
A study of malicious software on the
macOS operating system

Submitted in partial fulfilment

of the requirements of the degree of

Master of Science

of Rhodes University

Mark Alan Regensberg

Grahamstown, South Africa

January 2019

Abstract

Much of the published malware research begins with a common refrain: the cost, quan-

tum and complexity of threats are increasing, and research and practice should prioritise

efforts to automate and reduce times to detect and prevent malware, while improving

the consistency of categories and taxonomies applied to modern malware. Existing work

related to malware targeting Apple’s macOS platform has not been spared this approach,

although limited research has been conducted on the true nature of threats faced by users

of the operating system. While macOS focused research available consistently notes an

increase in macOS users, devices and ultimately in threats, an opportunity exists to un-

derstand the real nature of threats faced by macOS users and suggest potential avenues

for future work. This research provides a view of the current state of macOS malware by

analysing and exploring a dataset of malware detections on macOS endpoints captured

over a period of eleven months by an anti-malware software vendor.

The dataset is augmented with malware information provided by the widely used Virus-

Total service, as well as the application of prior automated malware categorisation work,

AVClass to categorise and SSDeep to cluster and report on observed data. With Windows

and Android platforms frequently in the spotlight as targets for highly disruptive malware

like botnets, ransomware and cryptominers, research and intuition seem to suggest the

threat of malware on this increasingly popular platform should be growing and evolving

accordingly. Findings suggests that the direction and nature of growth and evolution may

not be entirely as clear as industry reports suggest. Adware and Potentially Unwanted

Applications (PUAs) make up the vast majority of the detected threats, with remote

access trojans (RATs), ransomware and cryptocurrency miners comprising a relatively

small proportion of the detected malware. This provides a number of avenues for po-

tential future work to compare and contrast with research on other platforms, as well as

identification of key factors that may influence its growth in the future.

i

ii

Acknowledgements

First and foremost, significant thanks must be given to the anti-malware software vendor

who wished to remain anonymous but gave of both their time and the data used in this

research.

Secondly, the work would not have been possible with the support of the following people,

places and things: Prof. Barry Irwin for creating safe spaces and triggers at the same

time, the work of Patrick Wardle, Thomas Reed, Amit Serper and VirusTotal, without

whom the macOS security community would be much worse off.

Finally, my family, who tried and generally failed to keep the noise down while I was

trying to remember the word ‘telemetry’, and who have been unfailing in their support.

Dedicated to Finnian, a tireless defender of all things security related.

iii

iv

Contents

List of Figures x

List of Tables xii

1 Introduction 1

1.1 Introduction . 1

1.2 Motivation for this Research . 4

1.3 Research Questions and Objectives . 5

1.4 Expected Outcomes . 6

1.5 Approach . 6

1.6 Document Structure . 7

2 Background and Related Work 9

2.1 Introduction . 9

2.2 Understanding Malware . 10

2.2.1 Detection and Analysis . 10

2.2.2 Evolution of Malware . 12

2.3 Observing Malware in the Wild . 14

2.3.1 Common Terminology . 14

v

CONTENTS vi

2.3.2 Methods of infection and Persistence 17

2.3.3 Abuse of trust: malware and code signing 17

2.4 Malware in Research . 19

2.4.1 Naming and Labelling . 19

2.4.2 Categorisation and Taxonomies . 22

2.5 macOS: operating system, security and malware 23

2.6 Summary . 26

3 Methodology 29

3.1 Introduction . 29

3.2 Approach . 30

3.3 Experimental Setup . 30

3.4 Tooling and Environment . 32

3.5 Data processing: Import . 33

3.6 Data Processing: Aggregation . 34

3.7 Data Processing: Enrichment . 35

3.8 Data Processing: Categorisation . 37

3.9 Data Validation . 41

3.10 Summary . 42

4 Analysis 43

4.1 Introduction . 43

4.2 Time Series Analysis . 44

4.3 Classification and Labelling . 49

CONTENTS vii

4.4 Diversity and Clustering . 53

4.4.1 Diversity . 53

4.4.2 Clustering . 54

4.5 Infection, Persistence and Code Signing . 57

4.5.1 Infection Vector . 58

4.5.2 Methods of Persistance . 62

4.5.3 Code Signing . 64

4.6 Anti-malware software vendor consensus 67

4.7 Summary . 70

5 Results and Discussion 73

5.1 Introduction . 73

5.2 Integrating Existing Work . 74

5.2.1 Methods of infection and persistence 74

5.2.2 Naming, labelling and clustering . 74

5.2.3 macOS perception of security . 76

5.3 Exploratory Analysis . 76

5.3.1 Temporal Analysis . 76

5.3.2 Diversity . 77

5.3.3 Infection Vectors and Code Signing 77

5.3.4 Vendor Consensus . 78

5.4 Implications and Future work . 79

5.4.1 Implications . 79

5.4.2 Future Work . 80

5.5 Limitations . 80

5.6 Summary . 81

CONTENTS viii

6 Conclusion 83

List of Figures

2.1 Various vendor labels for a Spigot malware sample, from VirusTotal 20

2.2 CVEs by Desktop Operating System . 25

2.3 CVE by operating system and severity . 26

3.1 Data import, enrich and categorisation process 31

3.2 Aggregate table entity relationship diagram 35

4.1 Observation of a single MacKeeper detection on a single host 45

4.2 Grouped record of the Figure 4.1 detection, rounded to the closest hour . . 45

4.3 Timeline of reported malware (Categories A - D) 45

4.4 Comparison: Top 10 macOS malware blocked by month for 2018 from

Symantec (2018a) . 46

4.5 Timeline of reported malware by category 47

4.6 Malware observations by day of the week 47

4.7 Malware observations by hour of day (UTC) 48

4.8 Days between recorded observation and first sight on VirusTotal 48

4.9 Shannon entropy index values for malware by label (all malware) 54

4.10 Shannon entropy index values for malware by label (non-Category A malware) 55

ix

LIST OF FIGURES x

4.11 SSDeep clustering of observed malware . 56

4.12 VirusTotal Graph interface, showing a bundlore installer source filename . 58

4.13 Genieo installation dialogue, from Malwarebytes (2013) 59

4.14 Histogram of positives: Category A . 68

4.15 Histogram of positives: Category B, C and D 68

4.16 Vendor consensus and first seen time sized by unique sources: Category A . 69

4.17 Vendor consensus and first seen time: Category A.1, A.2 and A.3 70

4.18 Vendor consensus and first seen time sized by unique sources: Category B,

C and D . 71

5.1 Overview of observed malware categories and their characteristics 75

List of Tables

2.1 Malware terminology . 16

2.2 macOS malware persistence mechanisms adapted from Wardle (2014) . . . 18

2.3 Taxonomy of behaviours, adapted from Grégio et al. (2015) 23

3.1 Overview of the steps taken to setup the data for analysis 32

3.2 Vendor Fields for Import . 33

3.3 Original vendor dataset size . 34

3.4 Metadata table fields . 36

3.5 Keywords used in fuzzy matching family names 39

4.1 Top 10 oldest malware samples by VirusTotal first seen date 50

4.2 Breakdown of malware categories . 51

4.3 Top 10 AVCLass classifications: Category A 51

4.4 Top 10 AVClass classifications: Categories B, C and D 52

4.5 Example of SSDeep hashes for two malware samples 55

4.6 Infection vectors, persistence methods and code signing: Category A 60

4.7 Infection vectors, persistence methods and code signing: Categories B, C

and D . 63

xi

LIST OF TABLES xii

4.8 Examples of Category A.1 malware . 65

4.9 Examples of Category A.2 malware . 66

4.10 Examples of Category A.3 malware . 66

Chapter 1

Introduction

1.1 Introduction

Hardware is easy to protect: lock it in a room, chain it to a desk,

or buy a spare. Information poses more of a problem. It can exist

in more than one place; be transported halfway across the planet

in seconds; and be stolen without your knowledge.

Bruce Schneier, Protect Your Macintosh, 1994

Malicious Software, or as it is more popularly known, malware, has its origin alongside

mass computing itself. The term computer virus was first discussed in detail by Fred Co-

hen, who noted worms and trojan horses in the same work as likely to become a significant

threat to information security (Cohen, 1987). The first commonly accepted “infective”

program was the Creeper software on the DEC PDP-10 in 1972 (Szor, 2005). At the

time no more than non-malicious experimentation, it represented the conceptual genesis

what would arguably become one of the larger families of threats faced by computer and

network users in both personal and organisational contexts. Elk Cloner, released on the

Apple II in 1982, was the first virus to resemble more modern counterparts by spreading

relatively widely outside of its initial environment. The virus spread by infecting the boot

sector of disks inserted on an infected machine, persisting in memory and triggering a

payload after every 50th reset. While by all accounts distressing to those impacted by

the virus, the author considered it little more than a prank and the practical impact was

limited (Szor, 2005).

1

1.1. INTRODUCTION 2

By definition, malware is software distributed and installed with malicious intent. Ma-

licious software is not a new concept; creative terms like Trojan Horses, Worms, Logic

Bombs and Trap Doors have described and categorised the tactics of software designed to

exploit weakness and flaws in systems over the last five decades (Landwehr et al., 1994;

Soh et al., 1995). The term “malware” is first referenced by Spafford (1994) in a contin-

uation of his earlier work (Spafford, 1990) to represent the family of malicious software

as a whole. Spafford also notes the appropriate use of malware to group software by its

effect rather than its method. Thus, while malware can be seen as the progeny of earlier

viruses, trojans and worms it also encompasses a broader definition: the entire group of

malicious software than may impact a device, network or service with a specific focus on

the malicious intent rather than the nature of propagation, payload or persistence.

A number of factors outside of the growth of personal computing have driven an increase

in the spread of malware. The growth and ultimate ubiquity of the internet has provided

a mechanism to automate and impact large volumes of user endpoints in an automated or

semi-automated fashion (Provos et al., 2007). Regardless of incentive, the vast network of

connected devices has provided fertile ground for malware to evolve and adapt in response

to increasing security awareness of users, organisations and malware analysis tooling that

help develop detection and neutralisation techniques (for example, honeypots1) (Cabaj

et al., 2017). Along with this, the evolution of software engineering has in some ways

assisted with this spread. As a maturing discipline, much of the tooling and building

blocks of modern systems share dependencies (for example, lower level SSL libraries such

as OpenSSL2 or modern development frameworks such as Microsoft’s ASP.NET MVC3

and Ruby on Rails4), and a weakness in a single dependency can be used to spread

malware over a greater surface area than flaws that may be present in a piece of software

developed in relative isolation (Luszcz, 2017).

The increased diversity of connected devices has also played a role: the ubiquity of mo-

bile devices (Zhou and Jiang, 2012) and Internet-of-Things (IoT) devices (Wang et al.,

2017) provide an ever increasing surface area, and result in a constantly evolving threat

landscape. Finally, the creation of malware itself has increasingly become a commodity

activity with the spread of malware creation toolkits (Ollmann, 2008; Moore et al., 2009).

The Virus Construction Set and Genvir were toolkits designed to simplify the creation of

malware, available as early as 1990 (Szor, 2005). The frequently cited Zeus and SpyEye

1A security mechanism set to detect or deflect unauthorized use of information systems by emulating
a valid system

2https://www.openssl.org
3https://www.asp.net/mvc
4https://rubyonrails.org

https://www.openssl.org
https://www.asp.net/mvc
https://rubyonrails.org

1.1. INTRODUCTION 3

kits allowed for derivatives of a commonly used banking trojan to be built and spread

by relatively unskilled individuals (Stevens and Jackson, 2010; Ye et al., 2017). Similar

toolkits are currently available for many common variants of malware by platform or at-

tack vector, for example office document based exploits such as the AKBuilder exploit kit

(Szappanos, 2016), trojan development kits for the Android mobile platform (Venkate-

san, 2017), ransomware kits like Tox (McAfee, 2015) or Remote Access Tools (RATs) like

Poison Ivy (FireEye, 2013) or the DarkComet RAT5 (Breen, 2015).

Given the ubiquity, increasing threats and academic attention paid to malware (Ye et al.,

2017), the changing goals and underlying motivation for the creation of malware deserves

mention. Why does malware exist to begin with? Economic incentives, socio-political

factors and human-computer interaction all play a role in the malware ecosystem (Moore,

2010; Cavelty, 2018). While there is value in information and this may be a target for

malicious software, more readily accessible value can be found in stored crypto-currencies

or payment card information that malware may be designed to target (Moore et al., 2009;

Moore, 2010). More topical contemporary malware like ransomware (malware designed

to lock access to system files or resources until a ransom has been paid) has clearly

demonstrated the commercial motivation for malware designed to extort users (Kharraz

et al., 2015), while other disruption or denial of services made possible by malware en-

abled botnets may be used to extract revenge, extortion or prevent competition. Botnets

comprising of large groups of malware infected machines make the identification of a sin-

gle point of origin challenging (if not, in many cases, impossible) making attribution a

commensurately more involved, multi-factor activity (Joshi and Pilli, 2016; Shamsi et al.,

2016).

Even legitimate business models can become adversarial through abuse: advertising mal-

ware, or adware, is malicious software that uses a variety of tactics to track and advertise

to users leading to privacy and security issues as the lines between legitimate and mali-

cious software blur (Urban et al., 2018). Malware may also be spread to further specific

political aims; nation states using malware to achieve political, economic and territorial

goals have been observed and attributed (although rarely in absolute terms). Malware

has been developed with precise targeting, as was suggested in the case of Stuxnet and the

control systems in use in Iranian nuclear facilities (Marquis-Boire et al., 2015; Rosenberg

et al., 2017), through to the broad, shotgun like approaches observed with NotPetya that

impacted far more than the Ukranian targets thought to be the original primary objective

(UK Foreign & Commonwealth Office, 2018).

5https://archive.org/details/darkcometrat

https://archive.org/details/darkcometrat

1.2. MOTIVATION FOR THIS RESEARCH 4

This mix of systemic factors, methods and motivations provides an increasingly complex

backdrop and dynamic environment for contemporary malware research. In the sections

that follow, the motivation, questions, objectives, outcomes and approach of this research

will be discussed before reviewing the overall structure of the thesis that follows.

1.2 Motivation for this Research

The relevance and reasons for the study of malware are captured most effectively by

Landwehr et al. (1994, p. 211): “knowing how systems have failed can help us build

systems that resist failure”. A thorough understanding of the tactics, motivation and

spread of malware is therefore a key requirement to reducing the overall impact of malware

in the future, both in an individual and organisational context.

While related work will be covered in detail in Section 2.1 onward, malware related re-

search specific to Apple’s macOS6 operating system (previously known as Mac OS X

between 2001 and 2012, and OS X between 2012 and 2016) has remained largely in the

realm of specialist practitioners, with limited academic attention. The vast majority of

malware related work found by this researcher has focused on Microsoft’s Windows oper-

ating system and the Android mobile operating system. The use of macOS endpoints has,

however, become more common. Enterprise management tooling for large fleets of macOS

endpoints like JAMF7 and Facebook’s osquery8 have seen rapid growth in recent years,

spurred on by increasing number macOS endpoints requiring active management in the

case of JAMF, and endpoint visibility in the case of osquery. From an information tech-

nology management perspective, Apple’s operating system has become an increasingly

noticeable part of business computing, and a largely unexplored area of risk.

If the perception of macOS as a more secure operating system is still common, it is

increasingly difficult to justify. Before 2012, Apple themselves claimed that their operating

system “doesn’t get PC viruses. A Mac isn’t susceptible to the thousands of viruses

plaguing Windows-based computers” (Manning, 2012, p. 1). A number of examples

of contemporary macOS malware have surfaced, yet there remains a gap in scholarly

empirical research of malware on the platform.

6For consistency, macOS is used to refer to the operating system in this work, although other works
referred to may use OS X or Mac OS X.

7https://www.jamf.com
8https://osquery.io

https://www.jamf.com
https://osquery.io

1.3. RESEARCH QUESTIONS AND OBJECTIVES 5

As a result, an opportunity exists to understand the real nature of threats faced by macOS

users, and to build a foundation for further work that may look to understand how macOS

malware is likely to develop in the future, how effective the current controls may be, and

what factors are likely to influence this.

1.3 Research Questions and Objectives

This research hypothesises that malware is a credible threat to both individual and or-

ganisational users of the macOS operating system. Furthermore, by understanding the

nature of that malware, the information can be practically applied to shape and improve

the security posture of macOS users and administrators.

The research aims to test this hypothesis through the following research questions:

1. What malware families have been recently observed on the macOS platform?

2. How much diversity is there in the population of observed macOS malware?

3. Have detection rates increased over time?

4. What direction should future research take to understand the factors influencing

malware on the macOS platform?

The overall objective of this research is to establish a view of the state of malware on the

macOS platform. In order to do this, analysis of a real world dataset will be carried out,

and the following secondary objectives addressed:

1. Aggregation and enrichment of the dataset using available resources and tools

2. Analysis of the aggregated and enriched data to identify the nature of information

available

3. Classification and clustering of observed malware in the dataset by family, type

and/or behaviour

4. Determine the overall nature and diversity of malware on the macOS platform using

the analysed dataset

1.4. EXPECTED OUTCOMES 6

1.4 Expected Outcomes

In a study of a large dataset of malware detections on a network of Microsoft Windows

endpoints, Yen et al. (2014) noted that the work had the capacity to inform security

policy, security tooling and end user training. Similarly, the expected outcomes of this

work include greater visibility into the real nature, and ultimately risk, of malware for

users of the macOS operating system.

Additionally, other work in the field of malware research has provided a strong founda-

tion on which to build with respect to classification and labelling of malware, clustering

and understanding the diversity of malware datasets on other platforms. As a result, a

contribution is expected as these works are applied to a malware dataset specific to the

macOS platform.

Finally, as seen in work by Yen et al. (2014), Mezzour et al. (2017) and Urban et al. (2018),

this work has relied on privileged access to real world datasets of malware encounters from

security software vendors, and establishes a baseline for similar work on the topic in the

future. As noted by Yen et al. (2014, p. 1118), such work contributes to “a portfolio of

real-world research results that can illuminate broad practices and trends”.

1.5 Approach

The data for this research was provided by the vendor of a desktop security product

deployed in small, medium and large enterprise environments globally, who wished to

remain anonymous. The vendor supplies anti-malware software for both the Microsoft

Windows and macOS operating systems. The data provided for use in this research was

limited to activity on macOS clients recorded between August 2017 and June 2018.

The approach taken required the extraction, processing and cleaning of dataset of obser-

vations. The data was imported into a database, and went through multiple stages of

aggregation and enrichment using a mix of tools and scripts before analysis was conducted

on the end result.

At a high level, the steps followed were:

1. Coalescing the data from the vendor provided files into a single file and importing

selected data from the file into a relational database;

1.6. DOCUMENT STRUCTURE 7

2. Construction of an aggregated dataset based on the initial import that contained

records of the unique samples observed;

3. Enrichment of the aggregated dataset with external data sources;

4. Categorisation and classification of the observed records; and

5. Exploratory analysis of the datasets both individually and as a fused dataset.

1.6 Document Structure

Following on from the introduction, context and description of this research, the remainder

of the thesis is structured as follows:

• Chapter 2 provides background to the research area along with related work on mal-

ware detection and analysis, classification and labelling and the macOS operating

system.

• Chapter 3 reviews the methodology followed, with details on the approach taken,

experimental setup, steps followed to process the data and validation.

• Chapter 4 presents the results of analysis of the resulting datasets, contrasting with

results from similar works on other operating systems where possible.

• Chapter 5 discusses the findings from the analysis, the research questions posed,

limitations of the research and potential future research opportunities.

• Chapter 6 summarises the work and concludes the thesis.

1.6. DOCUMENT STRUCTURE 8

Chapter 2

Background and Related Work

No matter who you are, no matter where you live, and

no matter how many people are chasing you, what you

don’t read is often as important as what you do read.

Lemony Snicket

2.1 Introduction

The nature and behaviour of malware is a multifaceted topic with a long research history.

As with any research discipline, certain areas attract more attention that others; con-

temporary issues in organisational information security, ongoing improvements to data

privacy regulations, the international political landscape and significant media coverage

and awareness of ransomware outbreaks have continued to raise the profile of malware

globally in both practice and academic circles.

The related work in this section is broken into four further subsections. Section 2.2

considers the key areas of malware study, specifically identification of malware, methods

of detection and tooling and the analysis of malware. Section 2.3 examines aspects of

infections, including common terminology used to describe malware, how malware infects

and remains on the host once infected, and the role of operating system controls such as

code signing play in preventing malware. Section 2.4 reviews work related to the naming

and classification of malware and malware related taxonomies. Finally, Section 2.5 looks

at work related specifically to macOS, including a synopsis of the differences in malware

9

2.2. UNDERSTANDING MALWARE 10

execution, persistence, detection and behaviour between the macOS platform and other,

more commonly studied operating systems will be considered.

2.2 Understanding Malware

Neither malware research nor protection could take place without the ability to detect,

analyse and understand the activities of malware. In the sections that follow, work on de-

tection and analysis of malware will be discussed as well as work on the ongoing evolution

of malware.

2.2.1 Detection and Analysis

Effective analysis of malware is key to detecting and defending against it. Kolbitsch et al.

(2009, p. 352) note that “it is crucial that the insight obtained through malware analysis is

translated into detection and mitigation capabilities that allow one to eliminate malicious

code running on infected machines”. Anti-malware software (traditionally referred as anti-

virus software) is often the primary defence of many computer users against malware, and

an ever-present part of organisational malware threat management.

