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Abstract

In this thesis we study the notion of enumeration 1-genericity, various basic prop-

erties of it and its relationship with 1-genericity. We also study the problem of

avoiding uniformity in the ∆0
2 enumeration degrees. In Chapter 2 we give a brief

background survey of the notion of genericity in the context of the Turing degrees

as well as in the enumeration degrees.

Chapter 3 presents a brief overview of the relationship between noncupping and

genericity in the enumeration degrees. We give a result that will be useful in prov-

ing the existence of prime ideals of Π0
2 enumeration degrees in Chapter 5, namely,

we show the existence of a 1-generic enumeration degree 0e < a < 0′
e which is

noncuppable and low2.

In Chapter 4 we investigate the property of incomparability relative to a class

of degrees of a specific level of the Arithmetical Hierarchy. We show that for every

uniform ∆0
2 class of enumeration degrees C, there exists a high ∆0

2 enumeration

degree c which is incomparable with any degree b ∈ C such that b /∈ {0e,0
′
e }.

Chapter 5 is devoted to the introduction of the notions of “enumeration 1-

genericity” and “symmetric enumeration 1-genericity”. We study the distribution

of the enumeration 1-generic degrees and show that it resembles to some extent

the distribution of the class of 1-generic degrees. We also present an application of

enumeration 1-genericity to show the existence of prime ideals of Π0
2 enumeration

vii
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degrees. We then look at the relationship between enumeration 1-genericity and

highness.

Finally, in Chapter 6 we present two different approaches to the problem of

separating the class of the enumeration 1-generic degrees from the class of 1-generic

degrees. One of them is by showing the existence of a non trivial enumeration 1-

generic set which is not 1-generic and the other is by proving that there exists a

property that both classes do not share, namely, nonsplitting.
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Chapter 1

Introduction

In this Chapter we give a brief historical background of Computability Theory. The

choice of results surveyed is restricted to those related to the main topic of this thesis.

We thus refer the reader to [Odi92, Odi99, Soa99, Coo04, ASF06] for a thorough

account of the development of Computability Theory as one of the main research

areas of Mathematical Logic. In the second section we give a basic introduction

to enumeration degrees along with a brief historical survey (we refer the reader to

[Coo90, Sor97] for a fuller discussion of enumeration degrees). The last section is

devoted to an introduction to the priority method. We illustrate the finite injury

priority method with a simple example. We also discuss very briefly the tree method

and the infinite injury priority method.

1.1 General overview and outline

In his historical speech at the International Congress of Mathematicians in Paris

in 1900 the famous mathematician David Hilbert posed the Entscheidungsproblem,

which asks for for an algorithm that takes as input a statement of a first-order

logic and as an output gives “Yes” or “No” according to whether the statement is

1
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universally valid.

It was a young British mathematician, Alan Turing, who gave a negative solution

to the Entscheidungsproblem in [Tur36]. In a later paper [Tur39], Turing introduced

the notion of relativized computation using oracle Turing machines (i.e. Turing re-

ducibility). This notion laid the foundations of what is now known as Computability

Theory.

Turing’s idea of relativized computation attracted other mathematicians such as

Kleene and Post who developed further this concept in [Pos44, Kle52, KP54]; Kleene

gave a formal definition in [Kle43]. Post defined the concept of degree of unsolvability

in [Pos48]. Accordingly, two problems are of the same degree of unsolvability if each

is reducible to the other. Kleene and Post introduced the notion of computable

enumerable set (c.e. set) in [Kle36, Dav65]. Post showed in [Pos44] that the Halting

set1 (represented by K) is complete, that is, every c.e. set is 1-reducible to K.

Up until then, all computable enumerable problems known at the time were

either computable or of the same degree as K. Post asked if one could find an in-

complete c.e. degree (this came to be known as Post’s problem). Friedberg [Fri57]

and Muchnik [Muc56] independently solved Post’s problem using a technique which

is now a fundamental tool in Computability Theory, namely, the priority method.

In fact, the priority method had a finitary nature and was further developed to solve

other problems. As the complexity of these problems grew, the need for more soph-

isticated techniques became evident. This gave rise to the infinite injury priority

method invented independently by Shoenfield [Sho61] and Sacks [Sac63b]. Yates

[Yat66a, Yat66b] and Lachlan [Lac66] extended the infinite injury priority method

to continue solving complex problems but then this technique became quite com-

plicated and difficult to follow. The use of priority trees was introduced in order to

1The Halting problem asks for an algorithm that decides whether an algorithm halts with a
given input.
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give a better understanding of the infinite injury priority method. Lachlan intro-

duced the tree method in [Lac75] and further developed it in [Lac79]; Harrington

gave useful remarks for the use of trees in [Har82].

Enumeration reducibility was introduced by Friedberg and Rogers in [FR59] as

the notion of relative enumerability between sets. Intuitively a set A is enumeration

reducible to a set B, if there is an effective method (i.e. an algorithm) which given

any enumeration of B, outputs an enumeration of A. We notice that a set A is

Turing reducible to a set B, if we can compute the characteristic function of A using

the characteristic function of B as the input of an oracle Turing machine, whereas

in enumeration reducibility we are only given an enumeration of B as an input.

Myhill [Myh61] defined a computable embedding of the Turing degrees into the

enumeration degrees, thus proving that the enumeration degrees are an extension

of the Turing degrees. The enumeration degrees form a degree structure similar to

that of the Turing degrees. Indeed, we say that two sets, A and B, are of the same

enumeration degree if A is enumeration reducible to B and vice versa.

The notion of genericity was invented by Cohen [Coh63] to prove the independ-

ence of the Axiom of Choice and the Continuum Hypothesis from Zermelo Fraenkel

set theory. Genericity turned out to be a useful concept in Computability Theory to

prove results related to the existence of Turing degrees with certain properties. We

can transfer these results to the enumeration degrees via the computable embedding

mentioned above, but we still need a notion of genericity which is appropriate to

the definition of enumeration reducibility (in which only positive information can

be used).

In this thesis we study the notions of enumeration 1-genericity and symmetric

enumeration 1-genericity. We investigate various basic properties of enumeration

1-genericity in the enumeration degrees along with its relationship with the usual
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notion of 1-genericity. We also present an application of enumeration 1-genericity

to show the existence of prime ideals of Π0
2 enumeration degrees. As a sideline to

the main focus of this thesis, we study the problem of avoiding uniformity in the ∆0
2

enumeration degrees.

In Chapter 2 we give a brief background survey of the notion of genericity in

the context of the Turing degrees as well as in the enumeration degrees. This

brief introduction to genericity will serve as a basis for the problems that will be

investigated in subsequent chapters.

Chapter 3 presents a brief overview of the relationship between noncupping and

genericity in the enumeration degrees. We give a result that will be useful in prov-

ing the existence of prime ideals of Π0
2 enumeration degrees in Chapter 5, namely,

we show the existence of a 1-generic enumeration degree 0e < a < 0′
e which is

noncuppable and low2.

In Chapter 4 we investigate the property of incomparability relative to a class

of degrees of a specific level of the Arithmetical Hierarchy. We show that for every

uniform ∆0
2 class of enumeration degrees C, there exists a high ∆0

2 enumeration

degree c which is incomparable with any degree b ∈ C such that b /∈ {0e,0
′
e }.

As a corollary, we get that such c caps with both a high and a low nonzero ∆0
2

enumeration degree.

Chapter 5 is devoted to the introduction of the notions of “enumeration 1-

genericity” and “symmetric enumeration 1-genericity”. We study the distribution

of the enumeration 1-generic degrees and show that it resembles to some extent

the distribution of the class of 1-generic degrees. We also present an application of

enumeration 1-genericity to show the existence of prime ideals of Π0
2 enumeration

degrees. Finally, we look at the relationship between enumeration 1-genericity and

highness.
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In Chapter 6 we present two different approaches to the problem of separating

the class of the enumeration 1-generic degrees from the class of 1-generic degrees.

One of them is by showing the existence of a non trivial enumeration 1-generic set

which is not 1-generic and the other is by proving that there exists a property that

both classes do not share, namely, nonsplitting.

1.2 Enumeration Degrees

The notion of enumeration reducibility was introduced by Friedberg and Rogers in

[FR59, Rog67] as a relation between sets of natural numbers. Intuitively, we say a

set A ⊆ ω is enumeration reducible to a set B ⊆ ω, if given an enumeration of B,

we can effectively get an enumeration of A. More formally, we can define this notion

by:

Definition 1.2.1. A set A is enumeration reducible to a set B (A≤eB) if there is

a c.e. set W such that

x ∈ A⇔ (∃u)[〈x,Du〉 ∈ W & Du ⊆ B],

where Du is the finite set with canonical index u.

Every c.e. set W can be seen as corresponding to an “enumeration operator” Φ

(e-operator) defined by Φ = {〈x,Du〉 | ∃s[〈x,Du〉 ∈ Ws]}. Given an effective listing

{We}e∈ω of the c.e. sets we get a corresponding listing {Φe}e∈ω of the e-operators.

Accordingly, we can also define enumeration reducibility as follows.

Definition 1.2.2. A set A is enumeration reducible to a set B if and only if there

exists an e-operator Φ such that:

A = ΦB = {x | (∃u)[〈x,Du〉 ∈ W & Du ⊆ B]}.
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Enumeration reducibility (≤e) is reflexive and transitive, i.e. is a pre-order on

the powerset of ω, namely P(ω). This pre-order generates an equivalence relation

(≡e ) defined by:

A ≡e B ⇔ A≤eB & B≤eA.

Let a = dege(A) denote the enumeration degree of A which is defined by

dege(A) = {X | X ≡e A}. The degree structure 〈De,≤〉 is the class consisting

of the enumeration degrees. If A ∈ a and B ∈ b, then the relation ≤ is defined by

a ≤ b ⇔ A≤eB.

The structure De is an upper semilattice with least element 0e and join operation.

Indeed, given any set B and a c.e. set A, if B≤e A then, B is c.e. On the other hand,

given any c.e. set A and any set B, we have A≤eB via the e-operator Φ = {〈x, ∅〉 |

x ∈ A}. Moreover, we define the join operation as dege(A)∨dege(B) = dege(A⊕B)

where A⊕B = {2x | x ∈ A} ∪ {2x+ 1 | x ∈ B}.

In [Cas71] Case constructed an “exact pair” (see Definition below) for a countable

ideal2 I of De. Case obtained as a corollary the existence of two degrees which do

not have a greatest lower bound and hence the enumeration degrees do not form a

lattice.

Definition 1.2.3. Let a and b be two enumeration degrees. We say a and b form

an exact pair for a set of degrees C if,

i. For all c ∈ C we have that c ≤ a and c ≤ b, and

ii. For every degree x such that x ≤ a and x ≤ b then there exists c ∈ C such

that x ≤ c.

2If D is an upper semilattice then, the set I ⊆ D is an ideal if I is closed under joins, and if
x ∈ I and y ≤ x then y ∈ I.
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Enumeration reducibility can be seen as a reducibility between partial functions.

If ϕ is a partial function, then we define the graph of ϕ by graph(ϕ) = {〈x, y〉 |

ϕ(x) ↓= y}. Then for partial functions ϕ and ψ,

ϕ≤eψ ⇔ graph(ϕ)≤egraph(ψ).

The reducibility explained above coincides with the reducibility between partial

functions that Myhill introduced in [Myh61]. Accordingly, P denotes the set of all

partial degrees, where ϕ = dege(ϕ) = {ψ | ψ ≡e ϕ} with least degree 0 consisting of

all partial computable functions. Let a be any enumeration degree and take A ∈ a.

We then define graph(ϕ) = {〈x, 0〉 | x ∈ A}. Clearly A ≡e graph(ϕ). Hence, P

is isomorphic to De since any enumeration degree contains the graph of a partial

function.

Another interesting class of enumeration degrees is that of the “the total enu-

meration degrees”, which is obtained by considering the enumeration degrees that

contain the graph of a total function.

Definition 1.2.4. An enumeration degree a is called total if there is a total function

f such that graph(f) ∈ a.

The necessary conditions for an enumeration degree to be total are the following3.

Lemma 1.2.5. For any enumeration degree a the following are equivalent:

i. a = dege(A) is total;

ii. A≤eA;

iii. χA ≡e A⊕ A ≡e A.

3We note that χA denotes the graph of the characteristic function of A and A denotes the set
A \ ω.
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From the definition of enumeration reducibility A≤eB implies that A is c.e. in

B but the reverse implication does not hold in general. For example, consider the

halting set K (i.e. K = {x | x ∈ Wx}). Then4 K is c.e. in K but it is not the case

that K≤eK (since K is not c.e.). On the other hand, whenever B is a total function

we have the following.

Lemma 1.2.6. A is c.e. in B if and only if A≤eB ⊕B.

Myhill [Myh61] defined a computable embedding ι : D → De (i.e. an embedding

of the Turing degrees into the enumeration degrees) by

ι(degT(A)) = dege(A⊕ A),

where degT(A) stands for the Turing degree of the characteristic function χA of A.

In the Turing degrees if A ≤T B, then we compute the characteristic function χA

of A using the characteristic function χB of B, i.e. this is a reduction between total

functions.

Lemma 1.2.7. For any two sets A and B,

A ≤T B ⇔ χA≤eχB.

Thus the image of the Turing degrees under ι is the class of the total enumeration

degrees. However, in a more general sense we have that neither A ≤T B implies

A≤eB nor the reverse implication. Moreover, consider the following result.

Lemma 1.2.8. If A is a c.e. set then,

χA ≡e A⊕ A ≡e A.

4We say A is c.e. in B if A = WB
e for some e ∈ ω (where WB

e denotes the domain of the e-th
Turing machine using the characteristic function χB of B as an oracle).
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Therefore, the c.e. Turing degrees are isomorphic to the Π0
1 enumeration degrees

under ι. Furthermore, ι preserves least upper bounds and least element. Notice that

ι also preserves the greatest element since the enumeration degree of K is dege(K)

and so is the greatest Π0
1 degree.

Medvedev showed in [Med55] that there exist enumeration degrees which are not

total5 by constructing a set A which is not itself total and has no total predecessors

other than 0e (we say that such a set A is “quasiminimal”).

McEvoy [McE85] and Cooper [Coo84] defined a jump operation on the enumer-

ation degrees in the following way.

Definition 1.2.9. For any set A let KA = {x | x ∈ ΦA
x }. The enumeration jump

Je(A) (e-jump) of A is defined by

Je(A) = KA ⊕KA.

Similarly, McEvoy and Cooper defined the jump of an e-degree a as a′ =

dege(KA ⊕ KA) = dege(Je(A)). The e-jump can be iterated in the usual way to

obtain the n-th jump a(n) of a. The enumeration jump has the same properties as

the Turing jump (see below).

Lemma 1.2.10. Let A and B be any two sets, then the enumeration jump of A and

B have the following properties:

i. If A≤eB then Je(A)≤eJe(B), and

ii. A <e Je(A).

Moreover, McEvoy noted in [McE85] other interesting properties of the e-jump.

Proposition 1.2.11 ([McE85]). For any two sets A and B, the following are equi-

valent
5An enumeration degree a is total if a contains the graph of a total function.
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i. A≤eB,

ii. A ≤1 KB
6,

iii. KA ≤1 KB.

Lemma 1.2.12 ([McE85]). For any two sets A and B,

A ∈ ΣB
n+1 ⇔ A≤eJ

(n)
e (χB).

Corollary 1.2.13 ([McE85]). For any set A ⊆ ω,

dege(A)≤e 0(n)
e ⇔ A ∈ Σ0

n+1.

Under the embedding ι we have that ι(degT(A)′) = ι(degT(A))′, that is, the

Turing jump agrees with the e-jump.

Cooper showed in [Coo84] that De[≤ 0′
e ] coincides with the set of all Σ0

2 enu-

meration degrees. Indeed, given any Σ0
2 enumeration degree a we can define a Σ0

2

approximation (see Definition 1.2.14) to A ∈ a in the following way.

Definition 1.2.14. A Σ0
2 approximation to a set A is a computable sequence {As}s∈ω

of finite sets such that

x ∈ A⇔ ∃s∀t ≥ s[x ∈ At].

Then it follows that x ∈ A ⇔ limsAs(x) = 1 (whereas in a ∆0
2 approximation

{As}s∈ω to a set A we have, x ∈ A ⇔ limsAs(x) exists). Recall that the e-jump

6A set A is one-one reducible to a set B (A ≤1 B) if there exists a one-one computable function
f such that

∀x[x ∈ A⇔ f(x) ∈ B].
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agrees with the Turing jump and hence 0′
e is the e-degree of K. We then define a

Σ0
2 approximation to A as

x ∈ A⇔ ∃s∀t ≥ s[x ∈ ΦKte,t ].

Every total e-degree a below 0′
e is ∆0

2. On the other hand, there exist ∆0
2

enumeration degrees which are not total. Take as an example the construction of

the existence of a quasiminimal set A given in [Med55], in which A is ∆0
2 but not

total. In fact, Cooper and Copestake [CC88] showed that there exist properly Σ0
2

e-degrees, that is, e-degrees which do not contain ∆0
2 sets. We illustrate the local

structure of the e-degrees (consisting of the Σ0
2 e-degrees) in Figure 1.1. Sorbi gives

in [Sor97] a thorough discussion on the local structure of the enumeration degrees.

0′
e

0e

Σ0
2 e-degrees

Π0
1

∆0
2

Tot

Figure 1.1: The local structure of the enumeration degrees.

Gutteridge showed in [Gut71] that there are no minimal7 e-degrees and hence

the enumeration degrees are downwards dense. Cooper [Coo84] extended this result

and proved that the e-degrees below 0′
e are dense and form an ideal. Afterwards,

in [Coo90] Cooper showed that the e-degrees below 0(6)
e are not dense and Slaman

and Woodin [SW97] proved that the e-degrees below 0′′
e are not dense.

7A nonzero e-degree a is minimal if no nonzero e-degree is strictly below a.
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Cooper asked if the c.e. Turing degrees and De[≤ 0′
e ] are elementary equivalent.

Ahmad gave a negative answer in [Ahm91] by proving that the diamond lattice

embeds into the Σ0
1 enumeration degrees and in [AL98] where it is shown that there

exists a nonsplittable8 enumeration degree. In fact, these two results contrast with

the Non-Diamond theorem by Lachlan [Lac66] and the Splitting theorem for the c.e.

Turing degrees by Sacks [Sac63a].

As in the Turing degrees, an e-degree a is low if a′ = 0′
e and a set A is low

if Je(A) ∈ 0′
e . Similarly, an e-degree is high if a′ = 0′′

e . More generally, for each

n > 0, we define an e-degree a to be lown (highn) if a(n) = 0(n)
e (a(n) = 0(n+1)

e )

and if A ∈ a then A is lown (highn). In fact, McEvoy gives in [MC85] a useful

characterisation of the low e-degrees.

Lemma 1.2.15 ([MC85]). The following are equivalent, for any set A:

i. A is low.

ii. There is a ∆0
2 approximation {As}s∈ω to A, in which, for every e ∈ ω, there is

a ∆0
2 approximation {ΦAs

e,s}s∈ω to ΦA
e .

iii. There is a Σ0
2 approximation {As}s∈ω to A, in which, for every e ∈ ω, limsΦ

As
e,s(e)

exists.

Approximations to sets below 0′
e

As we have seen before, the sets below 0′
e are those which belong to the Σ0

2 class

and can be approximated by a Σ0
2 approximation. Cooper mentions in [Coo84] that

every Σ0
2 set A has a Σ0

2 approximation {As}s∈ω with infinitely many “thin” stages,

namely, stages s of the form As ⊆ A.

8We say an enumeration degree a is splittable if there exist incomparable degrees a0 and a1

such that a = a0 ∪ a1 . Otherwise we say a is nonsplittable.
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Lemma 1.2.16 ([Joc68],[Coo84]). If A ∈ Σ0
2 then, A has a Σ0

2 approximation

{As}s∈ω with infinitely many thin stages.

Proof. Suppose that A ∈ Σ0
2 and so A is c.e. in K. Thus A = WK

e for some e ∈ ω

(namely, A is the domain of the e-th Turing machine using K as an oracle). Let

{We,s}s∈ω and {Ks}s∈ω be c.e. approximations to We and K.

First, we define a computable approximation {As}s∈ω to A as follows. We define

a computable function f by

f(s) =

 µy[Ks(y) 6= Ks−1(y)] if s > 0,

0 otherwise,

Then set As = {x | x ∈ W
Ks�f(s)
e,s }. For every x ∈ A, we define u(x, s) = the

maximum element used of Ks by x at stage s. It follows that u(x, s) < f(s).

Now, we prove that {As}s∈ω is a Σ0
2 approximation to A. For any x ∈ A, choose

a stage sx large enough such that for all s ≥ sx, u(x, sx) = u(x, s) = u(x). Moreover,

choose a stage s′ ≥ sx such that for all t ≥ s′, f(t) ≥ f(s′). We then define,

x ∈ A⇔ ∃s′∀t ≥ s′[x ∈ WKt�f(t)
e,t ].

Finally, we prove that {As}s∈ω has indeed infinitely many thin stages. For any

n, choose a stage s large enough such that for all t ≥ s we have

∀y < n [K � n(y) = Kt � n(y)].

Fix such a stage s, then it follows that

WKs
e,s ⊆ WK

e .
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Lemma 1.2.16 was originally proved by Jockusch in [Joc68]. Lachlan and Shore

[LS92] and Harris [Har10] generalized it to the notion of “good approximation”.

Definition 1.2.17. A uniformly computable enumeration of finite sets {As}s∈ω is

said to be a good approximation to the set A if

i. ∀s (∃t ≥ s)[At ⊆ A ], and

ii. ∀x [ x ∈ A ⇔ ∃t (∀s ≥ t)[As ⊆ A⇒ x ∈ As ] ].

In this case we say that A is “good approximable”. If we replace ii. by the

condition ∀x [x ∈ A ⇔ ∃t(∀s ≥ t)[x ∈ As ]] then {As}s∈ω is said to be a “good

Σ0
2 approximation”. Stages s of the form As ⊆ A are called good stages (similar to

thin stages in Lemma 1.2.16).

Definition 1.2.18. We define an enumeration degree a to be good if a contains a

good approximable set. Otherwise we say that a is bad.

Lachlan and Shore proved in [LS92] that good approximations have the following

interesting property.

Lemma 1.2.19 ([LS92]). Let G(A) = {s | As ⊂ A} i.e. the set of all good stages. If

{As}s∈ω is a good approximation to A, and Φ an e-operator, then lims∈G(A) ΦA
s = ΦA.

Proof. Consider x ∈ ΦA, then there exists an axiom 〈x,D〉 ∈ Φ such that D ⊆ A.

Set m = max{D}+ 1. Choose a stage s ∈ G(A) such that for all good stages t ≥ s,

A � m ⊆ At ⊆ A and so x ∈ ΦAt
t ⊆ ΦAt ⊆ ΦA. On the other hand, if x /∈ ΦA, then

for no s ∈ G(A) do we have x ∈ ΦAs
s .

We can define good approximations to sets that are members of the classes Σ0
2,

∆0
2 and Π0

1. However, there are some Π0
2 sets that have no such good approximation

[LS92, Har12].
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Now, a natural question to ask is whether we can define a Σ0
2 approximation to

a set B≤eA (with A ∈ Σ0
2). Let B = ΦA

e for some e ∈ ω. If we simply let Bs = ΦAs
e,s

then, it might be the case that y ∈ ΦAs
e,s for cofinitely many stages s but yet y /∈ ΦA

e .

McEvoy and Cooper presented in [McE85] a way of defining a Σ0
2 approximation

{ΦAs
e,s}s∈ω to ΦA

e .

Proposition 1.2.20 ([McE85]). If A≤eJe(∅) then, there is a definition of y ∈ ΦAs
e,s

such that for any e ∈ ω, ΦAs
e,s is a Σ0

2 approximation to ΦA
e .

Proof. Let A be a Σ0
2 set with a Σ0

2 approximation {As}s∈ω and for some e ∈ ω, we

have an e-operator Φe with the usual c.e. approximation {Φe,s}s∈ω.

First, at any stage s for some y such that 〈y,Du〉 ∈ Φe,s and Du ⊂ As, we define

the “use” function uA(e, y, s) so that uA “picks” the finite set Du that has been a

subset of the current approximation As to A for the longest. Accordingly, we need to

measure how long a given finite set has been a subset of the current approximation

As to A. Thus, we define

λ(u, s) = µt ≤ s[∀k (t ≤ k ≤ s)Du ⊂ A].

We then define the use function uA(e, y, s) by

uA(e, y, s) = µu ≤ s[(∀v)[(〈y,Dv〉 ∈ Φe,s)⇒ [λ(v, s) ≥ λ(u, s)]]].

Finally, we define a Σ0
2 approximation to ΦA

e .

Stage s = 0. Set ΦA0
e,0 = ∅.

Stage s+ 1. Set ΦAs
e,s = {y | uA(e, y, s+ 1) = uA(e, y, s)}.

We note that in Proposition 1.2.20, if {As}s∈ω is a good Σ0
2 approximation to A,

then {ΦAs
e,s}s∈ω is a good approximation to ΦA

e for any e.
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1.3 Priority Method

1.3.1 Finite injury priority method

Occasionally, in Computability Theory we are required to prove that a set with

certain properties exists. We then prove the existence of such set by constructing it

by stages. There are several techniques for constructing sets according to the set we

want to approximate. Throughout this thesis, when approximating sets, we will be

using techniques such as the finite injury priority method, the tree method and the

infinite injury priority method (we refer the reader to [Soa99, Coo04] for a thorough

introduction to these techniques). In this section, we will illustrate the finite injury

priority method by a very simple example and discuss the modifications needed to

adapt this example to the tree method. Finally, we briefly discuss the difference

between the finite injury priority method and the infinite injury method.

The simplest instance of the priority method in the Turing degrees is the finite

injury priority method. The first result using this technique was by Friedberg [Fri57]

and Muchnik [Muc56] in which two c.e. sets, A and B, are constructed in such a

way that they are incomparable (A �T B and B �T A).

The general idea of the finite injury priority method is explained as follows.

Suppose that we want to construct a set with a certain property and we express it

as requirement R. We break this requirement R into a list of smaller requirements,

say Re (for all e ∈ ω), and define a priority ordering as

R0 < R1 < R2 < · · · .

Note that requirement R0 has higher priority than requirement R1, requirement

R1 has higher priority than R2 and etc. There are several ways (strategies) to meet

each requirement Re. The way each requirement will be met (satisfied) depends on
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the information available to us at stage s during the construction. Consider any

requirement Re. In order to satisfy it we would have to wait until higher priority

requirements Ri (i < e) are satisfied. But this could cause the construction to

wait forever for this to happen. Hence Re will have to act (receive attention),

and take the risk of having its work destroyed (injured) at a later stage of the

construction by higher priority requirements (whenever they take some action in

order to be satisfied). Actually, the construction can be defined in such a way

that after Re is injured finitely often, Re still has a chance to be satisfied at, say,

stage s. Requirement Re might act depending on the information available to the

construction at stage s and remain satisfied for all stages t ≥ s. Then we argue by

induction that after a sufficiently large stage s of the construction, such that all Ri

have finished acting, Re still has an opportunity to be satisfied. To illustrate this

process in the context of enumeration degrees we give the following example.

Theorem 1.3.1. There exists an enumeration degree a such that a is nonzero (not

c.e.) and low (i.e. a′ = 0′
e).

Proof. We construct a set A such that, for all e ∈ ω, the following requirements are

satisfied

Ne : A 6= We,

Le : limsΦ
As
e,s(e) exists .

Let {We,Φe}e∈ω be a computable listing of all c.e. sets and enumeration operators

with associated finite c.e. approximations {We,s}s∈ω and {Φe,s}s∈ω for each e ∈ ω.

Let a be the enumeration degree of A. Satisfaction of Le for all e ∈ ω ensures that

a′ = 0′
e since it implies that limsΦ

As
e,s(e) exists for all e ∈ ω. Note that satisfaction

of Ne for all e ∈ ω entails that A is not c.e. The set A will be approximated by
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stages s. By As we denote the finite set of numbers enumerated into A by the end

of stage s.

First, we define the priority of the requirements for R ∈ {N,L}. Accordingly,

requirements Re (for all e ∈ ω) are ordered in terms of priority so that

N0 < L0 < N1 < L1 < · · ·

We explain the strategies for satisfying each requirement Re as follows. The role

of the N strategy (module) working at index e is to find a witness x such that either

x ∈ A\We or x ∈ We\A. Initially, at stage s, N chooses a witness x and enumerates

x into A. If at a later stage, say t > s, x enters We,t then N extracts x from A (this

module is known as the “Friedberg-Muchnik” strategy). The L module working at

index e attempts to satisfy that limsΦ
As
e,s(e) exists. In doing so, it enumerates a finite

set D (with 〈e,D〉 ∈ Φe,) into A such that D does not contain any x that some Ni

(i ≤ e) wants to keep out of A.

For each requirement Re we define a number of parameters for the sake of its

satisfaction. The information contained in the parameters is useful when deciding

what action the construction will take. Parameters are defined according to the type

of requirement. We define the parameters in the following way.

• Parameters for the Ne requirements. The outcome function N(e, s) ∈ {0, 1} and

the witness parameter x(e, s) ∈ ω ∪ {−1}.

• Parameters for the Le requirements. The outcome parameter L(e, s) ∈ {0, 1},

the finite set parameter D(e, s) ∈ P(ω) and the avoidance parameter Ω(e, s) ∈ P(ω).

We define Ω(e, s+ 1) by
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Ω(e, s+ 1) =
⋃
i<e

{x(i, s) | N(i, s) = 1}.

Accordingly, Ω(e, s + 1) records the finite set of elements that the construction

wants to keep out of A for the sake of higher priority N requirements and cannot

be enumerated into A at stage s+ 1 for the sake of Le.

Now, we establish under what conditions a requirement requires attention.

Case Ne . We say that Ne requires attention at stage s + 1 if, either N(e, s) = 0

and x(e, s) = −1 (i.e. Ne does not have an associated witness), or N(e, s) = 0 and

x(e, s) ∈ We,s.

Case Le . We say that Le requires attention at stage s+ 1 if L(e, s) = 0 (i.e. Le has

not received attention) and there exists a finite set D such that 〈e,D〉 ∈ Φe,s and

D ∩ Ω(e, s+ 1) = ∅.

When a requirement Re acts, it can ignore lower priority requirements Ri (i.e.

for all i ∈ ω such that i > e) and destroy the work done so far in the construction

for the satisfaction of all Ri. Whenever the construction encounters this situation,

lower requirements Ri have to be reset (i.e. cancel their parameters) and are forced

to start all over again their work towards their satisfaction

Resetting Ne. When we say that the construction resets Ne at stage s + 1 we

mean the following. If x(e, s) = −1 then, the construction does nothing (and in this

case x(e, s + 1) = x(e, s) = −1 and N(e, s + 1) = N(e, s) = 0). Otherwise we set

x(e, s+ 1) = −1 and N(e, s+ 1) = 0.
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Resetting Le. When we say that the construction resets Le at stage s + 1 we

mean the following. If L(e, s) = 0 the construction does nothing (and in this case

D(e, s + 1) = D(e, s) = ∅ and L(e, s + 1) = L(e, s) = 0). On the other hand, if

L(e, s) = 1 then we set L(e, s+ 1) = 0 and D(e, s+ 1) = ∅.

The Construction. A is constructed in stages s so that

x ∈ A ⇔ ∃s ∀t ≥ s [x ∈ As].

Hence As is finite for all s and so the approximation to A is Σ0
2. Now, we give

the formal definition of the construction. At every stage s > 0, if not otherwise

specified, all parameters retain their values.

Stage s = 0. Define A0 = ∅ and, for all e ∈ ω, N(e, 0) = L(e, 0) = 0, D(e, 0) =

Ω(e, 0) = ∅ and x(e, 0) = −1.

