information while relying on
social conventions, cognitive heuristics and affordances provided by the
environment (Reiman and Rollenhagen, 2011).

The proposed methodology and the metrics also have an important
application in the context of near-misses. Near misses have been de-
fined as departures from and subsequent returns to normal operating
range for process variables (Pariyani et al., 2012). Near-misses are less
obvious compared to accidents since they are often not ‘visible’ and
have little or no immediate impact on business, process, or individuals
(Kleindorfer et al., 2012). In our approach, near-misses are character-
ized by successful tasks but with a low margin-to-failure. By quantifying
performance using the proposed metrics, we thus provide a measure of
near-misses. These near-miss measures are therefore beneficial and
offer a way to predict the occurrence of unsafe conditions during reg-
ular operations, which are often a precursor to catastrophes
(Kleindorfer et al., 2012).

5. Conclusions and discussion

Chemical process industries routinely handle hazardous materials
having inherent risk associated with them. Abnormalities may lead to
incidents of varying consequence – from near-misses to catastrophic
accidents. A number of Layers of Protection are used to minimize these.
Humans form an important element of such protective systems; how-
ever, the failure probability associated with human operators is not
fully known. Due to the belief that human error is inevitable and un-
predictable, and that advances in automation will make human action
unnecessary, the domain of human error has received limited attention.
However, human error accounts for over 70% of accidents in the che-
mical industry. A proper understanding of human errors, especially
failure probabilities is therefore imperative.

In this paper we propose metrics and a strategy for estimating
failure probabilities experimentally for control room operators. The
strategy is based on the time taken by operators to bring a plant to a
normal state, in response to an abnormal event. The inability of the
human operator to bring the plant within normal limits is considered to
be a measure of their reliability. We propose two metrics – margin-to-
failure and available time to quantify this. Such a granular measure-
ment of human performance is important because it enables us to look
into human failure beyond the binary notions of success and failure –
thus accounting for higher order cognitive skills and diagnosis ability
which are increasingly critical in today's automated plants. The mag-
nitude of variance in the metrics also reflects the extent of risk, i.e.,
lower the variance in performance, the higher the operator's reliability
when a particular disturbance occurs. Through such metrics, we focus
more on quantitatively analyzing the overall performance of an

operator as different from an investigation of the step-by-step actions/
inactions over the course of the task. By measuring these, we can gauge
the operator's skill and effectiveness of training. Analyzing the perfor-
mance data opens up opportunities to mine for focused training. Thus,
the risk to the plant because of variability in human performance can be
brought down by appropriate steps like guided training, awareness, etc.
This will be the focus of our future work. Further, the proposed
methodology has been demonstrated for a specific scenario; however, it
can be directly applied to various other scenarios, even in an industrial
setting, in a similar manner.
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