Analysis of malware can be performed statically or dynamically. Static analysis is analysis

carried out without executing a file or program, extracting information either through

disassembly or evaluation of non-binary data contained within a file. Dynamic analysis

makes use of program execution, often in a virtual or sandbox environment, to monitor

system or API calls, registry or file changes, memory activity or network activity (Szor,

2005; Sikorski and Honig, 2012). Both methods have advantages and disadvantages:

static analysis is faster and less computationally expensive compared to dynamic analysis

while dynamic analysis provides a richer set of underlying heuristics for analysis as actual

behaviour can be tracked (Kolbitsch et al., 2009; Damodaran et al., 2017). In order to

evade detection or make static analysis more difficult, malware authors can apply a number

of counter measures to ensure known signatures are more difficult to detect (Sikorski and

Honig, 2012). This could include packing the file (effectively compressing and obfuscating

the bytecode), encrypting it, recompiling it with minor changes or unused execution paths

(also changing the compiled bytecode) or altering behaviour dynamically (polymorphic

or metamorphic malware) in order to mutate the underlying malware sufficiently to avoid

detection (Szor, 2005; You and Yim, 2010; Sikorski and Honig, 2012; Baysa et al., 2013;

2.2. UNDERSTANDING MALWARE 11

Ye et al., 2017). These evasion techniques are most effective against static analysis,

as dynamic analysis monitors actual behaviour. However, dynamic analysis is not a

completely immune to morphic techniques; malware may detect operation in a sandbox or

debugger and alter behaviour accordingly to counter dynamic analysis techniques (Egele

et al., 2012), although Damodaran et al. (2017) found that this may not occur often

enough in practice to make a marked difference to larger scale categorisation effors using

dynamic analysis.

Using both static and dynamic analysis, contemporary research has focused on three prin-

ciple methods of detecting malware: signature based detection, behaviour based detection

and statistical based detection (Damodaran et al., 2017). The first method, signature

based detection, has been and continues to be the mainstay for malware detection in the

anti-virus industry. At a fundamental level, signature matching is matching a sequence

of bytes in a file to known malware (Damodaran et al., 2017). Signature matching is fast,

requires relatively little interpretation and has proven to be the foundational method of

malware detection. However, it is also the method most prone to evasion by morphic

behaviour, and requires an up to date database of signatures to be available in order to

be effective: new strains of malware require new signatures, and signatures may often take

some time to become available (Moser et al., 2007), a key limitation of this method of de-

tection. Researchers have attempted novel ways of reducing signature databases (Nachen-

berg and Griffin, 2012), or attempting to work with smaller, more generic signatures to

defeat counter measures (Poston, 2013). In an analysis of one anti-virus product making

use of the latter approach, Ormandy (2011) demonstrated that often these attempts carry

more marketing value than practical advantage. The challenges and potential inefficiency

of signature based detection methods are also noted by Moser et al. (2007) and Kolbitsch

et al. (2009).

In the second method Jacob et al. (2008) suggested that behavioural based detection

could use both static and dynamic analysis to establish baseline patterns for regular, non-

malicious behaviour and thus detect malware through anomalous behaviour. Adapting

strategies similar to intrusion detection systems, the authors also make note of work that

uses Markov models to establish a meaningful statistical inference of valid behaviour, as

seen in Zanero (2004). Following on from this use of statistical inference, statistical based

detection has extended the use of statistical models to determine malicious behaviour. At

it’s simplest, statistical based detection may make use of both static and dynamic analysis

to determine models of behaviour based on an observed set of behaviours, features or

interactions. The use of Hidden Markov Models (HMM), a machine learning technique

common in many pattern matching applications like handwriting or speech recognition,

2.2. UNDERSTANDING MALWARE 12

have been used to great effect in malware detection (Damodaran et al., 2017). HMMs allow

for a discrete set of observables (in the case of malware this could be opcodes, instructions,

API calls, or any other observable pattern) derived from static or dynamic analysis to be

used as training data and in turn determine the probability of a given file being malware.

The technique has been applied to static analysis (Annachhatre et al., 2015), dynamic

analysis (Dai et al., 2009; Kolbitsch et al., 2009) and a combination of the two (Damodaran

et al., 2017). Other related statistical methods used have included the use of n-grams and

methods of clustering (Wong and Stamp, 2006; Kolter and Maloof, 2006; Raff et al., 2016;

Pai et al., 2017). Finally, it should be noted that detection may occur outside of the host

environment through external network analyses, including logitudinal and meta-analysis

of external behaviours, as seen in Stalmans and Irwin (2011), Irwin (2013) or Lever et al.

(2017).

2.2.2 Evolution of Malware

Understanding the evolution of malware plays a crucial role in classification, establishing

well reasoned taxonomies and determining trends. From the outset malware research has

frequently borrowed both structure and etymology from the biological sciences (Spafford

et al., 1991; Spafford, 1990). This approach is not without limits; in many ways the evolu-

tion of malicious software is simplistic compared to the complex interactions, competition

for resources and much longer evolutionary timeframes observed in nature (Seideman

et al., 2015a). However, biological approaches are used successfully in understanding the

evolution of malware. Karim et al. (2005, p. 13) note:

“Malware authors use generators, incorporate libraries, and borrow code from

others. There exists a robust network for exchange, and some malware authors

take time to read and understand prior approaches. Malware also frequently

evolves due to rapid modify-and-release cycles, creating numerous strains of

a common form. The result of this reuse is a tangled network of derivation

relationships between malicious programs.”

Given the use of shared code, multiple derivatives and related behaviours, the evolution

of malware can therefore benefit from phylogenetic modelling to better understand sim-

ilarities, trends and evolution of malware over time (Karim et al., 2005). Proposed by

Karim et al. (2005), the use of phylogeny models provides a tree-based model to show

2.2. UNDERSTANDING MALWARE 13

relationships between entities (in this case, malware samples) with similarity determined

by comparing n-grams (order sensitive n-length byte strings) or n-perms (order insensi-

tive n-length byte strings) between samples to determine a likely evolutionary relationship

based on computed closeness. The branching diagram made possible by phylogeny models

allow for parent-child relationships to be determined, with a leaf nodes able to have mul-

tiple parents as well as abstract nodes where no parents have been established, as would

be seen in the case of completely new malware with no shared evolution. Similar work by

Gupta et al. (2009) used a graph pruning algorithm (i.e., edges within the malware family

graph are fully connected, and pruned to decompose and demonstrate likely relationships)

to identify the evolution of 669 distinct families of malware from a longitudinal dataset

gathered by an anti-virus company over a nine year period. The authors used analysis of

malware metadata text as the basis of comparison rather than data derived from static

or dynamic analysis.

Building on the earlier work by Karim et al. (2005) using phylogenetic models as well as

classification work using n-grams by Kolter and Maloof (2006), Seideman et al. (2015a)

mapped evolutionary relationships and biodiversity using similarity of features extracted

from static analysis of a sample set. This approach has two shortcomings: the first is

the previously discussed challenge of code packing and obfuscation that static analysis is

subject to, and the second is the difficulty in representing ‘reticulation events’, or re-use

of shared code fragments between malware samples (Liu et al., 2016). Seideman et al.

(2015b), Liu et al. (2016) and Moubarak et al. (2017) have used phylogenetic systemat-

ics to demonstrate evolutionary relationships through dynamic or behavioural analysis.

The approach has also been used to group and understand evolutionary relationships in

remotely executed vulnerabilities by Ma et al. (2006).

Not all studies of malware evolution make use of biological terms of reference. Prior

work done within the Android malware ecosystem by Zhou and Jiang (2012) considered

the analysed corpus in terms of behaviour, detection and the overall discovery timeline,

although evolutionary considerations were limited to specific samples within the overall

sample set. In addition, mobile platforms have provided opportunities to explore the

relationship between evolution and the relative popularity of a platform. Suarez-Tangil

et al. (2014) considered both market share as well as the platform security model in their

survey of the evolution of mobile device malware, focusing on the bahaviour of malware,

infection vectors and mechanisms employed to escalate privilege to categorise samples.

Rodŕıguez (2017) analysed malware targeting point of sale (POS) systems, focusing on

functionality, methods of persistence and data exfiltration over a six year period, again

with a reasonably small sample group and on a niche platform. Calleja et al. (2016)

2.3. OBSERVING MALWARE IN THE WILD 14

took the novel approach of studying forty years of malware evolution through traditional

software engineering metrics, including codebase size, estimated development cost and

code quality.

Broadly, a review of the literature appears to show studies considering evolution fall into

two main approaches. The first approach considers metrics derived directly from instruc-

tion sets, often from static analysis, used to determine similarities, common sequences

and differences. These studies appear to benefit from larger data sets, especially those

with a longer temporal base. The second uses behaviour, ranging from API calls to activ-

ities observed in dynamic analysis to build up an understanding of potential relationships

across a timeline. These may be more suited to smaller datasets, often in more focused

ecosystems. Both may have have advantages and disadvantages depending on the end

goal and operating environment, and both present prior work relevant to this research.

Studies following either approach have made beneficial use of phylogeny models to repre-

sent evolutionary relationships. In the section that follows related work on classification

and taxonomies for malware will be considered.

2.3 Observing Malware in the Wild

Real world observations of malware can be described from a number of standpoints.

Terminology used to describe malware ranges from the evergreen ‘computer virus’ to

newer descriptions of ransomware and cryptominers. As these terms are used throughout

this research, a review of common terminology is included. Following this, methods of

infection and persistence are reviewed, as well as a review of code signing in malware.

2.3.1 Common Terminology

As discussed in Section 1.1, computer viruses have long been grouped by their method of

infection and payload. Over time these characteristics change, however a common high

level taxonomic terminology remains. Efforts to create detailed and consistent taxonomies

for use in research are discussed in Section 2.4.2, however a description of the commonly

used terminology to describe high level categories is justified.

In his seminal work, Szor (2005) defines a number types of malicious programs. Many

of the types mentioned have fallen from common use, for example octopuses (a concep-

tual precursor to the modern botnet), rabbits (a single instance virus) and logic bombs

2.3. OBSERVING MALWARE IN THE WILD 15

(malicious logic written into legitimate applications). Other types have fallen from use as

the technology landscape has changed as seen in the case of diallers1, a technology and

terminology no longer in frequent use. A number of terms both from the work in question

and others are still in common use, and are shown in Table 2.1 along with the description

and source.

Of particular interest in this research are adware and Potentially Unwanted Programs

(PUPs). Often grouped along with spyware, adware and PUPs represent a family of

malware occupying murky territory in terms of overall legitimacy, a common descriptive

thread being deceptive behaviour and non-consensual activity. McFedries (2005, p. 72)

provides the following context:

Linguistic proof of the cultural impact of spyware is the large number of syn-

onyms that have popped up in the past year or so. These include sneakware,

stealthware, snoopware, trackware, thiefware, or, tellingly, scumware. A spy-

ware program is also sometimes called an E.T. application, because it phones

home to secretly send data to an online destination.

Geniola et al. (2017) considers the role of download portals and software aggregation

sites in spreading adware and PUPs, noting both privacy and security issues with the

spread of this group of malware. Kotzias et al. (2015) examines the prevalence of abuse

of code signing by PUPs, likely an artefact of attempted legitimacy and a topic discussed

in greater detail in Section 2.3.3.

Other types of malware noted as relevant contemporary threats can be found in industry

reports such as Symantec (2018a) and Kaspersky (2018), which call out ransomware and

coinmining as the fastest growing threats for the period under investigation. In addition

to this the reports highlight a variety of malware variants that defy simple categorisation,

but can broadly be seen as backdoors, trojans and RATs in that they infect a users

machines through a variety of mechanisms, and execute additional payloads depending

on the target, operator and vulnerabilities available to exploit. An example of this is the

emotet banking trojan and dropper (Symantec, 2017), which had a significant detection

rate world wide (Symantec, 2018a). The various categories of malware relevant to this

research will be discussed in more detail in Section 3.8.

1A dialler is malware installed to automatically dial numbers for malicious, usually revenue generating,
purposes (Szor, 2005).

16

Table 2.1: Malware terminology

Term Definition Source

Adware Malware that displays advertisements or promo-
tion without the users knowledge or consent

Szor (2005)

Backdoor Malware that allows remote connections to a sys-
tem without the users consent

Szor (2005)

C2 Command and Control, provides remote instruc-
tions to locally persisted malware

Gu et al. (2008)

Cryptominer Malware that uses computer resources for cryp-
tocurrency mining (also known as coinmining)

Tahir et al. (2017)

Dropper Malware used to download additional malware or
instructions, either immediately or at a later date
based on instruction from a C2

Kwon et al. (2015)

Keylogger Malware that captures a users keystrokes, includ-
ing potentially sensitive information

Szor (2005)

PUP Potentually Unwanted Program: any program in-
stalled without a users consent for an undisclosed
purpose

McFedries (2005)

Ransomware Malware that encrypts stored files, charging a fee
(ransom) to provide the decryption key

Gazet (2010)

RAT Remote Access Tool: provides remote connectivity
and access to local devices, potentially including
storage and media devices

Alperovitch (2011)

Rootkit Software that allows privileged access to a com-
puter without being detected, often as part of other
software

Szor (2005)

Spyware Malware that spies on a users behaviour, usage and
activity

Szor (2005)

Trojan Malware included in a different program or appli-
cation, installed unknowingly by a user

Szor (2005)

Virus Code that replicates a potentially modified version
of itself

Szor (2005)

Worm A virus that replicates over network resources Szor (2005)

2.3. OBSERVING MALWARE IN THE WILD 17

2.3.2 Methods of infection and Persistence

Like a biological virus, all malware requires a way of infecting the host. Also known as

the infection vector, hosts can be infected using direct or indirect means. Examples of

direct mechanisms of infection may include physical device infection through insertion of

a USB drive (Pham et al., 2010), untrusted accessories (Lau et al., 2013; Zdziarski, 2014)

or network vulnerability like the SQL Slammer worm (Moore et al., 2003) or Wannacry

ransomware (US-CERT, 2017). Indirect infection vectors are infection methods that rely

on user action of some sort, like visiting an infected website, downloading an infected

application or opening an email attachment with a malicious attachment (Hang et al.,

2016; Mezzour et al., 2017). Simmons et al. (2009) provide a robust review of infection

vectors as part of the AVOIDIT (Attack Vector, Operational Impact, Defense, Information

Impact, and Target) taxonomy.

Once a successful initial infection has taken place, malware requires a method of per-

sistence in order to be effective. Persistence methods vary between operating system

tand hardware platforms, usually relying on similar methods of persistence to legitimate

applications installed on the host. Most relevant to this research are the persistence

mechanisms summarised by Wardle (2014), and listed in Table 2.2.

2.3.3 Abuse of trust: malware and code signing

Determining which applications, installers and executables are trustworthy is an impor-

tant operating system control. The ability to validate a file, be it an installer or an

already installed executable, has been provided by both mobile and non-mobile operat-

ing systems through code signing (Kim et al., 2017). The process of certification relies

on the use of Public Key Cryptography (PKC) to determine both the authenticity and

integrity of a file. In the context of code signing the method suffers from systemic rather

than technical weaknesses: Kim et al. (2017) found that inadequate client side signa-

ture validation, compromised publisher keys and key mismanagement, and the failure of

Certificate Authorities (CA) to verify potentially malicious actors were key issues in code

signing efficacy on the Microsoft Windows operating system. Alrawi and Mohaisen (2016)

provide exploratory research of a signed malware corpus, noting significant similarities in

trust chain length (the number of certificates in the certificate store of a digital signature),

and issue, expiry and validity periods.

18

Table 2.2: macOS malware persistence mechanisms adapted from Wardle (2014)

Mechanism Description

Low Level or Firmware Code may be installed within the pre-boot
load area, i.e. before the OS has booted

Kernel Extensions Kernels extensions run at the highest OS
privilege level. Ideal for rootkits.

Launch Agents Most common user mode persistence mech-
anism, run before user login on startup

Cron Jobs A common UNIX and Linux mechanism for
running scripts or executables at regular in-
tervals

Rc.common Infrequently used macOS startup script
common to BSD UNIX derivatives

Login/Logout Hooks Technically deprecated script hook run on
login or logout

Login Items & Sandboxed Login
Items

Executed on login. Technically deprecated,
but replaced with sandboxed login items

Re-opened Applications Application state is maintained by the op-
erating on system restart, can be abused by
malware

Startup Items Applications loaded on startup, visible to
the user as startup items in system prefer-
ences

Launchd.conf Companion configuration to launch agents,
which can trigger script execution in its own
right

Arbitrary dynamic
libraries (DYLD load)

The DYLD INSERT LIBRARIES environ-
ment variable specifies arbitrary libraries
that may be loaded alongside a process

Executable (MACH-O) injection Unsigned binaries may allow arbitrary code
to be injected and run by modifying the ex-
ecutable entry point

Application specific persistence Applications that support plug-ins (for ex-
ample, browsers) may have the functionality
subverted to load malware

2.4. MALWARE IN RESEARCH 19

In both the Windows and Apple ecosystems, the barrier to obtaining a code signing cer-

tificate is in part financial, with fees that need to be paid, and in part validation by

either third party CAs2, or in the case of Apple, following a validation process by Ap-

ple themselves3. Analysis of certification of adware, PUPs and pay-per-install software

by both Kotzias et al. (2015) and Serper (2018) show that neither the commercial nor

validation efforts appear to be completely effective. Additionally, from a technical per-

spective the enforcement of code signing on macOS has been found to have technical flaws

in implementation, allowing it to be bypassed (Levin, 2015; Reed, 2018a).

2.4 Malware in Research

Historic categories of malware receive limited useful attention in current literature. As dis-

cussed previously, Szor (2005) provided a high level taxonomy of malware types that, while

frequently cited for context, have become less relevant in contemporary research. Viruses,

worms, mass-mailers, octopuses, rabbits, germs, dialers, backdoors, trojans, rootkits, ad-

ware and keyloggers may all exist, but arguably represent more an infection vector than

a discrete malware type. Contemporary malware authors have adapted to changes in

operating systems, available vulnerabilities and more sophisticated financial and political

incentives. For example, modern Advanced Persistent Threats (APT) may use multi-

ple vectors to gain entry, maintain persistence and ultimately achieve their goals (Chen

et al., 2014; Symantec, 2018a). This rapid growth of malware techniques and platforms

may have lead to earlier, infection vector-centric categorisation becoming outdated, but

has not removed the value or challenge of consistent categorisation or relevant taxonomies.

A distinction must be made between malware naming, labelling, categorisation and tax-

onomies. Specifically, related work will be considered in two discrete areas: naming and

labelling of malware in Section 2.4.1, and categorisation and taxonomies in Section 2.4.2.

Naming and labelling frequently adopts a more technical approach with significant efforts

in automated labelling, and categories and taxonomies are often considered from a more

theoretical standpoint. In the sections that follow, both will be considered in turn.

2.4.1 Naming and Labelling

Jackson (1990) identified the naming of malicious software as a challenge similar to that

2https://docs.microsoft.com/en-us/windows/desktop/appxpkg/appx-portal
3https://developer.apple.com/support/certificates/

https://docs.microsoft.com/en-us/windows/desktop/appxpkg/appx-portal
https://developer.apple.com/support/certificates/

2.4. MALWARE IN RESEARCH 20

faced by other branches of science at a time when a total of 46 different viruses were known

for the PC (excluding the Macintosh operating system). Even at this early stage, the

author noted the importance of a naming consistency within the virus research community

arguing that discovery should be treated similarly to that of new astronomical or biological

discoveries: immediately logged and categorised by some central authority. The principle

challenge to this approach has been in part the role of anti-virus software vendors, for

whom naming was simply a side-effect of detection, and the rapid increase over time in

the volume of malware observed. From the 46 viruses catalogued in 1990, Kantchelian

et al. (2015) reported a single malware vendor receiving approximately 344,000 unique

instances in a day in 2014. This high volume makes manual naming a prohibitively

expensive task, further complicated by a lack of agreed and adopted standard for naming

malware across the information security industry and between vendors of anti-malware

software (Kantchelian et al., 2015; Hurier et al., 2016, 2017). An example of disparate

vendor labelling can be seen in Figure 2.1 taken from the VirusTotal service4, with a

single sample of the spigot macOS malware identified with a number of labels by different

vendors.

Figure 2.1: Various vendor labels for a Spigot malware sample, from VirusTotal

A number of attempts have been made to formalise conventions for malware naming and

categorisation. The Computer Antivirus Research Organisation (CARO) was established

in 1991, releasing the first formal naming convention for virus research (Skulason et al.,

1991). While the effort did not see long term adoption, it played a role in advancing

thought around malware categorisation and highlighted the challenges faced with naming

and categorisation within the rapidly growing and diverse population of malware (Scheidl,

1999; Riau, 2002; Szor, 2005). Following on from CARO and building on the success of the

Common Vulnerability and Exposures5 (CVE) initiative, the Common Malware Enumer-

4https://virustotal.com
5https://cve.mitre.org

https://virustotal.com
https://cve.mitre.org

2.4. MALWARE IN RESEARCH 21

ation6 (CME) was developed to assist with universally accepted malware identification in

a similar way that CVE’s identified vulnerabilities. The platform was ultimately retired

as the categorisation became less appropriate for threats being observed:

“In late 2006 the malware threat changed away from the pandemic, widespread

threats CME was developed to address to more localized, targeted threats,

which significantly reduced the need for common malware identifiers to miti-

gate user confusion in the general public.” (MITRE, 2006, p. 1)

As malware has evolved, so more recent thinking has shifted away from identification of

malware in purely biological or tactical terms like virus, trojan or backdoor. Concepts

of evolution and shared roots notwithstanding, the identification of malware has itself

evolved to include the threat it represents rather than an isolated view of programmatic

attributes. In other words, while biological constructs like phylogeny may explain much of

the historical and development path of malware, when viewed from a threat perspective

malware may be more easily categorised through a composite view of observed attributes:

behaviours, family, infection sources and observable artefacts (for example, files, network

connections or processes). The Malware Attribute Enumeration and Characterization7

(MAEC) project is a community driven initiative and third major attempt at malware

categorisation and naming building on the previous two. MAEC is a language to describe

malware behaviour patterns and resultant threats (MITRE, 2018), allowing a close in-

teractions with threat sharing platforms like the Malware Information Sharing Platform8

(MISP).

Outside of threat sharing, practical solutions to the challenge of consistent naming for

research purposes has found some solution in the large malware datasets now available to

researchers, like VirusTotal. The advantage of these (and similar) datasets is that labelling

from multiple anti-malware software vendors is available allowing for researchers to build

more effective methods of consistent labelling for reporting. AVClass is an automated

solution proposed by Sebastián et al. (2016) that can processes high volumes of vendor

labels, resulting in a normalised, alias aware set of labels for a given malware dataset.