Stage s+ 1. Look for the least e ≤ s such that R ∈ {Ne, Le} is the highest priority

requirement that requires attention and proceed as follows. Otherwise, if there does

not exist such e then go to stage s+ 2 (and all parameters retain their values from

the preceding stage).

Case a) Q = Ne.

• If x(e, s) = −1 and N(e, s) = 0 then choose a new witness x that has not

appeared in the construction (fresh). Define x(e, s + 1) = the least such x,

enumerate x(e, s+1) into A, set outcome N(e, s+1) = 0. Reset lower priority

requirements Ri. We say that Ne receives attention.

• If N(e, s) = 0 and x(e, s) ∈ We,s then extract x(e, s) from A. Set outcome
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N(e, s+1) = 1. Reset lower priority requirements Ri. We say that Ne receives

attention.

Case b) Q = Le.

• If L(e, s) = 0 and there exists a finite set D such that

〈e,D〉 ∈ Φe,s & D ∩ Ω(e, s+ 1) = ∅

then choose the least such D, set D(e, s+ 1) = D, enumerate D(e, s+ 1) into

A and set outcome L(e, s+ 1) = 1. Reset lower priority requirements Ri. We

say that Le receives attention.

Go to stage s+ 2.

Verification. Consider any e ∈ ω. As Induction Hypothesis we suppose that

every requirement R ∈ {Ni, Li | i < e} only receives attention at most finitely often.

Let s be the least stage such that every such requirement R does not receive atten-

tion at any stage t > s. We now check that Ne and Le are satisfied and that the

Induction Hypothesis is justified in each case. We proceed according to descending

priority, noting that Ne < Le in the priority ordering.

Case Ne. By the definition of s for all t ≥ s, x(e, t) = x(e, s). We write this

limiting value as x(e). If Ne never receives attention after stage s, then x(e) ∈ A\We

and outcome N(e) = N(e, t) = 0. Otherwise, if Ne receives attention at some stage

u ≥ t, then x(e) ∈ We \A and outcome N(e) = N(e, u) = 1. Thus Ne never receives

attention at any stage v > u.
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Case Le. Consider s as defined above. If ΦAs
e,s(e) reaches a limit then for all

t ≥ s, D(e, t) = D(e, s). We write this limiting value as D(e). Therefore, ΦAt
e,t(e) =

ΦAs
e,s(e) for all t ≥ s and outcome L(e) = L(e, t) = 1. Hence D(e, t) ⊆ At ⊆ A and

so limtΦ
At
e,t(e) exists.

1.3.2 Tree method

As we saw in the proof of Theorem 1.3.1, each requirement Re had a single strategy

for its satisfaction which is reset every time a higher priority requirement Rj acts.

Instead of having a single strategy for every requirement, we can have multiple

strategies for each Re if we use a “priority tree” T . The use of priority trees was

introduced by Lachlan in [Lac75] and further developed in [Lac79]; Harrington gave

useful remarks for the use of trees in [Har82]. We will now explain briefly how this

method works using requirements Ne from Theorem 1.3.1 as an example.

We define a set of outcomes Σ with a linear ordering <Σ and a priority tree T ,

namely, the tree Σ<ω. Accordingly, we introduce the following notation. Lower case

greek letters γ, β, σ, . . . range over Σ<ω. By |σ| we denote the length of σ which

is defined as |σ| = µx[x /∈ domσ]. Let λ be the empty string. Let σ ⊆ τ denote

that σ is an initial segment of τ and σ ⊂ τ emphasises that σ ⊆ τ but σ 6= τ . The

concatenation σ̂τ of σ and τ consists of σ followed by τ . The relation <L is the

lexicographical ordering over strings given as follows.

Definition 1.3.2. Let σ, τ be members of the priority tree T .

i. We say σ is to the left of τ (σ <L τ) if, for the first n ∈ ω such that σ(n) 6= τ(n)

we have that σ(n) < τ(n).

ii. We say σ ≤ τ if σ <L τ or σ ⊆ τ .
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iii. We say σ < τ if σ ≤ τ and σ 6= τ .

Each node σ ∈ T attempts to satisfy requirement Re if |σ| = e, namely, σ is a

version of the strategy for satisfying Re and has its own “local parameters”.

λ

0

0

...

0 1

...

1

...
...

1

0

...
...

1

...
...

0 1 Re· · ·

R2

R0

R1

· · · · · ·

Figure 1.2: Priority Tree T .

Figure 1.2 illustrates the setting explained above. For example, suppose that

we want to construct a set A satisfying requirements Ne from Theorem 1.3.1 in

isolation. Namely, we have requirements

N0 < N1 < N2 < . . .

Then each σ ∈ T has local parameters x(σ, s) and N(σ, s).

The advantage of using a priority tree is that during the construction, each

σ ∈ T has information about the outcome of the attempts to satisfy higher priority

requirements. Accordingly, for every σ ∈ T and each n < |σ|, if σ(n) = k then, we

say that σ “believes” the outcome of the strategy for satisfying α = σ � n is k. We

say σ is allowed to act whenever its belief seems correct, i.e. if σ = α̂k and k is the

outcome of α. We then reset every node τ such that τ > σ.
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Now we go back to our example (Theorem 1.3.1). Recall that requirement Ne

has two outcomes, namely, x ∈ A \We or x ∈ We \ A. We then have 2e strategies

for Ne. Consider requirement N1. There are two strategies, say σ0 and σ1, for

the satisfaction of N1. We assume σ0 <L σ1. Strategy σ1 believes that λ (the

strategy for satisfying N0) chooses a witness x at a stage s+ 1, sets x(λ, s+ 1) = x,

enumerates x(λ, s+ 1) into A, and never extracts x(λ, s+ 1) from A. On the other

hand, strategy σ0 believes that at a later stage t > s+ 1, x(λ, s+ 1) enters the c.e.

set We (x(λ, s+ 1) ∈ We,t) and so λ extracts x(λ, s+ 1) from A at stage t+ 1 (since

N0 has the highest priority in the construction). Only when σ1’s belief is correct,

i.e. λ chooses a witness and enumerates it into A, does the construction allow σ1

to receive attention and proceed as N1 would have done in the original proof of

Theorem 1.3.1. If at a later stage λ indeed decides to extract its witness from A

then σ1 is reset and all its work for satisfaction of N1 is destroyed. Hence, σ1 is never

again allowed to receive attention and so the construction turns its attention to σ0.

Eventually, λ will have a “true outcome” which is 1 if its witness x(λ) ∈ A \We

or is 0 if x(λ) ∈ We \ A (note that in this type of construction the ordering of the

outcomes corresponds to the usual linear ordering of ω).

The process explained above is generalized inductively on the tree T in the usual

way. Each requirement Re will be satisfied by a unique σ (such that |σ| = e) whose

belief is correct. Hence σ = f � e where f ∈ 2ω is the “true path” (see Definition

below) i.e. f(e) ∈ Σ is the “true outcome”. The true path f of the construction is

the unique infinite path9 such that f(e) is the outcome of Nf�e.

Definition 1.3.3. Let σ = f � e. We define the true path f ∈ 2ω through T by

induction on e as follows:

9In general, we say g is an infinite path through T if for all e, g � e ∈ T .
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f(e) =

 0 if (∃s)[σ receives attention at stage s],

1 otherwise.

We notice that f ≤T K. Accordingly, we define a computable approximation

{δs}s∈ω to f such that f(e) = limsδs(e). In more complicated tree constructions (see

below), we can only guarantee that f(e) = lim infsδs(e), that is, f is the “leftmost

path” visited infinitely often by {δs}s∈ω.

1.3.3 Infinite injury priority method

The infinite injury priority method was introduced independently by Shoenfield

in [Sho61] and Sacks in [Sac63b]. In a finite injury priority construction each re-

quirement Re receives attention finitely often whereas in an infinite injury priority

construction Re might receive attention infinitely often. In the case of an infinite

injury priority requirement, if we reset lower priority requirements Ri every time

Re receives attention, then all such Ri would never have a chance to receive atten-

tion. In order to give the opportunity to each Ri to be satisfied we define multiple

strategies for Ri, including a strategy for the case when Re acts infinitely often. The

priority tree T is then defined as follows. The left outcome of requirement Re rep-

resents the belief that Re receives attention infinitely often and is allowed to receive

attention every time Re does. The approximation {δs}s∈ω to the true path f can

move both left and right. Hence, f is the leftmost path visited infinitely often by

{δs}s∈ω, that is, f(e) = lim infsδs(e). If σ = f � e then10

∃<∞[δs <L σ] and ∃∞[σ ⊆ δs],

and so f ≤T K′.

10By ∃∞ we denote “there exists infinitely many”.
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Chapter 2

Genericity in the Enumeration

Degrees

In this chapter we give a brief background survey of the notion of genericity in the

context of the Turing degrees as well as in the enumeration degrees. The choice of

the results surveyed in this chapter is dependent on the problems we will investigate

in subsequent chapters. We refer the reader to [Odi99, Coo04, Cop87] for a fuller

introduction to the notion of genericity in Computability Theory.

2.1 Genericity in the Turing Degrees

In [Coh63] Cohen presented a technique known as forcing, which is used in the

context of set theory to prove the independence of the Axiom of Choice and the

Continuum Hypothesis from Zermelo Fraenkel set theory. Forcing turned out to

be a useful and power technique to prove other results in set theory and also in

Computability Theory.

Feferman noted in [Fef64] that the notions of forcing and genericity can be used

in arithmetic. Hinman continued in [Hin69] the study of forcing in arithmetic and

27
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found some useful applications. It was Posner [Pos77] who formulated an equivalent

definition of 1-genericity replacing arithmetical relations by c.e. sets of strings (i.e.

elements of 2<ω).

Definition 2.1.1. A set A ⊆ ω is 1-generic if for every Σ0
1 set X of strings, either

i. (∃σ ⊂ A) [σ ∈ X], or

ii. (∃σ ⊂ A) (∀τ ⊇ σ) [τ /∈ X].

Then we say A forces X(A  X) and a = degT(A) is a 1-generic degree.

In the above definition, the notion of 1-genericity can be generalized to n-

genericity by replacing Σ0
n instead of Σ0

1.

We can easily construct a 1-generic set which is Turing reducible to the halting set

K by a finite extension argument(we refer the reader to [Soa99] for an introduction

to this technique). We now list some of the properties that 1-generic sets have in

the Turing degrees.

Proposition 2.1.2. If A is 1-generic, then A is not computable.

Proof. Let A be a 1-generic set. Consider the following set Xi of strings

Xi = {σ | ∃ x < |σ| [ϕi(x) ↓6= σ(x)]},

where ϕi is the i-th computable function. We notice that Xi is a c.e. set since it is

in Σ0
1 form. Then A forces Xi and one of the two following cases holds

• ∃σ ⊂ A such thatσ ∈ Xi, in which case A cannot be computed by ϕi since ϕi

and the characteristic function of A disagree on such argument x.
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• ∃σ ⊂ A such that for any extension τ ⊇ σ, τ /∈ Xi, but we cannot have

ϕi(x) ↓ (where x = |σ|). Indeed suppose we could define a string τ ⊃ σ by

τ = σa1 if ϕi(x) = 0 and τ = σa0 otherwise. This gives us τ ∈ Xi, which is a

contradiction. Hence ϕi is not total.

Proposition 2.1.3. A set A is 1-generic if and only if A is 1-generic.

Given any string σ, we define σ for every x < |σ| as

σ(x) =

 0 if σ(x) = 1,

1 if σ(x) = 0.

We notice that Proposition 2.1.3 follows directly from the 1-genericity of A.

Furthermore 1-generic sets cannot be c.e.

Proposition 2.1.4. If A is 1-generic, then A is immune1.

Proof. Let A be a 1-generic set. Consider the following set Xi of strings

Xi = {σ | ∃ x < |σ| [σ(x) = 0 & x ∈ Wi ]},

where Wi is the i-th c.e. set. If we assume (∃σ ⊂ A) (∀τ ⊇ σ) [τ /∈ Xi] then Wi is

finite. Fix such σ. Indeed suppose for a contradiction that Wi is infinite. Then we

can find some y > |σ| such that y ∈ Wi. We define a string ρ ⊃ σ such that ρ(y) = 0

and so ρ ∈ Xi, a contradiction. It follows that there exists σ ⊂ A such that σ ∈ Xi,

and consequently x ∈ A \Wi.

An interesting property of a 1-generic set is that we can characterise it in terms

of Turing reducibility.

1A set A is immune if A is infinite but does not contain any infinite c.e. set.
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Definition 2.1.5. A set A forces its jump if for all e, there is a σ ⊂ A such that

either2,

i. Φσ
e (e) ↓, or

ii. (∀τ ⊇ σ)Φσ
e (e) ↑.

If we consider the c.e. set of strings X〈x,y〉 = {σ | ∃s Φσ
x,s(y) ↓} and a 1-generic

set A, then A  Xi and clearly A forces its jump. It can also be shown that if A

forces its jump, then A is 1-generic.

Proposition 2.1.6. If A is 1-generic, then3 A⊕K ≡T A′.

Proof. Consider again the set X〈x,y〉 = {σ | ∃s Φσ
x,s(y) ↓} and let A be a 1-generic

set. Then A forces its jump and so we can test all σ ⊂ A to see which of the two

parts of Definition 2.1.5 holds for σ. Whenever we find that Φσ
e (e) ↓ then clearly

e ∈ A′ and so A′ ≤T A⊕K.

Notice that if we let A ≤T K, then the above implies that A is low. Moreover,

even if a 1-generic set is not c.e. we can still define a “splitting” of it.

Definition 2.1.7. A set B is splittable if there exist incomparable sets B0 and B1

such that B = B0 ⊕ B1 and we say b = dege(B) is splittable. Otherwise we say B

and b = dege(B) are nonsplittable.

Proposition 2.1.8. If A is 1-generic, then A is splittable.

Proof. Let A be a 1-generic set. Then we define two sets A0,A1 such that A = A0⊕A1

by

A0 = {x | 2x ∈ A} and A1 = {x | 2x+ 1 ∈ A}.
2Φe denotes the eth oracle Turing machine.
3A′ denotes the Turing jump of A, namely, A′ = {e | ΦAe (e) ↓}
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Let σ = σ0⊕σ1, where σ0(x) = σ(2x) and σ1(x) = σ(2x+1). Consider the following

c.e. set Xi of strings

Xi = {σ | ∃x < |σ|, s [Φσ1
i,s(x) ↓6= σ0(x)]}.

Now, if (∃σ ⊂ A) (∀τ ⊇ σ) [τ /∈ Xi] then ΦA1
i is not total. Fix such σ. Indeed,

for a contradiction assume that ΦA1
i is total and so Φτ1

i (x) ↓ for some τ ⊃ σ. Since

σ0(|σ0|) ↑ we can find ρ ⊃ σ such that ρ0(|σ0|) ↓ and ρ0(|σ0|) 6= Φτ1
i (|σ0|) and hence

ρ ∈ Xi. Likewise, we can also show that A1 6= ΦA0
i . Therefore, whichever of the two

cases of the definition of 1-genericity holds, we have that A0 and A1 are incomparable

(i.e. A0 |T A1).

Furthermore, we can generalize Proposition 2.1.8 to the case where we split a

1-generic set into n parts and every resulting part, say An, turns out to be strongly

independent in the following sense.

Definition 2.1.9. Let A[i] = {y | 〈i, y〉 ∈ A}, then for no i, A[i] is computable in

{〈x, y〉 | 〈x, y〉 ∈ A & x 6= i} i.e. every A[i] is strongly independent.

We denote by D[≤ a] the set {x | x ≤ a}. If a is 1-generic, then D[≤ a] is a very

rich structure, one example of this is the next result given by Jockusch in [Joc80].

Proposition 2.1.10 ([Joc80]). If A is 1-generic and a = degT(A), then D[≤ a] is

not a lattice.

A natural question to ask is which sets are bounded by or bound a 1-generic

set. It is known that any 1-generic degree does not bound any nonzero c.e. degree4.

On the other hand, Shore noted that every nonzero c.e. degree bounds a 1-generic

degree (this is mentioned in [CJ84]). With the motivation of finding a degree that

does not bound a minimal degree, Chong and Jockusch [CJ84] showed the Theorem

below (where 0′ = degT(K)).

4Folklore.
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Theorem 2.1.11 ([CJ84]). If a is a 1-generic degree and 0 < b ≤ a < 0′, then

there is a 1-generic degree c ≤ b.

In fact, Theorem 2.1.11 is a nice application of 1-genericity to prove the existence

of a nonzero degree below K with no minimal predecessors. Moreover, Chong and

Jockusch conjectured that the following is false: if a is 1-generic and 0 < b ≤ a < 0′ ,

then b is 1-generic.

In [Hau86], Haught refuted Chong and Jockusch’s conjecture by proving that

indeed there exists a 1-generic set below a 1-generic degree which is Turing reducible

to K.

Theorem 2.1.12 ([Hau86]). If 0 < b ≤ a ≤ 0′ and a is 1-generic, then b is

1-generic.

The proof of Theorem 2.1.12 relies on an interesting relationship between 1-

genericity and computable approximations, known as “Σ1-correctness” (noted by

Shore).

Proposition 2.1.13 ([Hau86]). If B ≤T G <T 0′ and G is 1-generic then, B has

a computable approximation {βs}s∈ω (called a Σ1-correct approximation) such that

for any infinite c.e. set of stages T ⊆ ω, there exists t ∈ T such that βt ⊂ B.

Proof. Let G be a 1-generic set such that G <T 0′ . Hence, there exists a computable

approximation {σs}s∈ω to G such that G = limsσs. Set5 B = ΦG
e for some e ∈ ω (the

e-th Turing machine). For every s ∈ ω, let βs = Φσs
e and so {βs}s∈ω is a computable

approximation to B. Let T ⊆ ω be any infinite c.e. set. Define S = {σt | t ∈ T} and

consequently S is infinite and c.e. For a contradiction, assume that ∃σ ⊂ G ∀τ ⊇

σ [τ /∈ S]. Since T is infinite, if σ ⊂ G, then σt ⊃ σ for some t ∈ T . A contradiction.

Hence ∃σt ⊂ G such that σt ∈ S and so βt ⊂ B.

5Φe denotes the eth oracle Turing machine.
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Haught proved that if B ∈ b has a Σ1-correct approximation, then there is

a C ≡T B such that c = degT(C) is 1-generic. To prove this, she modified a

construction of a 1-generic set C using the finite injury priority method by adding

permitting and coding to achieve C ≤T B and B ≤T C.

2.2 Genericity in the Enumeration degrees

From the embedding ι of the Turing degrees into the enumeration degrees we can

deduce the existence of n-generic sets below 0(n)
e . As we have seen before, the

structure of the enumeration degrees is richer than that of the Turing degrees. This

leads to the search for a notion of genericity which is appropriate for the definition

of enumeration reducibility.

Case [Cas71] and Moore [Moo74] initiated the study of genericity in the enumer-

ation degrees. In [Cas71] Case studied the notion of genericity for partial functions

and used a forcing technique to prove some basic structural results. Analogously

to the notion of an n-generic set, which is defined using 2-valued strings6, a generic

function is defined in terms of ω∗-valued strings.

Definition 2.2.1. Let ω∗ = ω ∪ {ω}. For some n ∈ ω, if “ϕ(n) = ω”, then we say

ϕ is undefined at n.

By abuse of notation, we let σ and τ stand for ω∗-valued strings, that is, mappings

from an initial segment of ω into ω∗. Let τ � σ denote τ strongly extends σ in the

sense that ∀x < |σ|[τ(x) ' σ(x)].

Definition 2.2.2. A function ϕ is generic if for every arithmetical set7 S of ω∗-

valued strings either

6Members of 2<ω.
7A set A is arithmetical if A ∈ Σn ∪Πn for some n ∈ ω.
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i. (∃σ ≺ ϕ) [σ ∈ S], or

ii. (∃σ ≺ ϕ) (∀τ � σ) [τ /∈ S].

If a = dege(graph(ϕ)), then we say a is generic.

We can also define what is meant by a generic set A ⊆ ω by replacing ϕ by

the characteristic function χA of A in the above definition. Cooper [Coo90] noted

that the advantage of studying generic functions rather than generic sets is that

all results also hold for the structure of partial degrees P . Furthermore, Case gave

interesting properties of generic functions.

Proposition 2.2.3 ([Cas71]). i. If ϕ is a generic function, then graph(ϕ) is im-

mune.

ii. If ϕ is a generic function, then ϕ has no partial recursive extension.

iii. If ϕ is a generic function, then dege(ϕ) is quasiminimal.

iv. If ϕ is a generic function and we define ϕ = ϕ0 ⊕ ϕ1, then ϕ0 and ϕ1 are

incomparable, generic and form a minimal pair8.

Copestake introduced in [Cop88] the notion of an n-generic partial function and

studied its characteristics. In fact, Copestake explains that an n-generic partial

function is a restriction of a generic function which expresses statements about

partial functions in a direct way.

Definition 2.2.4. A partial function ψ is n-generic if for every Σ0
n set S of ω∗-

valued strings either,

8Nonzero functions ϕ0 and ϕ1 form a minimal pair, if

For any partial function ψ [ψ ≤e ϕ0 & ψ ≤e ϕ1 ⇒ ψ ∈ 0e].
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i. (∃σ ≺ ψ) [σ ∈ S], or

ii. (∃σ ≺ ψ) (∀τ � σ) [τ /∈ S].

If a = dege(graph(ψ)), then we say a is n-generic.

In particular, Copestake studied 1-generic functions and established the following

characteristics (similar to those studied by Case).

Proposition 2.2.5 ([Cop88]). i. If ψ is a 1-generic partial function, then graph(ψ)

is immune.

ii. If ψ is a 1-generic partial function, then ψ has no partial recursive extension.

iii. If ψ is a 1-generic partial function, then dege(ψ) is quasiminimal.

iv. If we define ψ = ψ0 ⊕ ψ1 for any 1-generic function ψ, then ψ0 and ψ1 are

e-incomparable. We can then generalise to the nth case where the resulting

functions ψi (for i < n) are also e-independent (as defined in [McE84], see

Definition below).

Definition 2.2.6. Let {Xi}i∈ω be a sequence of subsets of ω and
⊕
{Xi}i∈ω =

{〈i, x〉 | x ∈ Xi}. The sequence of sets {Xi}i∈ω is e-independent if for any i,

Xi�e

⊕
{Xj | j 6= i}.

Moreover, Copestake studied the relationship between 1-generic functions and

1-generic sets. Copestake proved that there is no n+ 1-generic function below 0(n)
e .

Furthermore, she mentions that, similarly to the construction of a 1-generic set,

an n-generic function≤e 0(n)
e can be constructed in a straightforward way. Using a

similar approach to that of the Shoenfield-Spector construction of a minimal Turing

degree9, she constructed an enumeration degree a known as “minimal-like” (see

9We refer the reader to [Soa99] for an introduction to this technique.
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Definition below). The resulting minimal-like e-degree a is incomparable with all

1-generic function degrees.

Definition 2.2.7. A nonzero enumeration degree a is minimal-like if a contains a

function ψ such that for any e, if Φ
graph(ψ)
e is a function, then either

i. Φ
graph(ψ)
e ∈ a, or

ii. Φ
graph(ψ)
e has a partial computable extension.

Theorem 2.2.8 ([Cop88]). There is a total minimal-like e-degree a such that a≤e

0′′
e .

Copestake noted that even though there are some similarities between 1-generic

functions and 1-generic sets (i.e. immunity, splittable, etc.) they cannot have the

same e-degree. In fact, a 1-generic set is not the graph of a 1-generic function.

Copestake deduces her observation from the the following results.

Theorem 2.2.9 ([Cop88]). A set A is an n-generic set if and only if for some

n-generic function ψ, we have A = dom(ψ).

Theorem 2.2.10 ([Cop88]). If ψ is a 1-generic function, then dom(ψ) <e ψ.

Theorem 2.2.11 ([Cop88]). If A is a 1-generic set and there is a function ψ≤eA,

then ψ has a partial computable extension.

From Theorems 2.2.9, 2.2.10 and 2.2.11 it follows that, by contrast with Haught’s

main result [Hau86], if a is a 1-generic function e-degree, then there exists an e-

degree b <e a such that b does not contain the graph of any 1-generic function.

We saw in Proposition 2.1.6 that every 1-generic set ≤T K is ∆0
2 and low. Copes-

take showed in [Cop90] that ∆0
2 1-generic sets are also low in the enumeration de-

grees. On the other hand, she proved that there exists a 1-generic set below 0′
e
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which is not low [Cop90]. In fact she proved a stronger result by making the degree

of a 1-generic set below 0′
e properly Σ2 (see Definition below).

Definition 2.2.12. An enumeration degree a ≤ 0′
e is properly Σ0

2 if it contains no

∆0
2 sets.

In his thesis [Cas71] Case mentions that splitting a generic function produces a

minimal pair. Following this result, Copestake mentioned in [Cop88] that one can

get a minimal pair out of the splitting of a 2-generic function and that this does not

appear to be possible for the 1-generic function case.

Cooper, Li, Sorbi and Yang [CLSY05] showed that every ∆0
2 set bounds a min-

imal pair and constructed a Σ0
2 set which does not bound a minimal pair. They

conjectured that, following their proof, one could construct a 1-generic set that

does not bound a minimal pair. Indeed, after making some modifications to the

proof presented in [CLSY05], Soskova gave in [Sos07] the actual construction of a

1-generic set which does not bound a minimal e-degree. Moreover, in her thesis

[Bia00] Bianchini gave the construction of a 1-generic set below every nonzero ∆0
2

set.

Theorem 2.2.13 ([Bia00]). If B is a nonzero ∆0
2 set then, there is a 1-generic set

A≤eB.
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Chapter 3

Genericity and noncupping in the

enumeration degrees

In this chapter we present a brief overview of the relationship between noncupping

and genericity in the enumeration degrees. We then give a result that will be useful

in proving the existence of prime ideals of Π0
2 enumeration degrees in Chapter 5,

namely, we show the existence of a 1-generic enumeration degree 0e < a < 0′
e

which is noncuppable and low2.

3.1 Introduction

We have discussed two important subclasses of the Σ0
2 enumeration degrees. One

of them is the Π0
1 e-degrees, obtained under the embedding ι of the the c.e. Turing

degrees and the second one is the ∆0
2 e-degrees. Cooper and Copestake started in

[CC88] the study of another interesting subclass of the Σ0
2 enumeration degrees,

namely, the properly Σ0
2 e-degrees. They noted that from the characterisation of the

low enumeration degrees we can deduce that no properly Σ0
2 e-degree can be low and

constructed a high properly Σ0
2 e-degree. Moreover, they showed that below any Σ0

2

39
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high enumeration degree a there exists an e-degree b incomparable with all the ∆0
2

enumeration degrees below a other than 0e and (possibly) a itself.

In their paper [CSY96] Cooper, Sorbi and Yi proved that the noncuppable enu-

meration degrees (defined below) form a subclass of the properly Σ0
2 enumeration

degrees. This motivated the study of noncupping e-degrees since it gives insight on

the distribution of the properly Σ0
2 e-degrees.

Definition 3.1.1. An enumeration degree x < 0′
e is cuppable if there exists y < 0′

e

such that x ∪ y = 0′
e . We then say x is cuppable to 0′

e by y.

Whenever an e-degree x does not satisfy Definition 3.1.1 we say x is “noncup-

pable”. We have figures 3.1 and 3.2 illustrating when an e-degree x is cuppable or

noncuppable.

0
′

e

0e

x

y

Σ0
2

De

Figure 3.1: An e-degree x which is cuppable

Theorem 3.1.2 ([CSY96]). If 0e < x < 0′
e is ∆0

2 then x is cuppable.

In addition, Cooper, Sorbi and Yi proved that noncuppable enumeration degrees

do exist.

Theorem 3.1.3 ([CSY96]). There exists a nonzero noncuppable enumeration degree

y.
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0
′

e

0e

x
y

x ∪ y Σ0
2

De

Figure 3.2: An e-degree x which is noncuppable

As a consequence, they deduced that below any noncuppable enumeration degree

there is no ∆0
2 e-degree. Before stating this result, we need the following definition.

Definition 3.1.4. An enumeration degree x is downwards properly Σ0
2 if every y ∈

{z | 0e < z ≤ x} is properly Σ0
2.

Corollary 3.1.5 ([CSY96]). Every noncuppable 0e < x < 0′
e is downwards properly

Σ0
2 (see Definition 2.2.12).

Soskova and Wu sharpened Theorem 3.1.2 in [SW07] by proving that every

nonzero ∆0
2 e-degree is cuppable to 0′

e by a 1-generic degree. They noted that,

since a 1-generic set is quasi-minimal and low, every nonzero ∆0
2 e-degree is cup-

pable to 0′
e by a low nontotal e-degree.

Giorgi, Sorbi and Yang showed in [GSY06] that every total nonlow Σ0
2 enumer-

ation degree bounds a noncuppable degree. Whereas Giorgi proved in [Gio08] that

there exists a high noncuppable enumeration degree. Both results shed light on the

distribution of the noncuppable properly Σ0
2 e-degrees (these proofs involve infinite

priority arguments).

In [Har11] Harris deduced, from results in the context of the Σ0
1 Turing degrees

and the jump preserving properties of the embedding ι, the existence of a Σ0
2 non-

cuppable e-degree below 0′
e which is low2. Bearing Lemma 1.2.6 in mind, A≤eK if
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and only if A is c.e. in K. Hence, there exists a computable approximation {As}s∈ω

to A which is c.e. in K such that A =
⋃
s∈ω As. Using this relationship between

enumeration reducibility and relative computability enumerability Harris obtained

a method for constructing a high properly Σ0
2 and low2 noncuppable enumeration

degree by a finite injury priority method. In fact Harris [Har11] showed that there

are high noncuppable e-degrees that are also upwards properly Σ0
2.

Following the proof given in [Har11], that there exists a nonzero noncuppable Σ0
2

e-degree a such that a′′ = 0′′
e (i.e. a is low2), we strengthen Soskova’s result [Sos07]

of the existence of a 1-generic enumeration degree that does not bound a minimal

pair, by showing the existence of a noncuppable (and hence downwards properly Σ0
2)

enumeration degree containing a 1-generic set A. The set constructed in Theorem

3.2.1 will be useful in proving the existence of prime ideals of Π0
2 enumeration degrees

in Chapter 5.

3.2 A noncuppable enumeration degree contain-

ing a 1-generic set

Theorem 3.2.1. There exists a 1-generic enumeration degree a such that 0e < a <

0′
e which is noncuppable and low2 (i.e. a′′ = 0′′

e ).

Before giving the proof of Theorem 3.2.1, we mention some properties of the

e-jump of sets with good approximations that we will be using. In [Gri03] Griffith

gave the following characterisation.

Lemma 3.2.2 ([Gri03]). If A = {e | C [e] is finite}1 for some set C ≤e X, then

A≤eJe(X).

1For any set X, we define X [e] = {〈e, x〉 | 〈e, x〉 ∈ X}.
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Harris proved in [Har10] that Lemma 3.2.2 holds whenever X has a good ap-

proximation.

Lemma 3.2.3 ([Har10]). If X has a good approximation then, for any set A, A≤e

Je(X) if and only if there exists a set C≤eX such that A = {e | C [e] is finite}.

Moreover, Harris gave the following characterisation of the double e-jump of a

set with a good approximation.

Lemma 3.2.4 ([Har10]). If A has a good approximation then { e | ΦA
e is infinite } ≡e

J
(2)
e (A).

We now give the main construction of Theorem 3.2.1.

3.2.1 Requirements

We construct sets A and C c.e. in K such that (for all e ∈ ω) the following require-

ments are satisfied:

Re : ∃α ⊆ χA [α ∈ We ∨ ∀β(α ⊆ β ⇒ β /∈ We ) ] . (3.2.1)

Le : ΦA
e is infinite ⇔ C [e] is finite, (3.2.2)

Pe : K = ΦBe⊕A
e ⇒ K≤eBe , (3.2.3)

where {We,Φe, Be}e∈ω is a computable listing of all c.e. sets, enumeration operators

and Σ0
2 sets with associated finite c.e. approximations {We,s}s∈ω, {Φe,s}s∈ω and c.e.

in K approximations {Be,s}s∈ω for each e ∈ ω.

Supposing a to be the enumeration degree of A, satisfaction of Le for all e ∈ ω

ensures that a′′ = 0′′
e since it entails that { e | ΦA

e infinite } = { e | C [e] finite } . By

Lemma 3.2.4 we have J
(2)
e (A) ≡e { e | ΦA

e is infinite }. Now, from the construction it

follows that C≤eK and so by Lemma 3.2.3 we have { e | ΦA
e is infinite }≤eJe(K).
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Thus J
(2)
e (A)≤e 0′′

e since Je(K) ≡e 0′′
e . Note that satisfaction of {Pe}e∈ω implies

that a = dege(A) is noncuppable whereas satisfaction of {Re}e∈ω entails that A is

1-generic.

Definitions and Notation.

The construction will proceed by stages s, each stage being computable in K. We

use As to denote the finite set of numbers enumerated into A by the end of stage s.

1) The Priority of Requirements.

For S ∈ {R,L, P}, the requirements Se are ordered in terms of priority by Re <

Le < Pe < Re+1 for all e ∈ ω.

2) Environment Parameters.

We define a number of parameters used by the construction for the satisfaction of

individual requirements. Firstly, we use the string parameter αs ∈ 2<ω for the stage

s approximation (in the form of an initial segment) and the associated parameters

α+
s = {n | αs(n) = 1 } and α−s = {n | αs(n) = 0 }. Also, for clarity and notational

convenience, we define the enumerating parameter W (s) ∈ F (the class of finite sets)

and the parameter I(e, s) which is a finite set of numbers that the construction at

stage s already knows to be in ΦA
e (i.e. I(e, s) ⊆ ΦA

e ).

• Parameters for the Re requirements. The outcome function R(e, s) ∈ {0, 1, 2}

and the restraint parameter ε(e, s) ∈ F (the class of finite sets).

• Parameters for the Le requirements. The outcome parameter L(e, s) ∈ {0, 1},

the restraint parameter δ(e, s) ∈ F , the individual axiom parameter v(e, s) ∈ ω ∪

{−1} and the enumerating parameter V (s) ∈ F .

• Parameters for the Pe requirements. The outcome parameter P (e, s) ∈ {1, 2},
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and the avoidance parameter Ω(e, s) ∈ F . The definition of Ω(e, s+ 1) is:

Ω(e, s+ 1) =
⋃
i≤e

(ε(i, s) ∪ δ(i, s)) . (3.2.4)

Accordingly, Ω(e, s+1) records the finite set of elements that the construction wants

to keep out of A for the sake of higher priority R and L requirements, and that it

thus cannot enumerate into A at stage s+ 1 for the sake of Pe.

3) Requiring attention.

Case Re . We say that Re requires attention at stage s+ 1 if R(e, s) = 0.

Case Le . We say that Le requires attention at stage s+ 1 if L(e, s) = 0 and for all

x ∈ ω and D ∈ F ,

x /∈ I(e, s) & 〈x,D〉 ∈ Φe ⇒ D ∩ α−s 6= ∅ . (3.2.5)

Case Pe . We say that Pe requires attention at stage s+ 1 if P (e, s) = 1 and there

exists x ≤ s and a pair of finite sets (D,E) such that

x ∈ K & 〈x,D ⊕ E〉 ∈ Φe[s] & D ⊆ Be[s] & E ∩ Ω(e, s+ 1) = ∅ (3.2.6)

where we note that Ω(e, s+ 1) is a finite set2.

4) Resetting.

Resetting Re. When we say that the construction resets Re at stage s + 1 we

mean the following. If R(e, s) = 0 the construction does nothing (and in this

case ε(e, s + 1) = ε(e, s) = ∅ and R(e, s + 1) = R(e, s)). On the other hand, if

R(e, s) ∈ {1, 2} then we set ε(e, s) = ∅ and R(e, s) = 0.

Resetting Le. When we say that the construction resets Le at stage s+ 1 we mean

the following. If L(e, s) = 0 we do nothing (and in this case δ(e, s+ 1) = δ(e, s) = ∅
2Notice also that, since the construction uses oracle K the conditions in (3.2.6) could be defined

so that the search for an axiom 〈x,D ⊕ E〉 is unbounded (i.e. in the whole of Φe). However this is
unnecessary as lims→∞Ω(e, s+ 1) exists.
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and L(e, s + 1) = L(e, s) = 0). On the other hand, if L(e, s) = 1 then we set

δ(e, s+ 1) = ∅ and L(e, s) = 0.

3.2.2 Basic Idea of the Construction

We can think of the construction as comprising a module for each type of require-

ment. In anticipation of the formal proof a brief description of these modules follows

below.

The role of the R module working at index e is to find an initial segment α ⊆ χA

witnessing satisfaction of Re as stated in (3.2.1). As the construction uses K as

oracle, the R module is able to test at any even stage s+ 1 whether, for αs (i.e. the

current approximation to χA), there exists β ⊇ αs such that β ∈ We. Accordingly it

carries out this test at any stage s+ 1 > e+ 1 if Re still appears not to be satisfied

(in which case R(e, s) = 0) and if for all i < e, no requirement Ri requires attention

at stage s + 1. It will thus pick some α ⊇ αs such that α satisfies (3.2.1)—where

α = αs if there exists no β ⊇ αs such that β ∈ We, and α = one such β otherwise.

Moreover, for stages t ≥ s + 1, the R module will try to restrain α ⊆ αt and it

will follow that, if assumption (3.2.7) below is correct, then α ⊆ χA and Re will be

satisfied.

“No higher priority P requirement receives attention at a later stage.” (3.2.7)

The L module working at index e tries to make ΦA
e infinite. In doing this it uses

at stage s+ 1 > e+ 1 the finite set of numbers being restrained out of A by R and

other L requirements at the end of stage s. Accordingly at stage s + 1 (provided

that L(e, s) = 1, i.e. that Le does not appear to be already satisfied) the L module
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will try to put some finite set3 D ⊆ As ∪ {z | z ≥ |αs|} into As+1 ⊆ A to ensure

that some x /∈ I(e, s) enters I(e, s + 1) ⊆ ΦA
e . This is the role of V (s + 1) which

is simply the union of all those sets that the L module enumerates into As+1 for

the sake of requirements Li such that i ≤ s. Note that, due to the definition of

αs, this action will cause no injury to any R and (other) L requirements. This is

important since the L module may carry out this action infinitely often for the sake

of e in order to make ΦA
e infinite. If the L module does succeed in putting some4 x

into ΦA
e − I(e, s) it enumerates no numbers into C [e] at stage s+ 1. If on the other

hand it cannot achieve this, it knows that for every axiom 〈x,D〉 ∈ Φe such that

x /∈ I(e, s), α−s ∩ D 6= ∅. Accordingly it restrains δ(e, s+ 1) = α−s out of As+1. It

also enumerates all of ω[e] � s into Cs+1. Now, if assumption (3.2.7) is correct, this

restraint will stay in place forcing ΦA
e = I(e, s) and the module will enumerate all

of ω[e] � t into C at every subsequent stage t+ 1 > s+ 1 thus making C [e] = ω[e].

The P module working at index e tries to diagonalise K = ΦBe⊕A
e . Its strategy

is to search for x /∈ K such that x ∈ Φ
Be⊕(ω−Ω)
e for some finite set Ω ⊆ A. This

search starts from stage s + 1 > e + 1 onwards with Ω being the set of elements

restrained out of A by higher priority R and L requirements at stage s—i.e. the

set Ω(e, s+ 1) in the notation of the proof. If the module finds such an x it will at

some stage s + 1 enumerate a requisite finite set E ⊆ ω − Ω(e, s + 1)—i.e. where,

for some D ⊆ Be[s], 〈x,D ⊕ E〉 is an axiom in Φe[s]—into A thus ensuring that

x ∈ ΦBe⊕A
e − K. On the other hand if this search fails then, under the assumption

that Ω(e, s + 1) converges in the limit (over stages s ∈ ω) to a finite set Ω(e) ⊆ A,

it will follow that K = ΦBe⊕A
e implies that K = Φ

Be⊕(ω−Ω(e))
e , i.e. that K≤eBe.

Note that the action of enumerating some finite set E (for the sake of Pe ) into

A might injure lower priority R and L requirements. For example, suppose that

3Note that As = α+
s .

4In which case I(e, s+ 1) = I(e, s) ∪ {x}.
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i > e is such that R(i, s) ∈ {1, 2}. Then this means that the R module working

at index i is trying to restrain the set ε(i, s) out of A. Hence if E ∩ ε(i, s) 6= ∅,

and E is enumerated into A at stage s + 1, then for t ≥ s + 1 it is not the case

that ε(i, s) ⊆ A[t]. A similar observation holds if we replace R(i, s) by L(i, s) and

ε(i, s) by δ(i, s). Accordingly, all requirements Ri and Li such that i > e are reset.

Now since each P requirement receives attention at most once and, for any R or L

requirement there are only finitely many P requirements of higher priority, and the

latter can only be reset (i.e. injured) finitely often. Accordingly, for any index e, at

every stage s+ 1 > e+ 1 the R and L modules can safely be set to work with index

e under assumption (3.2.7) since, from some stage re onwards this assumption will

indeed be correct.

Before proceeding to the formal construction note the difference in roles of V (s+

1) and W (s + 1) at stage s + 1. The former as described above is enumerated into

As+1 for the sake of forcing ΦA
e −I(e, s) 6= ∅ for each e ≤ s, where this turns out to

be possible respecting the above conditions. W (s+ 1) on the other hand is a finite

set (perhaps = ∅) to be enumerated into As+1 if a P requirement receives attention

at stage s+ 1.

3.2.3 The Construction

The sets A and C are enumerated in stages so that, for X ∈ {A,C}, X =
⋃
s∈ωXs

and Xs is finite for all s.

Stage s = 0. Define α0 = λ, A0 = C0 = ∅ and, for all e ∈ ω, v(e, 0) = −1,

ε(e, 0) = δ(e, 0) = ∅, R(e, 0) = L(e, 0) = 0 and I(e, 0) = ∅. Note that accordingly

Ω(e, 0) = ∅ for all e ∈ ω by definition. Also define V (0) = W (0) = ∅.

Stage s+ 1. Using K as Turing oracle proceed as follows according as to whether
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s is even or odd.

Case I. s is even. Search for the least e ≤ s such that Re requires attention, set

es+1 = e and test whether there exists β ⊃ αs such that β ∈ Wes+1 .

• If there exists such a β, define αs+1 to be the (lexicographically) least such

string. Set R(es+1, s+ 1) = 2

• Otherwise define αs+1 = αs and set R(es+1, s+ 1) = 1.

In both of these sub cases set ε(es+1, s + 1) = α−s+1 and As+1 = α+
s+1. (Notice that

As ⊆ As+1.) In this case we say that Res+1 receives attention.

Remark. Note that for all t ≥ s + 1 such that ε(es+1, s + 1) is not destroyed by

the resetting activity of higher priority P requirements at any stage r such that

s+ 1 ≤ r ≤ t, αs+1 ⊆ αt. Thus, if no higher P requirement receives attention after

stage s+ 1, αs+1 ⊆ χA.

Case II. s is odd. There are three steps in this case.

Step A. For all e ≤ s, define v(e, s+ 1) as follows. If L(e, s) = 1 (i.e. Le is satisfied

for the moment) or L(e, s) = 0 and Le requires attention at stage s + 1 then set

v(e, s + 1) = −1. Otherwise—i.e. if L(e, s) = 0 and Le does not require attention

at stage s+ 1—choose in a consistent manner5 some 〈x,D〉 such that

x /∈ I(e, s), 〈x,D〉 ∈ Φe & D ⊆ As ∪ {z | z ≥ |αs|}

and set v(e, s+ 1) = 〈x,D〉. Now define the finite set

V (s+ 1) =
⋃

e≤s , x∈ω,
v(e,s+1) = 〈x,D〉

D ,

and, for all e ≤ s set

5I.e. via a uniformly computable search using the construction’s oracle K.
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I(e, s+ 1) =


I(e, s) if v(e, s+ 1) = −1,

I(e, s) ∪ {(v(e, s+ 1))0} if6v(e, s+ 1) 6= −1.

Step B. Look for the least e ≤ s such that S ∈ {Le, Pe} is the highest priority

requirement that requires attention. If there exists such an e then set es+1 = e and

proceed according to case (a) or case (b) below. Otherwise set es+1 = s, W (s+1) = ∅

and go to Step C.

a) es+1 < s and S = Les+1 . In this case, for any axiom 〈x,D〉 such that x /∈ I(e, s)

and 〈x,D〉 ∈ Φe it holds that D ∩ α−s 6= ∅. Accordingly set δ(es+1, s+ 1) = α−s

and define L(es+1, s+1) = 1. Also set W (s+1) = ∅. We say that Les+1 receives

attention in this case.

b) es+1 < s and S = Pes+1 . In this case choose the least axiom 〈x,D ⊕ E〉 satisfying

(3.2.6). Set W (s + 1) = E and define P (e, s) = 2 (permanently satisfied).

Reset—as defined on page 45—all Ri and Li such that i > es+1. We say that

Pes+1 receives attention in this case.

Step C. Let

l = max ( {|αs|} ∪ V (s+ 1) ∪W (s+ 1) ) + 1 .

and

As+1 = As ∪ V (s+ 1) ∪W (s+ 1) ,

and define αs+1 to be the least string of length l such that αs+1(x) = As+1(x) for all

x < l.

6I.e. if v(e, s+ 1) = 〈x,D〉 then I(e, s+ 1) = I(e, s) ∪ {x}.
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To end stage s+ 1. After both case I and II, for all requirement parameters γ(j, s)

not mentioned during stage s+ 1 reset γ(j, s+ 1) = γ(j, s). Define

Cs+1 = Cs ∪ {〈e, z〉 | e ≤ s & z ≤ s & L(e, s+ 1) = 1} (3.2.8)

and Proceed to stage s+ 2.

3.2.4 Verification.

Consider any e ∈ ω. As Induction Hypothesis we suppose that every requirement

S ∈ {Ri, Li, Pi | i < e } only receives attention at most finitely often. (Notice

that it is obvious by construction that each P requirement receives attention at

most once.) Accordingly, let se ≥ e be the least (even) stage such that no such

requirement S receives attention at any stage t > se. Note that this means that,

for every i < e and γ ∈ {ε, δ, R, L, P}, γ(i, t) = γ(i, se) for all t ≥ se. We write this

limiting value as γ(i). We now check that Re, Le and Pe are satisfied, and that the

Induction Hypothesis is preserved in each case. We proceed according to descending

priority, noting that Re < Le < Pe in the priority ordering.

Case Re. By definition of se, Re receives attention at stage se+1 and is not reset at

any stage t ≥ se+1. It follows that either αse+1 ∈ We, or else that, for all β ⊇ αse+1,

β /∈ We and, moreover that R(e, t) ∈ {1, 2} and αes+1 ⊆ αt for all t ≥ se + 1. Thus

Re never again receives attention and R(e) = lim t→∞R(e, t) = R(e, se + 1) is the

final outcome of Re, whereas ε(e) = lim t→∞ε(e, t) = ε(e, se + 1). (Note that the

latter is precisely the set of numbers restrained out of A for the sake of Re.)

Case Le. We firstly show that

ΦA
e infinite ⇔ C [e] finite. (3.2.9)

Set s̃e = se + 1. (Thus s̃e is such that Re does not receive attention at any stage

t ≥ s̃e.)
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⇒ Consider any t ≥ s̃e and suppose that L(e, t) = 1. Then there exists some (odd)

r < t such that Le received attention at stage r+ 1 and Le has not been reset since

stage r+ 1. But this means that δ(e, r+ 1) = α−r and that, by (3.2.5), for all 〈x,D〉,

x /∈ I(e, r) & 〈x,D〉 ∈ Φe ⇒ D ∩ δ(e, r + 1) 6= ∅ .

Moreover, since by definition of s̃e it is also the case that no requirement of higher

priority receives attention—and so as a result that Le cannot be reset at any stage

s ≥ t—it follows that δ(e, r + 1) = lims→∞δ(e, s) = δ(e). On the other hand, for

the same reasons, we know, by an easy induction over stages s, that δ(e) ⊆ A. So

we can see, by inspection of the construction, that ΦA
e = I(e, r). In other words ΦA

e

is finite, contradicting the hypothesis. Therefore L(e, s) = 0 for all s ≥ s̃e and so

C [e] ⊆ ω[e]�〈e, s̃e〉. I.e. C [e] is finite.

⇐ Now suppose that ΦA
e is finite, and note that by construction

I(e, t) ⊆ I(e, t+ 1) ⊆ ΦA
e

for all t ∈ ω. Also, as ΦA
e is finite there is a least (odd) stage r ≥ s̃ such that

I(e, r) = ΦA
e (this again follows by inspection of the construction). Hence

I(e, s) = I(e, r) for all s ≥ r . (3.2.10)

Then, if L(e, r) 6= 1 it is clear that Le will require—and hence receive—attention at

stage r+1 since otherwise the construction would ensure that I(e, r+1)−I(e, r) 6= ∅,

due to action taken during step A of stage r+1. Hence L(e, r+1) = 1. Furthermore,

as Le cannot be reset after this stage (by definition of s̃e), it follows that L(e, t) = 1

for all t ≥ r + 1. So by construction (see (3.2.8)), C [e] = ω[e]. I.e. C [e] is infinite.

Finally, notice that the above implies that Le only receives attention at most once

after stage s̃e and is satisfied. Moreover, letting stage r be as above, L(e) =

lim t→∞L(e, t) = L(e, r+ 1) is the final outcome of Le, and δ(e) = lim t→∞δ(e, t) =
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δ(e, r + 1). (The latter is precisely the set of numbers restrained out of A for the

sake of Le.)

Case Pe. Let ŝe ≥ s̃e + 1 be a stage at or after which Le does not receive attention

at any stage t > ŝe. Thus, by definition of ŝe, for all such t, Ω(e, t) = Ω(e, ŝe).

Accordingly we define Ω(e) to be this set.

Now suppose that K = ΦBe⊕A
e . We show that, in this case, K = Φ

Be⊕(ω−Ω(e))
e .

• If x ∈ K then, since Ω(e) ⊆ A—as is easily proved by a simple induction over

s—it is clear that x ∈ Φ
Be⊕(ω−Ω(e))
e follows from our supposition thatK = ΦBe⊕A

e .

• If x /∈ K and x ∈ Φ
Be⊕(ω−Ω(e))
e then we know that there exists (odd) s ≥ ŝe and

a least axiom 〈x,D ⊕ E〉 ∈ Φe[s], D ⊆ Be[s] and E ∩ Ω(e) = ∅. There are 2

cases.

1) P (e, s) = 2. Then there exists (odd) t < s, z ≤ t and a pair of finite sets

(F,G) such that z /∈ K, 〈z, F ⊕G〉 ∈ Φe[t], F ⊆ Be[t], and G ∩ Ω(e, t + 1) = ∅

and such that G was enumerated into A at stage t + 1. But then z ∈ ΦBe⊕A
e

(since Be[t] ⊆ Be and At+1 ⊆ A) whereas z /∈ K. Contradiction.

2) Otherwise P (e, s) = 1. In this case the construction enumerates E into A

at stage s+ 1, so obtaining x ∈ ΦBe⊕A
e and x /∈ K, once again a contradiction.

This proves that if x /∈ K then x /∈ Φ
Be⊕(ω−Ω(e))
e .

We thus conclude that K = Φ
Be⊕(ω−Ω(e))
e , i.e. that K≤eBe, since Ω(e) is finite.

Notice that Pe only receives attention once and that there thus exists a stage t̂e ≥ ŝe

such that for all s ≥ t̂e P (e, s) = P (e, t̂e). I.e. P (e) = P (e, t̂e)

We see from the above that, assuming the Induction Hypothesis for e, the require-

ments Re, Le and Pe are satisfied and that the Induction Hypothesis is preserved

for requirement e+ 1. This concludes the proof.



54 Chapter 3. Genericity and noncupping in the enumeration degrees



Chapter 4

Avoiding Uniformity in the ∆0
2

Enumeration Degrees

In this chapter we investigate the property of incomparability relative to a class of

degrees of a specific level of the Arithmetical Hierarchy. Indeed, we show that for

every uniform ∆0
2 class of enumeration degrees C (see Definition 4.1.5), there exists

a high ∆0
2 enumeration degree c which is incomparable with any degree b ∈ C such

that b /∈ {0e,0
′
e }. As a corollary, we get that such c caps with both a high and a

low nonzero ∆0
2 enumeration degree.

4.1 Introduction

Yates proved in [Yat67] the existence of a ∆0
2 Turing degree incomparable with

all c.e. Turing degrees /∈ {0T,0
′
T } (intermediate c.e. Turing degrees). In fact, an

immediate corollary of Yates’ result in the enumeration degrees, is the existence of

a ∆0
2 degree incomparable with all intermediate Π0

1 degrees (i.e. /∈ {0e,0
′
e })[CC88].

In the context of the Σ0
2 enumeration degrees, Cooper and Copestake [CC88]

showed that given any high Σ0
2 enumeration degree h, there exists a degree c such

55
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that 0e < c < h and c is incomparable with all ∆0
2 degrees intermediate between 0e

and h. Recently, Harris showed in [Har11] the special case when c can be constructed

to be high and h = 0′
e .

We now turn our attention to the question of whether a similar result holds in

the ∆0
2 enumeration degrees. The Σ0

2 enumeration degrees can be divided via the

lower levels of the Arithmetical Hierarchy, that is, the class of the Π0
1 degrees (the

degrees of the characteristic functions of c.e. sets) and the class of ∆0
2 degrees (which

extends the Π0
1 class). In [Lee11, LHC12] it is explained that the notion of “uniform

∆0
2 class” plays a central role in the classification of the ∆0

2 degrees. We will only

give the definition of the notion of “uniform ∆0
2 class” (originally introduced in

[Lee11, LHC12]) and refer the reader to [Lee11, LHC12] for a thorough explanation

and further details of such notion.

The main result of this chapter (Theorem 4.2.1) can be seen as an extension

of Kalimullin’s work presented in [Kal00], in which given any uniform ∆0
2 class of

enumeration degrees C, there exists a nonzero ∆0
2 enumeration degree a such that

{x | 0e < x < a } ∩ C = ∅. From this result, Kalimullin gets as a corollary

that every nonzero low enumeration degree c caps with a nonzero ∆0
2 enumeration

degree. In the same way, Theorem 4.2.1 allows us to deduce that such c caps with

both a high and a low nonzero ∆0
2 enumeration degree.

In the definitions below if f is a binary (ternary) function then fe (fe,s) is short-

hand of λnf(e, n) (λnf(e, s, n)).

Definition 4.1.1. If F is a class of unary functions (mapping ω → ω), F is defined

to be uniform ∆0
2 ( subuniform ∆0

2) if there is a binary function f≤TK such that

F = { fe | e ∈ ω } (F ⊆ { fe | e ∈ ω } ) .

A class of sets C ⊆ P(ω) is defined to be uniform ∆0
2 ( subuniform ∆0

2) if the class

of characteristic functions of C is uniform ∆0
2 (subuniform ∆0

2).
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We note here that the notion “uniform ∆0
2” corresponds to the notion “0′-

uniform” derived from Jockusch’s notation in [Joc72]. The motivation for the present

terminology is our use of Definition 4.1.2 below.

Definition 4.1.2. We say that a computable function f : ω×ω×ω → ω is uniform

∆0
2 approximating if lims→∞fe,s(n) exists for all n ∈ ω and, in this case, we say that

{fe,s}e,s∈ω is a uniform ∆0
2 approximation. Accordingly f defines a class {fe}e∈ω

such that fe(n) = lims→∞fe,s(n) for all e, n ∈ ω.

By application of Lemma 4.1.3 (known as the Limit Lemma) we know that

Definition 4.1.1 can be derived from this notion.

Lemma 4.1.3 (Shoenfield). Let A be a set. The following are equivalent.

1) A≤TK.

2) A is ∆0
2.

3) There is a computable function f : ω × ω → {0, 1} such that

(a) For all n ∈ ω, f(n, 0) = 0.

(b) For all n ∈ ω, lims→∞f(n, s) = A(n).

Lemma 4.1.4. A class of functions F is uniform ∆0
2 if and only if there exists

a uniform ∆0
2 approximation function f such that F = {fe}e∈ω. In particular, a

class of sets C is uniform ∆0
2 if and only if there exists a uniform ∆0

2 approximation

{Ae,s}e,s∈ω such that C = {Ae}e∈ω (using the standard shorthand identification of a

set predicate with its characteristic function.)

Definition 4.1.5. A class A ⊆ De is said to be uniform ∆0
2 ( subuniform ∆0

2) if

there exists a uniform ∆0
2 class {Ae}e∈ω ⊆ P(ω) such that, for all a ∈ De,

a ∈ A ⇔ ∃e[Ae ∈ a ] (a ∈ A ⇒ ∃e[Ae ∈ a ] ) .
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A uniform ∆0
2 class relevant to Theorem 4.2.1 is the following.

Lemma 4.1.6 ([MC85]). Let a be a low enumeration degree and suppose that A ∈ a.

Then the class {X | X≤eA } is uniform ∆0
2. Thus {x | x ≤ a } is uniform ∆0

2.

4.2 Main Construction

Theorem 4.2.1. For every uniform ∆0
2 class of enumeration degrees C there exists

a high ∆0
2 enumeration degree c such that for all b ∈ C ∩ {x | 0e < x < 0′

e },

c ⊥ b12.

Proof. Let B = {Be}e∈ω be a uniform ∆0
2 class of sets with uniform ∆0

2 approxima-

tion {B̂e,s}e,s∈ω such that, for each c ∈ C there exists C ∈ c such that C ∈ B (and

also such that B ⊆
⋃
{x | x ∈ C }). We note that the proof of Theorem 4.2.1 ends

in page 92.

4.2.1 Requirements

The overall strategy is to construct a set C such that the following requirements are

satisfied (for all e ∈ ω).

R : C is ∆0
2 ,

He : We is infinite ⇔ C [2e] is finite,

Pe : C = ΦBe
e ⇒ K ≤e Be,

Ne : Be = ΦC
e ⇒ Be is computably enumerable,

where {(We,Φe, Be)}e∈ω is a computable listing of all triples of c.e. sets, c.e. operators

and B with associated uniform c.e. approximations {We,s}e,s∈ω and {Φe,s}e,s∈ω for

1Notice that this Theorem obviously implies the same statement with “uniform ∆0
2” replaced

by “subuniform ∆0
2”.

2c ⊥ b denotes that degrees c and b are incomparable.
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the former and uniform ∆0
2 approximation {Be,s}e,s∈ω for the latter—e.g. for all e,

let Be = B̂(e)2 etc.

By Lemma 3.2.4 we have that J
(2)
e (∅) ≡e { e | We is infinite }. Now by Lemma

3.2.3, satisfaction of {He}e∈ω implies that { e | We is infinite }≤e Je(C). Hence

J
(2)
e (∅)≤eJe(C) and so J

(2)
e (∅) ≡e J

(2)
e (C).

Definitions and notation

During the construction a number is said to be new if it is larger than any number

mentioned in C up to that point in the construction.

Cooper-McEvoy Enumeration Reduction Approximations.

Throughout this thesis we will be assuming that if X ∈ Σ0
2 then, for a given e-

operator Φe with c.e. approximation {Φe,s}s∈ω, {ΦX
e,s}s∈ω is a Σ0

2 approximation to

ΦX
e in the sense of 1.2.20.

The Priority Ordering.

The H, P and N requirements are ordered as follows: Hi < Pi < Ni < Hi+1 for all

i ∈ ω.

The Tree of Outcomes T .

A tree of outcomes T ⊆ 3<ω is defined during the construction. For each e,

the nodes of length 3e, 3e+ 1 and 3e+ 2 are allocated respectively to requirements

He, Pe and Ne. At every stage s of the construction a path αs ∈ 3<ω of length s is

defined. For any given node σ we say that a stage s is σ-true if σ ⊂ αs (i.e. σ̂i ⊆ αs

for some i ∈ {0, 1, 2}). The full definition of T is given in Definition 4.2.2 below.

Note that in the informal discussion below we we will refer to the true path δ as

specified in Definition 4.2.2. For S ∈ {H,P,N} node σ is Se (shorthand σ ∈ Se) if

σ is allocated to Se and we say that σ is S (shorthand σ ∈ S) if σ ∈ Se for some
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index e.

4.2.2 Basic idea of the construction

We describe the basic modules H, P and N for (respectively) the H, P and N

requirements by considering their action relative to a given index e. For J ∈

{H,P ,N} the outcome of basic module J is the least i ∈ {1, 2, 3} such that J .i is

visited infinitely often.

Note. In the description of the basic modules, “go to J .i” indicates going to J .i

at the next stage. Also, an action specified during a wait (for example adding a

new number to C [e] in H.2) is understood to be performed at every stage during the

wait. The notation for the sets involved in the basic modules stands for their finite

approximation at the stage under consideration with the exception of the notation3

K[maxD] in (4.2.1) which stands for the approximation to K at stage s = maxD.

We say that an outcome is finitary if it stabilises after a finite number of stages.

Otherwise we say that it is infinitary.

Basic Module H. The basic strategy involves directly processing numbers in ω[2e]

as follows.

H.1. Remove all numbers from C [2e] and go to H.2.

H.2. Wait for a number to enter We. Add a new number to C [2e].

H.3. (Some number enters We). Go back to H.1.

The outcomes. There are two outcomes: H.1 (infinitary) and H.2 (finitary). Out-

come H.1 occurs if We is infinite, in which case C [2e] = ∅. Outcome H.2 occurs if

We is finite, in which case C [2e] is infinite.

Basic Module P . The basic strategy involves directly processing numbers in ω[2e+1]

3We sometimes use the shorthand X[s] instead of Xs.
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as follows.

P .1. Wait for some number n such that 〈2e+ 1, n〉 ∈ C and

n ∈ K & 〈〈2e+ 1, n〉, D〉 ∈ Φe & D ⊆ Be & n /∈ K[maxD] . (4.2.1)

Add the least m such that 〈2e+ 1,m〉 /∈ C into C.

P .2. (4.2.1) applies for some 〈〈2e+ 1, n〉, D〉 ∈ Φe. Choose the least such 〈2e+ 1, n〉

and go to P .3.

P .3. Wait for D * Be. Remove4 the number 〈2e+ 1, n〉 chosen in P .2 from C.

P .4. (D * Be). Go back to P .1.