Hurier et al. (2017) also considered the question of mislabelling and the relative ‘noise’ in

categorisation found between different anti-malware vendors, proposing a similar approach

for the processing a large datasets of Android malware.

6http://cme.mitre.org
7http://maecproject.github.io
8http://www.misp-project.org

http://cme.mitre.org
http://maecproject.github.io
http://www.misp-project.org

2.4. MALWARE IN RESEARCH 22

While processing of vendor labels has provided an efficient mechanism for large scale la-

belling of malware datasets, it is not without its challenges. Bailey et al. (2007, p. 178)

noted “that different AV products characterize malware in ways that are inconsistent

across AV products, incomplete across malware, and that fail to be concise in their se-

mantics”, and proposed a solution was based on clustering similar malware rather than

standardisation of labelling. Kornblum (2006) proposed and implemented a method for

using context triggered piecewise hashes to cluster and identify similar malware samples,

based on earlier work on unsolicited email (SPAM) and file synchronisation by Tridgell

(1999). The result of this work, the SSDeep tool9, has become a standard way to efficiently

cluster malware.

Finally, one of the advantages of homogeneous labelling over a large dataset of obser-

vations is the ability to determine diversity of the observed population. The Shannon

diversity index is an index commonly used to indicate the diversity of species in popula-

tion (Shannon, 1948), used by Soto-Valero and González (2018) as a measure of diversity

of malware population. The formula for calculating the Shannon diversity index is:

−
n∑

i=1

pi ln pi (2.1)

where the proportion of a malware families i relative to the total number of families (pi)

is multiplied by the natural logarithm of this proportion(lnpi), and the result multiplied

by -1.

2.4.2 Categorisation and Taxonomies

Im and Baskerville (2005, p. 69) define taxonomies as “the theory and practice of classi-

fication, arising in a branch of science known as systematics. Unlike nomological science

with its focus on uniformity, the taxonomies of systematics focus on diversity”. Mal-

ware research is no stranger to the use of taxonomies for categorisation. Early work by

Weaver et al. (2003), Karresand (2003), Szor (2005) and Filiol (2006) propose and discuss

taxonomies representing the relative spread of malware at the time, with almost all ac-

knowledging the rapid growth in tactics and behaviours. A taxonomy of botnet structures

is proposed by Dagon et al. (2007) and extended to include other attributes by Khattak

et al. (2014).

9https://ssdeep-project.github.io/ssdeep/index.html

https://ssdeep-project.github.io/ssdeep/index.html

2.5. MACOS: OPERATING SYSTEM, SECURITY AND MALWARE 23

Grégio et al. (2015) propose a comprehensive taxonomy of behaviours, noting that while

the original classes of malware are suitable for simple categorisation, “classes may intersect

their expected behaviors” (p. 2759) thus making the clear distinction between simplistic

classes of malware grouped by their expected behaviour and a taxonomy based on observed

behaviour. Table 2.3 provides a breakdown of the main classes of behaviour suggested

in the proposed taxonomy. Further sub-classing (for example, a label specifying the

mechanism of persistence employed) allows labelling of specific behavioural attributes in

turn allowing the taxonomy to be used and expanded for categorisation over larger sample

groups. The suggested naming scheme provides the class C, (where C = {E,D,M,S} from

the classes in Table 2.3), and the subset of observed behaviours BC to form a constructed

label based on observed behaviours within classes, for example C1BC1
C2BC2

C3BC3
to

describe a given sample within the taxonomy (Grégio et al., 2015).

Table 2.3: Taxonomy of behaviours, adapted from Grégio et al. (2015)

Class Behaviour Examples

Evasion Removal of evidence or registry entries, AV termination, Fire-
wall Termination, Update termination

Disruption Service or port scanning for known vulnerabilities, email trans-
mission, disruptive network activity

Modification Modifications of files, binaries, creation of mutexes, persis-
tence, addition of new malware

Stealing Theft or exfiltration of data, credentials or other information

While the approach of using behaviour to group is not new, as an example Rieck et al.

(2008) used automated analysis and learning of behaviours to group and categorise and

group malware into families, naming and grouping within specific, articulated classes of

behaviour may provide a method of taxonomic comparison across operating systems.

2.5 macOS: operating system, security and malware

Apple’s Mac macOS (previously known as OS X and Mac OS X) operating system has

traditionally enjoyed less popularity in the realm of mass marketing computing. With

the rise of personal computing, companies and individuals adopted Microsoft’s Windows

operating system as the dominant technology of the day, with the Apple’s hardware

2.5. MACOS: OPERATING SYSTEM, SECURITY AND MALWARE 24

and operating system experiencing a renaissance of sorts after the release of the macOS

operating system in 2002. In recent years, Apple hardware has captured significant market

share (StatCounter, 2017) with a majority market share in some categories: for example,

a survey by Stack Overflow, a popular question and answer online community for software

developers placed macOS as the single most popular desktop operating system in use by

full time developers (Stack Overflow, 2016).

Together with macOS historically shipping with more secure operating system defaults,

the overall impedance in popularity and market share has, in part, led to malware being

more prevalent in the Windows operating system environment than macOS. As previously

noted, the motivation for writing malware may range from financial or political gain to

nuisance value alone, and malware authors have taken advantage of the economies of scale

found in the broad enterprise and consumer use of Windows, often enabled by frequently

outdated operating system versions, poor patching and updating habits of users and

dearth of available vulnerabilities (Johnston et al., 2016). Given this, by far the largest

opportunity to gain access to victims machines has been through the development of

Windows specific malware, leading to a common perception that macOS may be largely

immune to the malware that has plagued users of the Windows operating system. This

has, as may be expected, led to not only well developed tooling, but a significant body

of research on tools, techniques and taxonomies of Windows based malware (Egele et al.,

2012; Sikorski and Honig, 2012; Grégio et al., 2015), with limited attention being paid to

macOS malware.

Apple’s operating system, however, is far from immune. As previously noted, one of the

first examples of a computer virus was the Elk Cloner, targeting Apple IIs (Spafford et al.,

1991). With the growth in popularity of Apple hardware, it follows logically that more

focus will be placed by interested parties on malware able to infect and persist in the ma-

cOS environment. Anti-virus vendors have previously noted significant increase in macOS

malware found in the wild. Kaspersky (2014) discusses the relative sophistication macOS

malware, and Carbon Black (2015) notes the significant increase in macOS malware seen

in 2015, with a focus on detection and persistence methods. Using the annual datasets

provided by the National Vulnerability Database10 (NVD), the security of macOS relative

to its Windows desktop operating system counterparts can be compared. Figure 2.2 shows

a breakdown by year of published vulnerabilities (Common Vulnerability and Exposures,

or CVEs) for both macOS and Windows desktop operating systems, including Windows

XP, Windows 2000, Windows 7, Windows Vista, Windows 8 and Windows 10. The years

10https://nvd.nist.gov

https://nvd.nist.gov

2.5. MACOS: OPERATING SYSTEM, SECURITY AND MALWARE 25

Figure 2.2: CVEs by Desktop Operating System

2007, 2008 and 2014 show more CVEs logged for the macOS operating systems of the

time: as context, 2005 saw the first move of macOS from the PowerPC architecture to

Intel x86 based processors, and Windows 7 was released in 2009.

While the number of CVEs may provide an indication of relative operating system security,

the severity of the vulnerabilities identified should also be considered. Figure 2.3 provides

a breakdown of the identified CVEs, including an indication of the NVD assigned severity

rating (high, medium and low) for each of the operating system groups. While Windows

based operating systems show a far higher count of CVEs in recent years, a greater

proportion are considered ‘low’ severity vulnerabilities. macOS vulnerabilities can be

seen to be predominantly ‘medium’ and ‘high’ level, with the most significant proportion

of ‘high’ level vulnerabilities between 2015 and 2017. Overall, while an argument can be

made that the macOS operating system may, at a given point in time, have been more

secure by default, the assertion that the operating system is consistently more secure

overall is not necessarily true.

From a technical perspective, related work exists primarily in practice. Yonts (2009) pro-

vides a high level review of tools and methods to analyse macOS malware. Baumgarten

(2013) specficially analysed tools available to examine the Mach-O file format, macOS’s

executable file format equivalent to the PE file format used in Microsoft operating sys-

tems. Hsieh et al. (2016) demonstrated automatic classification methods using a sample of

2.6. SUMMARY 26

Figure 2.3: CVE by operating system and severity

available macOS malware, Van Mieghem (2016) used macOS system calls to detect mal-

ware and Pajouh et al. (2017) used machine learning to classify macOS malware based

on dynamic analysis of library calls. macOS provides ample opportunities for persistence

and infection vectors, from the DMG images used to distribute software (Levin, 2018) to

numerous methods of persistence demonstrated by Wardle (2014) and Wardle (2017a).

Overall, the macOS operating system has been the focus of less malware infection, re-

search and attention for reasons more likely related to overall market share than technical

security prowess. However, as the operating system has been established in popular use

and the constantly changing landscape provides different incentives for malware authors,

attention may well turn to macOS. From a research perspective, the relative lack of schol-

arly attention on macOS malware provides opportunity to apply prior work on other

operating systems to better understand the direction that macOS malware is likely to

follow.

2.6 Summary

In this chapter, background information and work related to malware research was re-

viewed. The analysis, detection and evolution of malware was discussed. Important

2.6. SUMMARY 27

factors to consider when observing malware in the wild were covered, including common

terminology in use, methods of infection and persistence and the prevalence and efficacy

of code signing. Finally, specific attention was given to macOS security. In the chapter

that follows, an overview of the methodology used in this research will be discussed.

2.6. SUMMARY 28

Chapter 3

Methodology

I may not have gone where I intended to go,

but I think I have ended up where I needed to be.

Douglas Adams, The Long Dark Tea-Time of the Soul

3.1 Introduction

As noted by Soto-Valero and González (2018), there is a paucity of work that considers

the diversity of malware on specific platforms and specifically longitudinal studies that

consider empirically observed infections. The goal of this research is to contribute to this

body of knowledge by addressing a gap in the study of real world infection datasets of ma-

cOS malware. By understanding diversity in an observed population of macOS endpoints,

this work also creates an opportunity to further understand the evolution of malware on

the platform and understand the potential future direction it may develop. Malin et al.

(2008) suggest three broad analysis techniques for malware: temporal, relational and

functional analysis.

Temporal analysis focuses on activity over a period of time, relational the interaction

between different parts of a malicious activity and functional how the activity manifests.

Building on this, Rossow et al. (2012) note discrete avenues of malware research: studies

of the detection of malware, studies of longitudinal behaviour and validation of prior

results. Additionally, the authors provide a number of guidelines for prudent malware

29

3.2. APPROACH 30

research which is “correct, realistic, transparent, and do(es) not harm others” (p. 65).

Further guidance suggests developing a formal methodological approach and providing

clear details of the approach, collection, experimental setup and treatment of gathered

data to ensure transparency.

Following this advice, this chapter will focus on these aspects: the sections that follow

provide details of the overall approach taken, the setup of the experiment itself, the tools

employed, the data import and cleaning process and the enrichment and categorisation

carried out. Finally, validation of the data is discussed.

3.2 Approach

In keeping with the suggestions of Rossow et al. (2012), this research benefits from data

obtained from a ‘real world’ operational context, and provides details of the experimental

setup. As the desire is to explore and identify potential hypotheses for further research,

an exploratory data analysis (EDA) approach originally developed by Tukey (1977) and

expanded by Velleman and Hoaglin (1981) and others is taken. This approach has been

used for exploration and analysis of security related structured data in other research

(Thonnard and Dacier, 2008; Barrera et al., 2010), observed malware datasets (Vermeulen,

2018) and in information security data analysis practice (Collins, 2017). The approach is

flexible, with a focus on graphical representation of data to assist with identification of

patterns in addition to descriptive statistics (Brillinger et al., 2002).

3.3 Experimental Setup

Real world infection data from a population of endpoints, and specifically macOS end-

points, can be a challenging body of data to obtain. Potential sources of observed in-

fections may include large corporate networks or anti-malware software vendors, however

due to the commercial sensitivity of the data these are not frequently available for gen-

eral research. For this research, a dataset of reported endpoint events from a population

of macOS clients, along with the requisite permission to analyse the data, was obtained

from an anti-malware software vendor which was then imported and cleaned (Section

3.5), aggregated (Section 3.6), enriched (Section 3.7) and categorised (Section 3.8) before

being analysed in Chapter 4. This primary dataset covers suspicious events reported by

3.3. EXPERIMENTAL SETUP 31

an installed anti-malware client over an eleven month period from August 2017 through

to June 2018. The anti-malware client on the endpoint monitors filesystem and network

activity, generating events when potentially suspicious activity or a known malware sig-

nature is detected. The events are then recorded, with each record containing a reference

to the file generating the event in the form of a computed cryptographic hash of the file

using the Secure Hash Algorithm 1 (SHA-1) as well as potential categorisation of the file

by the vendor and other related information. We refer to these as ‘events’, as not all are

malicious, and not all constitute an infection. This is in line with the use of ‘encounters’

in similar work from a corporate malware event dataset by Yen et al. (2014).

Figure 3.1: Data import, enrich and categorisation process

General datasets for malware analysis are available from a number of sources, and fre-

quently form the basis of research into malware detection, behaviour and other analysis.

In common use, and discussed briefly in Section 2.4.1, is VirusTotal, an online service

dedicated to malware analysis intended to function as an industry wide tool for collabo-

ration in malware and related research. This research made use of VirusTotal under an

academic access license to enrich data from the primary dataset, and assist with categori-

sation and aspects of temporal analysis of observed infection data, such as dates that a

sample was first observed. To do this, the unique file hashes from the primary dataset

were matched against the VirusTotal online service, and additional metadata recorded

against each unique hash. This allowed the analysis to take into account information that

3.4. TOOLING AND ENVIRONMENT 32

may have been potentially unknown at the initial time of analysis by a single anti-malware

tool, as well as any relevant categorisations by different anti-malware vendors and clus-

tering information by VirusTotal. Exploratory data analysis was then carried out against

the resulting combined and enriched dataset, which is detailed in Chapter 4. The sections

that follow provide details of the steps taken, summarised in Figure 3.1, with additional

details in Table 3.1.

Table 3.1: Overview of the steps taken to setup the data for analysis

Stage Number of Records

1 Recieve initial dataset 1,991,861

2 Import initial dataset 1,990,182

3 Extraction of unique hashes 8,112

4 Unique hashes enriched by VirusTotal 5,676

5 Unique hashes categorised by AVClass 3,172

6 Unique hashes assigned high level category 3,254

3.4 Tooling and Environment

All work was carried out using a standard macOS workstation configured for regular

software development. The workstation had limited customisation outside of the shell

environment. Initial imports were carried out using iPython and the Jupyter Notebook to

allow for rapid manual review of dataset samples. PostgreSQL version 9 was used to store,

query and perform high level reviews of data through manual querying where required.

Python version 3 was used to run scripts required for enrichment and categorisation,

making use of a number of libraries including the psycopg2 and VirusTotalApis packages

for connecting for PostgreSQL and VirusTotal respectively and Numpy and FuzzyWuzzy

packages for mathematical functions and fuzzy matching used to categorize malware types.

The Pandas Python library was also used for initial data import.

For reporting and graphs, R1 was used along with the exploratory.io2 visualisation tool.

The tool is a commercial wrapper around R that allows direct connections to a number

1https://www.r-project.org
2https://exploratory.io

https://www.r-project.org
https://exploratory.io

3.5. DATA PROCESSING: IMPORT 33

of data sources including databases, and visualisation and exploration of the results. An

academic license was provided by the publishers for research purposes.

3.5 Data processing: Import

The original dataset comprised of eleven separate files, with each file representing a months

worth of data ranging from August 2017 to June 2018, collected from 12,601 unique

endpoints. No specific geographic information was provided with the dataset, however

the deployment of the software client is worldwide. The dataset was provided in comma

separated value (CSV) format with 68 fields. Many of these supplied fields were vendor

specific and not relevant to the research, and thus were not included for further processing

and analysis. Examples of these fields include internal identifiers, client version numbers

and any references to the vendor’s commercial clients, for example client names that could

be inferred from full file paths. The columns listed in Table 3.2 were selected for import.

Table 3.2: Vendor Fields for Import

Field Name Description

ID Unique vendor row ID

Date Timestamp

SHA SHA-1 Message Digest (hash)

Status Client determined file status (suspicious, active, blocked, resolved)

Filename Payload filename

UUID Unique Client Identifier

Flagged As Vendor Family Flagging

The vendor supplied data consisted of a file for each months worth of records, with files

containing between 15,000 and 500,000 rows each over a number of unique endpoints, the

exact details of which are shown in Table 3.3. To accommodate the format and size of the

dataset, the Python library Pandas was used to read and extract the relevant fields. This

allowed for both high level validation and initial cleaning of the data, as well as coalescing

the data into a single file for import. Listing 1 shows the commands used in an iPython

environment to to select and import the data from multiple files, after which the complete

3.6. DATA PROCESSING: AGGREGATION 34

dataset of 1,990,183 records could be saved to a single file for further processing, with

1,678 rows discarded in the process as malformed or incomplete.

Table 3.3: Original vendor dataset size

Export Month 08/17 09/17 10/17 11/17 12/17 01/18 02/18 03/18 04/18 05/18 06/18

Events 15330 58827 23093 129170 347177 54452 37019 49618 209363 527443 540369

Unique Endpoints 715 763 1167 1477 1952 1517 593 926 1331 3067 2522

Using the coalesced data file, the data was then imported in a PostgreSQL database for

further analysis. The use of a relational database allowed for more efficient use of the

VirusTotal API in the steps that followed, as results of API requests used to enrich the

data could be persisted to the database and completed in smaller batches to stay within

the API request limits imposed by VirusTotal. From the originally supplied data, a total

of 1,990,182 records were successfully imported with a single further record discarded

as incomplete. With the full dataset loaded, more detailed processing could take place

including additional levels of cleaning, enrichment of the dataset with additional data

and identification of invalid data that could introduce bias or inaccuracy, discussed in the

section that follows.

1 df = pd.concat((pd.read_csv(f, header=None, usecols=[0,1,7,9,17,35,50],

dtype={50: object}) for f in all_files))↪→

2 df = df.rename(columns={0: 'id', 1: 'date', 7: 'sha', 9: 'status', 17:

'filename', 35: 'uuid', 50: 'flagged_as'})↪→

Listing 1: Import of data

3.6 Data Processing: Aggregation

As discussed previously, file SHA-1 hashes are the primary means to uniquely identify

potential malware. Hashes are repeated across the primary dataset as a single client may

generate multiple events for the same file, or a different client generates events based on the

same file. While the primary dataset could be augmented with data directly, this would

lead to unnecessary duplication. To avoid this and maintain a more dynamic structure

for analysis, a second table was extracted from the imported dataset with aggregate data

based on the uniquely observed hashes.

3.7. DATA PROCESSING: ENRICHMENT 35

Figure 3.2: Aggregate table entity relationship diagram

For each unique hash identified in the imported vendor data, a record was created includ-

ing the number of times the hash was observed, and the initial categorisation data by the

anti-malware software vendor, stored in the primary data table as flagged as and in the

aggregate table as vendor family. The SQL query used to populate the aggregate table

(malware metadata) can be seen in Listing 2, and the destination table structure in Table

3.4. The relationship between the table of imported vendor records and the aggregate

table can be seen in Figure 3.2. On completion of the aggregation function, 8,112 records

had been written to the metadata table.

1 INSERT INTO malware_metadata

2 SELECT

3 distinct(sha) as sha,

4 count(*),

5 flagged_as as vendor_family

6 FROM vendor_data_import

7 GROUP BY sha, vendor_family

Listing 2: Aggregation of observed hashes

3.7 Data Processing: Enrichment

With the aggregate data in place, VirusTotal was then used to populate the relevant fields,

seen in Table 3.4. For each record within the aggregate table, the VirusTotal API was

queried, and the returned result parsed and stored if matched against a known sample.

As the primary dataset contained events that may have ultimately been determined to be

non-malicious, not all hashes were expected to return a result, but each was checked. By

36

Table 3.4: Metadata table fields

Field Description Source

sha File SHA-1 hash Primary Dataset

count Number of events in primary dataset for
this hash

Primary Dataset

vendor family Family name assigned by primary
dataset vendor

Primary Dataset

first seen Date file was first seen on VirusTotal VirusTotal

times submitted Number of times file has been submitted VirusTotal

type File type (executable or document for-
mat)

VirusTotal

positives Number of AV engines reporting file as
malware

VirusTotal

unique sources Number of unique sources that have sent
the file in the past

VirusTotal

ssdeep SSDeep cluster string VirusTotal

last seen Most recent submission of the file VirusTotal

processing result Result of enrichment process (processed
or skipped)

Research

other family Family name(s) assigned by other AV
engines

VirusTotal

classified as High level classification (adware, RAT,
miner or ransomware)

Research

classification scores Recorded matching scores from the clas-
sification process

Research

avclass Family classification Sebastián et al. (2016)

3.8. DATA PROCESSING: CATEGORISATION 37

the same token, the primary dataset may not have considered a particular file as malicious

and thus have no category or malware information, however it may have determined at a

later date to be malicious and should therefore be tagged as such. The original VirusTotal

Javascript Object Notation (JSON) format report was also stored in a separate table using

the native JSONB data type in order to assist with data categorisation and validation at

a later stage. This table, like the aggregation table, could be linked using the file hash.

The enrichment process was performed in batches of 1000 records to assist with monitoring

the completion of each batch. To reduce the likelihood of duplication in case of network

error or API failure, each record was marked as processed or skipped once complete

depending on the status returned by VirusTotal and excluded from future processing.

The Python script used to enrich the data can be seen in the research code repository

as ‘Enriching the dataset with VirusTotal’3. On completion of the enrichment process,

5,676 or 70% of records were identified by VirusTotal, and 2,436 or 30% of records did

not have a matching record on VirusTotal. It should be noted that identification by

VirusTotal does not necessarily imply that a file is malicious, simply that the file hash

had been submitted to VirusTotal and been processed at a given point in time. In these

cases, available metadata was populated (for example, file type) however no positive

identifications (the positives field) or family data seen in Table 3.4 were recorded.