The outcomes. There are two outcomes: P .1 (infinitary or finitary) and P .3 (finit-

ary). If outcome P .3 occurs and 〈〈2e+ 1, n〉, D〉 is the axiom that causes this, then

〈2e+ 1, n〉 /∈ C whereas 〈〈2e+ 1, n〉, D〉 ∈ Φe and D ⊆ Be. Hence 〈2e+ 1, n〉 ∈

ΦBe
e − C. If outcome P .1 occurs then note firstly that, for any given n, P .3 (and

P .2) can only apply to 〈2e+ 1, n〉 finitely often. This is because P .3 only ap-

plies to 〈2e+ 1, n〉 if n ∈ K. In this case it also only applies relative to some

axiom 〈〈2e+ 1, n〉, D〉 if D ⊆ Be and maxD ≤ tn where tn is the stage such that

n ∈ K[tn + 1]−K[tn]. Since there are only finitely many such axioms and {Be,s}s∈ω

is a ∆0
2 approximation, it follows from the fact that P .3 is not the outcome that

there exists a stage ŝ after which no such axiom for 〈2e+ 1, n〉 can cause an instance

of P .3. Indeed let E ⊆ Be be a finite set such that D ∩ E 6= ∅ for each such axiom

〈〈2e+ 1, n〉, D〉. Then, using the fact that {Be,s}s∈ω is a ∆0
2 approximation we can

let ŝ be a stage such that E ∩ Be[s] = ∅ for all s > ŝ. We deduce from this that

ω[2e+1] ⊆ C when outcome P .1 occurs. Suppose now that C = ΦBe
e . Consider any

4Of course, when the P basic module is looked at in isolation after the first removal of 〈2e+ 1, n〉
from C this removal activity is redundant since 〈2e+ 1, n〉 is then not in C in any case. However
it is necessary in the context of the interaction of basic modules P and N . Note also that in the
construction, for reasons of bookkeeping every 〈2e+ 1,m〉 ∈ C such that m ≥ n is removed from
C.
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n ∈ ω. If n ∈ K then, as 〈2e+ 1, n〉 ∈ C = ΦBe
e there exists a finite set D such that

〈〈2e+ 1, n〉, D〉 ∈ Φe and D ⊆ Be and (trivially) n /∈ K[maxD]. On the other hand

if n ∈ K then there is no such axiom 〈〈2e+ 1, n〉, D〉 since this would cause outcome

P .3 to happen. Hence for all n ∈ ω, n ∈ K if and only if there exists D such that

〈〈2e+ 1, n〉, D〉 ∈ Φe, D ⊆ Be, and n /∈ K[maxD]. In other words K ≤e Be.

Basic Module N . The basic strategy involves enumerating a c.e. set W (e) and aux-

iliary set I(e) of instigator candidates.

N .1. Wait for some n ∈ W (e) such that n /∈ Be. For any m ∈ Be ∩ ΦC
e such that

m /∈ W (e) enumerate m into W (e) and enumerate a single axiom 〈m,D〉 witnessing

m ∈ ΦC
e into I(e).

N .2. (For some n ∈ W (e), n /∈ Be.) Wait for n ∈ Be. Restrain in C the unique

finite set D such that 〈n,D〉 ∈ I(e).

N .3. (n ∈ Be) Remove the restraint over D. Return to N .1.

The outcomes. There are two outcomes: N .1 (infinitary or finitary) and N .2 (fi-

nitary5). If the outcome is N .2 then for some fixed axiom 〈n,D〉 ∈ Φe, n /∈ Be

whereas n ∈ ΦC
e since D is restrained in C. Thus Be 6= ΦC

e . On the other hand,

if the outcome is N .1 and Be = ΦC
e then, for every n ∈ Be, n will eventually be

enumerated into W (e). Hence Be ⊆ W (e). Conversely n ∈ W (e)−Be is impossible

since this would entail outcome N .2. Thus W (e) = Be and so Be is c.e.

Coherence between the Basic Modules. There is no direct interference between the

H and P basic modules. However H.1 and P .3 clearly conflict with the restrain-

ing activity of N .2. Accordingly, in order for the overall strategy to cohere the

construction distributes the requirements over a ternary priority tree T—where

reinitialisation of nodes to the right of αs at the end of stage s plays an important

5Note that outcome N .2 is finitary as a consequence of the fact that {Be,s}s∈ω is a ∆0
2 approx-

imation.
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role—so that injury to the activity of any node σ such that σ ⊂ δ (the true path)

can only originate from the finite number of nodes to the left or above σ on T (i.e.

from nodes of higher priority on T ).

Indeed an H node keeps a record of restraints of higher priority N nodes and only

removes numbers from C that do not occur within the union of this finite number

of restraints. Thus outcome H.1 at index e corresponds to the action of He node

σ ⊂ δ removing all numbers from C [2e] except for a finite set.

A node σ ∈ Pe on the other hand only processes numbers in C [2e+1] above a

certain threshold bounding those numbers mentioned in C up to the least point in

the construction at which σ was visited and since when σ has not been reinitialised.

In this way the main extracting activity corresponding to P .3 never affects the

restraints of higher priority N nodes. However σ may also extract numbers from

C [2e+1] below its threshold in order to preserve extractions by higher priority Pe

nodes. Nevertheless this extracting activity is defined so as to respect restraints

belonging to N nodes of higher priority than σ. (This auxiliary extracting activity

is necessary in order to ensure that {Cs}s∈ω is a ∆0
2 approximation.) Note also that

any P node σ ⊂ δ has outcomes σ̂0, σ̂1 or σ̂2 corresponding (respectively) to the

infinitary case of the P .1 outcome, the P .3 outcome, and the finitary case of the P .1

outcome. This means that, for any stage s, the extracting activity undertaken due

to σ̂1 ⊆ αs may remove numbers lying within restraints or involved in instigator

candidates6 belonging to N nodes τ on the subtree below σ̂0. However, if σ̂0 ⊂ δ

then there exists a stage t, such that for all stages s ≥ t, any 〈2e+ 1, n〉 extracted

due to σ̂1 ⊆ αs will be (permanently) enumerated back into C at some later stage.

Hence, even though the activity of σ (⊂ δ) may cause infinite injury along the true

path, the injury itself tends to infinity (in terms of the numbers involved).

6I.e. in the formalism of the proof such numbers lie within some restraint E(τ, s) or some D
such that, for some n, 〈n,D〉 ∈ I(τ, s), with τ being an N node such that σ̂0 ⊆ τ .
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A node σ ∈ N only restrains a finite set D in C (corresponding to N .2) if,

for some n, 〈n,D〉 is an instigator candidate for σ and if no H or P node β ⊂ σ

extracts numbers belonging to D. Hence the restraining activity of σ can only injure

the activity of lower priority H or P nodes. However the activity (of collecting valid

instigator candidates and maintaining a restraint) of σ may be injured by β if β is

a P node and β̂0 ⊆ σ. Nevertheless, as explained in the previous paragraph, if σ

is on the true path this injury does not affect the final outcome of the activity of σ.

A sketch of how requirement R is satisfied.

If a number x is extracted from C at infinitely many stages this is due to the

extraction activity of some H or P node on the true path. Consider index e and

suppose, without loss of generality, that for Pe node σ, σ̂1 is on the true path, and

note here that the case when σ is an He node and σ̂0 ⊂ δ is similar. Then there

exists a least σ̂1-true stage sσ, after which the construction never visits nodes to

the left of σ̂1, such that at sσ, and all subsequent σ true stages, x = 〈2e+ 1, z〉 is

always extracted.

In order to see this, consider firstly the case in which, for every N node β ⊆ σ

it is the case that β̂1 ⊆ σ. Then by construction, at every subsequent stage s the

Pe node σs on the s-stage path αs is free to extract x from7 C (although in this

particular case—with β̂1 ⊆ σ for all N nodes β ⊆ σ—x does not recur in C in any

case.)

Now consider the case in which there exists precisely one N node β such that

β̂0 ⊆ σ. Then x may lie in some D such that 〈n,D〉 has already been chosen as

7This is because all restraints belonging to N nodes above σ along the true path are already
fixed. Also, all N nodes τ to the right of the true path are reinitialised at stage sσ and so the set
of instigator candidates belonging to τ is set to ∅ at stage sσ. Thus, by construction, for any such
τ and instigation candidate 〈n,D〉 belonging to τ at stages subsequent to sσ, x /∈ D. Thus x will
appear in no active N restraint (the restraints for N nodes on the subtree below σ̂0 having no
effect relative to the extracting activity of σ after stage sσ) subsequent to stage sσ. Thus there is
no obstacle to Pe node αs extracting x from C.
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an instigator candidate for β at stage sσ. Hence there may be stages s > sσ such

that β̂1 ⊆ αs and β restrains D, and thus also x, in C. However, as β̂0 ⊆ σ is

on the true path and since {Be,s}s∈ω is a ∆0
2 approximation, there will be a stage

such that—supposing that i is such that β is an Ni node—n permanently enters Bi.

Hence there exists a stage rσ such that, for all s ≥ rσ and for all such instigator

candidates 〈n,D〉, D is never restrained by β at stage s. Moreover, instigation

candidates 〈n,D〉 for β can only be chosen at β̂0-true stages s if D ⊆ Ct where t

is the last β̂0-true stage8. However, for t ≥ sσ, by construction at each such stage

the Pe node σt ⊆ αt removes (or is free to remove) x from C (the first such stage

being t = sσ) so no instigator candidate 〈m,D〉 chosen by β at a stage subsequent

to sσ is such that x ∈ D. Therefore x /∈ Cs for all s ≥ rσ.

The case of more than one node β such that β̂0 ⊆ σ is a straightforward

generalisation of the above case and is discussed in the proof of Lemma 4.2.14.

Accordingly it can be deduced that the approximation {Cs}s∈ω defined during the

construction is ∆0
2.

Parameters.

There is one timing parameter t(σ, s + 1) ∈ ω�s + 1 used in the construction to

record the last stage t at which σ ⊂ αt.

Parameters associated with each requirement and each node are defined during the

construction.

We use bracket notation (e.g. V (σ, s)) for parameters associated with nodes and

subscript notation (e.g. Ve,s) for parameters associated with requirements. Upper

case letters are used for parameters ranging over (finite) sets and states and lower

case letters are used for parameters ranging over numbers and singleton sets. F

8And β has not been reinitialised since stage t—however this is the case for s > sσ by definition
of sσ.
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denotes the class of finite subsets of ω and Fe (Se) the class of finite (singleton)

subsets of ω[e].

Remark. Notes on the meanings of the parameters and the action taken can be found

after each separate case of the description of the construction at stage s+ 1.

4.2.3 The Construction.

The construction proceeds by stages s ∈ ω. At each stage a finite approximation Cs

to the set C is defined where C =def {x | ∃t∀s ≥ t[x ∈ Cs ] }.

Stage 0. Initially C0 = ∅ whereas all parameters (defined below) are set to their

initial values as follows. For all indices e and nodes σ, t(σ, 0) = 0; if |σ| = 0 mod 3

then H(σ, 0) = 0, and Ue,0 = Ve,0 = Ω(σ, 0) = ∅; if |σ| = 1 mod 3 then P (σ, 0) = −1,

b(σ, 0) = h(σ, 0) = w(σ, 0) = ↑ and Te,0 = V (σ, 0) = ∅; if |σ| = 2 mod 3 then

N(σ, 0) = −1, x(σ, 0) = ↑ and E(σ, 0) = W (σ, 0) = I(σ, 0) = ∅.

Stage s+ 1. The s+ 1 stage path αs+1 of length s+ 1 is constructed at this stage.

There are s + 1 substages: at each substage n (such that 1 ≤ n ≤ s + 1) a node of

length n − 1 is processed. We thus assume for n such that the node σ ⊆ αs+1 of

length n − 1 has been defined (so that if n = 1, σ = λ) and define below how the

node σ is processed. The parameter t(σ, s + 1) is defined at the beginning of this

stage as follows.

t(σ, s+ 1) =


max { t | t ≤ s & σ ⊂ αt }

if there exists such t,

0 otherwise.

(4.2.2)

The node σ is now processed according as to whether n−1 = |σ| = 0, 1, or 2 modulo

3.

Case 1: |σ| = 0 mod 3. Thus σ is an H node. Suppose that |σ| = 3e, i.e. that
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σ ∈ He.

Parameters. H(σ, s) ∈ {0, 1} is the state, u(σ, s) ∈ S2e ∪ {∅} the enumerator,

Ue,s ∈ F2e the inclusion, Ve,s ∈ F2e the exclusion, and Ω(σ, s) ∈ F2e the avoidance

parameter. Note that u(σ, s) is a temporary parameter in the sense that it only has

meaning—and is non trivially defined—when s is σ-true.

The parameter Ω(σ, s) is redefined as follows.

Ω(σ, s+ 1) =
⋃
τ ∈ N

& τ<Lσ

E(τ, s)[2e] ∪
⋃
τ ∈ N
& τ⊂σ

E(τ, s+ 1)[2e] . (4.2.3)

There are two subcases.

Case 1.A: We,s+1 −We,t(σ,s+1) 6= ∅.

Set the state parameter H(σ, s+ 1) = 0 and redefine the set (⊆ ω[2e]) that He wants

to keep out of C: Ve,s+1 = Ve,s ∪ Ue,s. Now reinitialise the set that He wants to put

in C: Ue,s+1 = ∅ (and set u(σ, s+ 1) = ∅).

Notes. H(σ, s + 1) = 0 means that the present guess of the construction is that We is

infinite. Note that the construction wants to extract Ve,s+1 from C with the (present) aim

of making C [2e] finite. Ue,s is the set of numbers in ω[2e] present in C at stage s due to

previous action taken at He nodes.

Case 1.B: We,s+1 −We,t(σ,s+1) = ∅.

Set H(σ, s+ 1) = 1, choose a new number 〈2e, z〉, and set u(σ, s+ 1) = {〈2e, z〉} (to

be enumerated into C at the end of stage s+ 1). Also set Ue,s+1 = Ue,s ∪ u(σ, s+ 1)

and Ve,s+1 = Ve,s.

Notes. H(σ, s + 1) = 1 means that the present guess of the construction is that We is

finite so that the construction wants C [2e] to be infinite. Note that, in this case, for t ≥ s,

Ue,t ⊆ Ue,t+1 and |Ue,t+1 \ Ue,t| = 1 for as long as H(σt+1, t + 1) = 1—where σt+1 is the

He node ⊆ αt+1.
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To end this substage. After both case 1.A and case 1.B define the set to be re-

moved from C at the end of stage s + 1: V (σ, s + 1) = Ve,s+1 − Ω(σ, s + 1). Go to

the Final Step of Substage n (below).

Notes. The parameter Ω(σ, s+ 1) contains the set of numbers restrained by N nodes τ of

higher priority in T (i.e. τ <L σ or τ ⊂ σ). V (σ, s+ 1) is the actual set of numbers that

the construction extracts from C [2e] at stage s+ 1.

Case 2: |σ| = 1 mod 3. Thus σ is a P node. Suppose that |σ| = 3e + 1, i.e. that

σ ∈ Pe.

Parameters. P (σ, s) ∈ {−1, 0, 1, 2} is the state, b(σ, s) ∈ ω ∪ {↑} the threshold,

h(σ, s) ∈ ω ∪ {↑} the height, w(σ, s) ∈ ω ∪ {↑} the witness, u(σ, s) ∈ S2e+1 ∪ {∅}

the enumerator, Te,s ∈ F2e+1 the inclusion, V −(σ, s) ∈ F2e+1 the lower exclusion,

V +(σ, s) ∈ F2e+1 the upper exclusion and V (σ, s) the combined exclusion parameter.

Note that u(σ, s), V −(σ, s), and V +(σ, s) are temporary parameters, i.e. they only

have meaning when s is σ-true.

Define the temporary parameter V −(σ, s+ 1) as follows.

V −(σ, s+ 1) = { z | (∃γ ∈ Pe)[ γ <L σ & z ∈ V (γ, s) & z /∈ ε(γ, σ, s+ 1) ] }

with

ε(γ, σ, s+ 1) = ε<L(γ, σ, s+ 1) ∪ ε⊂(γ, σ, s+ 1)

and

ε<L(γ, σ, s+ 1) =
⋃
{E(β, s) | β ∈ N & γ <L β̂1 <L σ }

whereas

ε⊂(γ, σ, s+ 1) =
⋃
{E(β, s+ 1) | β ∈ N & β̂1 ⊆ σ }.
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Remark. The following definition of V −(σ, s+ 1) is equivalent to the above. Define

S<L(σ, s+ 1) = { γ | γ ∈ Pe ∩ Ts & γ <L σ }

and let Λ(σ, s+ 1) be the <L-rightmost τ ∈ S<L(σ, s+ 1) if S<L(σ, s+ 1) 6= ∅ (and

be undefined otherwise). Now set V −(σ, s+ 1)

=


∅ if S<L(σ, s+ 1) = ∅,

{ z | z ∈ V (Λ(σ, s+ 1), s) & z /∈ ε(Λ(σ, s+ 1), σ, s+ 1) } otherwise.

Notes. V −(σ, s+ 1) ⊆ { 〈2e+ 1, n〉 | n < b(σ, s+ 1) }—with b(σ, s+ 1) defined below—is

the set that the construction extracts from C at the end of stage s+1 for the sake of higher

priority Pe nodes, i.e. nodes in the set { γ | |γ| = 3e+ 1 & γ <L σ }.

There are two subcases.

Case 2.A: P (σ, s) = −1. Then choose b(σ, s + 1) ∈ ω so that 〈2e+ 1, b(σ, s+ 1)〉

is new. Also set h(σ, s+ 1) = b(σ, s+ 1). Define P (σ, s+ 1) = 0, w(σ, s+ 1) = ↑ and

V +(σ, s+ 1) = u(σ, s+ 1) = ∅ and Te,s+1 = Te,s.

Notes. P (σ, s) = −1 means that σ is in its initial state so that b(σ, s) = h(σ, s) = w(σ, s) =

↑ and V (σ, s) = ∅. The parameter b(σ, s + 1) gives a lower bound for numbers n such

that 〈2e+ 1, n〉 is added or removed from C for the sake of σ at stage s + 1 whereas

{ 〈2e+ 1, n〉 | b(σ, s+ 1) ≤ n < h(σ, s+ 1) } is the set put into C for the sake of σ at this

stage (i.e. the empty set in the present case).

Case 2.B: P (σ, s) ∈ {0, 1, 2}. Then test whether there exists n such that b(σ, s) ≤

n < h(σ, s) and for some finite set D,

n ∈ K[s] & 〈〈2e+ 1, n〉, D〉 ∈ Φe[s] & D ⊆ Be[s] & n /∈ K[maxD] . (4.2.4)

There are now 3 possible cases. Apply the first case that holds.

Case 2.B.1: There is such an n. Then for the least such n set h(σ, s + 1) = n.
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Also define9 P (σ, s + 1) = 0, V +(σ, s + 1) = u(σ, s + 1) = ∅, w(σ, s + 1) = ↑,

b(σ, s+ 1) = b(σ, s) and Te,s+1 = Te,s.

Notes. 〈2e+ 1, h(σ, s+ 1)〉 is a new (better) prediction of a diagonalisation via (4.2.4)

(with n = h(σ, s+1)) i.e. the prediction that 〈2e+ 1, h(σ, s+ 1)〉 ∈ ΦBe
e \C. P (σ, s+1) = 0

indicates that the construction does not yet have enough evidence that this is a true

diagonalisation—since the diagonalisation candidate 〈2e+ 1, h(σ, s+ 1)〉 has changed. More

generally P (σ, s+ 1) ∈ {0, 2} indicates the construction’s prediction that

C ∩ ω[2e+1] = { 〈2e+ 1, n〉 | n ≥ b(σ, s+ 1) }

and that C = ΦBe
e and K ≤e Be. Te,s+1 (⊇ Te,s) contains every number x ∈ ω[2e+1]

mentioned in C up to this point in the construction. V +(σ, s + 1) ⊆ { 〈2e+ 1, n〉 | n ≥

h(σ, s+ 1) } is the set that the construction extracts from C for the sake of σ at (the end

of) this stage and is only non empty when P (σ, s+ 1) = 1.

Case 2.B.2: n = h(σ, s) satisfies (4.2.4) (but no b(σ, s) ≤ n̂ < h(σ, s) does). Then

set h(σ, s+ 1) = w(σ, s+ 1) = n, P (σ, s+ 1) = 1 and

V +(σ, s+ 1) = Te,s ∩ { 〈2e+ 1,m〉 | m ≥ h(σ, s+ 1) } . (4.2.5)

Also set u(σ, s+ 1) = ∅, b(σ, s+ 1) = b(σ, s), and Te,s+1 = Te,s.

Notes. This is the only case in which w(σ, s+1) is non trivially defined. Indeed P (σ, s+1) =

1 indicates the construction’s prediction that 〈2e+ 1, w(σ, s+ 1)〉 witnesses ΦBe
e \ C 6= ∅

via (4.2.4) (with n = w(σ, s+1)). Notice that (4.2.5) means that, for every m ≥ h(σ, s+1)

such that 〈2e+ 1,m〉 has been mentioned thus far in the construction, 〈2e+ 1,m〉 is ex-

tracted from C at this stage. (The ultimate objective being that 〈2e+ 1, w(σ, s+ 1)〉 /∈ C

9We could choose to define V +(σ, s+ 1) as in (4.2.5) in order to try to avoid injury to N nodes
in the subtree below σ̂0 when σ̂1 ⊆ αt+1 at some later stage t + 1. However, even if we do
this, if h(σ, r+ 1) < h(σ, s+ 1) at some later σ-true stage r+ 1 (and so σ̂0 ⊆ αr+1) the N nodes
in the subtree below σ̂0 will nevertheless sustain injury at stage r + 1. (Note that the option
of reinitialising all such N nodes in this case—e.g. at stage r + 1—would cause fatal injury to N
nodes along the true path.)
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if the prediction P (σ, s+ 1) = 1 is correct.)

Case 2.B.3: (Neither of the above 2 cases applies.)

There are two subcases.

Case 2.B.3.i: P (σ, s) ∈ {0, 2}. Then set u(σ, s + 1) = {〈2e+ 1, h(σ, s)〉}, h(σ, s +

1) = h(σ, s) + 1, and define P (σ, s + 1) = 2, V +(σ, s + 1) = ∅, w(σ, s + 1) = ↑ and

Te,s+1 = Te,s ∪ u(σ, s+ 1).

Notes. The construction predicts that C = ΦBe
e and K ≤ Be in this case, i.e. when

P (σ, s + 1) = 2. This is the only case when the set u(σ, s + 1)—to be enumerated into

C at the end of this stage—is non trivially defined. Note that if the present prediction is

indeed true (and s is a late enough stage and σ is on the true path) the construction will

eventually enumerate all of the set { 〈2e+ 1,m〉 | m ≥ b(σ, s) } into C.

Case 2.B.3.ii: P (σ, s) = 1. Then set h(σ, s+1) = h(σ, s) and define P (σ, s+1) = 0,

V +(σ, s+ 1) = u(σ, s+ 1) = ∅, w(σ, s+ 1) = ↑, b(σ, s+ 1) = b(σ, s) and Te,s+1 = Te,s.

Notes. The construction’s previous prediction that 〈2e+ 1, w(σ, s)〉 (with w(σ, s) = h(σ, s))

witnesses ΦBe
e \ C 6= ∅ has collapsed in this case and P (σ, s + 1) = 0 indicates that the

construction now considers the opposite outcome (as described above) more likely. Notice

also that, as σ̂0 ⊆ αs+1 in this case, all the nodes γ such that σ̂1 ⊆ γ are reinitialised

at the end of stage s+ 1.

To end this substage. After each of the cases 2.A and 2.B.1-2.B.3, define the set to

be removed from C at the end of stage s+1: V (σ, s+1) = V −(σ, s+1) ∪ V +(σ, s+1).

Go to the Final Step of Substage n.

Case 3: |σ| = 2 mod 3. Thus σ is an N node. Suppose that |σ| = 3e+ 1, i.e. that

σ ∈ Ne.

Given stages t ≤ s we define x ∈ ΦC
e [t, s] if and only if x ∈ ΦC

e [q] for all stages q
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such that t ≤ q ≤ s. Note that, with reference to the timing parameter t(σ, s), if

t(σ, s) = 0 (with s > 0), then ΦC
e [t(σ, s), s− 1] = ∅ since ΦC

e [0] = ∅.

Parameters. N(σ, s) ∈ {−1, 0, 1} is the state, x(σ, s) ∈ ω ∪ {↑} the witness,

E(σ, s) ∈ F the restraint, W ∗(σ, s) ∈ F the enumerator set, W (σ, s) ∈ F the

c.e. set approximation, I(σ, s) ∈ ω × F the overall set of instigator candidates,

I−(σ, s) ⊆ I(σ, s) the set of invalid instigator candidates, I+(σ, s) ⊆ I(σ, s) the set

of valid instigator candidates, and I∗(σ, s) the enumerator set of instigator candid-

ates. Note that W ∗(σ, s), I−(σ, s), I+(σ, s), and I∗(σ, s) are temporary parameters,

i.e. they only have meaning when s is σ-true.

Define the auxiliary parameter.

χ(σ, s+ 1) =
⋃
{V (β, s+ 1) | β ∈ N ∪H & β ⊂ σ } (4.2.6)

and set

I+(σ, s+ 1) = { 〈x,D〉 | 〈x,D〉 ∈ I(σ, s) (4.2.7)

& D[≤2e+1] ⊆ C[t(σ, s+ 1), s] ∩ χ(σ, s+ 1) }

whereas

I−(σ, s+ 1) = I(σ, s+ 1) − I+(σ, s+ 1) . (4.2.8)

There are three subcases.

Case 3.A. σ is in its initial or reinitialised state N(σ, s) = −1.

Notice that for X ∈ {I,W,E}, X(σ, s) = ∅ whereas x(σ, s) = ↑. Then set N(σ, s+

1) = 0 and reset E(σ, s + 1) = ∅ and x(σ, s + 1) = ↑. Note that for all other N

nodes σ′ such that σ ⊂ σ′ ⊂ αs+1, N(σ′, s) = −1 and so σ′ will receive the same

treatment.

Notes. N(σ, s+ 1) = 0 is a default prediction at this stage—i.e. the construction does not
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have enough information to make an informed choice for N(σ, s+ 1) ∈ {0, 1}.

Case 3.B. N(σ, s) = 0.

Note that this means that t(σ, s+ 1) > 0, that N(σ, t(σ, s+ 1)) = 0 and that σ has

not been reinitialised since the last time that σ was visited (i.e. at stage t(σ, s+ 1)).

There are 3 cases that ensue. Process the first case that applies.

Case 3.B.1 There exists some axiom 〈x,D〉 ∈ I+(σ, s + 1) such that x /∈ Be[s].

(Note that x ∈ W (σ, s) by definition in this case.) Choose 〈x,D〉 such that for

all such axioms 〈y,D〉, x ≤ y. (For every z there is at most one axiom 〈z,D〉 in

I(σ, s) and hence also at most one such axiom in I+(σ, s+ 1)). Set N(σ, s+ 1) = 1,

E(σ, s+ 1) = D, x(σ, s+ 1) = x.

Notation. When Case 2.B.1 holds we say that the axiom 〈x,D〉 instigates the out-

comes N(σ, s+ 1) = 1, E(σ, s+ 1) = D and x(σ, s+ 1) = x.

Notes. N(σ, s + 1) = 1 means that the construction predicts that x(σ, s + 1) ∈ ΦC
e \ Be.

Note that I+(σ, s + 1) contains every 〈n,D〉 ∈ I(σ, s) such that D[≤2e+1] appeared to be

in C at stage s and such that no number in D[≤2e+1] is extracted by higher priority H

and P nodes (i.e. nodes β such that β ⊂ σ) at stage s + 1 so that restraining D (and

in particular E(σ, s + 1)) does not interfere with previous action taken by higher priority

H and P nodes. E(σ, s + 1) is the finite set of numbers that the construction wants to

restrain in C in order to force x(σ, s+ 1) ∈ ΦC
e if the prediction N(σ, s+ 1) = 1 is correct.

Case 3.B.2 I−(σ, s+ 1) 6= ∅. (And case 3.B.1 does not apply.)

Then set N(σ, s+ 1) = 0, E(σ, s+ 1) = ∅ and x(σ, s+ 1) = ↑.

Notes. N(σ, s+ 1) = 0 again corresponds to a default prediction. (See the Notes after case

3.C.2 for further explanation.)
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Case 3.B.3 I−(σ, s+ 1) = ∅. Then define

I∗(σ, s+ 1) = { 〈x,D〉 | x ∈ Be[s] & x /∈ W (σ, s)

& D[≤2e+1] ⊆ χ(σ, s+ 1)

& 〈x,D〉 witnesses x ∈ ΦC
e [t(σ, s+ 1), s] }

(4.2.9)

and set

W ∗(σ, s+ 1) = {x | ∃D[ 〈x,D〉 ∈ I∗(σ, s+ 1) ] } (4.2.10)

Set N(σ, s+ 1) = 0, E(σ, s+ 1) = ∅ and x(σ, s+ 1) = ↑.

Notes. In this case N(σ, s + 1) = 0 is an informed guess that Be = ΦC
e and Be is c.e.

(and =
⋃
t≥s∗W (σ, t) for some fixed stage s∗ ≤ s+ 1 if σ ⊂ δ and s+ 1 is a large enough

stage). I(σ, s + 1) contains all possible instigator candidates and W (σ, s + 1) = {n |

∃D[ 〈n,D〉 ∈ I(σ, s + 1) ] } is a set that the construction guesses to be a finite stage of a

c.e. approximation to Be if indeed Be = ΦC
e . Note that |I(σ, s+1)| = |W (σ, s+1)|. Notice

also that I+(σ, s + 1) = I(σ, s) in this case (i.e. the whole of I(σ, s) appears to be valid).

W ∗(σ, s + 1) contains every number n /∈ W (σ, s) that appears to be in Be ∩ ΦC
e whereas

I∗(σ, s+ 1) contains, for each such n, the axiom that appears to witness n ∈ ΦC
e .

Case 3.C. N(σ, s) = 1.

Note that this means that x(σ, s) ∈ ω and moreover that 〈x(σ, s), E(σ, s)〉 ∈ I+(σ, t(σ, s+

1)) (and that I+(σ, t(σ, s+ 1)) ⊆ I(σ, s)). There are 2 cases that ensue.

Case 3.C.1 〈x(σ, s), E(σ, s)〉 ∈ I+(σ, s+ 1) & x(σ, s) /∈ Be[s].

Then reset N(σ, s+ 1) = 1, E(σ, s+ 1) = E(σ, s) and x(σ, s+ 1) = x(σ, s).

Notes. The construction maintains its prediction that x(σ, s) ∈ ΦC
e \Be in this case.

Case 3.C.2 〈x(σ, s), E(σ, s)〉 ∈ I−(σ, s+ 1) ∨ x(σ, s) ∈ Be[s].

Then set N(σ, s+ 1) = 0, E(σ, s+ 1) = ∅, and x(σ, s+ 1) = ↑.
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Notes. The construction now no longer believes that x(σ, s+1) ∈ ΦC
e \Be and falls back on

its default prediction that Be = ΦC
e and Be is c.e. Note that, if σ is on the true path, then

infinitely many default predictions corresponding to N(σ, s + 1) = 0, as in this case and

cases 3.A and 3.B.2, in fact entail that case 3.B.3 applies infinitely often and consequently

that the default prediction is in fact correct (see Lemma 4.2.17 of the verification).

To end this substage. For every one of the outcomes covered by cases 3.A-3.C

except case 3.B.3 set I∗(σ, s + 1) = W ∗(σ, s + 1) = ∅. Define I(σ, s + 1) =

I(σ, s) ∪ I∗(σ, s + 1) and W (σ, s + 1) = W (σ, s) ∪ W ∗(σ, s + 1). Go to the Fi-

nal Step of Substage n.

Final Step of Substage n.

In order to finalise substage n—and so after each of the above cases—the follow-

ing action is taken according to Q ∈ {H,P,N} corresponding to n − 1 ∈ {0, 1, 2}

modulo 3.

Case I. n < s+ 1.

Go to substage n+ 1 with the node σ̂Q(σ, s+ 1) being eligible to be processed at

substage n+ 1.

Case II. n = s+ 1.