3.8 Data Processing: Categorisation

As discussed in Chapter 2, earlier malware definitions made use of infection vectors (for

example: viruses, worms, and trojans) to assist with categorisation. Contemporary ap-

proaches have evolved to consider both the infection vector and outcome (for example,

ransomware, spyware or keyloggers). Ultimately an exploration of malware data could

benefit from higher level grouping and categorisation in order to understand the overall

diversity of threats impacting the platform. In the previous steps the granular activ-

ity logs were imported, and the unique hashes extracted and enriched with data from

VirusTotal to aid further analysis. As a final step in the enrichment process, each of the

hashes identified as malicious are grouped into family categorisations with AVClass, and

then further grouped into four discrete high level categories to assist with reporting and

analysis.

Categorisation took place in two stages. In the first stage, prior work by Sebastián et al.

(2016) was used to perform an automated classification of the aggregated dataset. The

3https://thesis.yaxs.net/posts/enriching_the_dataset

https://thesis.yaxs.net/posts/enriching_the_dataset

3.8. DATA PROCESSING: CATEGORISATION 38

result of their work, the AVClass malware classification tool4, was a suitable for a number

of reasons. Firstly, the tool can be considered sufficiently accurate, having been evaluated

in their research against multiple malware datasets with ground truth. Secondly, the

tool removed the need for manual analysis of a large dataset. Finally, the tool was

able to make use of VirusTotal reports in a manner that is vendor neutral, allowing this

research to make use of it with no additional tooling or data synthesis. To carry out

the categorisation, the VirusTotal JSON file report was extracted and made available to

AVClass; the report and vendor classifications were then evaluated by the tool and the

corresponding field updated on the aggregate table (avclass, as seen in Table 3.4) with a

resulting 3,172 records successfully classified.

For the second stage of categorisation, both the existing research and contemporary indus-

try reports previously cited and a manual review of the AVClass identified families were

considered in order to arrive at high level categories that could be used for later analysis.

Specifically noted groups found were adware and PUPs, cryptocoin miners, ransomware

and backdoors, trojans, and remote access tools (RATs) (Symantec, 2018a; Kaspersky,

2018; Reed, 2018b; Wardle, 2018b).

The first category (Category A) includes adware and potentially unwanted programs or

applications (PUPs or PUAs). Urban et al. (2018) bundles Adware and PUPs together,

noting significant privacy and security implications of both. Both involve deceptive instal-

lation techniques, with a defining characteristic being inadequate user notification of the

true intent of the software or additional software that may be installed, usually involving

non-consensual tracking of user behaviour and installation of behaviour changing internet

browser behaviour. PUPs may also be bundled with legitimate software through pay per

install (PPI) services (ibid.). Example of Category A malware include MacKeeper (Reed,

2016b) and Bundlore (Malwarebytes, 2015).

The second category (Category B) includes remote access tojans (RATs), backdoors and

command and control (CnC) clients used by botnets. The defining characteristic of this

category is that the software is installing unknowingly by the user, usually by taking

advantage of an exploit triggered by running a file that may have been downloaded,

emailed or included in compromised software installers. The motivation for creating

malware included in this category may not be immediately apparent and could range from

theft of data or credentials, to illegal spying activities. Where Category A malware may

masquerade as legitimate software, category B software does not, and is more aligned

to traditional malware methods of infection and persistence. Examples of Category B

4https://github.com/malicialab/avclass

https://github.com/malicialab/avclass

3.8. DATA PROCESSING: CATEGORISATION 39

malware include Flashback (Bureau, 2012), MacControl (F-Secure, 2012a) and GetShell

(F-Secure, 2012b). Attackers my use this category of malware for activities ranging from

keylogging and spying on users, to remote control of their machines to exfiltrate data or

participate in botnet activities.

The third category (Category C) includes ransomware or crypto locking malware. These

may use many of the infection vectors of Category B, but the defining characteristic of

this category of malware is the overt commercial imperative and highly disruptive nature.

This category carries out an activity for immediate financial gain: locking access to files

in the hope of extorting a payment to decrypt or regain access to files. Ransomware has

been studied extensively (Gazet, 2010; Kharraz et al., 2015) and the results of ransomware

have caused significant commercial losses in recent years (Mansfield-Devine, 2017). An

example of this category within the primary dataset would be KeRanger (Xiao and Chen,

2016).

Finally the forth category (Category D) includes cryptocurrency miners. Sharing both

likely infection vectors and motivation (an immediate commercial imperative) with Cate-

gory C malware, it is distinguishable by the lack of visible disruption to the user environ-

ment outside changes in system performance, and limited visible evidence of operation.

Relatively few examples of this malware were observed in the dataset, one being Coin-

miner (Latif, 2018).

Table 3.5: Keywords used in fuzzy matching family names

Category Type Keywords

Category A Adware and PUPs pup; pua; adware; cleaner; keeper; opinion

Category B RATs and backdoors backdoor; hack; shell

Category C Ransomware ransom; crypt

Category D Cryptocurrency Miners miner; coin

The final classification was itself a two-stage process involving scripted, automatic classi-

fication based on the vendor assigned family names, and a manual sampling and review

to validate that the correct family had been assigned. Based on insights from the prior

categorisation, a collection of keywords was assembled that represented each of the cate-

gories.

3.8. DATA PROCESSING: CATEGORISATION 40

These keywords are shown in Table 3.5. The FuzzyWuzzy5 Python library was used to

compare each of the keywords against the collection of assigned family names from both

the primary data (i.e., the vendor assigned family name) as well as the VirusTotal dataset.

The library is commonly used for string comparison in a number of different languages,

utilising an implementation of a Levenshtein Distance (Levenshtein, 1966) to score and

match compared strings. Specifically, the library allows for use of token sets which are

insensitive to duplication: a common feature of combined family name strings across

anti-malware software vendors.

Thus, in the following example a collection of assigned family names for the SHA-1 file

hash starting 6efdfd are compared to the keyword library (Table 3.5) and scored using a

token set comparison. This yields a more realistic score as the numerous duplicate terms

(for example: variant, application or generic) are reduced to single entries, which are then

sorted and compared.

Vendor labels for hash 6efdfd21e94dc04d6f3d60ed7337cd90b67004d7 from VirusTotal:

MacOS.PUA.Mackeeper; Gen:Variant.Application.MAC.PazaCA .1; RDN/

Generic.osx; Trojan.Application.MAC.PazaCA .1; OSX.MacKeeper!

gen1; a variant of OSX/Mackeeper.A potentially unwanted;

Suspicious_GEN.F47V0614; Osx.Malware.Agent -6490746 -0; Gen:

Variant.Application.MAC.PazaCA .1; Gen:Variant.Application.MAC.

PazaCA .1; Gen:Variant.Application.MAC.PazaCA .1 (B); Gen:Variant

.Application.MAC; RDN/Generic.osx; Generic PUA JF (PUA);

malware (ai score =95); PUA:Win32/Presenoker; malicious (high

confidence); Gen:Variant.Application.MAC.PazaCA .1 (2x); PUA.OSX

.MacKeeper; Adware/Generic_PUA_JF

The result for the example above shows Category A (adware and PUPs) as the overall

winner, which is correct for the identified malware (MacKeeper):

{" Category B": 20.75,

"Category D": 22.3,

"Category A": 28.0,

"Category C": 16.85}

For the purposes of data processing and record keeping, both the winning category and

scoring detail (in the same format as the example above) were stored against each of the

hashes in the rest of the data. The Python source code for the script used to classify the

5https://github.com/seatgeek/fuzzywuzzy

https://github.com/seatgeek/fuzzywuzzy

3.9. DATA VALIDATION 41

relevant records is viewable in the research code repository as ‘Categorising the dataset

into four main categories’6. Examples of the input and categorisation output can be found

in the same repository as ‘Examples of categorised metdata rows’7.

3.9 Data Validation

Validation was carried out at each step of the process. An initial review of data included

a simple timeline analysis to validate that no unexplained gaps were present in the data,

and an endpoint analysis to validate that the dataset included activity from a reasonable

number of unique endpoints. Table 3.3 provides a breakdown of the data by both month

of import and unique reporting clients, which where grouped by the endpoint Universally

Unique Identifier (UUID) included in the initial import.

Once coalesced, the data was scanned for field completeness of key fields and any fields

without key fields (in this case, SHA-1 hash, date and endpoint UUID) excluded from

import into the relational database. The previously noted Table 3.1 indicates a removal of

1,678 incomplete records from 1,991,861 initially received, an acceptable total of 0,084% of

the primary dataset. As further aggregation was completed within a relational database

and by script, the validation of the enrichment and categorisation activities was considered

as part of the running of the scripts themselves, with the total rows effected also noted

in the previously listed Table 3.1.

One exception to this was noted during a check of observed events by endpoint, which

identified that certain endpoints had an unusually large distribution of malware events

generated. On closer examination it was determined that these endpoints were used in test

environments either by the vendor, or independent researchers using the vendors products.

In many cases the endpoint hostnames could be determined from the full filepath of the

file identified, providing this researcher with an effective way of identifying and tagging

endpoints likely to have been used for testing, thus avoiding later skewing of results. A

similar observation was noted by Yen et al. (2014), who also excluded research activities

from their results.

Examples of hostnames identified as likely testers included ‘macsdontgetmalware’, ‘in-

fosec’, ‘virustotal’ and hostnames that included the name of the anti-malware vendor

company itself. To ensure completeness, records were not removed but the additional

6https://thesis.yaxs.net/posts/classifying_the_dataset/
7https://thesis.yaxs.net/posts/categorisation_example/

https://thesis.yaxs.net/posts/classifying_the_dataset/
https://thesis.yaxs.net/posts/categorisation_example/

3.10. SUMMARY 42

field known tester added to the primary vendor dataset, and flagged as true for any record

generated by a likely test endpoint. A total of 889 records of 1,990,182 were flagged this

way.

Finally, a manual review of the data was carried out by the researcher. Consistency was

checked between assigned labels and categories, and in a small number of cases, incorrectly

classified non-adware malware was identified and corrected. Rows manually updated in

this way were also updated with a manually updated flag. A total of eleven rows were

updated this way.

3.10 Summary

In this chapter the methodology and experimental setup were discussed. The vendor

dataset was imported, cleaned and processed, enriched with VirusTotal data and finally

categorised in two stages: initially using AVClass, followed by a script developed to assign

a high level category in line with manual review and categories from current industry

reporting. In the chapter that follows the data will be explored and analysed. Analysis

will focus on temporal factors, observed malware families and categories, diversity of

the observations, code signing and consensus between the various anti-malware software

vendors that provide input into VirusTotal for the malware samples observed.

Chapter 4

Analysis

The trouble with having an open mind, of

course, is that people will insist on coming

along and trying to put things in it.

Terry Pratchett, Diggers

4.1 Introduction

In Chapter 3, the dataset was cleaned, aggregated and enriched to allow for the ex-

ploratory data analysis which follows. Exploratory Data Analysis (EDA) is summarised

by Collins (2017) as an analysis of activity data with no preconceived assumptions about

either the data, or the behaviour it represents. The ultimate goal of EDA is to move

towards some form of model, be it a formal representation of the data, or an established

baseline that can add value to future research. Along with exploration and visualisation

of the data, domain knowledge and contextual information should be used to interpret the

data. “The analysts judgement and and circumstances surrounding the data also play im-

portant roles” (Velleman and Hoaglin, 1981, p. 16), so application of technical knowledge

from related areas should allow non-expert readers to quickly understand implications

and possible findings.

The direction of exploration for this research is drawn from existing work undertaking

analysis of platform specific malware datasets for non-macOS platforms, specifically Mi-

crosoft Windows (Yen et al., 2014), and the Android mobile platform (Soto-Valero and

43

4.2. TIME SERIES ANALYSIS 44

González, 2018; Hurier et al., 2016). Additionally, industry reports and studies from prac-

tice are considered, such as Symantec (2018a), Proofpoint (2018) and the macOS specific

works by Wardle (2018b) and Reed (2018b). From these works, a number of exploratory

themes emerge:

1. Analysis of temporal factors (Section 4.2)

2. Observed malware families and types (Section 4.3)

3. Diversity within and clustering of the observed malware population (Section 4.4)

4. Infection and persistence mechanisms and operating system controls in place to

ensure integrity and authenticity of software, such as code signing (Section 4.5)

5. Consensus between multiple anti-malware software vendors (Section 4.6)

The sections that follow provide a exploration of the dataset within in these common

themes. The chapter concludes with a summary in Section 4.7.

4.2 Time Series Analysis

The nature the anti-malware engine used is such that multiple events were reported against

the same infection, and where potentially malicious software with multiple libraries were

detected, as seen in adware, that a single infection may be reported as multiple files that

make up the application are detected as malicious. Thus, it was required that data first

be grouped both by the time an infection was first observed, as well as the high level

AVClass or category (the assignment of which was discussed in Section 3.7) in order to

derive meaningful summary statistics.

An example of this process is can be seen in Figure 4.1, showing a single observation

on a single client, spanning 48 rows over a 12 second period. Many of these rows are

libraries and files that may be related to the same observed malware incident. In order

to accurately analyse this, this is reduced to a single row selecting the first instance of a

categorised observation for that specific date and time, allowing multiple detected files on

the same host at the same time to be considered a single observation. The end result of

this example can be seen in Figure 4.2.

4.2. TIME SERIES ANALYSIS 45

Figure 4.1: Observation of a single MacKeeper detection on a single host

Figure 4.2: Grouped record of the Figure 4.1 detection, rounded to the closest hour

Of the 1,990,182 event records noted in Section 3.9 less records generated by known

testers and false positives recorded as such by administrators (a total of 739,473 records),

1,250,709 categorised event records were available to be grouped into observations. With

the grouping completed, 3,450 observations were recorded.

Figure 4.3: Timeline of reported malware (Categories A - D)

Figure 4.3 shows the malware events recorded over the eleven month period covered by the

dataset from August 2017 to June 2018. In the initial period from August to December

2017, malware events reported remain relatively similar with the lowest recorded number

of malicious software detections during December 2017. Malware events then show a

strong upward trend with a peak at the end of the period (June, 2018), after a brief

4.2. TIME SERIES ANALYSIS 46

reduction in April 2018.

Figure 4.4: Comparison: Top 10 macOS malware blocked by
month for 2018 from Symantec (2018a)

These observations are broadly in line with industry trends reported in the previous year

for overall observations, with Symantec (2018a) reporting a similar monthly detection

pattern climbing to a peak in April and May, and an overall drop towards the end of the

calendar year. However, within the same report the number of blocked macOS specific

infections shows a marked increase towards end of the calendar year in 2017 as shown in

Figure 4.4, driven largely by detections of the JS.Webcoinminer, a multi-platform browser

based cryptominer (Symantec, 2018a). When this specific threat is isolated and removed

from the dataset, the detection pattern normalises in line with the overall reported de-

tection rate in this research.

Figure 4.5 shows malware over the same timeseries, but separated by high level cate-

gory, which is discussed in more detail in Section 4.3. In increase over the period under

observation can be seen in both adware and PUPs and RATs, trojans and backdoors.

Cryptocurrency miners have only a few observations along with sporadic observations

of ransomware, leading to gaps in the timelines for these two categories and a cautious

approach to drawing any conclusions.

Figure 4.6 provides of view of the dataset by day of week over the period under analysis.

Saturday and Sunday show a decline in reported incidents, unsurprising for an enterprise

or business focussed anti-malware tool. During the working week, malware shows a peak

47

Figure 4.5: Timeline of reported malware by category

Figure 4.6: Malware observations by day of the week

4.2. TIME SERIES ANALYSIS 48

on Thursdays, with weekdays reflecting a higher observation rate than weekends. A similar

finding was made by eSentire (2017), who noted persistent activity between Mondays and

Thursdays, trending downwards from Fridays. Figure 4.7 shows a visual breakdown of

the observed malware by hour of the day. The volume remains relatively steady, climbing

from midday to a peak between 17h00 and 18h00. Both the vendor source data as well

as the database store the timestamps the data is derived from in Coordinated Universal

Time (UTC). The peak during the afternoon period in UTC may reflect an increase in

detections at the start of the business day for users in US geographies.

Figure 4.7: Malware observations by hour of day (UTC)

Figure 4.8: Days between recorded observation and first sight on VirusTotal

4.3. CLASSIFICATION AND LABELLING 49

Finally, an estimation of the relative age of the observed malware is shown in Figure 4.8.

The metric is measured by calculating the difference between the observation date of the

malware, and the date the sample was first seen by VirusTotal from any malware vendor,

analyst or public submission. 15% of malware observations were unseen at the time of

submission to VirusTotal, indicating the submission was either of a previously unseen

sample or, in many cases, a previously unseen SHA-1 hash of a known malware due to

differing binaries or polymorphic malware (Apel et al., 2009).

For the balance of the observations (85%) which were previously seen on VirusTotal,

the values have a minimum of 0.04 days (around 1 hour), a maximum of 3,032.7 days

(around 8.3 years), a median of 50.67 days, an average of 192.79 days with a standard

deviation of 333.86 days. The skew in the dataset is clearly visible in Figure 4.8, with

33% of the observations occuring having been first seen within 30 days of the observation

date. Malware towards the far end of the range (greater than 1,000 days) justified further

exploration, with a manual review of malware with an initial observation date greater

than 1,000 days prior showing that older samples were primarily non-adware malware

(specifically, Category B or RATs, Trojans and Backdoors). Of note is that Category

A malware (Adware and PUPs), which makes up the vast majority of observed malware

in the dataset and is discussed further in the following section, only appears from 2013

onwards. The ten oldest unique initial observations are shown in Table 4.1. An EICAR

test file (used to test anti-malware software signature detection) was the oldest identified

from the set, having been first seen on VirusTotal with the submitted SHA1 hash in

February, 2010.

4.3 Classification and Labelling

In the process described in section 3.7, records of malware activity were enriched with

metadata from external sources such as VirusTotal and automated labelling work by

Sebastián et al. (2016). This enrichment process provides valuable insight into the nature

of the malware itself, and is reviewed in the analysis that follows.

Table 4.2 shows the breakdown of malware categories observed. Once grouped in the

process described in section 4.2, 3450 malware observations over the period are recorded.

The largest category is category A (adware and PUPs), at 97.88% of the total malware

observations. This is followed by category B (RATs, backdoors and trojans) at a sig-

nificantly smaller 1.68% of the total malware observations. Finally, Category C and D

4.3. CLASSIFICATION AND LABELLING 50

Table 4.1: Top 10 oldest malware samples by VirusTotal first seen date

First Seen Observation File Type Category AVClass Days

2010-02-04 2018-05-25 Text Test File eicar 3032.7

2011-04-06 2018-04-03 Mach-O RAT getshell 2554.7

2012-02-15 2018-05-16 Mach-O RAT blackhol 2282.8

2012-03-27 2018-03-07 Mach-O RAT fakeco 2171.7

2012-10-06 2018-03-29 Mach-O RAT rubilyn 2000.7

2013-02-15 2018-05-14 Mach-O RAT callme 1914.7

2013-04-28 2018-06-21 Mach-O RAT clapzok 1880.9

2013-03-03 2018-04-04 Mach-O RAT hellraiser 1858.8

2013-04-01 2018-01-19 Mach-O Adware pazaca 1754.4

2013-07-15 2018-01-01 Mach-O Adware genieo 1631.5

include ransomware, cryptominers and related malware and make up around 0.2% of the

total each. The significant percentage of adware observed aligns with the emperical study

of Android malware by Soto-Valero and González (2018), who identified that adware is

the prevalent malware type of malware distributed through Android application markets.

The family of malware within the categories generated using AVClass is considered next.

The dataset was divided into adware and non-adware malware based on the overall cate-

gory, with category B, C and D malware included in the latter. As Category A was the

majority, this allowed the research to consider potential differences in categorisation and

diversity with malware that may arguably represent a greater practical security threat.

Tables 4.3 and 4.4 show the top ten Category A and Category B, C and D classifications

respectively, listed in these separate groupings.

The most frequently observed label is the installcore family of adware. This family of

adware and its variants are frequently installed by third party software applications or

by masquerading as software updates causing users to unknowingly install the unwanted

program (Malwarebytes, 2018b). The second most prevalent label is mackeeper, an appli-

cation that has been distributed for some time and is widely regarded as deceptive and

misleading (Reed, 2016b). Most of the remaining labelled adware follow similar patterns

of infection and persistence, with some exceptions. Spigot focuses on browser hijacking

51

Table 4.2: Breakdown of malware categories

Category Unique AVClasses Count Percentage

Category A (adware and PUA/PUPs) 122 3363 97.48%

Category B (RATs and Backdoors) 39 71 2.06%

Category C (Ransomware) 2 7 0.20%

Category D (Cryptocurrency Miners) 4 9 0.26%

Total 167 3450 100%

Table 4.3: Top 10 AVCLass classifications: Category A

Rank AVClass Observations Percentage

1 installcore 669 20%

2 mackeeper 556 17%

3 genieo 474 14%

4 spigot 347 10%

5 supportgeeks 220 7%

6 amcleaner 201 6%

7 cimpli 188 6%

8 bundlore 160 5%

9 pazaca 59 2%

10 tirrip 57 2%

Total % of category 87%

4.3. CLASSIFICATION AND LABELLING 52

(Arntz, 2017), and genieo is noteable for significantly more malicious behaviour, taking

advantage of known vulnerabilities in macOS to enable privilege escalation and persis-

tence (Reed, 2016a; Malwarebytes, 2018a). Similarly, tirrip (a label variation on the pirrit

malware) uses privilege escalation, traffic hijacking and competitor software removal for

commercial gain and has been noted as a particularly malicious strain of adware (Serper,

2016).

Table 4.4: Top 10 AVClass classifications: Categories B, C and D

Classification
Category

AVClass Manual
Classification

Observations Percentage

Category B getshell - 11 13%

Category B macontrol - 7 8%

Category B rubilyn - 5 6%

Category B proton - 3 3%

Category B SINGLETON Unknown 3 3%

Category B SINGLETON Trojan.WisdomEyes 3 3%

Category C keranger - 4 5%

Category C macransom - 3 3%

Category D SINGLETON Mac.CoinMiner 5 6%

Category D SINGLETON OSX.Miner 2 2%

Total % of category 53%

Non-adware malware listed in table 4.4 highlights the significant difference in the volume

of non-adware malware observed. Samples processed by AVClass that were considered

isolated or could not be successfully allocated a family label are listed as singleton in-

stances. The AVClass documentation1 notes that singleton classes are assigned when no

family name could be identified from the analysed labels. As a result, samples are tagged

as singletons along with the relevant hash. The manual classification column provides

additional details in these cases, following a process of manual investigation of the hash

using a VirusTotal search.

1https://github.com/malicialab/avclass

https://github.com/malicialab/avclass

4.4. DIVERSITY AND CLUSTERING 53

The top observation, getshell, is a malicious Java based trojan first observed in 2013

that installs on a users device, and executes remote payloads and creates one or more

administrative user accounts (Symantec, 2018b). Category B malware make up the largest

number of non-adware malware observations, with limited observations of both Category

C and Category D. During the collection period of the dataset, two ransomware threats

were known to be prevalent (keranger and patcher), one of which (keranger) was observed

in Table 4.4. The other ransomware sample, macransom, has been acknowledged as

somewhat unique due to its availability as ‘ransomware for hire’, but viewed as largely

infective (Wardle, 2017b). The relative spread of malware in this category is also noteably

different to Category A, with a number of single samples making up the balance (the

top ten only making up 53% of malware observed), with a number of single samples

and Windows malware detected making up the balance. While the precise reasons for

Windows samples being detected aren’t known, it is possible that Windows malware may

be detected on external storage devices shared with Windows endpoints.

4.4 Diversity and Clustering

With observations having been classified using AVClass, exploration of the diversity of the

malware population is possible. Additionally, the additional SSDeep cluster identification

included in the VirusTotal enrichment allow for the dataset to be clustered and visualised

accordingly. These will both be considered in the sections that follow.

4.4.1 Diversity

The Shannon entropy index discussed in Section 2.4.1 can be used as a measure of diversity

within a population. The work of Soto-Valero and González (2018) used a Shannon

entropy index as a measure of balance within a population of malware. Direct comparison

is unfortunately not possible, as in the referenced work the authors were able to measure

diversity of a population by using the known population of Android malware as the total

population within the diversity function. In the case of this dataset, the total known

population of OS malware is not known. As a result, this research applied the diversity

index simply as a measure of diversity in the population over time, using the total observed

labels as the total population size for the diversity function. While limited in application,

rate of change in diversity can be seen within the time period of the dataset. Similar to

the previous analysis, the non-adware categories (B, C and D) are extracted in order to

4.4. DIVERSITY AND CLUSTERING 54

Figure 4.9: Shannon entropy index values for malware by label
(all malware)

consider the diversity of the malware shown in Figure 4.3. Figure 4.9 and 4.10 provide

a view of the entropy values over the period of the dataset, grouped within the relevant

month.

A relatively low diversity in macOS malware is reported in practice by Wardle (2018b).

When visualising the growth of observed diversity over time, a slight upward trend can

be seen over the period for the full malware dataset. The much smaller non-Category

A malware shows a more significant increase in diversity over the time period, however

it should be highlighted that the size of a population is considerably smaller, so smaller

increases in observed malware in this category have a commensurately higher impact

on the result. It should be noted that Windows observations were excluded from the

diversity sample calculations. While diversity is shown to be increasing in this dataset,

and especially in Category B, C and D malware, a study over a longer time period may

yield more conclusive results.

4.4.2 Clustering

While the process of automated labelling using AVClass allows the observations to be

grouped by the derived family name, the enrichment of the dataset using VirusTotal

provides an additional data point in the form of a computed SSDeep2 Context Triggered

2https://ssdeep-project.github.io/ssdeep/index.html

https://ssdeep-project.github.io/ssdeep/index.html

4.4. DIVERSITY AND CLUSTERING 55

Figure 4.10: Shannon entropy index values for malware by label
(non-Category A malware)

Piecewise Hash (CPTH) for 3444 of the 3450 observations (99.83%) in the dataset. An

example of computed SSDeep hashes for two different samples are shown in Table 4.5.

Table 4.5: Example of SSDeep hashes for two malware samples

Sample Description SSDeep Hash

MacKeeper Adware 6144:bKeOqpESonxYvfDLrzmVSgyC6CpJ3PyUwyM0H0H:
+eOqpEQf2VSgy17/H

EquationDrug Trojan 384:9zpReZVUauRKt/xAEt0LzE8QXA5xGPA1N3ehU:
9vzauQry4a

The hashes consist of three parts, separated by colons, that provide the chunk or block

size, and two computed values based on the chunk size. Using SSDeep, these hashes can be

used to determine similarity and infer likely relations between samples (Kornblum, 2006).

For large datasets this can be a somewhat inefficient process, as every SSDeep hash needs

to be compared to every other other hash. Wallace (2015) provides a repeatable and

scaleable method for clustering of large volumes of malware based on SSDeep hashes,

which in turns allows for a visual representation of the identified clusters for the dataset.

The result of this clustering using this method and the related SSDC utility3 is shown

in Figure 4.11. This analysis would be incomplete without mention of the limitations

3https://github.com/bwall/ssdc

https://github.com/bwall/ssdc

4.4. DIVERSITY AND CLUSTERING 56

of SSDeep: work by Pagani et al. (2018) demonstrates that CPTH may not always be

the best choice for binary comparison. Alternatives comparisons using tlsh (Oliver et al.,

2013) and sdhash (Roussev, 2010) are able, in some cases, to identify similarities missed

with the use of CPTH.

Figure 4.11: SSDeep clustering of observed malware

The clustering demonstrates binary similarity between samples, labelled according to

AVClass. Seven identified clusters are labelled 1 - 7 accordingly. Bundlore and bnodlero

(labelled as 1) cluster clearly in Figure 4.11 where the latter label is a mixed spelling

of the former. Analysis of the underlying files observed within the clusters shows that

4.5. INFECTION, PERSISTENCE AND CODE SIGNING 57

the difference can be attributed to labelling differences that occur when a higher number

of anti-malware software vendors identify a file as malicious, and use differing labelling

schemes to identify them. This demonstrates that while AVClass makes significant head-

way in resolving vendor labelling inconsistency, edge cases do still occur as seen both in

this case and the case of the mackeeper and pazaca (labelled as 3). This shows a close

relation between these labels, and similar analysis of these files shows that both families

relate to MacKeeper with inconsistent vendor labelling leading to variances in AVClass

label assignments.

In a similar vein, manual investigation of observed file hashes of samples within mack-

eeper clusters (3) and amcleaner show that a number of unlabelled files (singletons) are

potentially related. While out of the scope of this exploratory research, further study

of labelling efficacy though use of both AVClass labelling and SSDeep clustering may

provide improved methods of consistently labelling large malware datasets. Finally, and

while not overly significant, a cluster of non-adware malware can be seen with the getshell

(7) and macontrol (6) malware, both seen in the top ten grouping in Table 4.4.

The one top 10 Category A family from Table 4.3 conspicuous in its absence is the in-

stallcore, however this is likely due to the reported method of installation and delivery.

Malwarebytes (2018b) notes that installcore is frequently bundled through third party

platforms as a monetisation strategy, paying distributors for successful installs and dis-

played adverts. This distribution through third party applications may lead to widely

diverse binary payloads, with limited similarity detectable by SSDeep.

4.5 Infection, Persistence and Code Signing

Much of the efficacy of malware can be attributed to the combination of infection vector

(the method of initial infection or installation) and the method of persistence. In addition

the global growth and impact of malware has led to some operating systems, particularly

Microsoft Windows, Android, macOS and iOS, implementing controls to make malicious

software execution and persistence more difficult (Kotzias et al., 2015; Levin, 2015). An

example of this is code signing, or requiring applications to be cryptographically signed

in order to install without significant user intervention, or in the case of iOS, install at

all (ibid.). The analysis of the dataset was conducted using the same grouping used

previously by looking at the top ten malware classes identified grouped into Category A

and Category B, C and D. Malware within these two groups was then manually analysed

4.5. INFECTION, PERSISTENCE AND CODE SIGNING 58

and categorised in terms of infection vector, persistence mechanism and the presence and

validity of any code signing. Studying these aspects provides not only insight into how

these may relate to other operating systems and environments, but is also establishes a

useful baseline for further studies.

4.5.1 Infection Vector

Without an initial infection mechanism, malware could not spread or be installed. In-

fection strategies change and adapt over time as defence strategies are updated to meet

the evolving threat landscape (Ollmann, 2008; Cabaj et al., 2017). To establish the most

likely infection vector, this research used both the observable information in the dataset

as well as the VirusTotal Graph tool4. The tool takes a filename or SHA as an input and

shows known relationships to other observed data points within the VirusTotal database,

including the filenames and filetypes identified. From this, the likely nature of the source

of the infection vector could be reliably inferred. An example of this is shown in Figure

4.12, which shows a bundlore sample with one of the observed filenames highlighted as a

fake Adobe Creative Cloud copy protection bypass file.

Figure 4.12: VirusTotal Graph interface, showing a bundlore installer source filename

The analysed infection vectors are summarised in Table 4.6 as infection vector. Anal-

ysis of the Category A malware shows that installation vectors for this type are either

4https://www.virustotal.com/graph

https://www.virustotal.com/graph

4.5. INFECTION, PERSISTENCE AND CODE SIGNING 59

through legitimate or illegitimate software installers. Looking at the likely sources of these

installers, three clear sub-categories emerge.

The first sub-category (hereafter referred to as A.1) are valid installers, where users have

intentionally installed adware or PUPs, often advertised as malware removal tools (Reed,

2016b). Advanced Mac Cleaner, labelled as amcleaner, and the MacKeeper group of

software including the mackeeper and pazaca AVClass labels are examples of this. Both

claim to detect and remove malicious software, often exaggerating or falsifying detections

in order to solicit ongoing subscriptions. While the practice is considered ethically and

commercially dubious, the software is generally benign and removable5. A review of the

deceptive practices used by MacKeeper can be found in Reed (2016b) and Ashenbrenner

(2018).

Figure 4.13: Genieo installation dialogue, from Malwarebytes (2013)

5A more detailed review of the changes in the MacKeeper product over time is given in Section 5.3

60

Table 4.6: Infection vectors, persistence methods and code signing: Category A

Subclass AVClass Infection Vector Persistance Method Code Signing

A.1 mackeeper Directly Installed Launch Agent 99% signed, of which 79% valid
Consistent identifiers
Consistent signers

A.1 supportgeeks Directly installed Launch agent 97% signed, of which 82% valid
Consistent identifiers
Consistent signers

A.1 amcleaner Directly Installed Launch Agent 99% signed, of which 98% valid
Consistent identifiers
Consistent signers

A.1 pazaca Directly installed Launch Agent 99% signed, of which 98% valid
Consistent identifiers
Consistent signers

A.2 installcore Wrapper: 3rd party installer
Known applications including
Chrome, Sublime Filezilla and
Adobe Flash

Browser extension
Launch Agent

62% signed, of which 71% valid
Randomly generated identifiers
Varied signers

A.2 genieo Wrapper: 3rd party installer Vari-
ous generic applications and down-
load sites

Launch agent 77% signed. of which 74% valid
Randomly generated identifiers
Varied signers

A.2 spigot Wrapper: 3rd party installer Vari-
ous generic applications and down-
load sites

Launch Agent 37% signed, of which 100% valid
Identifiers and signers consistent
with applicable 3rd party installer

A.3 tirrip Fake/trojan installers and pirated
applications

Launch Agent No signed executables identified

A.3 bundlore Fake/trojan installers and pirated
applications

Launch agent 33% signed, of which 91% valid
Varied identifiers
Varied signers

- cimpli Limited reference material available

4.5. INFECTION, PERSISTENCE AND CODE SIGNING 61

The second sub-category (hereafter referred to as A.2) are installers that bundle legitimate

software, but include Category A malware as part of the payload, effectively creating a

wrapper around 3rd party installers. Examples of this include installcore, genieo and

spigot. An example of the user interface of an installer can be seen in Figure 4.13, where

users are guided to install ‘search helpers’ while installing an unrelated tool. Software

in this sub-category may have opaque removal instructions, or be otherwise challenging

to remove. It should be noted that MacKeeper, mentioned in the previous sub-category,

was observed by Reed (2016b) to use tactics similar to this in the form of bundling

the software with a fake Adobe Flash updater. This was not, however, observed in the

dataset under analysis. Installcore is notable for bundling the adware payload around

seemingly valid software installs of popular software packages, including Google’s Chrome

browser, Filezilla, the Sublime text editor and Adobe Flash as seen in both this dataset

and the work of Abbati (2015). In an investigation of macOS cryptomining malware,

Reed (2018c) discusses the role of file aggregation and download sites in distributing this

style of malware, noting “such sites have a long history of issues” (p. 2) and calling

out macupdate.com in particular as distributing third party software along with adware

installers during 2015.

Finally, the third sub-category (hereafter referred to as A.3) as Category A malware are

installers that use highly deceptive tactics to trick users into installing them. Analysis of

the installation sources shows that many of these are distributed as fake software updates

and installers, effectively operating as ‘trojan horse’ style malware. In their analysis of

the pirrit malware (classed by AVClass as tirrip). Serper (2016) notes that not only is

the software distributed as fake updates and pirated copies of common software packages,

but that the installation packages use a pre-install script to load a dropper responsible

for pulling down additional malicious payloads before a user has provided any input or

elected to continue with the installation process. The methods of infection used by this

sub-class are far closer to the methods seen in non-Category A malware, discussed next.

Table 4.7 summarises the analysis of the top ten Category B, C and D malware. While the

sample size is very small in comparison to Category A malware, the methods of infection

show variance in comparison. Getshell, the most frequently observed non-Category A

malware, was distributed through a fake Adobe Flash updater on a compromised website,

a similar infection vector to the more malicious examples of Category A malware (F-

Secure, 2012b). A notable infection vector can be seen with keranger and proton, both

of which compromised popular macOS software to install without the users knowledge:

in the case of the keranger ransomware, the popular Transmission6 bitorrent client, and

6https://transmissionbt.com

https://transmissionbt.com

4.5. INFECTION, PERSISTENCE AND CODE SIGNING 62

the proton RAT through media tools Handbrake7 and Elmedia8. This method of supply

chain attack, compromising software assumed to be secure by packaging malware and

distributing it as a valid version, has proven a popular route for malicious actors (Xiao

and Chen, 2016). An example of the infection vector being used successfully can be seen

in the case of Panic Software. The user in the company was infected by proton through

the Handbrake compromise, suffered data loss as a result and as developers of popular

macOS software themselves, opened up the possibility of similar supply chain attacks

using their own code base at a later date (Frank, 2017).

4.5.2 Methods of Persistance

Just as malware with no infection vector cannot be effective, the ability of malware to per-

sist is equally important. Wardle (2014) notes that “persistence is essential for malware”

(p. 16), and provides a comprehensive breakdown of the common methods of persistence

of macOS malware. Furthermore, while infection vectors could be shared across operating

systems (Bestuzhev, 2018), persistence mechanisms are generally unique to the operating

system the malware is targeting as the ability to persist a system restart would require

use of operating or platform specific functions.

While Wardle (2014) identified in excess of 13 different techniques and methods malware

could use in order to persist on macOS, only 3 of these are identified within the two

top ten datasets, detailed in Tables 4.6 and 4.7. Within Category A, only launch agents

and installed browser extensions were observed. Within Category B, C and D a greater

variety of persistence methods were observed, with launch agents used along with kernel

extensions (in the case of rubilyn) and a simple process sleep for the keranger ransomware,

which waits for three days before starting the file encryption process.

7https://handbrake.fr
8https://mac.eltima.com/media-player.html

https://handbrake.fr
https://mac.eltima.com/media-player.html

63

Table 4.7: Infection vectors, persistence methods and code signing: Categories B, C and D

AVClass Infection Vector Persistance Methods Code Signing

getshell Compromised website deliv-
ered fake/trojan installer

Various; secondary payload
downloaded on execution

None

keranger Included in compromised in-
staller of popular bitorrent
client

Ransomware, executed pro-
cess sleeps for 3 days before
execution

Valid, included with signed
3rd party installer

macontrol Email with document attach-
ment containing malicious
payload

Launch Agent None

macransom Malicious executable Launch Agent None

proton Included in compromised in-
staller of popular video tool

Launch Agent Valid, included with signed
3rd party installer

rubilyn Malicious executable Kernel Extension None

SINGLETON:48288
(OSX.Miner)

Limited reference material
available; derived from valid
coin mining tool

SINGLETON:72c2f
(Uknown)

Limited reference material available

SINGLETON:8ab73
(Mac.CoinMiner)

Limited reference material available; derived from valid coin mining too

SINGLETON:b7b69
(Trojan.WisdomEyes)

Win32 Malware identified on macOS machine, likely from external drive

4.5. INFECTION, PERSISTENCE AND CODE SIGNING 64

4.5.3 Code Signing

Code signing allows for developers and distributors of software to cryptographically sign

software, allowing the end users operating system to validate the authenticity of soft-

ware before installing. In most cases9, any unauthorised modifications to a package or

executable would render the signature invalid thus generating a warning or preventing ex-

ecution (Alrawi and Mohaisen, 2016). The macOS operating system was an early adopter

of code signing as a control, with implementations in OS X version 10.5 in 2007 initially

as an added (but non-mandatory) security feature eventually becoming firm guidance in

OS X version 10.8 in 2012 via the Gatekeeper system (Levin, 2015). The absence of

a valid signature does not stop software from being executed, however it has required

progressively more warnings and intentional action for users to bypass the control should

they wish to install unsigned software.

To support this control, developers have been required to sign packages to prevent warn-

ings, and as a mandatory requirement to release them within Apple’s App Store ecosystem.

Both the installation packages as well as individual Mach-O executables can be signed,

and software developers wishing to release signed software packages are vetted by Apple

and have to pay an annual fee in order to qualify. At first glance, this would appear

to create a reasonably difficult barrier for malware authors on the macOS platform, but

analysis of the data shows otherwise.

The code signing column of Tables 4.6 and 4.7 provide a summary of the observed

signatures of the top ten classes in both the Category A and Category B, C and D groups.

Signature information was identified through metadata provided by VirusTotal for each

unique observed hash in the two groups, and manually reviewed to identify patterns.

Once identified, the percentage of signed executables was noted, and the corresponding

percentage of valid signatures within that class recorded. Additionally, where observed

the package identifiers10 were analysed for validity and consistency.

Manual analysis of the Category A malware shows that the three sub-classifications iden-

tified as part of the analysis of infection vectors (A.1, A.2 and A.3) are supported when

considering the prevalence of signatures, the validity of the signatures observed and the

9Amongst other design issues, the frequency of validity checks are infrequent which may lead to
vulnerabilities (Reed, 2018a)

10The package identifier or Uniform Type Identifier (UTI) is an internal identifier using a ‘reverse DNS’
notation, usually in the form com.domain.text, used to distinguish different applications or application
bundles. More details can be found at https://developer.apple.com

https://developer.apple.com

4.5. INFECTION, PERSISTENCE AND CODE SIGNING 65

Table 4.8: Examples of Category A.1 malware

AVClass Valid Certificate Signed Package Identifier / Signed By

mackeeper TRUE TRUE com.mackeeper.MacKeeper.plugin.DuplicateFinder
KROMTECH ALLIANCE CORP.

mackeeper TRUE TRUE com.mackeeper.MacKeeper
KROMTECH ALLIANCE CORP.

mackeeper FALSE TRUE com.mackeeper.CerberusInstaller
KROMTECH ALLIANCE CORP.

mackeeper FALSE TRUE com.mackeeper.MacKeeper.MKCleanService
KROMTECH ALLIANCE CORP.

amcleaner TRUE TRUE com.techyutils.cleaner
Techyutils Software Private Limited

amcleaner TRUE TRUE com.pcv.rlistupdater
Techyutils Software Private Limited

amcleaner TRUE TRUE com.techy.Mac-Optimizer
Techyutils Software Private Limited

use of meaningful package identifiers. Category A.1 malware shows consistent code sign-

ing and meaningful package identifiers, a sample of which can be seen in Table 4.8 from

the mackeeper and amcleaner classes. Table 4.6 shows that mackeeper, amcleaner, pazaca

and supportgeeks all show consistent numbers of signed files (90% or higher), of which a

high percentage are valid certificates (70% or higher).

A sample of category A.2 malware can be seen in Table 4.9. Where signed, package

identifiers appear to be randomly generated and the signatories appear to use a variety

of names, with few exceptions. Table 4.6 show that category A.2 has a lower number of

overall observations signed, with genio having 77% signed, of which 74% were found to

be valid and installcore with 62% signed of which 71% were valid.

Finally, category A.3 malware samples can be seen in Table 4.10. The two classes in the

category have a very low number of signed executables: none in the case of tirrip and 33%

in the case of textitbundlore, of which 91% were valid. Where package names are present

in signed executables, the names appear to be incongruent with the packages themselves

and are likely meaningless.