Define the s + 1 stage path αs+1 = σ̂Q(σ, s + 1). Reinitialise all N nodes τ , and

P nodes γ such that αs+1 <L τ, γ—i.e. set N(τ, s + 1) = −1, x(τ, s + 1) = ↑ and

E(τ, s+1) = W (τ, s+1) = I(τ, s+1) = ∅ and set P (γ, s+1) = −1, V (γ, s+1) = ∅,

and v(γ, s+ 1) = ↑ for v ∈ {b, h, w}. Define

Cs+1 = Cs ∪
⋃

β ∈H ∪P
& β⊂αs+1

u(β, s+ 1) ∪
⋃
τ∈N

& τ⊂αs+1

E(τ, s+ 1)

−
⋃

β ∈H ∪P
& β⊂αs+1

V (β, s+ 1) . (4.2.11)
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Remark. The reader should note here that, for any nodes β, β′ ∈ H ∪ P such that

β, β′ ⊂ αs+1, and N node τ ⊂ αs+1, it is clear that V (β, s + 1) ∩ u(β′, s + 1) =

∅. Moreover if β ⊂ τ it follows from cases 3.B.1 and 3.C.1 and the definition of

I+(σ, s + 1) that V (β, s + 1) ∩ E(τ, s + 1) = ∅. On the other hand, if τ ⊂ β and

β ∈ H, then E(τ, s + 1)[2e] ⊆ Ω(β, s + 1)—if (say) β ∈ He—whereas if β ∈ P , then

max E(τ, s + 1) < min V +(σ, s + 1) and also V −(σ, s + 1) ∩ E(τ, s + 1) = ∅ by

definition of V −(σ, s+ 1). Hence E(τ, s+ 1) ∩ V (β, s+ 1) = ∅ in this case also.

Reset any (nontemporary) node parameter p(γ, s + 1) and any index parameter

q(i, s + 1) not mentioned above to its previous value, i.e. p(γ, s + 1) = p(γ, s) and

q(i, s+ 1) = q(i, s). We call this automatic resetting.

Go to stage s+ 2.

4.2.4 Verification

We verify the correctness of the construction in the proofs of Lemmas 4.2.9-4.2.17

below.

Definition 4.2.2. We define the approximation {Ts}s∈ω of finite trees Ts ⊆ 3<ω as

follows.

T0 = ∅

Ts+1 = {σ | σ ⊆ αs+1 } ∪ { σ | σ ∈ Ts & σ <L αs+1 } ,

Accordingly we define the tree

T =
⋃
s∈ω

Ts

and we let |T | denote the set of infinite paths through T . I.e.

|T | = {µ | µ ∈ 3ω & ∀n∃s[µ�n ∈ Ts ] }
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where µ�n is the finite initial segment of µ of length n.

Note 4.2.3. For all s ∈ ω, Ts ⊆ 3<ω (αs ∈ 3<ω) and |αs| = s. Therefore it follows

that |T | is non empty and that there exists a (lexicographically) leftmost member of

|T |. We call the latter the true path through T and we use the symbol δ to denote

the true path. We also use δn to denote δ�n, i.e. the initial segment of δ of length n.

Note 4.2.4. If β is an He node and r < s+1 are β-true stages such that αt 6<L β for

all t such that r < t < s+ 1, then Ω(β, t) = Ω(β, r) for all t such that r ≤ t ≤ s+ 1.

Indeed firstly consider any N node τ ⊂ β. There are two cases. If τ̂0 ⊆ β, then

N(τ, r) = 0 and E(τ, r) = ∅. So if E(τ, t) 6= ∅ for some t such that r < t ≤ s+1 then,

supposing this to be the least such stage, N(τ, t) = 1 and τ̂1 ⊆ αt. Thus β <L αt,

a contradiction if t = s + 1, and otherwise implying that Ω(β, t) = Ω(β, t − 1)

by automatic resetting. On the other hand, if τ̂1 ⊆ β, then N(τ, t) = 1 and

E(τ, t) = E(τ, r) for all t such that r < t ≤ s+ 1 since N(τ, t) = 0 would imply that

αt <L β. Secondly consider any N node τ <L β. Then E(τ, t−1) = E(τ, r−1) for all

t such that r < t ≤ s+1 (by automatic resetting since τ <L αt for all such t). Using

these remarks we can deduce by straightforward induction that Ω(τ, t) = Ω(τ, r) for

all t such that r ≤ t ≤ s + 1. Notice also that, for all t such that r < t ≤ s + 1

and τ <L αt, not only is E(τ, t − 1) = E(τ, r − 1) but also E(τ, t − 1)[2e] ⊆ Ct−1

since only He nodes can extract numbers from C [2e]—even though the extraction

activity of P nodes might mean that E(τ, t − 1) 6⊆ Ct−1—thus we can also deduce

that Ω(τ, t) ⊆ Ct for all t such that r ≤ t ≤ s+ 1.

Note 4.2.5. Application of a similar argument to that of Note 4.2.4 shows that, if

β is a P node and r < s+ 1 are β-true stages such that αt 6<L β for all t such that

r < t < s + 1 then b(β, t) = b(β, r) for all stages t such that r ≤ t ≤ s + 1 whereas

V −(β, t) = V −(β, r) for all β-true stages t such that r ≤ t ≤ s+ 1.
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Note 4.2.6. As already mentioned in the remark on page 4.2.3, it follows from the

definition of the construction that, for any stage s + 1 and nodes β, τ ⊆ αs+1 such

that β ∈ H ∪ P and τ ∈ N , it is the case that

E(τ, s+ 1) ∩ V (β, s+ 1) = ∅ . (4.2.12)

Moreover (4.2.12) also holds if β ⊆ αs+1 and τ <L β by definition of Ω(β, s + 1) if

β ∈ H, and of V −(β, s+ 1) if β ∈ P .

Note 4.2.7. If σ is a Pe node and P (σ, s+ 1) ∈ {0, 1, 2}, then

{ 〈2e+ 1, z〉 | b(σ, s+ 1) ≤ z < h(σ, s+ 1) } ⊆ Cs+1 . (4.2.13)

This can be seen, for any such 〈2e+ 1, z〉, by a straightforward induction on the

stages following the stage sz at which 〈2e+ 1, z〉 is enumerated into C (via u(σ, sz) =

{〈2e+ 1, z〉}). This is because only Pe nodes can remove members of ω[2e+1] from C.

Moreover P (σ, s+ 1) = −1 if αs+1 <L σ, whereas if σ <L αs+1 and σ′ is the Pe node

⊆ αs+1, then b(σ′, s+1) (= b(σ′, s) if b(σ′, s) 6= ↑) is greater than h(σ, s) = h(σ, s+1)

and so action taken for the sake of σ′ at stage s+ 1 does not involve 〈2e+ 1, z〉.

Note 4.2.8. Suppose that σ ∈ P ∪ H and that σ ⊂ δ. Accordingly let sσ be the

least σ-true stage such that αt 6<L σ for all t ≥ sσ. Then it follows from Notes 4.2.4

and 4.2.5 that, if σ ∈ H, then Ω(σ, s) = Ω(σ, sσ) ⊆ Cs for all s ≥ sσ whereas, if

σ ∈ P , then b(σ, s) = b(σ, sσ) for all s ≥ sσ and V −(σ, s) = V −(σ, sσ) for all σ-true

stages s ≥ sσ. Thus for any H node σ on the true path we let Ω(σ) = lims→∞Ω(σ, s)

(= Ω(σ, sσ) for sσ defined as above). Similarly, for any P node σ on the true path

we let b(σ) = lims→∞b(σ, s). Likewise if σ̂1 ⊂ δ then lims→∞v(σ, s) exists for

v ∈ {h,w} and we use v(σ) to denote this value.

Lemma 4.2.9. Suppose that σ is a P node such that σ̂i ⊆ δ for some i ∈ {0, 2}.

Then lim infs→∞h(σ, s) =∞.
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Proof. Suppose that σ̂2 ⊆ δ. Accordingly let tσ be a σ̂2-true stage such that

αt 6<L σ̂2 for all s ≥ tσ. Then, at every σ-true stage s + 1 > tσ, h(σ, s + 1) =

h(σ, t(σ, s+ 1)) + 1. It follows therefore (in the case σ̂2 ⊆ δ) that lims→∞h(σ, s) =

∞.

Suppose now that σ̂0 ⊆ δ. Let sσ be a σ-true stage such that αt 6<L σ for all

t ≥ sσ. Then b(σ, s) = b(σ, sσ) =def b(σ) for all s ≥ sσ whereas N(σ, s + 1) = 0 at

infinitely many σ-true stages s + 1 ≥ sσ. Suppose that there exists x ≥ b(σ) such

that h(σ, s + 1) = x at infinitely many (σ-true) stages. Let x0 be the least such

number. Then this means that x0 ∈ K. Accordingly let t0 be the stage such that

x0 ∈ K[t0 + 1]− K[t0]. Then, at each σ-true stage s + 1 such that h(σ, s + 1) = x0

the construction verifies that there exists some finite set D in the set

J = {D | 〈x0, D〉 ∈ Φe & D ⊆ {0, . . . , t0} }

and also that D ⊆ Be[s]. However J is a finite set whereas {Be,s}s∈ω is a ∆0
2 approx-

imation. Hence there is a σ-true stage s∗ + 1 at which N(σ, s∗ + 1) is permanently

set to 1, i.e. σ̂1 ⊂ δ. A contradiction. Hence (in the case σ̂0 ⊆ δ) it follows that

lim infs→∞h(σ, s) =∞.

Lemma 4.2.10. Suppose that σ is a P node such that σ̂1 ⊆ δ. Then there exists

a stage s∗ such that σ̂1 ⊆ αs for every σ-true stage s ≥ s∗.

Proof. This observation follows from the fact that, for all s, P (σ, s+ 1) = 2 only if

P (σ, s) ∈ {0, 2} (case 2.B.3.i) so that, if P (σ, s) = 1, then P (σ, s+ 1) ∈ {0, 1}.

Lemma 4.2.11. Let σ be the Ne node on the true path δ. Then there exists a stage

se such that I(σ, s) ⊆ I(σ, s+ 1) and W (σ, s) ⊆ W (σ, s+ 1) for all stages s ≥ se.

Moreover, for every s ≥ se and axiom 〈x,D〉 ∈ I(σ, s) there exists a stage sD ≥ s

such that D[≤2e+1] ⊆ C[t] for all t ≥ sD.
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Proof. Define se > 0 to be the least σ-true stage such that αt 6<L σ for all t ≥ se.

Then clearly I(σ, s) ⊆ I(σ, s+ 1) and W (σ, s) ⊆ W (σ, s+ 1) for all s ≥ se.

Now, by definition of se, for every axiom 〈x,D〉 ∈
⋃
s≥se I(σ, s) there exists a

stage s + 1 ≥ se such that 〈x,D〉 enters I(σ, s + 1). Choose some such axiom

〈x,D〉 and let s∗ be the least stage s such that 〈x,D〉 ∈ I(σ, s + 1). Note that this

means that D[≤2e+1] ⊆ χ(σ, s∗ + 1) and in fact that D[≤2e+1] ⊆ Cs∗+1 by definition

of I∗(σ, s∗ + 1)—since D[≤2e+1] ⊆ Cs∗ and D ∩ V (β, s∗ + 1) = ∅ for all β ∈ H ∪ P

such that β ⊂ σ.

Now suppose that j ≤ 2e+ 1 and consider D[j]. There are 2 cases to consider.

1) j = 0 mod 3. Thus for some d, j = 3d. Let τ be the Hd node on the true path.

In other words τ ⊂ σ ⊂ δ. There are 2 subcases.

a) τ̂0 ⊆ σ. Then, at stage s∗ + 1, D[2d] ⊆ Ω(τ, s∗ + 1) since Ue,s∗+1 = ∅ and

V (τ, s∗ + 1) = Ve,s∗+1 − Ω(τ, s∗ + 1)—i.e. any z /∈ Ω(τ, s∗ + 1) mentioned in

C [2d] up to the end of stage s∗+1 is in V (τ, s∗+1). Moreover, by Note 4.2.8 we

see that Ω(τ, s) = Ω(τ, se) ⊆ Cs for all s ≥ se. Thus, in this case D[2d] ⊆ C[s]

for all s ≥ s∗ + 1.

b) τ̂1 ⊆ σ. Then we can see that D[2d] ∩ Ω(τ, s∗ + 1) ⊆ C[s] for all s ≥ s∗ + 1

by the same argument as that for the case τ̂0 ⊆ σ above. On the other

hand, for any 〈2d, z〉 ∈ D such that 〈2d, z〉 /∈ Ω(τ, s∗ + 1), 〈2d, z〉 is not

extracted at any stage s∗ ≥ s+ 1 since this would imply that τ is processed

via case 1.A. and entail τ̂0 ⊆ αt at the next τ -true stage t in contradiction

with the definition of se.

We deduce therefore that D[2d] ⊆ C[s] for all s ≥ s∗ + 1.

2) j = 1 mod 3. Thus for some d, j = 3d + 1. Let τ be the Pd node on the true

path. In other words τ ⊂ σ ⊂ δ. There are 2 subcases.
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a) τ̂i ⊆ σ for some i ∈ {0, 2}. Note firstly that b(τ, s) = b(τ, se) =def b(τ) for

all s ≥ se by definition of the latter. By Lemma 4.2.9, lim infs→∞h(τ, s) =∞

in both these cases. So it follows from Note 4.2.7 that, for any z ≥ b(τ) such

that 〈2d+ 1, z〉 ∈ D there exists a stage sz such that 〈2d+ 1, z〉 ∈ C[s] for all

s ≥ sz. So now suppose that z < b(τ). Then as 〈2d+ 1, z〉 ∈ D[2d+1] ⊆ Cs∗+1

we know that 〈2d+ 1, z〉 /∈ V −(τ, s∗ + 1). Moreover, by Note 4.2.8 and by

definition of se, V
−(τ, s) = V −(τ, s∗ + 1) for all τ -true stages s ≥ s∗ + 1.

On the other hand, for any γ ∈ Pd such that τ <L γ, and any γ-true stages

s + 1 ≥ s∗ + 1 it is the case that 〈2d+ 1, z〉 /∈ V +(γ, s + 1) (see the last

sentence of Note 4.2.7). It follows that 〈2d+ 1, z〉 is not extracted from C[s]

and hence remains in C[s] for all s ≥ s∗ + 1 (as 〈2d+ 1, z〉 ∈ Cs∗+1). Thus

(in the case τ̂i ⊆ σ for i ∈ {0, 2}) there exists a stage t∗ ≥ s∗ + 1 such that

D[2d+1] ⊆ C[s] for all s ≥ t∗.

b) τ̂1 ⊆ σ. This implies that h(τ, s) = h(τ, se) =def h(τ) for all s ≥ se. In

particular at stage s∗ + 1

V +(τ, s∗ + 1) = Te,s∗ ∩ { 〈2d+ 1,m〉 | m ≥ h(τ, s∗ + 1) }

by definition. This implies that

D ∩ { 〈2d+ 1,m〉 | m ≥ h(τ) } = ∅ .

On the other hand by Note 4.2.7

{ 〈2d+ 1,m〉 | b(τ) ≤ m < h(τ) } ⊆ C[s]

for all s ≥ se. Moreover, as in the case τ̂i ⊆ σ for i ∈ {0, 2},

D[2d+1] ∩ { 〈2d+ 1, z〉 | z < b(τ) } ⊆ C[s]

for all s ≥ s∗ + 1. Thus (in the case τ̂1 ⊆ σ) we know that D[2d+1] ⊆ C[s]

for all s ≥ s∗ + 1.
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We deduce therefore that in both cases there exists a stage t∗ ≥ s∗+ 1 such that

D[2d+1] ⊆ C[s] for all s ≥ t∗.

Lemma 4.2.12. Suppose that σ is an Ne node such that σ̂1 ⊂ δ. Let sσ be the

least σ-true stage such that αs 6<L σ for all s ≥ sσ. Then N(σ, s) = N(σ, sσ) = 1,

x(σ, s) = x(σ, sσ) ∈ ω and E(σ, s) = E(σ, sσ) ⊆ Cs for all s ≥ sσ.

Proof. The fact that y(σ, s) = y(σ, sσ) for y ∈ {N, x,E} follows by a straightforward

induction over s ≥ sσ.

Notation. Accordingly we use the terminology y(σ) =def lims→∞y(σ, s) for y ∈

{N, x,E} in the case of any N node σ such that σ̂1 ⊂ δ throughout the rest

of the proof of Theorem 4.2.1. In particular, E(σ) = E(σ, sσ) in the present case.

Consider E(σ) and note that E(σ) ⊆ C[sσ] by (4.2.11) applied to stage s+1 = sσ.

Let s∗+1 be the next σ-true stage. Then, by definition of sσ, σ̂1 ⊆ αs∗+1. Now, this

implies that E(σ)[≤2e+1] ⊆ C[sσ, s
∗] ∩ χ(σ, s∗ + 1) by definition of I+(σ, s∗+ 1) (see

(4.2.7)) and the fact that case 3.C.1 must apply (to get N(σ, s∗+ 1) = 1). It follows

that E(σ)[≤2e+1] ⊆ C[t] for all t such that sσ ≤ t ≤ s∗ + 1. Now E(σ)[>2e+1] ⊆ C[sσ]

since E(σ) = E(σ, sσ) ⊆ C[sσ] by definition (see (4.2.11)) whereas an easy induction

on t shows that E(σ, t)[>2e+1] ⊆ C[t] for all t such that sσ ≤ t ≤ s∗ due to the

definitions of the restraint Ω(τ, t) and parameter V −(γ, t) for any H node τ and P

node γ visited at stage t. Moreover E(σ, s∗ + 1)[>2e+1] ⊆ E(σ, s∗ + 1) ⊆ C[s∗ + 1] by

(4.2.11) with s = s∗ (since case 3.C.1 applies at stage s∗+1). We conclude therefore

that E(σ)[>2e+1] ⊆ C[t] for all t such that sσ ≤ t ≤ s∗ + 1. Hence E(σ) ⊆ C[t] for all

such t and thus by induction (on the σ-true stages t0 < t1 < t2 . . . where t0 = sσ)

we see that E(σ) ⊆ C[t] for all t ≥ sσ.
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Lemma 4.2.13. Suppose that σ is an Ne node such that σ̂1 ⊂ δ. Then x(σ) ∈

ΦC
e −Be.

Proof. Let sσ be defined as in Lemma 4.2.12, so that x(σ) = x(σ, sσ). Then obviously

x(σ) /∈ Be[s] at every σ-true stage s + 1 > sσ since case 3.C.1 applies at each such

stage. Therefore x(σ) /∈ Be. Moreover 〈x(σ), E(σ)〉 ∈ Φe whereas, by Lemma 4.2.12,

E(σ) ⊆ C (since C =def {n | ∃t(∀s ≥ t)[n ∈ C[s] ] }). Thus x(σ) ∈ ΦC
e −Be.

Lemma 4.2.14. For all x, lims→∞C[s](x) exists. Hence C is ∆0
2.

Proof. Consider any x. There are two cases to consider.

1) x = 〈2e+ 1, z〉 for some e, z ∈ ω. Suppose that σ is the Pe node on the true

path δ and let sσ be the least σ-true stage such that αt 6<L σ for all t ≥ sσ. Note

that this means that b(σ, s) = b(σ, sσ) =def b(σ) for all s ≥ sσ. There are two

subcases.

a) z ≥ b(σ). If σ̂i ⊂ δ for some i ∈ {0, 2} then we know that

lim infs→∞h(σ, s) =∞

by Lemma 4.2.9. Hence, by Note 4.2.7 there exists a stage t∗ such that

x ∈ Cs for all s ≥ t∗. Therefore we need only consider the case σ̂1 ⊂ δ.

Accordingly let tσ ≥ sσ be the least σ̂1-true stage such that αt 6<L σ̂1 for

all t ≥ tσ. Note that y(σ, s) = y(σ, tσ) =def y(σ) for all s ≥ tσ and y ∈ {h,w}

in this case. Now, if b(σ) ≤ z < h(σ) it follows once again by Note 4.2.7 that

x ∈ Cs for all s ≥ tσ. Hence we can suppose that z ≥ h(σ). Notice that

case 2.B.2 applies at every σ-true stage s + 1 ≥ sσ. Thus, by the fact that

x ∈ Te,s ∩ { 〈2e+ 1,m〉 | m ≥ h(σ) } = V +(σ, s+ 1) and that

V +(σ, s+ 1) ⊆ V (σ, s+ 1) ⊆ C[s+ 1]
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in conjunction with (4.2.11) we know that x /∈ C[s + 1] at every such stage.

Hence, if x ∈ Ct for some t > tσ it must be the case that σ <L αt. Consider

all N nodes β ⊂ σ. If β̂1 ⊆ σ then x /∈ E(β) by definition of b(σ)—since if

sβ + 1 is the least β̂1-true stage such that αt 6<L β̂1 for all t ≥ sβ + 1, then

P (σ, sβ) = −1 and b(σ, sβ) = ↑ by construction and so b(σ) > maxE(β) by

definition of b(σ) = b(σ, sσ) (as sσ > sβ). Accordingly let

B(σ) = { β | β ∈ N & β̂0 ⊆ σ }.

• If B(σ) = ∅, then we show by induction that, at every stage s ≥ tσ,

x ∈ V (σs, s) ⊆ Cs (see the Remark below) where we define σs to be the

Pe node σ′ ⊆ αs. Indeed, the case s = tσ being true by definition, consider

s+1 = tσ+1. Then, for all N nodes β ⊆ αs+1 such that β ⊂ σ, x /∈ E(β, s+1)

since in this case we know that it is also the case that β̂1 ⊆ σ (since

B(σ) = ∅). Also, for any N node σ <L β ⊂ σs+1, N(β, s) = −1 and so

I(β, s+ 1) = ∅. Thus x ∈ V −(σs+1, s+ 1) ⊆ V (σs+1, s+ 1) ⊆ C[s+ 1].

So now consider any stage s + 1 = tσ + n for n > 1. By the induction

hypothesis x ∈ V (σt, t) ⊆ C[t] and x /∈
⋃
{D | ∃y[ 〈y,D〉 ∈ I(β, t) ] } for

every tσ ≤ t ≤ s and N node σ <L β ⊂ σt. Note once again that for all

N nodes β ⊂ σs+1 such that β ⊂ σ, x /∈ E(β, s + 1) as explained above.

Moreover, if σ <L β ⊂ σs+1 then x /∈
⋃
{D | ∃y[ 〈y,D〉 ∈ I(β, s) ] }, by the

induction hypothesis, and so again x /∈ E(β, s + 1) (since if E(β, s + 1) 6= ∅

then 〈x(β, s+ 1), E(β, s+ 1)〉 ∈ I(β, s)). On the other hand, for any 〈z,D〉 ∈

I(β, s+ 1)− I(β, s) we know that 〈z,D〉 ∈ I∗(β, s+ 1) due to the application

of case 3.B.3 to β at stage s+ 1. However this implies that N(β, s) = 0 and

so t(β, s+ 1) > tσ. Moreover, by (4.2.9), D ⊆ C[t(β, s+ 1)]. Hence x /∈ D by

the induction hypothesis. Therefore x /∈
⋃
{D | ∃y[ 〈y,D〉 ∈ I(β, s + 1) ] }

and so the induction hypothesis is validated. Thus x ∈ V (σs, s) ⊆ Cs for all
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s ≥ tσ.

Remark. In fact for the case B(σ) = ∅ the argument above can be simplified

to just show that x /∈ Cs for all s ≥ tσ without the need to show that

x ∈ V (σs, s) at each such stage. However the latter condition is essential for

the adaptation of this argument to the more general case of B(σ) 6= ∅ below

since it shows that σs is free to remove x from Cs if x has reappeared in C.

• If B(σ) 6= ∅ then, supposing that |B(σ)| = m+1 for some m ≥ 0, we label

the members of B(σ) as β0, . . . , βm where

βm̂0 ⊆ . . . ⊆ β0̂0 ⊆ σ .

Consider β0. Note that I(β0, tσ) is finite. Define

Ix(β0, s) = { 〈z,D〉 | 〈z,D〉 ∈ I(β0, s) & x ∈ D } .

We firstly show that Ix(β0, s) = Ix(β0, tσ) for all s ≥ tσ. Consider the set of

stages

S∗ = { s+ 1 | s+ 1 ≥ tσ & β0̂0 ⊆ αs+1 } .

By the argument used in the case B(σ) = ∅ with the set S∗ replacing the set

{ s+ 1 | s+ 1 ≥ tσ } and using the fact that C = ∅ where

C =def { β | β ∈ N & β0 ⊂ β & β̂0 ⊆ σ }

in the same way that we used the fact that B(σ) = ∅ in the above argument,

we can deduce that x ∈ V (σs+1, s+ 1) ⊆ Cs+1 for all s+ 1 ∈ S∗. Therefore,

since by construction any axiom 〈z,D〉 is picked as an instigator candidate

for β0 at a stage s + 1 > tσ only when s + 1 ∈ S∗ it follows that x /∈ D

as in this case (see (4.2.9)) D ⊆ C[t(σ, s + 1)] whereas t(σ, s + 1) ∈ S∗ by

definition. Thus indeed Ix(β0, s+1) = Ix(β0, tσ) for all s ≥ tσ. Now consider
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any 〈y,D〉 ∈ Ix(β0, tσ). Supposing that β is an Nd node (say) it follows

from Lemma 4.2.11 that there exists a stage sD such that D[≤2d+1] ⊆ C[t]

for all s ≥ sD. Suppose that y /∈ Be. Then there exists a stage ŝ ≥ sD

such that y /∈ Be[s] for all s ≥ ŝ. However this implies that N(β, s) switches

permanently to 1 at some stage s ≥ ŝ so that β0̂1 ⊆ δ (either for the

sake of this axiom 〈y,D〉 or for the sake of some other instigator candidate

〈ŷ, D̂〉 such that ŷ < y and ŷ /∈ Be). A contradiction. Therefore for each

〈y,D〉 ∈ Ix(β0, tσ) there exists a stage sy,D such that 〈y,D〉 does not instigate

N(β0, s + 1) = 1 (i.e. instigating E(β0, s + 1) = D) at any stage s ≥ sy,D.

Let s0 = max { sy,D | 〈y,D〉 ∈ Ix(β0, tσ) }. Then for all stages s in the set

S0 =def { s+ 1 | s ≥ s0 & β0 ⊆ αs+1 }

we can deduce that x ∈ V (σs+1, s + 1) ⊆ C[s+ 1] by once again applying

the argument used in the case B(σ) = ∅ with (this time) the whole set S0

replacing the set { s+1 | s+1 ≥ tσ }, and using the fact that C = ∅ (in place

of the fact that B(σ) = ∅). This argument shows that, for the case m = 0

there exists a stage s0 such that x /∈ Cs for all s ≥ s0. On the other hand, if

m > 0 we argue by induction for 0 ≤ i ≤ m relative to βi to obtain si ≥ si−1

such that, for all s in the set

Si =def { s+ 1 | s ≥ si & βi ⊆ αs+1 }

x ∈ V (σs+1, s+ 1) ⊆ C[s+ 1]. We thus obtain in the general case a stage sm

such that x /∈ C[s] for all stages s ≥ sm.

b) z < b(σ). If x = 〈2e+ 1, z〉 /∈ V −(σ, sσ) then, by Note 4.2.8, x /∈ V −(σ, s+1)

at every σ-true stage s + 1 ≥ sσ. Moreover, inspection of the construction

shows that, for all s+ 1 ≥ sσ

V −(σs+1, s+ 1) ∩ ω[2e+1]�〈2e+ 1, b(σ)〉 ⊆ V −(σ, sσ) ∩ ω[2e+1]�〈2e+ 1, b(σ)〉
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so that x /∈ V (σt+1, t+ 1) for all t+ 1 ≥ sσ. Thus C[t+ 1](x) 6= C[t](x) for at

most one stage t ≥ sσ in this case (and this can only be due to C[t](x) = 0

and C[t+ 1](x) = 1).

On the other hand, if x ∈ V −(σ, sσ), then x ∈ V −(σ, s + 1) ⊆ V (σ, s + 1) ⊆

C[s+ 1] at every σ-true stage s+1 ≥ sσ. But then we can apply the argument

used for the case z ≥ h(σ) and σ̂1 ⊆ δ above to show that there exists a

stage sm′ (say) such that x /∈ C[s] for all stages s ≥ sm′ .

2) x = 〈2e, z〉 for some e, z ∈ ω. Consider the He node σ such that σ ⊂ δ. Let

sσ be defined as above and note that this means, by Note 4.2.8, that Ω(σ, s) =

Ω(σ, sσ) =def Ω(σ) ⊆ Cs for all s ≥ sσ. So we can suppose that x /∈ Ω(σ) but

that x ∈ C[s] for some s ≥ sσ. Let sx be the least such stage. There are 2

subcases to to consider.

• σ̂1 ⊂ δ. Then define tσ as above (i.e. αt 6<L σ̂1 for all t ≥ tσ). Then no

number is extracted from C[s][2e] at any stage t ≥ tσ. Hence either sx < tσ, in

which case C[t+ 1](x) 6= C[t](x) for at most one stage t ≥ tσ or otherwise sx ≥ tσ

and x ∈ C[s] for all s ≥ sx.

• σ̂0 ⊂ δ. Then x ∈ V (σ, s) ⊆ C[s] at every σ̂0-true stage s > sσ. Moreover,

x can only be reinserted into C at later stages by action taken for the sake of N

nodes. Hence we can apply a similar argument to that used in case 1 above to

show that there exists a stage sm̂ (say) above such that x /∈ C[s] for all s ≥ sm̂.

Lemma 4.2.15. For all e, We is infinite if and only if C [2e] is finite.

Proof. For all s > 3e let σs denote the He node satisfying σs ⊆ αs. There are two

possible cases.
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• We is finite. Then there exists a stage s∗ > 2e such thatWe,s = We,s∗ for all s ≥ s∗.

Hence there exists a stage t∗ ≥ s∗ such that, for every s ≥ t∗, We,s = We,t(σs,s+1).

This means that σŝ1 ⊆ αs, and that u(σs, s) = {〈2e+ 1, zs〉} where 〈2e+ 1, zs〉 is

a new number, and that u(σs, s) ⊆ C
[2e]
s − C [2e]

s−1. Now, u(σs, s) ∩ Ve,s = ∅, whereas

Ve,r = Ve,s (= Ve,t∗) for all r ≥ s by definition of t∗, so that u(σs, s)∩ Ve,r = ∅ for all

such r. Therefore
⋃
{u(σs, s) | s ≥ t∗ } ⊆ C [2e]. I.e. C [2e] is infinite.

• Now suppose that We is infinite. Let σ be the He node such that σ ⊆ δ (the true

path). Then the set { s | σ ⊆ αs & We,s 6= We,t(σ,s) } is infinite. Hence at each such

stage Ue,s is included in Ve,s+1 and Ue,s+1 is set to ∅. Hence all numbers x ∈ ω[2e]

mentioned in C at any stage t ≤ s and such that x /∈ Ω(σ, s+ 1) are removed from

C at stage s + 1. Moreover, by Note 4.2.8 we know that Ω(σ)↓. We thus see that,

for all 〈2e, x〉 /∈ Ω(σ) the set { s | 〈2e, x〉 /∈ Cs } is infinite—and in fact cofinite by

Lemma 4.2.14. Hence C [2e] = Ω(σ) in this case. In other words, C [2e] is finite.

Lemma 4.2.16. For all e, C = ΦBe
e ⇒ K ≤e Be.

Proof. Suppose that C = ΦBe
e . Let σ be the Pe node on the true path δ. Let sσ

be the least σ-true stage such that αs 6<L σ for all s ≥ sσ. Note that b(σ, s) =

b(σ, sσ) =def b(σ) for all s ≥ sσ. We begin by showing that it is not the case that

σ̂2 ⊂ δ. Indeed, suppose otherwise. Then there exists a σ-true stage tσ ≥ sσ such

that P (σ, s) = 2 for all s ≥ tσ and so h(σ, s+ 1) ≥ h(σ, s) for all s ≥ tσ—and in fact

h(σ, s+ 1) > h(σ, t(σ, s+ 1)) for all σ-true stages s+ 1 > tσ. Let hσ = h(σ, sσ). We

show that (in this case) for all x ≥ hσ

x ∈ K ⇔ ∃D(∃s ≥ tσ) [ 〈〈2e+ 1, x〉, D〉 ∈ Φe[s] & D ⊆ Be[s]

& x /∈ K[maxD]

& s+ 1 is a σ-true stage

& h(σ, s) > x ] . (4.2.14)
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Note that { 〈2e+ 1, z〉 | ≥ b(σ) } ⊆ C by Note 4.2.7 as lim infs→∞h(σ, s) =∞.