A summary of the code signing details of Category B, D and D malware is included in

66

Table 4.9: Examples of Category A.2 malware

AVClass Valid Certificate Signed Package Identifier / Signed By

installcore TRUE TRUE com.hellkite.jester
Mark Lloyd

installcore TRUE TRUE com.profaculty.netwise
Ran Greenberg

installcore TRUE TRUE com.kandol.Ootocoidea
Andy OS, Inc.

genieo TRUE TRUE com.racol.AppRC
Rafi Colman

genieo FALSE TRUE com.papp.PApp
Zahi Shanhav

genieo FALSE TRUE com.davidkadi.AppDKI
David Kadishi

Table 4.10: Examples of Category A.3 malware

AVClass Valid Certificate Signed Package Identifier Signed By

bundlore TRUE TRUE com.stubberify.mym Oleg Krokhinov

bundlore TRUE TRUE com.tostubornot.mym Sergey Vasiliev

bundlore TRUE TRUE com.macdownloader.apple Olga Asadcheva

tirrip all samples have no certificate or package identifiers

4.6. ANTI-MALWARE SOFTWARE VENDOR CONSENSUS 67

Table 4.4. In most cases, executables were not signed. The two notable exceptions were

the keranger and proton, both of which used valid certificates of compromised clients used

as the infection vector for the malware. While the low sample size makes extrapolation of

meaningful patterns impractical, the relative success of the proton and keranger malware

in practice indicate that code signing as a security strategy can be bypassed through sim-

ilar strategies (Reed, 2018b). In their work analysing code signing practices of Windows

malware Kotzias et al. (2015) found that adware and PUPs were often signed and other

categories of malware rarely so, a finding supported by this analysis.

4.6 Anti-malware software vendor consensus

Different anti-malware software vendors use different methods of detection to establish the

likelihood of software being malicious. Methods may include static, dynamic and statisti-

cal analysis that use known signatures, suspicious behaviour and machine learning tech-

niques to identify potential malware as quickly and consistently as possible (Damodaran

et al., 2017). With the observations having been enriched with data from VirusTotal,

information on vendor consensus is available as positives, discussed in Section 3.7. War-

dle (2018c) discusses multi-vendor detection on the VirusTotal platform, and notes that

the detection engines running within the VirusTotal sandbox environment do not always

match those of end user systems, however an analysis of the number of recorded positives

does provide insight into the general consensus between vendors that observations are

malicious.

Figure 4.14 shows a histogram of the number of vendors rating various malware samples

as positive for Category A malware. A normal distribution is observed, with samples

being detected by between one and five vendors showing a small increase outside the

norm, which may be caused by newer samples not yet being recognised as malicious. The

majority of samples show a positive identification of between fifteen and thirty vendors.

Figure 4.14 shows the Category B, C and D malware, and reflects the lower overall size of

the dataset. A more signifcant number of the malware detected was by between one and

five vendors (eleven), versus the forty seven types malware detected that can be seen in

the central distribution, ranging between twenty five and forty vendors as the lower and

upper bound respectively.

To investigate this further, the correlation between this vendor consensus and the first

time a type of malware was observed was explored. An additional data point made

68

Figure 4.14: Histogram of positives: Category A

Figure 4.15: Histogram of positives: Category B, C and D

4.6. ANTI-MALWARE SOFTWARE VENDOR CONSENSUS 69

available by the enrichment of the data with VirusTotal information is the number of

unique sources a sample has been submitted by. This figure provides an indication of how

wide spread a particular malware sample may be. Visualising this allows the research to

examine if the age of malware influences the number of vendor observations, as may be

intuitively assumed. Further to this, by sizing the data point by the number of unique

observations, the relative spread of the malware in the wild can be inferred.

Figure 4.16 shows the vendor consensus plotted against the date a malware sample was

first seen for Category A malware, using the number of unique sources for size. From

the plot, the concentration of malware shows that observed malware recent malware clus-

tered between a vendor consensus of around eleven and thirty vendors with the majority

of malware first seen relatively recently (after 2015). Generally the number of unique

sources can be seen to be reasonably consistent at five or below. This can be summarised

as following: most of the Category A malware observed come from around five different

sources, are generally detected by between eleven and thirty different anti-malware soft-

ware vendors and have been seen in the wild since around 2015, with a concentration in

recent years (2017 and 2018).

Figure 4.16: Vendor consensus and first seen time sized by unique
sources: Category A

Building on this analysis, a second visualisation was carried out where the sub-categories

detailed in Table 4.6 were assigned sub-categoriesA1, A.2 and A.3 respectively. The points

for each sub-category were assigned a different color to assist with visualisation. A clear

grouping is observed between sub-category A.1, highlighted in box ‘A.1’, recognised as

malicious by between approximately 13 and 23 vendors, and the more malicious sub-

4.7. SUMMARY 70

categories A.2 and A.3, highlighted in box ‘A.2 and A.3’ between approximately 22 and

30 vendors. This finding indicates that vendor consensus appears to increase in the case

of more malicious Category A malware.

Figure 4.17: Vendor consensus and first seen time: Category A.1,
A.2 and A.3

Figure 4.18 provides the same visualisation as above for Category B, C and D malware.

The significantly smaller number of observations is evident, however from those plotted

two differences are apparent. The first difference is that the spread of malware indicated

by unique sources is higher, with a number of observations recorded from more than ten

unique sources. The overall consensus level for the categories of malware are slightly

higher, with most samples falling between twenty and forty vendors. The malware de-

tected by a lower number of vendors (between 1 and 5 vendors, highlighted in Figure

4.15 on the left side of the distribution) are more recently seen malware. In this category,

the plot can be summarised as showing a higher proportion of the Category B, C and D

malware observed come from a more unique sources (ten or more) than Category A, are

generally detected by a larger number of anti-malware software vendors (between twenty

and forty) and have been seen in the wild for a slightly longer period (2012 onwards).

4.7 Summary

In this section the cleaned, aggregated and enriched dataset was analysed using an ex-

ploratory approach. Analysis included a temporal analysis of various aspects of the data,

4.7. SUMMARY 71

Figure 4.18: Vendor consensus and first seen time sized by unique
sources: Category B, C and D

providing insight into the observations over the full eleven month period of the dataset,

as well as weekly and daily breakdowns. The major categories and identified classes of

malware were analysed and ranked accordingly, and the dataset further refined into two

significant groups: Category A malware, consisting of adware and PUPs and Category B,

C and D malware consisting of RATs, ransomware and coin miners.

Building on the analysis of categories and classes within the dataset, the diversity of

the population was considered, showing an increase over the dataset time period. Ad-

ditionally, clustering of observed malware using established work on malware clustering

allowed grouping and visualisation of the dataset. Finally, the infection vectors, per-

sistence mechanisms and code signing was analysed, identifying three sub-groupings of

Category A malware based on these factors: Categories A.1, A.2 and A.3.

Consensus in detection of malware by multiple vendors was also explored in the dataset,

showing that Category A malware enjoys slightly lower consensus beteeen vendors. Within

the category, however, further support is found for the sub-groupings previously identified.

Additionally, Category A in seen in higher concentrations in recent years, specifically from

2015 onwards. The distribution of the malware measured by unique sources is also lower

in Category A compared to Categories B, C and D.

In the chapter that follows, the results will be discussed with a view to building a model

for additional work in the future, a better understanding of the macOS malware landscape

and insights that may be useful in practice.

4.7. SUMMARY 72

Chapter 5

Results and Discussion

“Inconceivable!”

“You keep using that word. I do not think it

means what you think it means.”

William Goldman, The Princess Bride

5.1 Introduction

Industry reports, user perception and scholarly research have been at odds on the nature

of malware on macOS. On one side, users view the operating system as more secure and

less prone to malicious activity (Wash, 2010; Howe et al., 2012). On the other, practice,

press and security vendors have been predicting everything from a steady increase to veri-

table tsunami of macOS malware since the FlashBack trojan appeared in 2011 (Manning,

2012; Kaspersky, 2018; Symantec, 2018a). In the middle, the research community has

justifiably focused on platforms with significant usage footprints and availability of data,

focusing efforts on Windows and Android malware ecosystems (for example, Soto-Valero

and González (2018) and Yen et al. (2014)). This research aimed to provide some clar-

ity by filling a gap in empirical studies of macOS malware, hypothesising that macOS

malware does represent a credible threat to security on the platform, and that an under-

standing of the nature of this malware could be applied in practice to improve the overall

security posture of users and administrators alike.

The research questions posed in this work looked to test the hypothesis by reviewing

related work on the topic of malware as a whole and macOS in particular. This was to be

73

5.2. INTEGRATING EXISTING WORK 74

augmented by exploring a a recent dataset of macOS malware observations in a real-world

environment to answer ‘what’, ‘how’ and ’when’ questions. In the sections that follow,

points from related work will be integrated with the findings from the exploratory data

analysis to understand these results, answer the research questions and understand the

implications of the results. Following this limitations of the research will be discussed,

and finally recommendations for future work will be considered.

5.2 Integrating Existing Work

In the review of related work in Chapter 2, the current malware ecosystem was explored.

While all the areas covered provide background, context and work related to this research,

three key areas stand out when evaluating the results.

5.2.1 Methods of infection and persistence

The first area is the methods of infection and persistence discussed in Section 2.3.2 and

analysed further in Section 4.5. While a number of methods of infection are identified in

related work, analysis shows that a limited set of these are seen in the malware obser-

vations. For the most part, Category A malware makes use of either direct installation,

or wrappers around other applications. Category B, C and D malware is more varied,

including compromised websites and compromised third party installers. This shows that

while a number of methods of infection could be taken advantage of, only a small number

appear to be actively used. Similarly, numerous persistence mechanisms are identified

yet a limited number are observed: generally, standard methods of macOS persistence

through launch agents are used, with the occasional use of kernel extensions and browser

based persistence. Diversity of persistence mechanisms is much higher in Category B, C

and D malware, again suggesting that while a number of methods exist to successfully

persist malware, few are observed in the wild.

5.2.2 Naming, labelling and clustering

The second area considers the challenges of naming, labelling and clustering of malware,

discussed in Section 2.4 and analysed in Section 4.3 and Section 4.4. AVClass has been

used to label of large malware datasets, and was successfully applied in this research to

5.2. INTEGRATING EXISTING WORK 75

provide normalised labels for the observed malware. Additionally, SSDeep was utilised

to cluster malware, revealing that a combination of both automated labelling with AV-

Class and automated clustering with SSDeep provided a high level of consistency and

identification of aliases.

Categories A, B, C and D were defined by considering a review of practice literature

and reports and reviewing high level findings in the observed malware dataset, and are

shown in Figure 5.1. The top ten observed families where identified and categorised, with

Category A making up a significant majority of the malware observed. The balance, Cat-

egories B, C and D, comprised a minority. An important finding of this research was that

when Category A was explored in greater detail, three sub-categories emerged: Category

A.1 comprised of close-to-legitimate malware, Category A.2 comprised of malware that

showed a mix of legitimate and illegitimate characteristics and Category A.3 comprised of

malware that demonstrated almost no legitimate aspects, and shared a number of charac-

teristics with non-Category A malware. Section 5.1 outlines the high level characteristics

based on the findings from this research.

Figure 5.1: Overview of observed malware categories and their characteristics

Outside of the scope of this study and discussed in further opportunities for research is

5.3. EXPLORATORY ANALYSIS 76

the integration and synthesis of existing taxonomies with this finding, and identifying

potential subcategories in other types of malware not observed in this dataset.

5.2.3 macOS perception of security

The third area discussed in Section 2.5 focuses on the macOS operating system, and

highlights that while user perception of the operating system may be one of enhanced

security, a review of the known vulnerabilities shows that the system has in certain years

have seen similar (and in some cases, more) published vulnerabilities than that of its

Microsoft Windows counterpart. Working purely with public available data such as the

National Vulnerability Database as a proxy for overall operating system security should

be approached with caution, however when considered alongside the relative severity of

the identified vulnerabilities, the underlying notion of the operating system being ‘more

secure by default’ can be challenged. From this and the known infection and persistence

mechanisms, it suggests that the lack of diversity in macOS malware has more to do with

market share and economic factors and lower likelihood of reward than superior security

controls.

5.3 Exploratory Analysis

The real world dataset was ingested, aggregated, classified, labelled and clustered. Anal-

ysis of the data focused on temporal analysis (the ‘when’), and the nature of the observed

malware itself (the ’what’ and ’how’) in terms of classification, diversity, infection vec-

tors, persistence and code signing. As this was exploratory analysis, the dataset was

approached as far as possible with no preconceived outcomes: the data, and any points of

interest, was explored to build a view in such a way that it could be repeated on different

datasets, or for different operating systems, for comparative analysis. The key areas and

their findings are discussed as follows.

5.3.1 Temporal Analysis

Temporal analysis revealed observations broadly in line with industry reports. In analysing

this, a number of factors should be considered. Firstly, it is unknown what impact the

growth of the anti-malware vendor client base may have had on the increased number of

5.3. EXPLORATORY ANALYSIS 77

detections as client numbers where not available to this researcher, and are considered

commercially sensitive information. On the assumption that these numbers were rela-

tively static, an increase is observed in the period under observation in both Category A

and Category B. Industry studies (Kaspersky, 2018; Symantec, 2018a) report a growth in

malware in categories C and D, but this is not reflected in the dataset. This indicates that

while risks are present, the increase appears to be in traditional adware, PUPs, trojans

and backdoors rather than newer types of malware like ransomware and cryptocurrency

miners. Further opportunities exist to explore different real-world datasets for similar

patterns, and correlation to specific geographies.

5.3.2 Diversity

The lack of diversity in observed malware may underpin the perception that malware is

less of a risk on macOS. Analysis of the data does not strongly support an increase in

diversity of malware over time, as seen in the Android study by Soto-Valero and González

(2018), although Category B, C and D malware do show an increase in diversity over

the period (albeit with a small dataset). Although not considered in this research, addi-

tional research may measure and analyse factors impacting diversity in observed datasets,

or comprehensively explore what ratio of known macOS malware datasets like Wardle

(2018a) can be seen in real-world datasets.

5.3.3 Infection Vectors and Code Signing

In the analysis of the infection vectors, methods of persistence and code signing observa-

tions were considered within the top ten malware in Category A, and Category B,C and D.

Analysis of these characteristics contributed further to the sub-categorisation of Category

A malware seen in Figure 5.1. Limited variation was observed in methods of persistence,

and the most common infection vectors were direct installation and via third party in-

stallers. When considered in the context of direct infection through vulnerabilities, there

was no evidence in this dataset to support this as a common method of infection on ma-

cOS at this point. This implies that for the most part, users directly authorise installation

of the malware rather than the malware requiring exploitation of a vulnerability to infect

the user. As discussed earlier, this does not imply an immunity to such vectors, simply

that the method of infection is currently not commonly seen. Analysis of code signing

provided insight into the techniques used, especially by Category A malware authors, and

5.3. EXPLORATORY ANALYSIS 78

confirmed related work discussed in Section 2.3.3 that code signing is far from infallible,

and can be bypassed regardless of commercial and verification controls.

While not directly reflected in the analysis, the prevalence of MacKeeper and its rela-

tive legitimacy was of interest to this researcher as the malware dominates the observed

dataset, but presents as legitimate software when looking at the characteristics studied

in this research. Specifically, the infection vector is direct, in that users choose to install

the software, methods of persistence are routine and the code signing legitimate with

valid package identifiers. A number of anti-malware vendors consider the software to be

malicious, and Reed (2016b) provided technical reasons why, in 2016, this may have been

the case. Later versions of MacKeeper appear to have addressed a number of the criti-

cisms levelled in practice, although not all (Ashenbrenner, 2018). In a lab environment

as part of this exploratory research, the product was downloaded, installed and tested

and shown to be straightforward to install and uninstall, with no false positive detections

recorded. While this is not intended to be a comprehensive review of the product, what

is of interest is that a Category A adware product may have, at least in part, legitimised

over time. This may be related to ongoing detection by anti-malware sofware vendors,

and may provide a potential case study outside of the scope of this research but worthy

of further investigation.

5.3.4 Vendor Consensus

Finally, anti-malware software vendors demonstrated consensus for a large portion of the

observed macOS malware dataset. Hurier et al. (2016) discusses the lack of consensus

between anti-malware software vendors by evaluating existing ground truth databases

against a large body of malware from VirusTotal. In this research, malware from the

dataset was plotted using the date a malware sample was first seen, the number of positives

(i.e., ratings by an anti-malware software vendor as malware) and the number of unique

sources submitting a malware sample. Malware identified by fewer vendors was more

noticeable in Category A malware, and malware from a greater number of unique sources

was shown with Category B, C and D malware.

Distinguishing between malware identified in sub-categories of Category A demonstrated

that groupings could be visually identified when plotted in the same way. Sub-category

A.1 displayed lower levels of vendor consensus than A.2 and A.3, which may be as a

result of the semi-legitimate characteristics of the malware, as opposed to A.2 and A.3

5.4. IMPLICATIONS AND FUTURE WORK 79

with limited or no legitimate characteristics. This difference in vendor consensus between

categories further supports the sub-categorisation of Category A malware.

5.4 Implications and Future work

Sections 5.2 and 5.3 discussed the analysis in order to answer what malware families have

been observed on the macOS platform, how much diversity is present in the population

of observed macOS malware and how the detection rates have increased over time. Addi-

tional outcomes of the exploratory analysis have also been discussed. In the next section,

the final research question will be considered: the implications and direction of future

research that should be taken to understand the factors influencing malware on macOS.

5.4.1 Implications

A key finding and implication of the research is that the volume of malware observed on

macOS while increasing over time is not overly diverse, and that at first glance the type

of malware may appear to be reasonably benign adware. This research has shown that in

fact not all adware is equal, and many of the observed families represent a credible threat

to both privacy and security. Technical analysis has shown that the underlying operating

system is no more secure than its counterparts in terms of catalogued vulnerabilities,

infection vectors and methods of persistence. Additionally, operating system controls such

as code signing may be ineffective deterrents for motivated malware authors. Ultimately,

these authors have the ability to write and spread costly and damaging malware, but

possibly not the economic incentive. This has practical implications for those using and

administering macOS environments - an increased adherence to security best practice is

encouraged, regardless of any perception of security that may exist.

Thus, malware has been shown to be a credible threat on the macOS platform. The

groundwork and ability exists for real threats from malware to increase, and should other

influencing factors change, such as an increase in market share or perceived value of

macOS users, the diversity of and damage caused by macOS malware may well increase.

5.5. LIMITATIONS 80

5.4.2 Future Work

The direction of future research lies in additional studies, from different real-world datasets,

that offer the opportunity to validate or improve on the findings of this work. Work that

is able to compare and contrast observations from multiple operating systems would bring

significant value to the field of macOS malware research. Longitudinal studies of macOS

malware corpora over a longer periods similar to Yen et al. (2014) and Soto-Valero and

González (2018) would also be beneficial.

In terms of labelling, categorisation and taxonomies, there exists an opportunity to fur-

ther explore methods of labelling large datasets that use both vendor label analysis and

normalisation as well as automated clustering. Application of one or more of the many

existing taxonomical approaches to malware may bring additional clarity to macOS mal-

ware, including the categorisations proposed in this study. Additional work that can

validate the sub-categories identified would be valuable in both research and practice.

Finally, existing investigations into the efficacy of code signing of malware both on the

macOS platform and in a broader context show promising results, and could be extended

into a more detailed review to establish ways that code signing code be improved by

operating system vendors, taking into account the current lack of effectiveness of financial

barriers and validation efforts.

5.5 Limitations

Research is conducted subject to limitations and bias, and this research is no exception.

The use of a single vendor dataset may be considered limitation, as the data is limited

by the reach of the product and the geographies it is used in. The anti-malware software

product that provided the malware telemetry is focused on the corporate user market,

so these finding may no reflect individual, or non-corporate users usage patterns. Addi-

tionally, the relatively short eleven month window the data covers is may be a limiting

factor.

In terms of the technical nature of malware observations, it should be highlighted that the

dataset comprises only of malware that was detected by the product in use. In many of

the cited industry studies, and especially those that may consider browser based malware

with no physical artifacts (for example, certain cryptocoin miners) on a host as prevelant

5.6. SUMMARY 81

malware, these may not be detected and thus not included in the dataset under analysis.

An additional limitation related to the composition of the dataset is the anonymity of

users, which may introduce a risk of invalid data (for example, test data) being included.

This is a potential limitation which was mitigated as far as possible and discussed in

Section 3.9, but may still occur.

Finally, the overall nature of a dataset of malware observations from an anti-malware

software vendor is subject to a natural survivorship bias; malware infections rendering an

endpoint unusable or disabling anti-malware software would not be visible in the dataset.

5.6 Summary

This Chapter considered the research questions and proposed hypothesis, integrating ob-

servations from related work with the results of the analysis carried out. The implications

of the research were discussed in Section 5.4.1, and possible future work suggested based

on the results. Limitations of the research were also discussed. In the chapter that follows,

the work will be summarised and concluded.

5.6. SUMMARY 82

Chapter 6

Conclusion

Adware is just malware with a legal department

Amit Serper, Virus Bulletin Conference, 2018

The study of malicious software, or malware, has developed significantly as a research

area over the last four decades. From Cohen’s early use of the term ‘computer virus’

to modern work spanning prevention, detection and forensic work, both scholarly and

practical aspects of the field have grown in scope and and depth.

This research examined the history of malware as a threat to users and administrators

alike. Existing literature and background information was reviewed in Chapter 2, includ-

ing work on detection, analysis and evolution of malware, common terminology, infection

mechanisms and methods of persistence. Specific attention was paid to operating system

controls like code signing, and extant literature and works in the areas of malware classifi-

cation, labelling, clustering and taxonomies. The relative security of the macOS operating

system was explored using publicly available vulnerability datasets, finding that the per-

ception of macOS being a more security operating system was not always supported:

macOS shares a comparable level of vulnerabilities, and similar mechanisms of control to

its more widely used desktop operating system counterparts.

This research hypothesised that malware on macOS was a credible threat to users of the

platform. To test this, exploratory research was undertaken on a dataset of real-world

malware observations on macOS endpoints. With both testing on real world datasets and

providing sufficient details of experiments undertaken suggested as prudent practice for

malware analysis by Rossow et al. (2012), Chapter 3 discusses the methodology used in

83

84

the research in detail. Data was imported from an anti-malware software vendor provided

dataset for an eleven month period, aggregated, enriched with data from VirusTotal and

categorised using both AVClass and a custom categorisation method to establish high

level categories. In Chapter 4, the resulting dataset of 3,450 observations were analysed.

The objective of the analysis was to provide detail of the nature of malware on the macOS

operating system. This included temporal analysis, a study of the outcomes of labelling,

classification and clustering and the diversity of observed malware in the dataset. A

review of the observed persistence methods, infection vectors and code signing was also

undertaken, and insight into consensus between anti-malware software vendors was gained.