(⇒) Suppose that x ∈ K. Then, by the last sentence 〈2e+ 1, x〉 ∈ C and so (as

C = ΦBe
e ) there exists 〈〈2e+ 1, x〉, D〉 ∈ Φe such that D ⊆ Be. Let s + 1 > tσ be a

σ-true stage such that D ⊆ Be[s], 〈〈2e+ 1, x〉, D〉 ∈ Φe[s] and h(σ, s+ 1) > x. Then

it suffices to note that that x /∈ K[maxD] since x /∈ K. This proves ⇒ of (4.2.14).

(⇐) Suppose that x ∈ K and, for a contradiction, that for some finite set D

and stage s ≥ tσ the right hand side of (4.2.14) holds. Then this implies that

P (σ, s + 1) = 0 and h(σ, s + 1) < h(σ, s) in contradiction with the definition of tσ.

This proves ⇐ of (4.2.14).

We know therefore that σ̂2 ⊂ δ implies that x ∈ K ⇔ ∃D(∃s ≥ tσ)R(D, s, x)

where R(D, s, x) is the computable condition on the right hand side of (4.2.14).

This contradicts the fact that K is not c.e.

• We now show that it is not the case that σ̂1 ⊂ δ. Suppose otherwise and

let rσ ≥ sσ be a σ-true stage such that P (σ, s) = P (σ, rσ) for all s ≥ rσ. Then,

w(σ, s) = w(σ, rσ) =def w(σ) for all s ≥ rσ and case 2.B.2 applies relative to n =

w(σ) at every σ-true stage s + 1 ≥ rσ. However this implies that, at every such

stage the construction verifies that

w(σ) ∈ K[s] & 〈〈2e+ 1, w(σ)〉, D〉 ∈ Φe[s] & D ⊆ {0, . . . , tw(σ)}

& D ⊆ Be[s]

where tw(σ) is such that w(σ) ∈ K[tw(σ)+1] − K[tw(σ)]. Thus, for some finite set

D ⊆ {0, . . . , tw(σ)}, 〈〈2e+ 1, w(σ)〉, D〉 ∈ Φe, it must be the case that D ⊆ Be (since

{Be,s}s∈ω is a ∆0
2 approximation and the set {D | D ⊆ {0, . . . , tw(σ)} } is finite).

Thus 〈2e+ 1, w(σ)〉 ∈ ΦBe
e . On the other hand, at every such stage s+1, we have that

〈2e+ 1, w(σ)〉 ∈ V +(σ, s + 1) ⊆ V (σ, s + 1) ⊆ C[s+ 1]. Thus 〈2e+ 1, w(σ)〉 ∈ ΦBe
e

whereas 〈2e+ 1, w(σ)〉 /∈ C. A contradiction.
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• So it must be the case that σ̂0 ⊆ δ. Note that we showed in Lemma 4.2.9

that this implies that lim infs→∞h(σ, s) =∞. So, by Note 4.2.7, { 〈2e+ 1, z〉 | z ≥

b(σ) } ⊆ C. We show that (in this case), for all x ≥ b(σ),

x ∈ K ⇔ ∃D
(
〈〈2e+ 1, x〉, D〉 ∈ Φe & D ⊆ Be & x /∈ K[maxD]

)
. (4.2.15)

(⇒) Suppose that x ∈ K. As 〈2e+ 1, x〉 ∈ C (and C = ΦBe
e ) there exists

〈〈2e+ 1, x〉, D〉 ∈ Φe with D ⊆ Be witnessing 〈2e+ 1, x〉 ∈ ΦBe
e . Moreover x ∈ K

implies that x /∈ K[maxD].

(⇐) Now suppose that the right hand side of (4.2.15) holds. Then choose an axiom

〈〈2e+ 1, x〉, D〉 witnessing this and let s∗ ≥ sσ be a stage such that 〈〈2e+ 1, x〉, D〉 ∈

Φe[s] and D ⊆ Be[s] for all s ≥ s∗. Suppose also that x ∈ K and that x is the least

number satisfying these conditions. Then, since the set S = { s+ 1 | σ̂0 ⊆ αs+1 }

is infinite there exists some stage ŝ+ 1 ≥ s∗ such that P (σ, ŝ+ 1) switches to 1 and

w(σ, ŝ+1) = x. However this implies that P (σ, s) = P (σ, ŝ+1) = 1 for all s ≥ ŝ+1.

A contradiction since σ̂0 ⊂ δ (and |S| =∞). Thus x ∈ K.

We conclude therefore that (4.2.15) applies for all x ≥ b(σ) and so K≤eBe.

Lemma 4.2.17. For all e, if Be = ΦC
e , then Be is c.e.

Proof. Let σ be the Ne node on the true path. Let sσ be the least σ-true stage such

that αt 6<L σ for all t ≥ sσ. Note that, for all s ≥ sσ, I(σ, s) ⊆ I(σ, s + 1) and

W (σ, s) ⊆ W (σ, s + 1). Accordingly we define I(σ) =
⋃
s≥sσ I(σ, s) and W (σ) =⋃

s≥sσ W (σ, s). Notice that it follows that both I(σ) and (in particular) W (σ) are

c.e. sets. There are two cases to consider.

• Suppose that σ̂1 ⊂ δ. Then—letting x(σ) be defined as on page 82—we know

that x(σ) ∈ ΦC
e −Be by Lemma 4.2.13. A contradiction.

• Thus σ̂0 ⊂ δ. We show that Be = W (σ) in this case. Consider any x ∈ ω.



4.2. Main Construction 91

Suppose firstly that x ∈ Be. Then, as Be = ΦC
e , there exists D such that

〈x,D〉 ∈ Φe and D ⊆ C. As both {Be[s]}s∈ω and {C[s]}s∈ω are ∆0
2 approximations

there exists a σ-true stage s∗ ≥ sσ such that x ∈ Be[s], 〈x,D〉 ∈ Φe[s] and D ⊆ C[s]

for all s ≥ s∗. Note that it follows from the fact that σ̂0 ⊂ δ and Lemma 4.2.11

that there exist infinitely many σ-true stages s+ 1 ≥ sσ such that I−(σ, s+ 1) = ∅.

So, at each such stage, case 3.B.3 applies. Let ŝ + 1 be the least such σ-true stage

> s∗. Then, at stage ŝ + 1, if x /∈ W (σ, ŝ), x will be enumerated into W (σ, ŝ + 1)

(and some axiom 〈x,E〉 will be enumerated into I(σ, ŝ+ 1)). Hence x ∈ W (σ).

Now suppose that x ∈ W (σ). This means that at some σ-true stage s + 1 ≥ sσ

some axiom 〈x,D〉 is (permanently) enumerated into I(σ, s+ 1). By Lemma 4.2.11

there exists a stage sD ≥ s + 1 such that D[≤2e+1] ⊆ C[t] for all stages t ≥ sD.

Suppose that x /∈ Be. Then there exists a stage s′ ≥ sD such that x /∈ Be[s] for

all stages s ≥ s′. Let t + 1 be the least σ-true stage ≥ s′. Then N(σ, t + 1) will

be permanently set to 1 entailing that σ̂1 ⊆ δ. A contradiction. It follows that

x ∈ Be.

We conclude that W (σ) = Be. In other words Be is c.e.

On the strength of Lemmas 4.2.14-4.2.17 we conclude that requirement R and,

for all e ∈ ω, the requirements He, Pe and Ne are satisfied.

We now give a strengthened version of Kalimullin’s result [Kal00] that every low

enumeration degree a caps with some ∆0
2 enumeration degree b.

Corollary 4.2.18. Every low ∆0
2 enumeration degree a caps with both a high ∆0

2

enumeration degree c and a low enumeration degree d.

Proof. To obtain c apply Theorem 4.2.1 using the fact that the class { b | b ≤ a }

is uniform ∆0
2 by Lemma 4.1.6. Now, since every nonzero ∆0

2 enumeration degree
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bounds a nonzero low ∆0
2 enumeration degree, we obtain low d such that 0e < d <

c.

Remark. Notice that Corollary 4.2.18 applies to the local structure (rather than just

to its ∆0
2 substructure) due to the downwards ∆0

2 closure implied by Lemma 4.1.6.



Chapter 5

Enumeration 1-genericity

As mentioned earlier, the richness of the enumeration degrees leads to the search

of a notion of genericity appropriate to this context. In this chapter, we introduce

the notions of “enumeration 1-genericity” and “symmetric enumeration 1-genericity”

which are defined by adapting the underlying definition of 1-genericity to the context

in which only positive information can be used. We then study the distribution of

the enumeration 1-generic degrees and show that it resembles to some extent the

distribution of the class of 1-generic degrees. We also present an application of

enumeration 1-genericity to show the existence of prime ideals of Π0
2 enumeration

degrees. Finally, we look at the relationship between enumeration 1-genericity and

highness.

5.1 Enumeration 1-genericity

Definition 5.1.1. A set A ⊆ ω is enumeration 1-generic if for all Σ0
1 sets W of

finite subsets of ω either,

i. (∃D ⊆ A) [D ∈ W ], or

93
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ii. (∃E ⊆ A) such that ∀D ∈ W [D ∩ E 6= ∅].

We note that in Definition 5.1.1, D and E are finite sets. Similarly to the case of

1-genericity in the Turing degrees, it turns out that we can characterise Definition

5.1.1 in terms of e-operators.

Proposition 5.1.2. A set A is enumeration 1-generic if and only if, for any e ∈ ω,

either

i. e ∈ ΦA
e ; or

ii. (∃E ⊆ A) such that e /∈ Φ
ω\E
e .

Proof. (⇒): Suppose that A is enumeration 1-generic. For any e-operator Φe, we

consider the c.e. set Wg(e) = {D | 〈e,D〉 ∈ Φe}. From the enumeration 1-genericity

of A we have that if ∃D ⊆ A such that D ∈ Wg(e), then e ∈ ΦA
e . On the other hand,

if ∃E ⊆ A such that ∀D ∈ Wg(e) [D ∩ E 6= ∅], then it follows that e /∈ Φ
ω\E
e

1.

(⇐): For any c.e. set We we define the c.e. set Φf(e) = { 〈x,D〉 | x ∈ ω & D ∈ We }.

Take f(e), then if f(e) ∈ ΦA
e there exists some 〈f(e), D〉 ∈ Φf(e) and so D ∈ We.

Otherwise, if f(e) /∈ Φ
ω\E
e , then ∃E ⊆ A such that for all 〈f(e), D〉 ∈ Φe we have

that D ∩ E 6= ∅.

Lemma 5.1.3. If A is enumeration 1-generic then A is infinite.

Proof. Let A be an enumeration 1-generic set. For a contradiction suppose that A

is finite, that is, A ⊆ ω � n for some n ∈ ω. Now, consider the c.e. set W = {{m} |

n ≤ m}. Clearly, there exists some E ⊆ A such that ∀D ∈ W , D∩E 6= ∅. However,

this is a contradiction since E is not a finite set.

1Note that g and f are suitable computable functions.
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We note that the notion of enumeration 1-genericity is weak in the sense that

there are c.e. sets which are enumeration 1-generic (i.e. the set of all natural numbers

ω). We consider how to strengthen enumeration 1-genericity in such a way that we

do not have trivial enumeration 1-generic sets. Our first approach is to look at

coinfiniteness.

Lemma 5.1.4. If A is enumeration 1-generic and coinfinite, then A is immune.

Thus A is not Π0
1.

Proof. Let A be an enumeration 1-generic set. Suppose that W is an infinite c.e.

set such that W ⊆ A. Let Ŵ = { {n} | n ∈ W }. By the enumeration 1-genericity

of A, there exists a finite set E ⊆ A such that W ⊆ E. An obvious contradiction.

Hence A is immune.

In fact we can generalize Lemma 5.1.4 to hyperimmunity(see Definition below).

Definition 5.1.5. Let {Fn}n∈ω be a computable list of all finite sets and let g be a

computable function.

i. We call a c.e. set {Fg(n)}n∈ω of mutually disjoint finite sets Fg(n) a c.e. array.

ii. We say a set A avoids {Xn}n∈ω if for some n, A ∩Xn = ∅.

iii. If A avoids every c.e. array then we say A is hyperimmune.

Lemma 5.1.6. If A is enumeration 1-generic and coinfinite, then A is hyperim-

mune. Thus A is not Π0
1.

Proof. Suppose that there exists a sequence of mutually disjoint finite sets {Fg(n)}n∈ω

with g computable such that, for all n, Fg(n) ∩ A 6= ∅. Let W = {Fg(n) | n ∈ ω }.

By enumeration 1-genericity there exists a finite set E ⊆ A such that for all F ∈ W ,

F ∩ E 6= ∅. This is an obvious contradiction since W contains mutually disjoint

finite sets. Hence A is hyperimmune.
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However, requiring coinfiniteness does not prevent us from having trivial enu-

meration 1-generic sets.

Lemma 5.1.7. There exists a coinfinite c.e. enumeration 1-generic set A.

Proof. We enumerate a set A ⊆ ω in stages such that for all e ∈ ω the following

requirements are satisfied:

Pe : ∃D ⊂ A[D ∈ We] ∨ ∃E ⊂ A ∀D ∈ We [E ∩D 6= ∅].

And the overall requirement:

R : |A| =∞.

We construct A by the usual finite injury priority method and define A =⋃
s∈ω As.

To satisfy requirement Pe we enumerate into A some finite set D such that

D ∈ We. For every Pe we define an outcome parameter P (e, s) ∈ {0, 1} where 0

stands for “not satisfied” and 1 for “already satisfied”. We satisfy the overall re-

quirement R by ensuring that we keep infinitely many numbers out of A. For every

e ∈ ω we define a restrain function R(e, s) ∈ ω and require that at stage s + 1, Pe

enumerates into A a finite set D only if ∀z ∈ D, z > R(e, s).

The Construction. At any given stage s+ 1, if not otherwise specified, for every

e ∈ ω the function R(e, s) and outcome parameter P (e, s) retain their value.

Stage s = 0. Set A0 = ∅. For all e ∈ ω, we define R(e, 0) = 2e and P (e, s) = 0.
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Stage s+ 1. Choose the least e ≤ s such that

∃D [D ∈ We,s] & min{x|x ∈ D} > R(e, s) & P (e, s) = 0.

If such e exists, pick the least such D and let P (e, s + 1) = 1. Set d = max{x |

x ∈ As ∪D}.

For all i > e, define R(i, s) = d+ (i− e) and P (i, s+ 1) = 0.

Define As+1 = As ∪D.

Go to stage s+ 2.

Lemma 5.1.8. Every requirement Pe is satisfied.

Proof. Fix e and assume the lemma by induction for all i < e. Choose stage s large

enough so that no Pi (for i < e) receives attention at any stage t > s. It is clear

by the construction that R(e, t) = R(e, v) for all stages v ≥ t and therefore R(e) =

limsR(e, s). If there exists a set D ∈ We,t such that ∀z ∈ D, z > R(e, t), we then

enumerate D into A and requirement Pe is forever satisfied. Otherwise, there exists

some finite set F ⊆ {0, 1, ..., R(e, t)} such that for all D in We, F ∩D 6= ∅ and again

requirement Pe is forever satisfied. Moreover, for all stages v ≥ t, P (e, t) = P (e, v)

and so P (e) = limsP (e, s).

Lemma 5.1.9. A is coinfinite.

Proof. Fix e and choose s large enough so that no Pi (i < e) receives attention at

any stage t > s. Let Pj be the last requirement (j < e) that received attention at

stage s′ ≤ s and so for all t > s, R(e, t) = R(e, s′) = max{x | x ∈ As′}+ (j − e) and
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so R(e) = R(e, t). Otherwise, if no Pi received attention then R(e, t) = 2e = R(e).

Finally, let y = R(e) and hence y ∈ A.

5.2 Symmetric enumeration 1-genericity

As we have seen, imposing coinfiniteness to the notion of enumeration 1-genericity

does not confer nontriviality. Another way of strengthening enumeration 1-genericity

is to impose symmetry of this notion over a set and its complement.

Definition 5.2.1. A set A is symmetric enumeration 1-generic (s.e. 1-generic) if

both A and A are enumeration 1-generic.

Lemma 5.2.2. If A is s.e. 1-generic then A /∈ Σ0
1 ∪ Π0

1.

Proof. Suppose that A is s.e. 1-generic. By Lemma 5.1.3 both A and A are infinite.

Since A is infinite, A is immune and A is not Π0
1. It follows that A is not Σ0

1 and so

A /∈ Σ0
1 ∪ Π0

1.

Thus, by Lemma 5.2.2 we can conclude that s.e. 1-genericity indeed yields non-

triviality.

Lemma 5.2.3. If A is 1-generic, then A is s.e. 1-generic.

Proof. Recall from Proposition 2.1.3 that A is 1-generic if and only if A is 1-generic.

Hence, we only have to prove that if A is 1-generic then A is enumeration 1-generic.

Consider any c.e. set W of finite sets. We will show that either there exists

D ⊂ A such that D ∈ W , or that there exists E ⊂ A such that for all D ∈ W ,

D ∩ E 6= ∅.

We define the following set

µ(D) = {σ | σ ∈ 2<ω & |σ| > maxD & (∀x ∈ D)[σ(x) = 1 ] }.
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Accordingly, let

Ŵ =
⋃
D∈W

µ(D) .

We notice that Ŵ is a c.e. set. Since A is 1-generic, either,

i. (∃σ ⊂ A) [σ ∈ Ŵ ]. Fix such σ. Then for some D, σ ∈ µ(D) and so D ∈ W ; or

ii. (∃σ ⊂ A) (∀τ ⊇ σ) [τ /∈ Ŵ ]. Fix such σ. Define E = {x | x < |σ| & σ(x) = 0}.

Hence E ⊂ A.

For a contradiction, suppose that there exists D ∈ W such that D ∩ E = ∅.

Define τ by τ = max{max{x | x ∈ D}+ 1, |σ|}, and for all x < |τ |,

τ(x) =


1 if x < |σ| and σ(x) = 1, or x ∈ D,

0 otherwise.

Clearly, τ ∈ µ(D), τ ⊇ σ and so τ ∈ Ŵ . A contradiction. Hence, for all D ∈ W

we have that D ∩ E 6= ∅.

By a similar argument we can prove that A is also enumeration 1-generic and so

A is s.e. 1-generic.

Remark. We note that the class of 1-generic degrees is contained in the class of

s.e. 1-generic degrees which is itself a subclass of the enumeration 1-generic degrees.
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5.3 Distribution of the class of the enumeration

1-generic degrees

We now study the jump of enumeration 1-generic sets.

Lemma 5.3.1. If A is enumeration 1-generic, then Je(A) ≡e A⊕ A⊕ Je(∅).

Proof. Recall that KA ≡e A. Let A be an enumeration 1-generic set. Consider the

set Φ
ω\E
e (which is Π0

1). Then Φ
ω\E
e is e-reducible to Je(∅) uniformly in e and E via

the e-operator Φg(e,E). By the enumeration 1-genericity of A,

KA = {e | ∃E[e ∈ Φ
Je(∅)
g(e,E)] & E ⊂ A}.

It follows that KA≤eA ⊕ Je(∅). Now, since Je(A) ≡e KA ⊕ KA, we have that

Je(A) ≡e A⊕ A⊕ Je(∅).

Lemma 5.3.2. If A is s.e. 1-generic, then Je(A) ≡e Je(A). In particular, if A is

1-generic, then Je(A) ≡e Je(A) ≡e Je(A⊕ A).

Proof. Let A be an s.e. 1-generic set. Then A and A are both enumeration 1-generic.

By Lemma 5.3.1, Je(A) ≡e A⊕ A⊕ Je(∅). Similarly, Je(A) ≡e A⊕ A⊕ Je(∅).

Now, suppose that A is 1-generic. By Proposition 2.1.6, A⊕K ≡T A′. Since the

embedding ι of the Turing degrees into the enumeration degrees preserves the jump

operation, Je(A⊕ A) ≡e A⊕ A⊕ Je(∅).

Corollary 5.3.3. If A is Π0
2 enumeration 1-generic then Je(A) ≡e A ⊕ Je(∅). In

particular, if A is ∆0
2 enumeration 1-generic then, dege(A) is low.

Moreover, a straightforward argument shows the following.

Corollary 5.3.4. If A ∈ ∆0
2 is enumeration 1-generic then there exists a ∆0

2 ap-

proximation {As}s∈ω to A which is good and low.
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Proof. Let {Ãs}s∈ω be any ∆0
2 approximation to A, and let {Φe}e∈ω be the standard

computable listing of enumeration operators with c.e. approximation {Φe,s}e,s∈ω. We

define a good ∆0
2 approximation {As}s∈ω to A in the usual way. For all s ∈ ω we

define:

• Case s = 0. Then set As = ∅ and n0 = 0.

• Case s > 0. If Ãs 6= Ãs+1 then, set ns = µx[Ãs(x) 6= Ãs+1(x)]. Otherwise, set

ns = s. Define As = Ãs � ns.

It can be easily shown that {As}s∈ω is indeed a good approximation. Now, for

all e ∈ ω, we define

ΦA
e [s] = {x | 〈x,D〉 ∈ Φe,s & D ⊆ A[s]}.

Finally, we check that for any given e,

∀x limsΦ
A
e,s(x) exists

Suppose that x ∈ ΦA
e . Then there exists an axiom 〈x,D〉 ∈ Φe. Consider

m = max{x | x ∈ D} + 1.Choose s large enough such that for all t ≥ s we have

A � m ⊆ At and thus D ⊆ At. Therefore, x ∈ ΦAt
e,t ⊆ ΦA

e .

Now, suppose that x /∈ ΦA
e . Then since A is enumeration 1-generic there exists

some finite set E ⊆ A such that x /∈ Φω−E
e . Notice that ΦA

e ⊆ Φω−E
e . Since {As}s∈ω

is a good ∆0
2 approximation to A, there exists a stage s such that for all t ≥ s,

E ⊆ At. Hence, x /∈ ΦAt
e,t ⊆ ΦA

e .

Lemma 5.3.5. For any A ∈ Σ0
2, if A is s.e. 1-generic and dege(A) is good then A

and A are low.
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Before giving the proof of Lemma 5.3.5 we need the following results.

Proposition 5.3.6 ([McE85]). If A ∈ Σ0
2 then Je(A) ≡e KA.

Proposition 5.3.7 ([Har10]). If A has a good approximation then Je(A) ≡e KA.

Lemma 5.3.8. Let a be a good enumeration degree. Then, for every A ∈ a,

KA≤eKA. Thus, Je(A) ≡e KA.

Proof. Let a be a good enumeration degree. Choose a good approximable set B ∈ a

and let A ∈ a be any set. Note that A ≡e B. From Lemma 1.2.11 it follows that

KA ≤1 KB and KB ≤1 KA. Hence, KA ≡1 KB and so KA ≡1 KB. Moreover,

Proposition 5.3.7 leads to KB ⊕KB≤eKB and consequently KB≤eKB. Now, since

KA ≡e A and by assumption A≤eB, it follows that

KA ≤eB ≤e KB ≤e KA.

Thus, KA≤eKA and so Je(A) ≡e KA.

Now, we can finally give the proof of Lemma 5.3.5.

Proof. Let A ∈ Σ0
2 be an s.e. 1-generic set such that dege(A) is good. Notice that

from Lemma 5.3.8 it follows that Je(A)≤eKA.

Let RA be a computable predicate such that for any finite set E,

E ⊆ A⇔ ∃s∀t RA(E, s, t).

Now, from the definition of KA,
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e ∈ KA ⇔ e /∈ ΦA
e ,

⇔ (∃E ⊆ A)[ e /∈ Φω\E
e ] , by enumeration 1-genericity of A,

⇔ ∃E ∃s∀t∀s′ ∀D[RA(E, s, t) &
(
〈e,D〉 ∈ Φe,s′ ⇒ D ∩ E 6= ∅

)
] .

Clearly, KA is Σ0
2. Hence, Je(A) is Σ0

2 and consequently A is low.

We proceed to show that A is low. By assumption A ∈ Σ0
2. Applying the same

reasoning to KA as we did to KA, and using the fact that A is Σ0
2, it follows that

KA ∈ Σ0
2. Thus, A is low.

Lemma 5.3.9. If A ∈ ∆0
2 is enumeration 1-generic then dege(A) is low2.

Proof. Let a = dege(A). By Lemma 3.2.4 we know that

{ e | ΦA
e is infinite } ∈ a′′ .

Thus to show that a is low2 it suffices to show that there exists a set C≤eK such

that { e | C [e] is finite } since this implies, by Lemma 3.2.3, that a′′ = 0′′
e . We do

this by enumerating C using a construction with K as oracle. Now, since A is ∆0
2

we know that there is a function f≤TK such that Ran (f) = A and such that for

all n, f(n) < f(n + 1). Accordingly we let a0 < a1 < a2 . . . be the resulting c.e. in

K enumeration of A. At each stage s+ 1 of the construction as is enumerated into

A. Note that this means that the set

Us+1 =def { z | z < as & z /∈ As+1 } ⊆ A .

Stage 0. Set C0 = ∅.
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Stage s+ 1. For each e > s do nothing (so that C
[e]
s+1 = ∅). For each e ≤ s on the

other hand, test whether, for all x > s,

〈x,D〉 ∈ Φe ⇒ D ∩ Us+1 6= ∅ .

• If so, then enumerate 〈e, s〉 into C.

• Otherwise do nothing for index e.

Having processed each e ≤ s proceed to stage s+ 2. This completes the description

of the construction.

In order to verify the correctness of the construction there are two cases to consider.

Case A. ΦA
e is infinite. Consider any stage s+1. If, for every x > s and finite set D

such that 〈x,D〉 ∈ Φe, it is the case that D ∩ Us+1 6= ∅ then ΦA
e ⊆ {0, . . . , s} since

Us+1 ⊆ A. Hence C [e] = ∅.

Case B. ΦA
e is finite. Then, for some sA, for all x > sA, x /∈ ΦA

e . Let

W =def {D | 〈z,D〉 ∈ Φe & z > sA } ,

and note that W is c.e. By the enumeration 1-genericity of A (and since there is no

〈z,D〉 ∈ Φe with z > sA such that D ⊆ A), there exists a finite set EA ⊆ A such

that D∩EA 6= ∅ for all D ∈ W . Let zA = maxEA+1 and also let ta be a stage such

that atA ≥ zA. Then, by construction, we can see that C [e] ⊇ { 〈e, s〉 | s > tA }. In

other words C [e] is cofinite (and so infinite).

We now consider the question of what overall restrictions there are on the dis-

tribution of enumeration 1-generic degrees.

Definition 5.3.10. If a is a Π0
2 (Σ0

2) e-degree then a is downwards properly Π0
2

(Σ0
2) closed if D[≤ a] = {x | x ≤ a} contains only Π0

2 (Σ0
2) sets.

Definition 5.3.11. Let A be any set and {As}s∈ω be a computable approximation

to A. We say {As}s∈ω is a Π0
2 approximation to A if,
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A = {x | ∀s ∃t ≥ s [x ∈ At]}.

Definition 5.3.12. Let A = {Ai}i∈ω be a class of Π0
2 sets (i.e. A ⊆ Π0

2). We say a

computable approximation {Ai,s}i,s∈ω is a uniform Π0
2 approximation to A if for all

i ∈ ω,

i. {Ai,s}s∈ω is a Π0
2 approximation to Ai, and

ii. A = {Ai,s}i,s∈ω.

In this case, we say A is uniform Π0
2.

Similarly, we can define a uniform Σ0
2 approximation {Bi,s}i,s∈ω to a Σ0

2 class

B = {Bi}i∈ω by letting Bi = {y | ∃s ∀t ≥ s [y ∈ Bt]}.

Lemma 5.3.13. If A is a Π0
2 enumeration 1-generic set, then the class A = {X |

X≤eA} is uniform Π0
2.

Proof. Let A be a Π0
2 enumeration 1-generic set with an associated Π0

2 approximation

{As}s∈ω. Let {Φe}e∈ω be the standard computable listing of enumeration operators

with c.e. approximation {Φe,s}e,s∈ω. We define a uniform Π0
2 class {Ae}e∈ω with a

uniform Π0
2 approximation {Ae,s}e,s∈ω and set A = {Ae}e∈ω. In order to define, for

every e ∈ ω, a Π0
2 approximation {Ae,s}s∈ω we need the following parameters. For

every y ∈ ω and every finite set D, let

• µ(y,D, e, 0) = ∅, and for s+ 1,

µ(y,D, e, s+ 1) =


µ(y,D, e, s) ∪ {x | x ∈ D & x ∈ As+1 }

if 〈y,D〉 ∈ Φe,s+1 and µ(y,D, e, s) 6= D,

∅ otherwise.
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• m(y, e, 0) = 0, and for s+ 1,

m(y, e, s+ 1) =


1 if µ(y,D, e, s) = D for some axiom 〈y,D〉 ∈ Φe,s,

0 otherwise.

Now, for every e, s ∈ ω, we define a uniform Π0
2 approximation {Ae,s}e,s∈ω,

Ae,s =


∅ if e ≥ s,

{x | m(y, e, s) = 1 } otherwise.

Lemma 5.3.14. For every e ∈ ω, {Ae,s}s∈ω is a Π0
2 approximation to Ae = ΦA

e .

Proof. First, supposing that y ∈ ΦA
e , there exists some axiom 〈y,D〉 ∈ Φe such that

D ⊆ A. We define the set Sy = { s | µ(y,D, e, s) = D and 〈y,D〉 ∈ Φe,s }. Since

{As}s∈ω is a Π0
2 approximation to A and by the approximation {Ae,s}s∈ω to Ae we

have that Sy is infinite. Hence, there exist infinitely many stages s ∈ Sy and so

m(y, e, s) = 1. Hence, y ∈ Ae,s for every s ∈ Sy. Finally, suppose that y /∈ ΦA
e .

Since A is enumeration 1-generic, for some E ⊆ A, we have y /∈ Φ
ω\E
e . Let {As}s∈ω

be a Σ0
2 approximation to A. Then there exists some stage s such that for all t ≥ s,

E ⊆ At. Hence, m(y, e, t) = 0 and so y /∈ ΦA
e,t.

Corollary 5.3.15. If A is a Σ0
2 set such that A is enumeration 1-generic, then

B = {X | X≤eA} is uniform Π0
2.

Proof. Notice that A is Π0
2. Apply Lemma 5.3.13 to A.

In fact, if we let b = dege(A), then Corollary 5.3.15 implies that for any x ≤ b,

x contains sets that are at most Π0
2.
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Using the notion of s.e. 1-genericity and the set constructed in Theorem 3.2.1

(Chapter 2) we are able to show that any 1-generic Π0
2 degree is downwards Π0

2

closed.

Proposition 5.3.16. There exists a Π0
2 enumeration degree b such that the following

is true for b, some B ∈ b, A = B and a = dege(A).

i. A is 1-generic (and hence a is 1-generic).

ii. a is noncuppable (and hence downwards properly Σ0
2).

iii. a is low2 (i.e. a′′ = 0′′
e ).

iv. The class B =def {X | X≤eB } is uniformly Π0
2 so that, in particular, b (and

any x ≤ b) only contains Π0
2 sets.

v. b is properly Π0
2.

vi. KB�eKB (and hence Je(B)�eKB).

vii. b′ ≤ 0′′
e .

Proof. i. Apply Theorem 3.2.1.

ii. Apply Theorem 3.2.1.

iii. Apply Theorem 3.2.1.

iv. Apply Theorem 3.2.1, then apply Lemma 5.2.3 and Lemma 5.3.13.

v. Follows from iv.

vi. From B ∈ Π0
2 and KB ≡e B it follows that KB is Π0

2. Hence, KB is Σ0
2. For

a contradiction, assume that KB≤eKB. Then KB ∈ Σ0
2. A contradiction. Thus

KB�eKB.

vii. Notice that KB is Π0
2 and hence KB is Σ0

2. Hence, KB ⊕ KB is Σ0
3 and so

b′ ≤ 0′′
e .
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Now we turn our attention to the local structure of the enumeration degrees. A

natural question to ask is whether 0′
e is enumeration 1-generic. The next property,

which is also possessed by the notion of 1-genericity, settles this question.

Proposition 5.3.17. Every enumeration 1-generic degree a > 0e is quasiminimal.

Proof. Suppose that A is an enumeration 1-generic set and that there exists some

set C set such that C ⊕C≤eA. Let Φ witness this reduction, that is, C ⊕C = ΦA.

Consider the c.e. set

S = {D | ∃F ∃F ′[ 〈2x, F 〉 ∈ Φ & 〈2x+ 1, F ′〉 ∈ Φ & D = F ∪ F ′ ] }.

Since C ⊕ C is the characteristic function of C, it follows that D * A for all

D ∈ S. Hence, by enumeration 1-genericity of A, there exists a finite set E ⊆ A

such that for all D ∈ S, D ∩ E 6= ∅. However, this implies that C ⊕ C = Φω−E.

Indeed, clearly C ⊕ C ⊆ Φω−E (as A ⊆ ω − E). Suppose that there exists

y ∈ Φω−E \C ⊕C. Then, y = 2x+ i for some i ∈ {0, 1}. Without loss of generality,

suppose that i = 0. Therefore there is a finite set F ⊆ ω−E such that 〈2x, F 〉 ∈ Φ.

Since C ⊕ C is the characteristic function of C, and 2x /∈ C ⊕ C, it follows that

2x+ 1 ∈ C ⊕ C = ΦA. Hence there exists a finite set F ′ such that 〈2x+ 1, F ′〉 ∈ Φ

and F ′ ⊆ A ⊆ ω − E. Set D = F ∪ F ′. Clearly D ∈ S whereas, by the above,

D ∩ E = ∅. This contradicts the definition of E. Thus Φω−E ⊆ C ⊕ C and so

C ⊕ C = Φω−E, i.e. C ⊕ C is c.e.

We now illustrate another characteristic of ∆0
2 enumeration 1-generic sets which

resembles 1-genericity, namely, Σ1-correctness (see chapter 2, Proposition 2.1.13).

Proposition 5.3.18. If B≤eA <e Je(∅) and A is a ∆0
2 enumeration 1-generic set

then B has a ∆0
2 approximation {Bs}s∈ω such that for any infinite c.e. set T ⊆ ω,

∃t ∈ T (Bt ⊂ B).



5.3. Distribution of the class of the enumeration 1-generic degrees 109

Proof. Let A ∈ ∆0
2 be an enumeration 1-generic set with an associated ∆0

2 approx-

imation {As}s∈ω. Since B≤eA, for some e ∈ ω we have B = ΦA
e . We set Bs = ΦAs

e

for every s ∈ ω. Let T ⊆ ω be any infinite c.e. set. Define

D(At) = {y | y ∈ At},

and set

S = { D(At) : t ∈ T}.

We notice that S is a c.e. set of finite sets. For a contradiction, assume that

∃E ⊂ A ∀D ∈ S [E ∩ D 6= ∅]. By assumption {As}s∈ω is a ∆0
2 approximation so

there exists v such that for all t ≥ v, E * At. Hence, E ∩ D(At) = ∅ (whenever

t ∈ T ). Clearly a contradiction. Therefore, ∃D(At) ⊂ A such that D(At) ∈ S and

so Bt ⊂ B.

We have seen that enumeration 1-genericity displays some form of lowness and

this leads us to the question of the relationship between enumeration 1-genericity

and Σ0
2 highness (see Definition 5.3.20 below). For the final part of this section we

investigate this question.

Definition 5.3.19. If {As}s∈ω is a Σ0
2 approximation to a set A, then we define the

computation function relative to A by

CA(x) = µs [s > x & As � x ⊂ A].

Definition 5.3.20. A set A≤e 0′
e is Σ0

2 high if it has a Σ0
2 approximation for

which CA is total and dominates every computable function. A degree is Σ0
2 high if

it contains a Σ0
2 high set.
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Lemma 5.3.21 ([SS99]). A degree a ≤ 0′
e is high if and only if it is Σ0

2 high.

Lemma 5.3.22. If A is Σ0
2 high then A is not enumeration 1-generic.

Proof. For a contradiction, assume that A is a Σ0
2 high enumeration 1-generic set.

Let {As}s∈ω be a high Σ0
2 approximation to A with associated computation function

cA. Let sA ∈ ω be such that cA(s) > s+1 (i.e. the successor function) for all s > sA.

Define the c.e. set

W = {As+1�s | s > sA }

and notice that, by definition of sA, for all D ∈ W , D * A. Then there exists a

finite set E ⊆ A such that D ∩ E 6= ∅ for all D ∈ W . Let

m = max {E ∪ {sA}}+ 1

and let sm be such that sm + 1 = cA(m) (and so sm ≥ m). By definition of cA,

Asm+1�m ⊆ A (whereas E ⊆ A�m). Thus, letting D = Asm+1�sm we see that

D ∈ W and D ∩ E = ∅, a contradiction. Thus A is not enumeration 1-generic.

Corollary 5.3.23. If A is is Σ0
2 high then A is not 1-generic.

Proof. Let A be a Σ0
2 high 1-generic set. Then by Lemma 5.2.3, A is enumeration

1-generic. Apply Lemma 5.3.22 and deduce a contradiction.



Chapter 6

Separating enumeration

1-genericity and 1-genericity

In this final chapter we present two different approaches to the problem of separating

the class of the enumeration 1-generic degrees from the class of 1-generic degrees.

One of them is by showing the existence of a non trivial enumeration 1-generic set

which is not 1-generic and the other is by proving that there exists a property that

both classes do not share, namely, nonsplitting.

6.1 Introduction

As we saw in the previous chapter, every 1-generic set is s.e. 1-generic and hence enu-

meration 1-generic. Moreover, the class of nonzero enumeration 1-generic degrees

shares at least two properties with the 1-generic degrees, namely, quasiminimal-

ity (Proposition 5.3.17) and Π0
2 downwards closure (Proposition 5.3.16). We now

investigate the question of how enumeration 1-genericity and 1-genericity may be

separated within the enumeration degrees.

111
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6.1.1 An enumeration 1-generic set which is not 1-generic

We start by taking a quite straightforward approach to our question i.e. we present a

direct construction of a non trivial enumeration 1-generic set which is not 1-generic.

Proposition 6.1.1. 1 There exists an nonzero enumeration 1-generic set A which

is not 1-generic.

Proof. We construct a set A such that, for all e ∈ ω, the following requirements are

satisfied

Ne : A 6= We,

Pe : (∃D ∈ We)[D ⊆ A ] ∨ (∃E ⊆ A)(∀D ∈ We)[D ∩ E 6= ∅ ] .

We enumerate a c.e. set of strings W which satisfies the overall non 1-genericity

requirement

NG : (∀σ ⊆ A[σ /∈ W ∧ ∃τ ⊃ σ(τ ∈ W )]).

And we say W is a witness of A being not 1-generic, i.e. W is not forced by

A. Let {We}e∈ω be a computable listing of all c.e. sets with associated finite c.e.

approximations {We,s}s∈ω for each e ∈ ω. The priority ordering of the requirements

R ∈ {N,P} is given by

N0 < P0 < N1 < P1 < · · ·

RequirementsNe are satisfied using the basic Friedberg-Muchnik strategy whereas

the basic module for Pe is explained as follows. Indeed, to satisfy Pe, whenever we

see some D ∈ We such that D ∩ F = ∅, for some finite set F that the construction

wants to restrain from A, we enumerate D in A. The basic module for satisfying

1Thanks are due to Mariya Soskova for suggesting this problem.
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the overall requirement NG enumerates a c.e. set of strings W by stages s in such

a way that W is not forced by A. Accordingly, at the end of every stage s > 0

we define a string τ such that τ ⊃ σ (with σ ⊆ As) and enumerate τ into W . We

note that satisfaction of NG ensures that for every initial segment of A, say σ ⊂ A,

there exists an extension τ ⊃ σ in W and σ /∈ W (since we make sure that we never

enumerate an initial segment of A into W ).

Definitions and notation

• Parameters for the Ne requirements. The outcome function N(e, s) ∈ {0, 1} and

the witness parameter x(e, s) ∈ ω ∪ {−1}.

• Parameters for the Pe requirements. The outcome parameter P (e, s) ∈ {0, 1},

the finite set parameter D(e, s) ∈ P(ω) and the avoidance parameter Ω(e, s) ∈ P(ω).

We define Ω(e, s+ 1) by

Ω(e, s+ 1) =
⋃
{x(i, s) | i < e & N(i, s) = 1}.

Thus, Ω(e, s+1) records the finite set of elements that the construction wants to keep

out of A for the sake of higher priority N requirements and cannot be enumerated

into A at stage s+ 1 for the sake of Pe.

• Global parameters. The enumerating parameter C(s+1) ∈ P(ω), the extracting

parameter F (s + 1) ∈ P(ω), the approximating string σs+1 and the witness string

τs+1.

Now, we establish under what conditions requirements R ∈ {N,P} require at-

tention.

Case Ne . We say that Ne requires attention at stage s + 1 if, either N(e, s) = 0

and x(e, s) = −1 (i.e. Ne does not have an associated witness), or N(e, s) = 0 and

x(e, s) ∈ We,s.
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Case Pe . We say that Pe requires attention at stage s + 1 if P (e, s) = 0 (i.e. Pe

has not received attention) and there exists a finite set D such that D ∈ We,s and

D ∩ Ω(e, s+ 1) = ∅.

Resetting Ne. When we say that the construction resets Ne at stage s + 1 we

mean the following. If x(e, s) = −1 then, the construction does nothing (and in this

case x(e, s + 1) = x(e, s) = −1 and N(e, s + 1) = N(e, s) = 0). Otherwise we set

x(e, s+ 1) = −1 and N(e, s+ 1) = 0.

Resetting Pe. When we say that the construction resets Pe at stage s + 1 we

mean the following. If P (e, s) = 0 the construction does nothing (and in this case

D(e, s + 1) = D(e, s) = ∅ and P (e, s + 1) = P (e, s) = 0). On the other hand, if

P (e, s) = 1 then we set Ω(e, s+ 1) = ∅, P (e, s+ 1) = 0 and D(e, s+ 1) = ∅.

The Construction.

At every stage s > 0, if not otherwise specified, all parameters retain their values.

Stage s = 0. Define As = Cs = Fs = ∅ and, for all e ∈ ω, N(e, s) = P (e, s) = 0,

D(e, s) = Ω(e, s) = ∅ and x(e, s) = −1.

Stage s+ 1. Look for the least e ≤ s such that Q ∈ {Ne, Pe} is the highest priority

requirement that requires attention and proceed as follows. Otherwise, if there does

not exist such e then go to stage s+ 2 (and all parameters retain their values from

the preceding stage).

Case a) Q = Ne.

• If x(e, s) = −1 and N(e, s) = 0 then choose a new witness x that has not
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appeared in the construction. Define x(e, s + 1) = the least such x, set the

enumerating parameter Cs+1 = {x(e, s+ 1)} and set outcome N(e, s+ 1) = 0.

Reset lower priority requirements Ri. We say that Ne receives attention.

• If N(e, s) = 0 and x(e, s) ∈ We,s then set the extracting parameter Fs+1 =

{x(e, s)}. Set outcome N(e, s+ 1) = 1. Reset lower priority requirements Ri.

We say that Ne receives attention.

Case b) Q = Pe.

• If P (e, s) = 0 and there exists a finite set D such that

D ∈ We,s & D ∩ Ω(e, s+ 1) = ∅

then choose the least such D, set D(e, s + 1) = D, set the enumerating para-

meter Cs+1 = D(e, s+1) and set outcome P (e, s+1) = 1. Reset lower priority

requirements Ri. We say that Pe receives attention.

End of Stage s+ 1.

Define As+1 = {As ∪ Cs+1} \ Fs+1. Set mA = max{x | x ∈ As+1}.

For all x ≤ mA define2

σs+1(x) =

 1 if x ∈ As+1,

0 otherwise.

Set τs+1 = σs+1̂0. Enumerate τs+1 into Ws+1.

Go to stage s+ 2.

2I.e. we set σs+1 = χAs+1
.
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Verification.

Consider any e ∈ ω. As Induction Hypothesis we suppose that every requirement

R ∈ {Ni, Pi | i < e} only receives attention at most finitely often. Let s be the

least stage such that every requirement R does not receive attention at any stage

t > s. We now check that Ne and Pe are satisfied and that the Induction Hypothesis

is justified in each case. We proceed according to descending priority, noting that

Ne < Pe in the priority ordering.

Case Ne. By the definition of s, for all t ≥ s, x(e, t) = x(e, s). We write this

limiting value as x(e). If Ne never receives attention after stage t, then x(e) ∈ A\We

and outcome N(e) = N(e, t) = 0. Otherwise, if Ne receives attention at some stage

u ≥ t, then x(e) ∈ We \A and outcome N(e) = N(e, u) = 1. Thus Ne never receives

attention at any stage v > u.

Case Pe. Consider s as defined above. Then for all t ≥ s, D(e, t) = D(e, s)

and Ω(e, t) = Ω(e, s). We write these limiting values as D(e) and Ω(e). If Pe never

receives attention after stage t then for all D ∈ We, D ∩ Ω(e, t) 6= ∅ and outcome

P (e) = P (e, t) = 0. Otherwise, if Pe receives attention at some stage u > t then,

D(e) ∈ We and outcome P (e) = P (e, u) = 1. Thus Pe never receives attention at

any stage v > u.

Lemma 6.1.2. A is ∆0
2

Proof. Fix x. Then either x = x(e) or x ∈ D(e) for some e ∈ ω. Choose stage s

large enough so that for all t ≥ s, x = x(e, t) or x ∈ D(e, t). If x = x(e, t) then

either N(e, t) = 0 or N(e, t) = 1. Suppose that N(e, t) = 0, then ∀t ≥ s we have
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that x ∈ At. Otherwise, if N(e, t) = 1 then ∀t ≥ s we have that x /∈ At. On the

other hand, if x ∈ D(e, t) then ∀t ≥ s, x ∈ At.

Lemma 6.1.3. A is not 1-generic.

Proof. Fix n and choose stage s large enough such that ∀t ≥ s, At � n = A � n. We

then set σt = χAt . Inspection of the construction shows that τt = σt̂0, τt ∈ W and

σt(|σt|−1) = 1. For a contradiction suppose that σt ∈ W . Then by the construction

σt(|σt| − 1) = 0. Clearly a contradiction. Hence σt /∈ W .

6.2 An enumeration 1-generic set which is not

splittable

6.2.1 Introduction

In the enumeration degrees we say a degree a is splittable if for some A ∈ a we have

that A = A0 ⊕ A1 with A0, A1 <e A. Otherwise we say a is nonsplittable. In her

thesis [AL98] Ahmad showed the existence of a low nonsplittable Σ0
2 enumeration

degree (by contrast with the Turing degrees, in which every c.e. degree is splittable).

Moreover, in his thesis [Ken05] Kent gave a direct construction of a nonzero non-

splittable enumeration degree using a tree of strategies. Kent and Sorbi [KS07] then

adapted this direct construction of a nonsplittable enumeration degree on a tree to

prove the following.

Theorem 6.2.1 ([KS07]). Every nonzero Σ0
2 enumeration degree bounds a nonzero

nonsplittable enumeration degree.

We now turn our attention to 1-genericity and note that it is commonly known

that, as in the Turing degrees, 1-generic sets are splittable in the enumeration de-

grees.
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Proposition 6.2.2. If A is a 1-generic set then a = dege(A) is splittable.

Our proof starts with the following two lemmas, in which we assume A is 1-

generic, A = A0 ⊕ A1 and σ = σ0 ⊕ σ1, in a similar way to Proposition 2.1.8 (see

chapter 2).

Lemma 6.2.3. The sets A0 and A1 are infinite.

Proof. For a contradiction assume that A0 is finite (likewise we can prove A1 is

infinite). Define mA0 = max{x | x ∈ A0} and consider the following c.e. set of

strings

S = {σ | ∃x [σ(2x) = 1 & x > mA0 ]}.

We notice that no initial segment σ of A can be a member of S since we assumed

A(2x) = A0(x) and consequently ∀x > mA0 [A(2x) = A0(x)]. We thus get ∃σ ∀ τ ⊇

σ [τ /∈ S]. Fix such σ. Then we define a string τ by

τ(x) =


σ(x) if x < |σ|,

1 if |σ| ≤ x < 2mA0 ,

0 if x = 2mA0 .

This gives us τ ∈ S, clearly a contradiction.

Lemma 6.2.4. The sets A0 and A1 are not c.e.

Proof. For a contradiction assume that A0 is c.e. (we can prove A1 is not c.e. in a

similar way) and consider the following c.e. set

S = {σ | ∃x [x ∈ A0 & σ(2x) = 0]}.

Clearly not ∃σ ⊂ A[σ ∈ S] since we assumed A(2x) = A0(x). We thus get ∃σ ∀ τ ⊇

σ [τ /∈ S]. Fix such σ. By Lemma 6.2.3, A0 is infinite and so we can find 2x > |σ|



6.2. An enumeration 1-generic set which is not splittable 119

such that A0(x) = 1. Then we define a string τ with |τ | ≥ 2x + 1 and τ(2x) = 0.

This gives τ ∈ S, a contradiction.

We can now proceed to the proof of Proposition 6.2.2:

Proof. For a contradiction suppose that A0 ≤e A1. It follows that A0 = ΦA1
e for some

e ∈ ω and consequently

x ∈ A0 ⇔ (∃u)[〈x,Du〉 ∈ Φe&Du ⊆ A1].

Thus we have

2x ∈ A⇔ (∃u)[〈x,Du〉 ∈ Φe&∀z ∈ Du[z ∈ Du ⇒ 2z + 1 ∈ A]].

Now, consider the following c.e. set of strings

S = {σ | ∃x [σ0(x) = 0 & x ∈ Φσ1
e ]},

where Φσ1
e = {x | (∃u)[〈x,Du〉 ∈ Φe & Du ⊆ {y | σ1(y) = 1}]}. We notice that

no σ ⊂ A can be a member of S since by assumption A0≤eA1. We claim that if

∃σ ∀τ ⊇ σ[τ /∈ S], then ΦA1
e is finite. Indeed for a contradiction, assume ΦA1

e is

infinite and fix such σ. By Lemma 6.2.3, A0 is infinite and so is ΦA1
e . Hence we can

find y ∈ ΦA1
e with y ≥ |σ|. But this is a contradiction since we could then define

a string τ such that ∀x < |σ| [τ(x) = σ(x)] with τ(2y) = 0 and, in consequence

τ ∈ S.

We adapt the methodology used in [AL98, KS07, Ken08] to prove the existence

of a low nonzero nonsplittable enumeration 1-generic degree a. The existence of

this particular enumeration degree a taken in conjunction with Proposition 6.2.2,
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shows that the classes of enumeration 1-generic degrees and 1-generic degrees can

be separated using nonsplitting.

Theorem 6.2.5. There exists a low enumeration 1-generic nonsplittable degree a >

0e.

6.2.2 Requirements

We will define a set A with ∆0
2 approximation {As}s∈ω satisfying the following

requirements.

RΨ,Ω0,Ω1 : A = ΨΩA0 ⊕ΩA1 ⇒ A≤eΩA
i for some i ∈ {0, 1} or A c.e.,

NW : A 6= W,

PW : (∃D ∈ W )[D ⊆ A ] ∨ (∃E ⊆ A)(∀D ∈ W )[D ∩ E 6= ∅ ] .

Note our use of shorthand notation in the above (introduced to simplify the present-

ation) whereby we understand (Ψ,Ω0,Ω1) ∈ {(Ψe,Ωe,0,Ωe,1)}e∈ω where the latter is

a standard effective listing of all triples of enumeration operators. Likewise W ranges

over a standard effective listing of c.e. sets {We}e∈ω. In each case we assume that the

listing is associated with standard uniform c.e. approximations of the sets/operators

involved.

6.2.3 Basic idea of the construction

Before giving the construction of A, we describe the basic modules for satisfying

the requirements. In order to facilitate the processes described below, for every

requirement L ∈ {R,N, P} we define a stream S which is basically the set of num-

bers inside A which were enumerated by lower requirements and are available to L

for processing. Requirements NW are satisfied using the basic Friedberg-Muchnik
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strategy whereas the basic module for PW is quite straightforward. Indeed, to satisfy

PW , whenever we see some D ∈ W such that D ⊆ S ∪ { some number available to

PW} we then permanently place D in A (i.e. D is “dumped” into A). Requirements

RΨ,Ω0,Ω1 are in fact more complicated. Assume we are trying to satisfy a single

requirement RΨ,Ω0,Ω1 . Suppose that x is enumerated by some lower requirement.

Whenever we see x ∈ A ∩ ΨΩA0 ⊕ΩA1 we then arrange either A≤e ΩA
0 or A≤e ΩA

1 by

defining enumeration operators Γ0 and Γ1 (which witness A = Γ
ΩA0
0 or A = Γ

ΩA1
1 ).

Hence at stage s we add axioms
〈
x,ΩA

0 [s]
〉

to Γ0 and
〈
x,ΩA

1 [s]
〉

to Γ1 and prevent

lower priority requirements from destroying our work by dumping all y ∈ S. Our aim

is to arrange A = Γ
ΩA1
1 . If later on during the construction x /∈ A and x ∈ ΨΩA0 ⊕ΩA1

then we do nothing since the requirement is trivially satisfied (i.e. A 6= ΨΩA0 ⊕ΩA1 ).

If x /∈ A and x ∈ Γ
ΩA1
1 (i.e. x /∈ ΨΩA0 ⊕ΩA1 ) then we change our aim to A = Γ

ΩA0
0 and

again we dump all y ∈ S into A. Whichever requirement we are trying to satisfy,

we note that for some x if there is a stage s + 1 such that A[s + 1] � x 6= A[s] � x

then x is dumped into A.

Definitions and notation

The Tree of Strategies.

We define the overall set of outcomes to be Σ = {0, 1, 2} ∪ {void} and the set of

tree outcomes to be {0, 1, 2}. We fix an arbitrary effective priority ordering {Le}e∈ω

of all R, N and P requirements. We also define T ⊆ {0, 1, 2}<ω and we refer to

it as the tree of strategies. Each node α ∈ T will be associated, and so identified,

with the strategy for the satisfaction of L|α|. We use the notation RΨ,Ω0,Ω1 for

the set of RΨ,Ω0,Ω1 strategies and R for the set of all R strategies. Likewise, for

(Q, Q) ∈ {(N , N), (P , P )} we will use the notation QW for the set of strategies

associated with QW and we let Q denote the set of all such strategies.
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We assign requirements to nodes on T by induction as follows. Define ∅ ∈ T .

Given α ∈ T we distinguish three cases depending on the requirement L associated

with α.

Case 1. α ∈ R: define α̂〈n〉 ∈ T for n ∈ {0, 1, 2}.

Case 2. α ∈ N : define α̂〈n〉 ∈ T for all n ∈ {0, 1}.

Case 3. α ∈ P : define α̂〈n〉 ∈ T for all n ∈ {0, 1}.

Environment Parameters

Local parameters for α ∈ RΨ,Ω0,Ω1. R(α, s) ∈ {0, 1, 2, void} is the outcome para-

meter, and Γα,0[s] and Γα,1[s] finite approximations to enumeration operators con-

structed so as to (possibly) witness A≤e ΩA
0 or A≤e ΩA

1 . (Note that, for i ∈ {0, 1},

we use Γi as shorthand for Γα,i when there is no danger of ambiguity.) Outcome

R(α, s) = j for j ≤ 1 corresponds to α’s belief that, if A = ΨΩA0 ⊕ΩA1 , then A≤e ΩA
j

(as witnessed by Γj in the limit). Likewise, under the same assumption, R(α, s) = 2

corresponds to α’s belief that A is c.e. (contradicting the definition of a). For ease of

description in the construction α also has a dummy witness parameter x(α, s) = −1.

Local parameters for α ∈ NW . N(α, s) ∈ {0, 1, void} is the outcome parameter, and

x(α, s) ∈ {−1}∪ω is the witness parameter associated with α. Outcome R(α, s) = 0

corresponds to α’s knowledge that x(α, s) ∈ W and belief that x(α, s) /∈ A (which

will be vindicated if α is not initialised at any stage t > s). N(α, s) = 1, on the

other hand, means that α believes that x(α, s) ∈ A \W .

Local parameters for α ∈ PW . P (α, s) ∈ {0, 1, void} is the outcome parameter and

x(α, s) = −1 a dummy witness parameter for α. P (α, s) = 0 corresponds to α’s

belief that there is some D ∈ W such that D ⊆ A (which will be vindicated if α is

on the true path and is not initialised at any stage t > s). P (α, s) = 1, on the other
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hand, corresponds to α’s belief that there is no such D in W .

The stream for any α ∈ T . S(α, s) = {x(β, s) | x(β, s) ≥ 0 & α ⊆ β } is

the (finite) stream associated with α at stage s and corresponds to the set of

numbers already processed by the construction at stage s and which are (roughly

speaking) available for processing by α at stage s + 1. Note that by definition

x(α, s) /∈ S(α̂〈n〉, s) for any n ∈ {0, 1, 2}. (This observation is significant for the

construction for the case α ∈ N and trivial otherwise.)

Global parameters for stage s+ 1. Each stage s+ 1 has the following parameters.

(i) z(s + 1, t) ∈ ω ∪ {break} is a floating witness which is passed down the s + 1

stage approximation to the true path. When t = 0, z(s+ 1, t) starts life by denoting

the number s. For t ≥ 0, the witness z(s+ 1, t) is passed to the strategy α of length

t eligible to act at substage t + 1 provided that z(s + 1, t) 6= break. The strategy

α decides whether (a) to set z(s + 1, t + 1) = break, thus causing stage s + 1 to

terminate3, or (b) to reallocate z(s + 1, t + 1) to some number belonging to its s

stage stream, or (c) to reset z(s + 1, t + 1) = z(s + 1, t). In case (a) the strategy α

either sets4 x(α, s+ 1) = z(s+ 1, t) or dumps z(s+ 1, t) into A, whereas in case (b)

α always dumps z(s + 1, t) into A. Note that case (a) corresponds to α ∈ N ∪ P ,

case (b) to α ∈ R whereas case (c) may apply to any strategy α. Also notice that

in cases (b) and (c) the new value of the floating witness z(s+ 1, t+ 1) is passed to

the strategy α̂〈i〉 of length t+ 1 eligible to act at stage t+ 2.

(ii) D(s+ 1, t) ∈ F is a record, established at substage t, that defines a set of num-

bers that will be dumped at the end of stage s + 1. When t = 0, D(s + 1, t) starts

life as ∅. D(s + 1, t + 1) is defined provided that z(s + 1, t) 6= break (i.e. the stage

3Note that termination of a stage is determined by the value of z(s + 1, t) only, not by the
length of the strategies eligible to act.

4This first case (i.e. x(α, s+ 1) = z(s+ 1, t)) happens only if α ∈ N .
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has not yet terminated) and in this case D(s+ 1, t) ⊆ D(s+ 1, t+ 1).

(iii) D(s+ 1) is the overall set of numbers dumped into A at the end of stage s+ 1.

Thus by definition D(s+1) = D(s+1, |βs|+1) where βs is the s stage approximation

to the true path.

Initialisation. For (Q,Q) ∈ {(R,R), (N,N ), (P,P)} and any α ∈ Q we say that

‘void’ is the initial value of Q(α, s) and that −1 is the initial value of x(α, s). For

α ∈ R we say that ∅ is the initial value of Γα,i for i ∈ {0, 1}. Initialisation of a node

α ∈ T is the process of resetting its associated parameters to their initial values.

6.2.4 The Construction.

The construction proceeds in stages s ∈ ω. At each stage s the construction defines

the following finite sets. DA[s] is the set of numbers already Dumped into A while

FA[s] is the set of numbers already used by the construction (i.e. having visited

A during at least one stage) but still Free, i.e. nondumped. IA[s] is the set of

(free) numbers Inside A and OA[s] is the set of (free) numbers Outside A. The

intention here is that IA[s] ∩ OA[s] = ∅, FA[s] = IA[s] ∪ OA[s], FA[s] ∩ DA[s] = ∅,

and FA[s] ∪ DA[s] = ω�s. The s stage approximation to A will be defined to be

A[s] = IA[s] ∪DA[s].

We say that a number x ∈ ω is new if it is greater than any number used in the

construction so far.

To facilitate understanding of the construction we suggest that the reader also con-

sult the informal observations relative to stage s+ 1 made on page 128.

Stage s = 0.

Set A[s] = IA[s] = OA[s] = FA[s] = DA[s] = ∅ and initialise all α ∈ T .
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Stage s+ 1.

This stage consists of substages t ≥ 0 such that some strategy α ∈ T acts (i.e. is

processed) at substage t + 1 provided that z(s + 1, t) 6= break. If so, α decides the

value of z(s+ 1, t+ 1) and D(s+ 1, t+ 1), the value of its local parameters and, if

z(s+ 1, t+ 1) ∈ ω, which strategy α̂〈n〉 is eligible to act next.

Substage 0.

Set z(s+ 1, 0) = s and D(s+ 1, 0) = ∅.

Substage t+ 1. (Under the assumption that z(s+ 1, t) ∈ ω.)

We suppose that α is the strategy of length t which is eligible to act at this substage.

We distinguish cases depending on the requirement R assigned to α.

Case 1. α ∈ RΨ,Ω0,Ω1 . Process the first of the following cases which is applicable.

Reminder. We are using the notations Ψ and Ωi as shorthand for Ψe and Ωe,i for

some index e, and Γi as shorthand for Γα,i.

Case 1.1 There is a number z ∈ S(α̂〈1〉, s) such that z /∈ A[s] but z ∈ Γ
ΩA1
1 [s].

Then set z(s+ 1, t+ 1) = z for the least such z, define

D(s+1, t+1) = D(s+1, t) ∪ {z(s+1, t)} ∪

( ⋃
1≤i≤2

S(α̂〈i〉, s) \ {z(s+ 1, t+ 1)}

)
,

and Γ1[s+ 1] = ∅. Also reset Γ0[s+ 1] = Γ0[s]. Set R(α, s+ 1) = 0.

Remark. R(α, s+1) = 0 indicates that α̂〈0〉 will be eligible to act at substage t+2.

(See Ending substage t+1 on page 127.) Note that the floating witness z(s+1, t+1)

will be passed to α̂〈0〉.
Case 1.2 There is a number z ∈ S(α̂〈2〉, s) such that z ∈ A[s] ∩ΨΩA0 ⊕ΩA1 [s].

Then set z(s+ 1, t+ 1) = z for the least such z, define

D(s+ 1, t+ 1) = D(s+ 1, t) ∪ {z(s+ 1, t)} ∪
(
S(α̂〈2〉, s) \ {z(s+ 1, t+ 1)}

)
,
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and, for 0 ≤ i ≤ 1 define Γi[s+ 1] = Γi[s] ∪ {〈z(s+ 1, t+ 1),ΩA
i [s]〉}.

Set R(α, s+ 1) = 1.