A number of conclusions were taken from the work carried out, and were discussed in

Chapter 5 and summarised here. Malware is a credible threat to users of the macOS

operating system. The nature of the malware in an observed data set does not reflect the

findings of industry reports; cryptocoin mining and ransomware are infrequently observed

compared to the number of adware and PUPs seen. However, when the latter category of

malware is explored in detail, this research shows that three clear subcategories emerge

and that the characteristics of these categories range from somewhat innocuous to highly

malicious. The operating system controls in place to control the spread of malware can

be seen to be bypassed through technical and commercial means, and overall malware can

be seen to be growing. Finally, the limitations of research and suggestion directions for

future work were discussed.

In light of this, it can be concluded that the threat of malware on the macOS platform

may not always take the shape expected, but presents a valid threat for users of the

platform, and the hypothesis is supported. Considering the relatively small share of the

market that macOS enjoys, diversity and threats are only likely to increase along with

this market share. From a practitioner standpoint, attention should continue to be paid

to following good security practice, usage of available anti-malware software, ensuring

vulnerabilities are patched and ongoing user education.

References

Abbati, A. OSX.IronCore.A, or what we know about OSX.FlashImitator.A.

Website, February 2015. https://www.sentinelone.com/blog/

osx-ironcore-a-or-what-we-know-about-osx-flashimitator-a/, accessed

December 2018.

Alperovitch, D. Revealed: operation shady RAT. White Paper, 2011. http://

www.csri.info/wp-content/uploads/2012/08/wp-operation-shady-rat1.pdf, ac-

cessed June 2018.

Alrawi, O. and Mohaisen, A. Chains of distrust: Towards understanding certificates

used for signing malicious applications. In Proceedings of the 25th International Confer-

ence Companion on World Wide Web, pages 451–456. International World Wide Web

Conferences Steering Committee, 2016.

Annachhatre, C., Austin, T. H., and Stamp, M. Hidden markov models for malware

classification. Journal of Computer Virology and Hacking Techniques, 11(2):59–73,

2015.

Apel, M., Bockermann, C., and Meier, M. Measuring similarity of malware behav-

ior. In Local Computer Networks, 2009. LCN 2009. IEEE 34th Conference on, pages

891–898. IEEE, 2009.

Arntz, P. Spigot browser hijackers. Website, February 2017. https://blog.

malwarebytes.com/puppum/2017/02/spigot-browser-hijackers/, accessed Decem-

ber 2018.

Ashenbrenner, S. Known Bad Software Part I - MacKeeper. Website, May 2018. https:

//crashsecurity.com/blog/2018/4/20/mackeeper-is-a-scam, accessed December

2018.

85

https://www.sentinelone.com/blog/osx-ironcore-a-or-what-we-know-about-osx-flashimitator-a/
https://www.sentinelone.com/blog/osx-ironcore-a-or-what-we-know-about-osx-flashimitator-a/
http://www.csri.info/wp-content/uploads/2012/08/wp-operation-shady-rat1.pdf
http://www.csri.info/wp-content/uploads/2012/08/wp-operation-shady-rat1.pdf
https://blog.malwarebytes.com/puppum/2017/02/spigot-browser-hijackers/
https://blog.malwarebytes.com/puppum/2017/02/spigot-browser-hijackers/
https://crashsecurity.com/blog/2018/4/20/mackeeper-is-a-scam
https://crashsecurity.com/blog/2018/4/20/mackeeper-is-a-scam

REFERENCES 86

Bailey, M., Oberheide, J., Andersen, J., Mao, Z. M., Jahanian, F., and

Nazario, J. Automated classification and analysis of internet malware. In Inter-

national Workshop on Recent Advances in Intrusion Detection (RAID), pages 178–197.

Springer, 2007.

Barrera, D., Kayacik, H. G., van Oorschot, P. C., and Somayaji, A. A method-

ology for empirical analysis of permission-based security models and its application to

Android. In Proceedings of the 17th ACM conference on Computer and Communications

Security, pages 73–84. ACM, 2010.

Baumgarten, R. Mach-O Malware Analysis: Combatting Mac OSX/iOS Malware with

Data Visualization. In Proceedings of DefCon 21. 2013.

Baysa, D., Low, R. M., and Stamp, M. Structural entropy and metamorphic mal-

ware. Journal of Computer Virology and Hacking Techniques, 9(4):179–192, 2013.

Bestuzhev, D. First step in cross-platform Trojan bankers from

Brazil done. Website, March 2018. https://securelist.com/

first-step-in-cross-platform-trojan-bankers-from-brazil-done/74051/,

accessed December 2018.

Breen, K. Darkcomet from defense to offense. In BSides London Security BSides London.

2015.

Brillinger, D. R. et al. John W. Tukey: his life and professional contributions. The

Annals of Statistics, 30(6):1535–1575, 2002.

Bureau, P.-M. OSX/Flashback. White Paper, September 2012. https:

//www.welivesecurity.com/media_files/white-papers/osx_flashback.pdf, ac-

cessed June 2018.

Cabaj, K., Gawkowski, P., Grochowski, K., Nowikowski, A., and Żórawski,

P. The impact of malware evolution on the analysis methods and infrastructure. In

Proceedings of the 14th International Conference on Mining Software Repositories. PTI,

IEEE, 2017.

Calleja, A., Tapiador, J., and Caballero, J. A look into 30 years of malware de-

velopment from a software metrics perspective. In Proceedings of the International

Symposium on Research in Attacks, Intrusions, and Defenses, pages 325–345. Springer,

2016.

https://securelist.com/first-step-in-cross-platform-trojan-bankers-from-brazil-done/74051/
https://securelist.com/first-step-in-cross-platform-trojan-bankers-from-brazil-done/74051/
https://www.welivesecurity.com/media_files/white-papers/osx_flashback.pdf
https://www.welivesecurity.com/media_files/white-papers/osx_flashback.pdf

REFERENCES 87

Carbon Black. 2015: The most prolific year in history for OS X mal-

ware. Technical Report, 2015. https://www.documentcloud.org/documents/

2459197-bit9-carbon-black-threat-research-report-2015.html, accessed April

2018.

Cavelty, M. D. Cybersecurity research meets science and technology studies. Politics

and Governance, 6(2):22–30, 2018.

Chen, P., Desmet, L., and Huygens, C. A study on advanced persistent threats.

In Proceedings of the International Conference on Communications and Multimedia

Security, pages 63–72. Springer, 2014.

Cohen, F. Computer Viruses. Computers & Security, 6(1):22–35, 1987.

Collins, M. Network Security Through Data Analysis: From Data to Action. O’Reilly

Media, Inc., ISBN 9781449357900, 2017.

Dagon, D., Gu, G., Lee, C. P., and Lee, W. A taxonomy of botnet structures. In

Proceedings of the 23rd Annual Computer Security Applications Conference (ACSAC

2007), pages 325–339. IEEE, 2007.

Dai, J., Guha, R. K., and Lee, J. Efficient Virus Detection Using Dynamic Instruction

Sequences. Journal of Computers, 4(5):405–414, 2009.

Damodaran, A., Di Troia, F., Visaggio, C. A., Austin, T. H., and Stamp, M.

A comparison of static, dynamic, and hybrid analysis for malware detection. Journal

of Computer Virology and Hacking Techniques, 13(1):1–12, 2017.

Egele, M., Scholte, T., Kirda, E., and Kruegel, C. A survey on automated dynamic

malware-analysis techniques and tools. ACM Computing Surveys (CSUR), 44(2):6,

2012.

eSentire. eSentire 2017 Q2 Quarterly Threat Report. Technical Report, 2017. https:

//www.esentire.com/assets/resources/2017-Q2-ThreatReport.pdf, accessed De-

cember 2018.

F-Secure. Backdoor:OSX/MacKontrol.A. Website, July 2012a. https://www.

f-secure.com/v-descs/backdoor_osx_mackontrol_a.shtml, accessed June 2018.

F-Secure. Multi-platform backdoor lurks in colombian transport site. Website,

July 2012b. https://www.f-secure.com/weblog/archives/00002397.html, ac-

cessed June 2018.

https://www.documentcloud.org/documents/2459197-bit9-carbon-black-threat-research-report-2015.html
https://www.documentcloud.org/documents/2459197-bit9-carbon-black-threat-research-report-2015.html
https://www.esentire.com/assets/resources/2017-Q2-ThreatReport.pdf
https://www.esentire.com/assets/resources/2017-Q2-ThreatReport.pdf
https://www.f-secure.com/v-descs/backdoor_osx_mackontrol_a.shtml
https://www.f-secure.com/v-descs/backdoor_osx_mackontrol_a.shtml
https://www.f-secure.com/weblog/archives/00002397.html

REFERENCES 88

Filiol, E. Computer viruses: from theory to applications. Springer Science & Business

Media, ISBN 9781280427190, 2006.

FireEye. Poison Ivy: Assessing damage and extracting intelligence. Technical

Report, 2013. https://www.fireeye.com/content/dam/fireeye-www/global/en/

current-threats/pdfs/rpt-poison-ivy.pdf, accessed February 2018.

Frank, S. The case of the stolen source code. Website, May 2017. https://panic.com/

blog/stolen-source-code/, accessed December 2018.

Gazet, A. Comparative analysis of various ransomware virii. Journal of Computer

Virology and Hacking Techniques, 6(1):77–90, 2010.

Geniola, A., Antikainen, M., and Aura, T. A large-scale analysis of download

portals and freeware installers. In Nordic Conference on Secure IT Systems, pages

209–225. Springer, 2017.

Grégio, A. R. A., Afonso, V. M., Filho, D. S. F., Geus, P. L. d., and Jino, M.

Toward a taxonomy of malware behaviors. The Computer Journal, 58(10):2758–2777,

2015.

Gu, G., Zhang, J., and Lee, W. Botsniffer: Detecting botnet command and control

channels in network traffic. Computer Science and Engineering Faculty Publications,

Wright State University, 2008.

Gupta, A., Kuppili, P., Akella, A., and Barford, P. An empirical study of mal-

ware evolution. In Proceedings of the First International Communication Systems and

Networks and Workshops (COMSNETS 2009), pages 1–10. IEEE, 2009.

Hang, H., Bashir, A., Faloutsos, M., Faloutsos, C., and Dumitras, T. “Infect-

me-not”: A User-centric and Site-centric Study of web-based malware. In Proceedings

of the IFIP Networking Conference and Workshops, pages 234–242. IEEE, 2016.

Howe, A. E., Ray, I., Roberts, M., Urbanska, M., and Byrne, Z. The psychology

of security for the home computer user. In 2012 IEEE Symposium on Security and

Privacy, pages 209–223. IEEE, 2012.

Hsieh, S., Wu, P., and Liu, H. Automatic Classifying of Mac OS X Sam-

ples. Technical Report, 2016. https://documents.trendmicro.com/assets/wp/

wp-automatic-classifying-of-mac-os-x-samples.pdf, accessed April 2018.

https://www.fireeye.com/content/dam/fireeye-www/global/en/current-threats/pdfs/rpt-poison-ivy.pdf
https://www.fireeye.com/content/dam/fireeye-www/global/en/current-threats/pdfs/rpt-poison-ivy.pdf
https://panic.com/blog/stolen-source-code/
https://panic.com/blog/stolen-source-code/
https://documents.trendmicro.com/assets/wp/wp-automatic-classifying-of-mac-os-x-samples.pdf
https://documents.trendmicro.com/assets/wp/wp-automatic-classifying-of-mac-os-x-samples.pdf

REFERENCES 89

Hurier, M., Allix, K., Bissyandé, T. F., Klein, J., and Le Traon, Y. On the lack

of consensus in anti-virus decisions: Metrics and insights on building ground truths of

android malware. In International Conference on Detection of Intrusions and Malware,

and Vulnerability Assessment, pages 142–162. Springer, 2016.

Hurier, M., Suarez-Tangil, G., Dash, S. K., Bissyandé, T. F., Traon, Y. L.,

Klein, J., and Cavallaro, L. Euphony: harmonious unification of cacophonous

anti-virus vendor labels for android malware. In Proceedings of the 14th International

Conference on Mining Software Repositories, pages 425–435. IEEE Press, 2017.

Im, G. P. and Baskerville, R. L. A longitudinal study of information system threat

categories: the enduring problem of human error. ACM SIGMIS Database, 36(4):68–79,

2005.

Irwin, B. A Source Analysis of the Conficker Outbreak from a Network Telescope.

SAIEE Africa Research Journal, 104(2):38–53, 2013.

Jackson, K. Nomenclature for malicious programs. Virus Bulletin, March 1990.

Jacob, G., Debar, H., and Filiol, E. Behavioral detection of malware: from a

survey towards an established taxonomy. Journal of Computer Virology and Hacking

Techniques, 4(3):251–266, 2008.

Johnston, A. C., Warkentin, M., McBride, M., and Carter, L. Dispositional

and situational factors: influences on information security policy violations. European

Journal of Information Systems, 25(3):231–251, 2016.

Joshi, R. and Pilli, E. S. Botnet forensics. In Fundamentals of Network Forensics,

pages 145–165. Springer, ISBN 9781447172970, 2016.

Kantchelian, A., Tschantz, M. C., Afroz, S., Miller, B., Shankar, V., Bachwani,

R., Joseph, A. D., and Tygar, J. D. Better malware ground truth: Techniques

for weighting anti-virus vendor labels. In Proceedings of the 8th ACM Workshop on

Artificial Intelligence and Security, pages 45–56. ACM, 2015.

Karim, M. E., Walenstein, A., Lakhotia, A., and Parida, L. Malware phylogeny

generation using permutations of code. Journal in Computer Virology, 1(1-2):13–23,

2005.

Karresand, M. Separating trojan horses, viruses, and worms-a proposed taxonomy of

software weapons. In Information Assurance Workshop, 2003. IEEE Systems, Man and

Cybernetics Society, pages 127–134. IEEE, 2003.

REFERENCES 90

Kaspersky. Kaspersky security bulletin 2018. Technical Report, December 2018. https:

//securelist.com/kaspersky-security-bulletin-2018-statistics/89145/, ac-

cessed December 2018.

Kaspersky, E. The evolution of OS X malware. Website, September 2014. https://

eugene.kaspersky.com/2014/09/29/the-evolution-of-os-x-malware/, retrieved

November 2017.

Kharraz, A., Robertson, W., Balzarotti, D., Bilge, L., and Kirda, E. Cutting

the gordian knot: A look under the hood of ransomware attacks. In Proceedings of the

International Conference on Detection of Intrusions and Malware, and Vulnerability

Assessment, pages 3–24. Springer, 2015.

Khattak, S., Ramay, N. R., Khan, K. R., Syed, A. A., and Khayam, S. A. A

taxonomy of botnet behavior, detection, and defense. IEEE Communications Surveys

& Tutorials, 16(2):898–924, 2014.

Kim, D., Kwon, B. J., and Dumitraş, T. Certified Malware: Measuring Breaches

of Trust in the Windows Code-Signing PKI. In Proceedings of the 2017 ACM SIGSAC

Conference on Computer and Communications Security, pages 1435–1448. ACM, 2017.

Kolbitsch, C., Comparetti, P. M., Kruegel, C., Kirda, E., Zhou, X.-y., and

Wang, X. Effective and efficient malware detection at the end host. In Proceedings of

the USENIX security symposium, volume 4, pages 351–366. 2009.

Kolter, J. Z. and Maloof, M. A. Learning to detect and classify malicious executables

in the wild. Journal of Machine Learning Research, 7(Dec):2721–2744, 2006.

Kornblum, J. Identifying almost identical files using context triggered piecewise hashing.

Digital Investigation, 3:91–97, 2006.

Kotzias, P., Matic, S., Rivera, R., and Caballero, J. Certified pup: abuse in

authenticode code signing. In Proceedings of the 22nd ACM SIGSAC Conference on

Computer and Communications Security, pages 465–478. ACM, 2015.

Kwon, B. J., Mondal, J., Jang, J., Bilge, L., and Dumitras, T. The dropper effect:

Insights into malware distribution with downloader graph analytics. In Proceedings of

the 22nd ACM SIGSAC Conference on Computer and Communications Security, pages

1118–1129. ACM, 2015.

https://securelist.com/kaspersky-security-bulletin-2018-statistics/89145/
https://securelist.com/kaspersky-security-bulletin-2018-statistics/89145/
https://eugene.kaspersky.com/2014/09/29/the-evolution-of-os-x-malware/
https://eugene.kaspersky.com/2014/09/29/the-evolution-of-os-x-malware/

REFERENCES 91

Landwehr, C. E., Bull, A. R., McDermott, J. P., and Choi, W. S. A taxonomy

of computer program security flaws. ACM Computing Surveys (CSUR), 26(3):211–254,

1994.

Latif, M. H. OSX.Coinminer. Website, February 2018. https://www.symantec.com/

security-center/writeup/2018-021215-4916-99, accessed June 2018.

Lau, B., Jang, Y., Song, C., Wang, T., Chung, P. H., and Royal, P. Mactans:

Injecting malware into ios devices via malicious chargers. Black Hat USA, 2013.

Levenshtein, V. I. Binary codes capable of correcting deletions, insertions, and rever-

sals. In Soviet Physics Doklady, volume 10, pages 707–710. 1966.

Lever, C., Kotzias, P., Balzarotti, D., Caballero, J., and Antonakakis, M. A

lustrum of malware network communication: Evolution and insights. In Proceedings of

the IEEE Symposium on Security and Privacy (SP), pages 788–804. IEEE, 2017.

Levin, J. Code signing – hashed out. In Proceedings of the RSA Conference, San

Francisco. 2015.

Levin, J. Mac OS X and iOS Internals, 2nd Edition. Technologygeeks.com, ISBN

099105556X, 2018.

Liu, J., Wang, Y., and Wang, Y. Inferring phylogenetic networks of malware families

from api sequences. In Proceedings of the International Conference on Cyber-Enabled

Distributed Computing and Knowledge Discovery (CyberC), pages 14–17. IEEE, 2016.

Luszcz, J. How maverick developers can create risk in the software and IoT supply chain.

Network Security, 2017(8):5–7, 2017.

Ma, J., Dunagan, J., Wang, H. J., Savage, S., and Voelker, G. M. Finding

diversity in remote code injection exploits. In Proceedings of the 6th ACM SIGCOMM

conference on Internet measurement, pages 53–64. ACM, 2006.

Malin, C. H., Casey, E., and Aquilina, J. M. Malware forensics: investigating and

analyzing malicious code. Syngress, ISBN 9780080560199, 2008.

Malwarebytes. Malicious download installs Genieo and GoPhoto.it

adware. Website, November 2013. https://www.thesafemac.com/

malicious-download-installs-genieo-and-gophoto-it-adware/, accessed De-

cember 2018.

https://www.symantec.com/security-center/writeup/2018-021215-4916-99
https://www.symantec.com/security-center/writeup/2018-021215-4916-99
https://www.thesafemac.com/malicious-download-installs-genieo-and-gophoto-it-adware/
https://www.thesafemac.com/malicious-download-installs-genieo-and-gophoto-it-adware/

REFERENCES 92

Malwarebytes. Adware Removal Guide: Bundlore. Website, November 2015. http:

//www.thesafemac.com/arg-bundlore/, accessed June 2018.

Malwarebytes. OSX.Genieo. Website, 2018a. https://blog.malwarebytes.com/

detections/osx-genieo/, accessed December 2018.

Malwarebytes. PUP.Optional.InstallCore. Website, 2018b. https://blog.

malwarebytes.com/detections/pup-optional-installcore/, accessed December

2018.

Manning, J. Apple drops claim that “Macs don’t get viruses”.

Website, July 2012. https://www.smh.com.au/technology/

apple-drops-claim-that-macs-dont-get-viruses-20120703-21ei4.html, ac-

cessed October 2018.

Mansfield-Devine, S. Ransomware: the most popular form of attack. Computer Fraud

& Security, 2017(10):15–20, 2017.

Marquis-Boire, M., Marschalek, M., and Guarnieri, C. Big game hunting: the

peculiarities in nation-state malware research. In Proceedings of Black Hat USA. 2015.

McAfee. Meet ‘Tox’: Ransomware for the Rest of Us. Website,

May 2015. https://securingtomorrow.mcafee.com/mcafee-labs/

meet-tox-ransomware-for-the-rest-of-us/, accessed February 2018.

McFedries, P. Technically speaking: The spyware nightmare. IEEE Spectrum, 42(8):72–

72, 2005.

Mezzour, G., Carley, K. M., and Carley, L. R. Global variation in attack encounters

and hosting. In Proceedings of the Hot Topics in Science of Security: Symposium and

Bootcamp, pages 62–73. ACM, 2017.

MITRE. Common malware enumeration. Website, 2006. http://cme.mitre.org/,

accessed April 2018.

MITRE. Malware Attribute Enumeration and Characterization. Website, 2018. http:

//maecproject.github.io//, accessed April 2018.

Moore, D., Paxson, V., Savage, S., Shannon, C., Staniford, S., and Weaver,

N. Inside the slammer worm. IEEE Security & Privacy, 99(4):33–39, 2003.

Moore, T. The economics of cybersecurity: Principles and policy options. International

Journal of Critical Infrastructure Protection, 3(3):103–117, 2010.

http://www.thesafemac.com/arg-bundlore/
http://www.thesafemac.com/arg-bundlore/
https://blog.malwarebytes.com/detections/osx-genieo/
https://blog.malwarebytes.com/detections/osx-genieo/
https://blog.malwarebytes.com/detections/pup-optional-installcore/
https://blog.malwarebytes.com/detections/pup-optional-installcore/
https://www.smh.com.au/technology/apple-drops-claim-that-macs-dont-get-viruses-20120703-21ei4.html
https://www.smh.com.au/technology/apple-drops-claim-that-macs-dont-get-viruses-20120703-21ei4.html
https://securingtomorrow.mcafee.com/mcafee-labs/meet-tox-ransomware-for-the-rest-of-us/
https://securingtomorrow.mcafee.com/mcafee-labs/meet-tox-ransomware-for-the-rest-of-us/
http://cme.mitre.org/
http://maecproject.github.io//
http://maecproject.github.io//

REFERENCES 93

Moore, T., Clayton, R., and Anderson, R. The economics of online crime. Journal

of Economic Perspectives, 23(3):3–20, 2009.