Case 1.3 Otherwise.

Then reset z(s+ 1, t+ 1) = z(s+ 1, t), D(s+ 1, t+ 1) = D(s+ 1, t), Γi[s+ 1] = Γi[s]

for 0 ≤ i ≤ 1 and set R(α, s+ 1) = 2.

Case 2. α ∈ NW . Process the first of the following cases which is applicable.

Case 2.1. N(α, s) = 0.

(Note that this means that x(α, s) ∈ OA[s] ⊆ ω\A[s].) Set z(s+1, t+1) = z(s+1, t),

D(s+ 1, t+ 1) = D(s+ 1, t) and reset x(α, s+ 1) = x(α, s) and N(α, s+ 1) = 0.

Case 2.2. N(α, s) = 1 and x(α, s) ∈ W [s].

Set z(s+ 1, t+ 1) = break and

D(s+ 1, t+ 1) = D(s+ 1, t) ∪ {z(s+ 1, t)} ∪ S(α̂〈1〉, s) .
(Note that S(α̂〈1〉, s) = S(α, s)\{x(α, s)} in this case.) Reset x(α, s+1) = x(α, s)

and set N(α, s+ 1) = 0.

Case 2.3. N(α, s) = 1 and x(α, s) /∈ W [s].

Reset z(s + 1, t + 1) = z(s + 1, t) and D(s + 1, t + 1) = D(s + 1, t). Also reset

x(α, s+ 1) = x(α, s) and N(α, s+ 1) = 1.

Case 2.4. N(α, s) = void and z(s+ 1, t) ≥ |α|.

Set z(s+ 1, t+ 1) = break and D(s+ 1, t+ 1) = D(s+ 1, t). Also set x(α, s+ 1) =

z(s+ 1, t) and N(α, s+ 1) = 1.

Case 2.5. Otherwise (i.e. N(α, s) = void and z(s+ 1, t) < |α|).

Set z(s + 1, t + 1) = break and D(s + 1, t + 1) = D(s + 1, t) ∪ {z(s + 1, t)}. Also

reset x(α, s+ 1) = −1 and N(α, s+ 1) = void.
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Case 3. α ∈ PW . Process the first of the following cases which is applicable.

Notation. For the sake of Cases 3.2 and 3.3 we use the notation

Ωα,s+1 = {x(β, s) | x(β, s) ≥ 0 & N(β, s) = 1 & β <L α }

∪ {x(β, s+ 1) | x(β, s+ 1) ≥ 0 & N(β, s+ 1) = 1 & β ⊂ α } .

(Note that N(β, s+ 1) = 1 and β ⊂ α implies that β̂〈1〉 ⊆ α.)

Case 3.1. P (α, s) = 0.

(Note that the implication here is that there is some D ∈ W [s] such that D ⊆ A[s].)

Reset z(s+1, t+1) = z(s+1, t), D(s+1, t+1) = D(s+1, t) and reset P (α, s+1) = 0.

Case 3.2. P (α, s) = 1 and for some D ∈ W [s].

D ⊆ Ωα,s+1 ∪ DA[s] ∪ D(s+ 1, t) ∪ {z(s+ 1, t)} ∪ S(α, s) . (6.2.1)

(Note that S(α, s) = S(α̂〈1〉, s) in this case.) Set z(s+ 1, t+ 1) = break,

D(s+ 1, t+ 1) = D(s+ 1, t) ∪ {z(s+ 1, t)} ∪ S(α, s) ,

and set P (α, s+ 1) = 0.

Case 3.3. Otherwise. (I.e. P (α, s) = void or P (α, s) = 1 and (6.2.1) holds for no

D ∈ W [s].) Reset z(s+ 1, t+ 1) = z(s+ 1, t), D(s+ 1, t+ 1) = D(s+ 1, t) and set

P (α, s+ 1) = 1.

Ending substage t+1. Supposing that α ∈ Q withQ ∈ {R,N ,P}, if z(s+1, t+1) ∈

ω then define α̂〈Q(α, s + 1)〉 to be eligible to act next and go to substage t + 2.

Otherwise (i.e. if z(s+ 1, t+ 1) = break) go to End of Stage s+ 1.

Remark. The last node eligible to act, and hence be processed, at stage s + 1 is

either an N node via Case 2.2, 2.4 or 2.5 or otherwise a P node via Case 3.2.
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End of Stage s+ 1. Supposing that α of length t is the last strategy to be processed

define βs+1 = α. Set D(s + 1) = D(s + 1, t + 1) and initialise all nodes in the set

G = { β | α < β } (i.e. all nodes β such that α <L β or α ⊂ β). For every β ∈ T

such that β <L α reset β’s parameters for stage s+1 to their value at stage s. Before

proceeding note that, by initialisation, for any β ∈ N such that N(β, s+1) ∈ {0, 1},

β ≤ α. Define

IA[s+ 1] = {x(β, s+ 1) | x(β, s+ 1) ≥ 0 & N(β, s+ 1) = 1 } ,

OA[s+ 1] = {x(β, s+ 1) | x(β, s+ 1) ≥ 0 & N(β, s+ 1) = 0 } ,

FA[s+ 1] = IA[s+ 1] ∪ OA[s+ 1] ,

DA[s+ 1] = DA[s] ∪ D(s+ 1) ,

and

A[s+ 1] = IA[s+ 1] ∪ DA[s+ 1] .

(And note that FA[s + 1] = {x(β, s + 1) | x(β, s + 1) ≥ 0 }.) For every γ ∈ T

redefine the stream for γ as follows.

SA(γ, s+ 1) = {x(β, s+ 1) | x(β, s+ 1) ∈ FA[s+ 1] & γ ⊆ β } .

Note that by resetting, if γ <L α then S(γ, s+1) = S(γ, s) whereas, by initialisation,

if α < γ then S(γ, s+ 1) = ∅.

Go to stage s+ 2.

6.2.5 Verification.

The following informal observations clarify the mechanics of the construction and

underline its inherent simplicity.

Some properties of stage s+ 1.
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(i) FA[s + 1] comprises precisely the set of witnesses x(γ, s + 1) ≥ 0 such that

γ ≤ βs+1.

(ii) At most one number is removed from A at stage s + 1. Indeed, this can only

happen if Case 2.2 applies at substage |βs+1|+1 and the witness5 x = x(βs+1, s)

is extracted from A.

(iii) FA[s + 1] \ FA[s] ⊆ {s}. And if indeed s ∈ FA[s + 1] then Case 2.4 applies at

substage |βs+1| + 1 and s = x(βs+1, s + 1). Also this means that the floating

witness z(s + 1, t) never changes value. I.e. z(s + 1, t) = s for all t such that

0 ≤ t ≤ |βs+1|.

(iv) If z(s + 1, |βs+1|) 6= s (i.e. if the floating witness changes value at least once)

then z(s+ 1, |βs+1|) = x(γ, s) for some γ >L βs+1. Likewise each intermediate

value of the floating witness z(s+1, t) is a witness x(γ′, s) for some γ′ >L βs+1.

Moreover, the only one of the values of the floating witness that (possibly)

remains in FA[s + 1] is x(γ, s). Note that this happens if Case 2.4 applies at

substage |βs+1|+ 1 forcing x(βs+1, s+ 1) = x(γ, s). All other values (including

s) of z(s+ 1, t) are dumped into A.

(v) Nontrivial cases of (ii), (iii) and (iv) are mutually exclusive. In other words,

extraction of a number from A (see (ii)) forces s and all x(γ, s) ≥ 0, such that

γ > βs+1 to be dumped into A. On the other hand s ∈ FA[s + 1] (see (iii))

precludes any extraction from A and forces all x(γ, s) ≥ 0 such that γ > βs+1

to be dumped into A. Likewise x(γ, s) ∈ FA[s+1] for some γ >L βs+1 (see (iv))

precludes any extraction from A and forces s (as well as all other x(γ̂, s) ≥ 0

such that γ̂ > βs+1) to be dumped into A.

5x = x(βs+1, s) = x(βs+1, s+ 1) in this case.
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(vi) βs+1 is either in N and Case 2.2, 2.4 or 2.5 applies at substage |βs+1| + 1 or

otherwise βs+1 is in P and Case 3.2 applies at substage |βs+1|+ 1.

We now verify the correctness of the construction via the Lemmas below. Note

firstly that Lemmas 6.2.6-6.2.8 are proved by inspection (only for some of the state-

ments involved) and straightforward induction arguments over the stages of the

construction, using the observations above.

Lemma 6.2.6. For all stages s > 0 and x ∈ FA[s] both (1) and (2) are true.

(1) One of the three following (mutually exclusive) cases applies for x.

(a) x = s− 1, βs ∈ N and x = x(βs, s).

(b) There exists γ ∈ N such that γ ≤ βs−1, βs <L γ, x = x(γ, s− 1), x(γ, s) =

void and x(βs, s) = x.

(c) There exists γ ∈ N such that γ ≤ βs−1, γ ≤ βs and x = x(γ, s − 1) =

x(γ, s).

(2) For all γ1, γ2 ∈ N such that x = x(γ1, s) = x(γ2, s), γ1 = γ2.

Proof. (1) Suppose that s > 0 and x ∈ FA[s]. Then we have the following two cases

to consider:

• x ∈ IA[s]. Then for some β ∈ N , x = x(β, s) and N(β, s) = 1. Now by

inspection of the construction, if N(β, s) = 1 then either case 2.3 or case 2.4

was applicable. If case 2.3 was applied then, x(β, s − 1) /∈ W [s − 1] and

hence β ≤ βs−2, β ≤ βs−1 and x = x(β, s − 1) = x(β, s). Thus we conclude

(c). On the other hand, if case 2.4 was applied then, N(β, s− 1) = void and

x = z(s, t) ≥ |β|. Hence x(β, s) = x. In the case that x = s − 1 we conclude

(a). Otherwise, if x 6= s − 1 then, x ∈ S(γ̂〈i〉, s) with i ∈ {1, 2} for some

γ ⊆ β and we then conclude (b).
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• x ∈ OA[s]. Then for some β ∈ N , x = x(β, s) and N(β, s) = 0. By the

construction we have that either case 2.1 or case 2.2 was applicable at stage s.

If case 2.1 was applied at stage s then N(β, s− 1) = 1 and x(β, s− 1) ∈ W [s];

and the construction defined N(β, s) = 0, x(β, s) = x(β, s− 1) and hence (c).

Otherwise, suppose that case 2.2 was applied, then N(β, s−1), x = x(β, s−1)

and x /∈ W [s]. Hence at stage s the construction defined x(β, s) = x(β, s− 1),

N(β, s) = 0 and thus (c).

(2) For a contradiction, suppose that γ1 6= γ2, x(γ1, s) = x(γ2, s), x(γ1, s) 6= −1 and

γ1, γ2 ∈ N . Then either γ1 < γ2, or γ1 > γ2 Without loss of generality suppose that

γ1 < γ2. By definition, at stage s the construction defines either x(γ1, s) = z(s, t)

(with |γ1| = t) or x(γ1, s) = x(γ1, s − 1). If x(γ1, s) = z(s, t) then the construction

sets z(s, t + 1) = break. Hence the construction ends stage s, initialises γ2, and

sets x(γ2) = −1. A contradiction. On the other hand, if x(γ1, s) = x(γ1, s − 1)

then x(γ1, s) /∈ S(γ1̂ 〈n〉 , s) for any n ∈ {0, 1}, and so x(γ1, s) is not available

for processing to lower priority requirements RΨ,Ω0,Ω1 . Thus there is no substage

v > t (with t = |γ1|) such that z(γ2, v) = x(γ1, s). Hence x(γ1, s) 6= x(γ2), s. A

contradiction.

Remark. By Lemma 6.2.6, and the definition of FA[s] we can now assume that x ∈

FA[s] if and only if there exists a unique (N strategy) γ ≤ βs such that x = x(γ, s).

Clearly also in this case for (L, i) ∈ {(I, 1), (O, 0)}, we have that x ∈ LA[s] if and

only if N(γ, s) = i.

Lemma 6.2.7. For all s ≥ 0, the following statements are true.

1. D(s) ⊆ DA[s] ⊆ DA[s+ 1].

2. FA[s] = IA[s] ∪ OA[s] and IA[s] ∩ OA[s] = ∅.
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3. DA[s] ∩ FA[s] = ∅.

4. {n | 0 ≤ n < s } = FA[s] ∪DA[s].

5. For any α ∈ T such that α ⊆ βs,

FA[s] = S(α, s) ∪ {x(γ, s) | x(γ, s) ≥ 0 & γ < α } .

Proof. Inspection of the construction show that if s = 0 then 1. to 5. are trivially

true.

1. Consider the last stage s > 0 under the Induction Hypothesis (I.H.) that 1.

holds for s−1. Then by the construction, at stage s we have that D(s) ⊆ DA[s]

and DA[s+ 1] = DA[s] ∪D(s+ 1). Hence D(s) ⊆ DA[s] ⊆ DA[s+ 1].

2. Clearly, by definition of the construction FA[s] = IA[s] ∪ OA[s]. For a contra-

diction, suppose that there exists some x ∈ IA[s] ∩ OA[s]. Inspection of the

stage s shows that if x ∈ FA[s] then x = x(β, s) for some β ∈ N and either

N(β, s) = 1 or N(β, s) = 1. Thus by the construction either x ∈ IA[s] or

x ∈ OA[s]. A contradiction.

3. For a contradiction, suppose that x ∈ DA[s] ∩ FA[s]. Then inspection of the

construction shows that x = x(β, s) for some β ∈ N and N(β, s) ∈ {0, 1}.

Moreover, if x ∈ DA[s] then for no β ∈ N do we have x = x(β, s). Clearly a

contradiction.

4. Consider the last stage s > 0 under the Induction Hypothesis (I.H.) that 4.

holds for s−1. Then inspection of stage s+ 1 shows that s is enumerated into

either FA[s+1] or DA[s+1]. Hence {n | 0 ≤ n < s+1 } = FA[s+1]∪DA[s+1].

5. Consider the last stage s > 0 under the Induction Hypothesis (I.H.) that 5.

holds for s−1. Supposing α ≤ βs+1. By definition, S(α, s+ 1) = {x(β, s+ 1) |
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x(β, s + 1) ≥ 0 and α ⊆ β}. Now, supposing γ < α, we have two cases to

consider:

• If γ ⊂ α then, γ ⊂ βs+1. If x(γ, s+ 1) ≥ 0 then x(α, s+ 1) ∈ FA[s+ 1].

• If γ <L α then, for some x, x = x(γ, s+1) 6= x(γ, s) and soN(γ, s+1) = 1.

Hence x ∈ FA[s+ 1].

Lemma 6.2.8. Suppose that β ∈ T is such that x(β, s) ≥ 0. Then for all γ ⊆ β

such that γ ∈ N , N(γ, s) ∈ {0, 1} and x(γ, s) ≥ 0.

Proof. For a contradiction, suppose that β ∈ T is such that x(β, s) ≥ 0 and there

exists γ ⊆ β such that N(γ, s) /∈ {0, 1} and x(γ, s) = −1. Inspection of the

construction shows that at stage s either Case 2.5 was applied or γ was initialised. If

Case 2.5 was applied then the construction defined z(s, t+1) = break (with t = |γ|),

thus causing the end of stage s. Hence β was initialised and so x(β, s) = −1. A

contradiction. On the other hand, if γ was initialised then β was initialised and so

x(β, s) = −1. Clearly a contradiction.

Lemma 6.2.9. For any α ∈ T and stage s ≥ 0, |S(α, s+ 1) \ S(α, s)| ≤ 1.

Proof. This follows by inspection of the construction at stage s + 1. Indeed, if

z ∈ S(α, s + 1) \ S(α, s) then for some substage t of stage s + 1, z(s + 1, t) = z.

However at most one such z survives without being dumped into D(s+ 1). (And in

this case z = x(βs+1, s+ 1).)

Lemma 6.2.10. For all stages s ≥ 0 and any strategies α, β ∈ T such that S(α, s) 6=

∅ and S(β, s) 6= ∅, if α <L β, then maxS(α, s) < minS(β, s).

Proof. By induction over stages s ≥ 0. The case s = 0 is trivially true. So consider

case s + 1. For the hypotheses of the Lemma to be true at stage s + 1 it must be
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the case that β ≤ βs+1 (otherwise S(β, s+ 1) = ∅). If β <L βs+1 then S(α, s+ 1) =

S(α, s) and S(β, s+ 1) = S(β, s) and the result follows by the induction hypothesis.

Otherwise β ⊆ βs+1. As seen in Lemma 6.2.9, if D = S(β, s + 1) \ S(β, s), then

|D| ≤ 1. If |D| = 0 then the result follows as above. Otherwise suppose that z is the

number contained in D. Then either z = s and so z > maxS(α, s) ⊆ {n | n < s } or

z ∈ S(γ, s) for some β <L γ (via Case 1.1 or 1.2 applied at some substage 1 ≤ t ≤ |β|

of stage s + 1) in which case z > maxS(β, s) > maxS(α, s), by application of the

induction hypothesis.

From inspection of Lemma 6.2.10 and its proof we have the following Corollary.

Corollary 6.2.11. For any stage s ≥ 0, strategy α ∈ T , and number z, if z ∈

S(α, s+ 1) \ S(α, s) then z > maxS(α, s).

Lemma 6.2.12. For all x, y ∈ ω, stages 0 ≤ s < t and nodes α ∈ T , if x ∈

S(α, s) ∩ IA[s], y ∈ S(α, s+ 1) \ S(α, s), and {x, y} ⊆ S(α, t), then x ∈ IA[t].

Remark 1. Less formally Lemma 6.2.12, says that if y enters6 a stream to which x

already belongs as well as already belonging to A (at this point in the construction)

then, for as long as both x and y remain in the stream, x remains in A.

Remark 2. Notice that, by Corollary 6.2.11, x < y.

Proof. We reason by induction over stages t ≥ s+ 1.

Case t = s + 1. By inspection of the construction we see that y = x(βs+1, s + 1).

Let β ∈ N be such that x = x(β, s + 1). From Lemma 6.2.8 and the definition of

Case 2.4 of the construction we can deduce that it is not the case that βs+1 ⊆ β.

Moreover βs+1 6<L β since then β would be initialised at stage s + 1 forcing x ∈

D(s + 1) ⊆ DA[s + 1] and hence x /∈ S(α, s + 1) ⊆ FA[s + 1] by Lemma 6.2.7(3).

6By Lemma 6.2.9 y is the unique such number.
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Thus there are two subcases as follows.

Subcase β <L βs+1. Then x = x(β, s + 1) by Lemma 6.2.6(1)(c) and N(β, s + 1) =

N(β, s) by resetting. Hence x ∈ IA[s+ 1] by definition.

Subcase β ⊂ βs+1. Then, as above, x = x(β, s + 1). Moreover, notice that if x ∈

OA[s+1], then Case 2.2 applies at substage |β|+1 forcing βs+1 = β, a contradiction.

Hence x ∈ IA[s+ 1].

Case t > s+1. We assume the extended induction hypothesis that, not only does the

Lemma hold for stage t−1, but also that the nodes β, γ ∈ N such that x(β, t−1) = x

and x(γ, t−1) = y satisfy β < γ. (Notice that we have already seen that the extended

induction hypothesis is true when t− 1 = s+ 1.) Again we reason by subcases.

Subcase βt < β. Notice that βt ⊂ β can only happen via Case 3.2 of the construction

in which case β is initialised, forcing x ∈ D(t). So we can suppose that βt <L β.

However in this case there is at most one strategy βt <L µ such that7 x(µ, t − 1)

is not forced into D(t) by initialisation. However, βt <L β < γ and we have

{x, y} ∩ D(t) = ∅ by hypothesis; a contradiction. Thus βt < β does not happen.

Remark. We can now assume that β ≤ βt and, by Lemma 6.2.6, that x(β, t) =

x(β, t− 1).

Subcase βt < γ. As above we can suppose that βt <L γ. As y = x(γ, t − 1),

for y to survive in S(α, t) ⊆ FA[t] it must be the case that y = x(βt, t) (since

otherwise y ∈ D(t)) via Case 2.4 applied to z(t, |βt|) = y at substage |βt| + 1.

Thus Case 2.2 does not occur at any substage8 of stage t. In particular (under the

inductive assumption that x ∈ IA[t− 1]) this means that x ∈ IA[t]. Also βt 6= β (as

x(βt, t− 1) = void by definition of Case 2.4). Hence β < βt.

7x(µ, t − 1) /∈ D(t) if and only if (i) Case 1.1 or 1.2 applies at some stage r ≤ |βt| and (ii)
z(t, p) = x(µ, t − 1) for all r ≤ p ≤ |βt| and (iii) x(βt, t) = x(µ, t − 1) via Case 2.4 at substage
|βt|+ 1.

8Case 2.2 can only happen at substage |βt|+ 1 since it induces z(t, |βt|+ 1) = break.
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Subcase βt ≥ γ. In this subcase, Case 2.2 of the construction does not apply to node

β during stage t since this would force βt = β < γ. Moreover, x(β, t) = x(β, t−1) =

x and x(γ, t) = x(γ, t − 1) = y (by Lemma 6.2.6(1)(c)). Combining these two

observations we see that x ∈ IA[t] and that the extended induction hypothesis is

again satisfied.

Notation, Assumptions and Definitions. For n ≥ 0 we define

True∞,n := {α | |α| = n & ∀t(∃s ≥ t)[α ⊆ βs ] } .

If True∞,n 6= ∅, letting β = min<L True∞,n (i.e. the least strategy of length n under

<L), we define δn = β if there exists sβ such that, for all s ≥ sβ, β is not initialised

at stage9 s. Otherwise δn is undefined.

For any γ ∈ T and parameter p(γ, s), if lims→∞p(γ, s) exists we define p(γ) to

be this value (otherwise we say that p(γ) is undefined). We define

DA =
⋃
s∈ω

DA[s]

FA = {n | ∃s(∀t ≥ s)[n ∈ FA[t] ] }

and define IA and OA likewise (so that FA = IA ∪ OA). Define

A = {n | ∃s(∀t ≥ s)[n ∈ A[t] ] } .

Also for all α ∈ T define

S(α) = {n | ∃s(∀t ≥ s)[n ∈ S(α, t) ] } .

Lemma 6.2.13. For all n ≥ 0, δn is defined.

9I.e. such that for all s ≥ sβ , βs 6<L β and, if |βs| < |β|, then β <L βs.
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Proof. By induction on n. The case n = 0 is obvious. So suppose that α = δn is

defined and let sn be a stage such that βs ≥ α for all s ≥ sn. There are three cases

to consider.

Case α ∈ R. By construction, at each α-true stage s, |βs| > α. Hence, by the

induction hypothesis β̂〈i〉 ∈ True∞,n+1 for some i ∈ {0, 1, 2}. Thus δn+1 is defined.

Case α ∈ N . Inspection of the construction shows that, for any α-true stage s > 0, if

m = z(s, |α|) then either m = s−1, or m = x(γ, s−1) for some α <L γ whereas, for

all t ≥ s, either m ∈ DA[t] or m = x(β, t) for some10 α ⊆ β. It follows that for all α-

true stages r > p > sn, z(p, |α|) 6= z(r, |α|) (and in fact z(p, |α|) < z(r, |α|)). Hence

at one such α-true stage s (if N(α, s− 1) = void), Case 2.4. of the construction will

apply, so that x(α, s) = z(s, |α|). Moreover, clearly for all t ≥ s, x(α, t) = x(α, s).

Notice also that Case 2.2 can apply at most once after stage s. In other words, there

is a stage s′ such that at every α true stage t ≥ s′, |βt| > |α|. Thus (as in the first

case) δn+1 is defined to be α̂〈i〉 for some i ∈ {0, 1}.

Case α ∈ P . Clearly Case 3.2 applies at most once after stage sn. Thus, as above,

δn+1 is defined to be α̂〈i〉 for some i ∈ {0, 1}.

Note that to each case there corresponds a stage sn+1 as in the induction hypothesis.

Thus the latter is validated. This concludes the proof of the Lemma.

Corollary 6.2.14. For all n ≥ 0, S(δn) is infinite.

Proof. It follows from Lemma 6.2.13 that, for all n such that δn ∈ N , x(δn) is

defined (with value in ω). Moreover, a straightforward argument by induction using

Lemma 6.2.6(2) implies that, for all such p 6= m, x(δp) 6= x(δm). It now suffices to

notice that {x(δm) | δm ∈ N & m > n } ⊆ S(δn).

Lemma 6.2.15. The following statements are true.

10Note that α ⊂ β implies that x(α, t− 1) ≥ 0, i.e. is already defined (see Lemma 6.2.8).
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1. A = DA ∪ IA.

2. FA = IA ∪ OA and IA ∩ OA = ∅.

3. DA ∩ FA = ∅.

4. ω = FA ∪ DA.

5. For any α ∈ T such that α ⊆ δ,

FA = S(α) ∪ {x(γ) | x(γ) ≥ 0 & γ < α } .

Proof. (1) and (2) are obvious by definition, whereas (3), (4) and (5) follow by

application of Lemma 6.2.7 using induction over the stages of the construction.

Notation. For G ∈ {F, I, O} and α ∈ T we use the notation G<α
A [s] to denote the

set GA[s] ∩ {x(γ, s) | β < α }.

Lemma 6.2.16. For G ∈ {F, I, O}, any α ⊆ δ and stage sα such that α ≤ βs for

all s ≥ sα, G<α
A [s] = G<α

A [sα].

Proof. A straightforward induction over s ≥ sα.

By definition of T and δ, for any requirement Q there is precisely one strategy α

associated with Q such that α ⊆ δ. Accordingly we consider each such α by cases.

Lemma 6.2.17. α ∈ RΨ,Ω0,Ω1. If A = ΨΩA0 ⊕ΩA1 and A is not c.e. then A≤e ΩA
i for

some i ∈ {0, 1}.

Proof. Define Λ = { 〈z, ∅〉 | z ∈ DA }. There are three cases to consider.

Case α̂〈2〉 ⊂ δ. Consider x ∈ S(α̂〈2〉). Clearly x /∈ A. Indeed it cannot be the

case that x ∈ A ∩ ΨΩA0 ⊕ΩA1 since then x would have been removed from α̂〈2〉’s
stream via Case 1.2 of the construction. Moreover, if x ∈ A \ ΨΩA0 ⊕ΩA1 then A 6=
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ΨΩA0 ⊕ΩA1 . A contradiction. We see therefore that α̂〈2〉 ⊆ δ implies that A =∗ DA,

i.e. that A is c.e. Hence α̂〈2〉 ⊂ δ cannot apply (under the assumptions of the

Lemma).

Case α̂〈1〉 ⊂ δ. Consider x ∈ S(α̂〈1〉). By construction there exists a unique

stage sx and, for i ∈ {0, 1}, a unique axiom 〈x, Fi,x〉, such that Fi,x =def ΩA
i [sx] was

enumerated into Γi at stage sx + 1 via Case 1.2 of the construction. Now, it follows

from Lemma 6.2.10, Corollary 6.2.11 and the dumping activity at stage sx + 1 that

{ z | z > x & z ∈ A[sx] } ⊆ DA ⊆ A. On the other hand we can also deduce

from Lemma 6.2.16, Lemma 6.2.12 and the dumping activity at stage sx + 1 that

{ z | z < x & z ∈ A[sx] } ⊆ A. Notice now that these observations imply that, for

each i ∈ {0, 1},

Fi,x ⊆ Ω
A∪{x}
i (6.2.2)

whereas the definition of Case 1.2 implies that

x ∈ ΨF0,x⊕F1,x (6.2.3)

• Suppose that x ∈ A. Then by (6.2.2), F1,x ⊆ ΩA
1 , and so x ∈ Γ

ΩA1
1 .

• Now suppose that x /∈ A. Then x /∈ Γ
ΩA1
1 . Indeed x ∈ Γ

ΩA1
1 would imply the transfer

of x from α̂〈1〉’s stream to α̂〈0〉’s stream at some stage s > sx (via Case 1.1).

We see therefore that α̂〈1〉 ⊆ δ implies (by Lemma 6.2.15) that A =∗ Φ
ΩA1
1 where

Φ1 =def Γ1 ∪ Λ.

Case α̂〈0〉 ⊂ δ. Consider x ∈ S(α̂〈0〉) and (for i ∈ {0, 1}) let sx and Fi,x be defined

as above. Also let tx + 1 be the stage at which the application of Case 1.1 caused

x to be transferred from α̂〈1〉’s stream to α̂〈0〉’s stream. Note that, similarly to

the argument used in the last case, it follows from Lemma 6.2.10, Corollary 6.2.11,
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Lemma 6.2.16, Lemma 6.2.12 and the dumping activity at stage tx + 1 that

F1,x ⊆ ΩA
1 (6.2.4)

(i.e. whether or not x ∈ A).

• Suppose that x ∈ A. Then by (6.2.2), F0,x ⊆ ΩA
0 , and so x ∈ Γ

ΩA0
0 .

• Now suppose that x /∈ A. Then x /∈ Γ
ΩA0
0 . Indeed, if x ∈ Γ

ΩA0
0 , then F0,x ⊆ ΩA

0 .

However, by (6.2.4), F1,x ⊆ ΩA
1 and by (6.2.3) x ∈ ΨF0,x⊕F1,x . Thus x ∈ ΨΩA0 ⊕ΩA1 \A.

A contradiction.

We see therefore that α̂〈0〉 ⊆ δ implies (by Lemma 6.2.15) that A =∗ Φ
ΩA0
0 where

Φ0 =def Γ0 ∪ Λ.

Lemma 6.2.18. α ∈ NW . Then x(α) ∈ A if and only if x(α) /∈ W .

Proof. Inspection of the construction shows that if α̂〈1〉 ⊆ δ, then x(α) ∈ A \W

whereas if α̂〈0〉 ⊆ δ then x(α) ∈ W \ A.

Notation. For G ∈ {F, I, O} and α ⊆ δ we define (on the strength of Lemma 6.2.16)

G<α
A = lims→∞G

<α
A [s].

Note that, for any α ⊆ δ, O<α
A ⊆ A.

Lemma 6.2.19. α ∈ PW . Let E = O<α
A . If there is no D ∈ W such that D ⊆ A

then, for all D ∈ W , D ∩ E 6= ∅.

Proof. Let sα be the least stage such that βs ≥ α for all s ≥ sα.

Case α̂〈0〉 ⊆ δ. Then Case 3.2 applied relative to α at some stage s ≥ sα and it

follows by Lemma 6.2.16 and the dumping activity at stage s that there is a finite

set D ∈ W such that D ⊆ A.

Case α̂〈1〉 ⊆ δ. Then Case 3.2 applies at no stage s ≥ sα and we can deduce from
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Lemmas 6.2.7 and 6.2.15 in conjunction with Lemma 6.2.16 that D ∩ E 6= ∅ for all

D ∈ W .

Lemma 6.2.20. All the requirements are satisfied.

Proof. For theN and P requirements this is immediate by Lemmas 6.2.18 and 6.2.19.

Satisfaction of each R requirement follows from the conjunction of Lemma 6.2.17

with the fact that all the N requirements are satisfied (and hence A is not c.e.).

Lemma 6.2.21. A is low.

Proof. Consider n ∈ ω. Notice that by construction n can only be extracted from

A by N strategies of length ≤ n and moreover that each such strategy extracts n at

most once. It follows that n can be extracted from A at most 2n + 1 times. Since

this is true for all n ∈ ω, the construction defines a ∆0
2 approximation to A. Since

A is also enumeration 1-generic, A is low (by Corollary 5.3.3).

We can now conclude the proof of Theorem 6.2.5 by setting a = dege(A).

Corollary 6.2.22. There exists a low enumeration 1-generic degree a such that

0e < a < 0′
e and is not 1-generic.

Proof. Apply Theorem 6.2.5 together with the fact that every 1-generic degree is

splittable (Proposition 6.2.2).
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