Moser, A., Kruegel, C., and Kirda, E. Limits of static analysis for malware detection.

In Proceedings of the 23rd annual Computer Security Applications Conference (ACSAC

2007), pages 421–430. IEEE, 2007.

Moubarak, J., Chamoun, M., and Filiol, E. Comparative study of recent MEA

malware phylogeny. In Proceedings of the 2nd International Conference on Computer

and Communication Systems (ICCCS), pages 16–20. IEEE, 2017.

Nachenberg, C. S. and Griffin, K. E. Reducing malware signature set size through

server-side processing. August 7 2012. US Patent 8,239,944.

Oliver, J., Cheng, C., and Chen, Y. TLSH–a locality sensitive hash. In Proceedings

of the Fourth Cybercrime and Trustworthy Computing Workshop, pages 7–13. IEEE,

2013.

Ollmann, G. The evolution of commercial malware development kits and colour-by-

numbers custom malware. Computer Fraud & Security, 2008(9):4–7, 2008.

Ormandy, T. Sophail: Applied attacks against Sophos Antivirus. Technical Report,

2011. https://lock.cmpxchg8b.com/sophail.pdf, accessed February 2018.

Pagani, F., Dell’Amico, M., and Balzarotti, D. Beyond Precision and Recall: Un-

derstanding Uses (and Misuses) of Similarity Hashes in Binary Analysis. In Proceedings

of the Eighth ACM Conference on Data and Application Security and Privacy, pages

354–365. ACM, 2018.

Pai, S., Di Troia, F., Visaggio, C. A., Austin, T. H., and Stamp, M. Clustering

for malware classification. Journal of Computer Virology and Hacking Techniques,

13(2):95–107, 2017.

Pajouh, H. H., Dehghantanha, A., Khayami, R., and Choo, K.-K. R. Intelligent

OS X malware threat detection with code inspection. Journal of Computer Virology

and Hacking Techniques, pages 1–11, 2017.

Pham, D. V., Halgamuge, M. N., Syed, A., and Mendis, P. Optimizing windows

security features to block malware and hack tools on USB storage devices. In Proceedings

of the Progress in Electromagnetics Research Symposium, pages 350–355. 2010.

https://lock.cmpxchg8b.com/sophail.pdf

REFERENCES 94

Poston, R. J. Method and system for classification of software using characteristics and

combinations of such characteristics. January 2013. US Patent 8,365,286.

Proofpoint. Protecting People: A Quarterly Analysis of Highly Targeted Attacks.

Technical Report, July 2018. https://www.proofpoint.com/sites/default/files/

pfpt-uk-tr-people-report-summer-2018-180904.pdf, accessed December 2018.

Provos, N., McNamee, D., Mavrommatis, P., Wang, K., Modadugu, N. et al.

The ghost in the browser: Analysis of web-based malware. Proceedings of the First

Workshop on Hot Topics in Understanding Botnets (HotBots ’07), 7:4–4, 2007.

Raff, E., Zak, R., Cox, R., Sylvester, J., Yacci, P., Ward, R., Tracy, A.,

McLean, M., and Nicholas, C. An investigation of byte n-gram features for malware

classification. Journal of Computer Virology and Hacking Techniques, pages 1–20, 2016.

Reed, T. Genieo installer tricks keychain. Website, March 2016a. https://blog.

malwarebytes.com/cybercrime/2015/08/genieo-installer-tricks-keychain/,

accessed December 2018.

Reed, T. PUP Friday: MacKeeper. Website, December 2016b. https://blog.

malwarebytes.com/puppum/2016/08/pup-friday-mackeeper/, accessed June 2018.

Reed, T. Code signing flaw in macOS. Virus Bulletin Conference Talk, 2018a.

https://papers.put.as/papers/macosx/2018/Codesigning_Mac.pdf, accessed De-

cember 2018.

Reed, T. A data-driven look at the mac threat landscape. MacAdmins Conference at

Penn State University, July 2018b. https://macadmins.psu.edu/files/2018/07/

psumac2018-A-data-driven-look-at-the-Mac-threat-landscape-1hauqlq.key,

accessed October 2018.

Reed, T. New Mac cryptominer distributed via a MacUpdate hack. Web-

site, February 2018c. https://blog.malwarebytes.com/threat-analysis/2018/

02/new-mac-cryptominer-distributed-via-a-macupdate-hack/, accessed Decem-

ber 2018.

Riau, C. A virus by any other name: Virus naming prac-

tices. Website, 2002. https://www.symantec.com/connect/articles/

virus-any-other-name-virus-naming-practices, accessed April 2018.

https://www.proofpoint.com/sites/default/files/pfpt-uk-tr-people-report-summer-2018-180904.pdf
https://www.proofpoint.com/sites/default/files/pfpt-uk-tr-people-report-summer-2018-180904.pdf
https://blog.malwarebytes.com/cybercrime/2015/08/genieo-installer-tricks-keychain/
https://blog.malwarebytes.com/cybercrime/2015/08/genieo-installer-tricks-keychain/
https://blog.malwarebytes.com/puppum/2016/08/pup-friday-mackeeper/
https://blog.malwarebytes.com/puppum/2016/08/pup-friday-mackeeper/
https://papers.put.as/papers/macosx/2018/Codesigning_Mac.pdf
https://macadmins.psu.edu/files/2018/07/psumac2018-A-data-driven-look-at-the-Mac-threat-landscape-1hauqlq.key
https://macadmins.psu.edu/files/2018/07/psumac2018-A-data-driven-look-at-the-Mac-threat-landscape-1hauqlq.key
https://blog.malwarebytes.com/threat-analysis/2018/02/new-mac-cryptominer-distributed-via-a-macupdate-hack/
https://blog.malwarebytes.com/threat-analysis/2018/02/new-mac-cryptominer-distributed-via-a-macupdate-hack/
https://www.symantec.com/connect/articles/virus-any-other-name-virus-naming-practices
https://www.symantec.com/connect/articles/virus-any-other-name-virus-naming-practices

REFERENCES 95

Rieck, K., Holz, T., Willems, C., Düssel, P., and Laskov, P. Learning and clas-

sification of malware behavior. In International Conference on Detection of Intrusions

and Malware, and Vulnerability Assessment, pages 108–125. Springer, 2008.

Rodŕıguez, R. J. Evolution and characterization of point-of-sale ram scraping malware.

Journal of Computer Virology and Hacking Techniques, 13(3):179–192, 2017.

Rosenberg, I., Sicard, G., and David, E. O. Deepapt: nation-state apt attribution

using end-to-end deep neural networks. In International Conference on Artificial Neural

Networks, pages 91–99. Springer, 2017.

Rossow, C., Dietrich, C. J., Grier, C., Kreibich, C., Paxson, V., Pohlmann, N.,

Bos, H., and Van Steen, M. Prudent practices for designing malware experiments:

Status quo and outlook. In Proceedings of the IEEE Symposium on Security and Privacy

(SP), pages 65–79. IEEE, 2012.

Roussev, V. Data fingerprinting with similarity digests. In Proceedings of the IFIP

International Conference on Digital Forensics, pages 207–226. Springer, 2010.

Scheidl, G. Virus Naming Convention 1999 (VNC99). Website, July 1999. http:

//members.chello.at/erikajo/vnc99b2.txt, accessed April 2018.

Sebastián, M., Rivera, R., Kotzias, P., and Caballero, J. Avclass: A tool for

massive malware labeling. In Proceedings of the International Symposium on Research

in Attacks, Intrusions, and Defenses (RAID), pages 230–253. Springer, 2016.

Seideman, J. D., Khan, B., and Vargas, A. C. Malware biodiversity using static

analysis. In Doss, R., Piramuthu, S., and ZHOU, W., editors, Future Network

Systems and Security, pages 139–155. Springer International Publishing, Cham, 2015a.

ISBN 978-3-319-19210-9.

Seideman, J. D., Khan, B., and Vargas, C. Quantifying malware evolution through

archaeology. Journal of Information Security, 6(02):101, 2015b.

Serper, A. OSX.Pirrit: The Minds Behind the Malicious Mac Adware. Techni-

cal Report, June 2016. http://go.cybereason.com/rs/996-YZT-709/images/

Cybereason-Labs-Research-OSX.Pirrit-Minds-Behind-Malicious-Mac-Adware.

pdf, accessed December 2018.

Serper, A. How We Reverse Engineered OSX/Pirrit, Got Legal Threats and Survived.

BSidesCharm Presentation, May 2018.

http://members.chello.at/erikajo/vnc99b2.txt
http://members.chello.at/erikajo/vnc99b2.txt
http://go.cybereason.com/rs/996-YZT-709/images/Cybereason-Labs-Research-OSX.Pirrit-Minds-Behind-Malicious-Mac-Adware.pdf
http://go.cybereason.com/rs/996-YZT-709/images/Cybereason-Labs-Research-OSX.Pirrit-Minds-Behind-Malicious-Mac-Adware.pdf
http://go.cybereason.com/rs/996-YZT-709/images/Cybereason-Labs-Research-OSX.Pirrit-Minds-Behind-Malicious-Mac-Adware.pdf

REFERENCES 96

Shamsi, J. A., Zeadally, S., Sheikh, F., and Flowers, A. Attribution in cyberspace:

techniques and legal implications. Security and Communication Networks, 9(15):2886–

2900, 2016.

Shannon, C. E. A mathematical theory of communication. Bell system technical journal,

27(3):379–423, 1948.

Sikorski, M. and Honig, A. Practical malware analysis: the hands-on guide to dis-

secting malicious software. No Starch Press, ISBN 9781593272906, 2012.

Simmons, C., Ellis, C., Shiva, S., Dasgupta, D., and Wu, Q. AVOIDIT: A

cyber attack taxonomy. In Proceedings of the 9th Annual Symposium On Information

Assurance (ASIA), volume 14. 2009.

Skulason, F., Solomon, A., and Bontchev, V. A new virus naming convention.

Website, 1991. http://www.caro.org/articles/naming.html, accessed April 2018.

Soh, B., Dillon, T. S., and County, P. Quantitative risk assessment of computer virus

attacks on computer networks. Computer Networks and ISDN systems, 27(10):1447–

1456, 1995.

Soto-Valero, C. and González, M. Empirical study of malware diversity in major

android markets. Journal of Cyber Security Technology, pages 1–24, 2018.

Spafford, E. H. Computer viruses–a form of artificial life? Technical report, Department

of Computer Science, Purdue University, 1990.

Spafford, E. H. Computer viruses as artificial life. Artificial life, 1(3):249–265, 1994.

Spafford, E. H., Heaphy, K. A., and Ferbrache, D. J. A computer virus primer. In

Computers under attack: intruders, worms, and viruses, pages 316–355. ACM, ISBN

0201530678, 1991.

Stack Overflow. Developer survey results. Website, 2016. https://insights.

stackoverflow.com/survey/2016, accessed November 2017.

Stalmans, E. and Irwin, B. A framework for DNS based detection and mitigation of

malware infections on a network. In Proceedings of Information Security South Africa

(ISSA), pages 1–8. IEEE, 2011.

StatCounter. Desktop operating system market share worldwide. Website, Oc-

tober 2017. http://gs.statcounter.com/os-market-share/desktop/worldwide#

monthly-201704-201704-map, accessed October 2017.

http://www.caro.org/articles/naming.html
https://insights.stackoverflow.com/survey/2016
https://insights.stackoverflow.com/survey/2016
http://gs.statcounter.com/os-market-share/desktop/worldwide#monthly-201704-201704-map
http://gs.statcounter.com/os-market-share/desktop/worldwide#monthly-201704-201704-map

REFERENCES 97

Stevens, K. and Jackson, D. Zeus banking trojan report. Technical report, Secure-

Works Counter Threat Unit, 2010.

Suarez-Tangil, G., Tapiador, J. E., Peris-Lopez, P., and Ribagorda, A. Evo-

lution, detection and analysis of malware for smart devices. IEEE Communications

Surveys & Tutorials, 16(2):961–987, 2014.

Symantec. Trojan.emotet. Website, July 2017. https://www.symantec.com/

security-center/writeup/2017-071312-0253-99, accessed December 2018.

Symantec. 2018 Internet Security Threat Report. Technical Report, March

2018a. https://www.symantec.com/content/dam/symantec/docs/reports/

istr-23-2018-en.pdf, accessed December 2018.

Symantec. OSX.Getshell. Website, 2018b. https://www.symantec.com/

security-center/writeup/2013-020412-3611-99, accessed December 2018.

Szappanos, G. Akbuilder - the crowdsourced exploit kit. Technical report, Sophos,

2016.

Szor, P. The art of computer virus research and defense. Symantec Press, ISBN

9780321623980, 2005.

Tahir, R., Huzaifa, M., Das, A., Ahmad, M., Gunter, C., Zaffar, F., Caesar,

M., and Borisov, N. Mining on someone else’s dime: Mitigating covert mining

operations in clouds and enterprises. In Proceedings of the International Symposium on

Research in Attacks, Intrusions, and Defenses (RAID), pages 287–310. Springer, 2017.

Thonnard, O. and Dacier, M. A framework for attack patterns’ discovery in honeynet

data. Digital Investigation, 5:128–139, 2008.

Tridgell, A. Efficient algorithms for sorting and synchronization. Ph.D. thesis, Aus-

tralian National University Canberra, 1999.

Tukey, J. W. Exploratory data analysis, volume 2. Pearson, ISBN 0201076160, 1977.

UK Foreign & Commonwealth Office. Foreign Office Minis-

ter condemns Russia for NotPetya attacks. Foreign Office Web-

site, February 2018. https://www.gov.uk/government/news/

foreign-office-minister-condemns-russia-for-notpetya-attacks, accessed

February 2018.

https://www.symantec.com/security-center/writeup/2017-071312-0253-99
https://www.symantec.com/security-center/writeup/2017-071312-0253-99
https://www.symantec.com/content/dam/symantec/docs/reports/istr-23-2018-en.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-23-2018-en.pdf
https://www.symantec.com/security-center/writeup/2013-020412-3611-99
https://www.symantec.com/security-center/writeup/2013-020412-3611-99
https://www.gov.uk/government/news/foreign-office-minister-condemns-russia-for-notpetya-attacks
https://www.gov.uk/government/news/foreign-office-minister-condemns-russia-for-notpetya-attacks

REFERENCES 98

Urban, T., Tatang, D., Holz, T., and Pohlmann, N. Towards understanding privacy

implications of adware and potentially unwanted programs. In European Symposium

on Research in Computer Security, pages 449–469. Springer, 2018.

US-CERT. Alert (TA17-132A): Indicators Associated With WannaCry Ransomware.

Website, May 2017. https://www.us-cert.gov/ncas/alerts/TA17-132A, accessed

December 2018.

Van Mieghem, V. Behavioural Detection and Prevention of Malware on OS X. Virus

Bulletin, 2016.

Velleman, P. F. and Hoaglin, D. C. Applications, basics, and computing of ex-

ploratory data analysis. Duxbury Press, ISBN 087150409X, 1981.

Venkatesan, D. Mobile malware factories: Android apps for creating ran-

somware. Website, August 2017. https://www.symantec.com/connect/blogs/

mobile-malware-factories-android-apps-creating-ransomware, accessed Febru-

ary 2018.

Vermeulen, J. An analysis of fusing advanced malware email protection logs, malware

intelligence and active directory attributes as an instrument for threat intelligence.

Master’s thesis, Rhodes University, 2018.

Wallace, B. Optimizing ssdeep for use at scale. Virus Bulletin, 2015.

Wang, A., Liang, R., Liu, X., Zhang, Y., Chen, K., and Li, J. An inside look at iot

malware. In Proceedings of the International Conference on Industrial IoT Technologies

and Applications, pages 176–186. Springer, 2017.

Wardle, P. Methods of malware persistence on Mac OS X. In Proceedings of the Virus

Bulletin Conference. 2014.

Wardle, P. Offensive Malware Analysis: Dissecting OS X FruitFly. In Proceedings of

DefCon 25. 2017a.

Wardle, P. OSX/MacRansom. Website, 2017b. https://objective-see.com/blog/

blog_0x1E.html, accessed December 2018.

Wardle, P. Mac Malware. Website, December 2018a. https://objective-see.com/

malware.html, accessed December 2018.

Wardle, P. Protecting the Garden of Eden. In Proceedings of the “Objective by the Sea”

macOS Security Conference. 2018b.

https://www.us-cert.gov/ncas/alerts/TA17-132A
https://www.symantec.com/connect/blogs/mobile-malware-factories-android-apps-creating-ransomware
https://www.symantec.com/connect/blogs/mobile-malware-factories-android-apps-creating-ransomware
https://objective-see.com/blog/blog_0x1E.html
https://objective-see.com/blog/blog_0x1E.html
https://objective-see.com/malware.html
https://objective-see.com/malware.html

REFERENCES 99

Wardle, P. Word to your mac. Video recorded session of a malicious document analysis,

December 2018c. https://youtu.be/UD2-rc2itF0, accessed December 2018.

Wash, R. Folk models of home computer security. In Proceedings of the Sixth Symposium

on Usable Privacy and Security, page 11. ACM, 2010.

Weaver, N., Paxson, V., Staniford, S., and Cunningham, R. A taxonomy of

computer worms. In Proceedings of the ACM Workshop on Rapid Malcode (WORM),

pages 11–18. ACM, 2003.

Wong, W. and Stamp, M. Hunting for metamorphic engines. Journal in Computer

Virology, 2(3):211–229, 2006.

Xiao, C. and Chen, J. New OS X ransomware KeRanger infected Transmission BitTor-

rent client installer. Website, March 2016. https://unit42.paloaltonetworks.com/

new-os-x-ransomware-keranger-infected-transmission-bittorrent-client-installer/,

accessed June 2018.

Ye, Y., Li, T., Adjeroh, D., and Iyengar, S. S. A survey on malware detection

using data mining techniques. ACM Computing Surveys (CSUR), 50(3):41, 2017.

Yen, T.-F., Heorhiadi, V., Oprea, A., Reiter, M. K., and Juels, A. An epi-

demiological study of malware encounters in a large enterprise. In Proceedings of the

2014 ACM SIGSAC Conference on Computer and Communications Security, pages

1117–1130. ACM, 2014.

Yonts, J. Mac OS X Malware Analysis. SANS Technical Report,

2009. https://www.sans.org/reading-room/whitepapers/forensics/

mac-os-malware-analysis-33178, accessed April 2018.

You, I. and Yim, K. Malware obfuscation techniques: A brief survey. In Proceedings of

the International Conference on Broadband, Wireless Computing, Communication and

Applications (BWCCA), pages 297–300. IEEE, 2010.

Zanero, S. Behavioral intrusion detection. In Proceedings of the International Symposium

on Computer and Information Sciences, pages 657–666. Springer, 2004.

Zdziarski, J. Identifying back doors, attack points, and surveillance mechanisms in ios

devices. Digital Investigation, 11(1):3–19, 2014.

Zhou, Y. and Jiang, X. Dissecting android malware: Characterization and evolution.

In Proceedings of the IEEE Symposium on Security and Privacy, pages 95–109. IEEE,

2012.

https://youtu.be/UD2-rc2itF0
https://unit42.paloaltonetworks.com/new-os-x-ransomware-keranger-infected-transmission-bittorrent-client-installer/
https://unit42.paloaltonetworks.com/new-os-x-ransomware-keranger-infected-transmission-bittorrent-client-installer/
https://www.sans.org/reading-room/whitepapers/forensics/mac-os-malware-analysis-33178
https://www.sans.org/reading-room/whitepapers/forensics/mac-os-malware-analysis-33178

REFERENCES 100

Appendix

Source code used in this research can be found at https://thesis.yaxs.net. Where

applicable, specific files have been linked in footnotes.

101

https://thesis.yaxs.net

	List of Figures
	List of Tables
	1 Introduction
	1.1 Introduction
	1.2 Motivation for this Research
	1.3 Research Questions and Objectives
	1.4 Expected Outcomes
	1.5 Approach
	1.6 Document Structure

	2 Background and Related Work
	2.1 Introduction
	2.2 Understanding Malware
	2.2.1 Detection and Analysis
	2.2.2 Evolution of Malware

	2.3 Observing Malware in the Wild
	2.3.1 Common Terminology
	2.3.2 Methods of infection and Persistence
	2.3.3 Abuse of trust: malware and code signing

	2.4 Malware in Research
	2.4.1 Naming and Labelling
	2.4.2 Categorisation and Taxonomies

	2.5 macOS: operating system, security and malware
	2.6 Summary

	3 Methodology
	3.1 Introduction
	3.2 Approach
	3.3 Experimental Setup
	3.4 Tooling and Environment
	3.5 Data processing: Import
	3.6 Data Processing: Aggregation
	3.7 Data Processing: Enrichment
	3.8 Data Processing: Categorisation
	3.9 Data Validation
	3.10 Summary

	4 Analysis
	4.1 Introduction
	4.2 Time Series Analysis
	4.3 Classification and Labelling
	4.4 Diversity and Clustering
	4.4.1 Diversity
	4.4.2 Clustering

	4.5 Infection, Persistence and Code Signing
	4.5.1 Infection Vector
	4.5.2 Methods of Persistance
	4.5.3 Code Signing

	4.6 Anti-malware software vendor consensus
	4.7 Summary

	5 Results and Discussion
	5.1 Introduction
	5.2 Integrating Existing Work
	5.2.1 Methods of infection and persistence
	5.2.2 Naming, labelling and clustering
	5.2.3 macOS perception of security

	5.3 Exploratory Analysis
	5.3.1 Temporal Analysis
	5.3.2 Diversity
	5.3.3 Infection Vectors and Code Signing
	5.3.4 Vendor Consensus

	5.4 Implications and Future work
	5.4.1 Implications
	5.4.2 Future Work

	5.5 Limitations
	5.6 Summary

	6 Conclusion

