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Abstract 
Malaria is a major tropical health problem with a 29% mortality rate among people of all ages; it 

also affects 35% of the children. Despite the decrease in mortality rate in recent years, malaria still 

results in around 2000 deaths per day. Malaria is caused by Plasmodium parasites and is 

transmitted to humans via the bites from infected female Anopheles mosquitoes during blood 

meals. There are five different Plasmodium species that can cause human malaria, which include 

Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, Plasmodium 

ovale and Plasmodium knowlesi. Among these five species, the most pathogenic ones are 

Plasmodium falciparum and Plasmodium vivax. Malaria is usually hard to diagnose because the 

symptoms are not exclusive to malaria and very similar to flu, e.g., fever, muscle pain, and chills, 

which lead to the misdiagnosis of malaria cases. Malaria is lethal if not treated because it can cause 

severe complications in the respiratory tract, liver, metabolic acidosis, and hypoglycemia. The 

malaria parasite life cycle includes two types of hosts, i.e., a human host and female Anopheles 

mosquito host. Malaria continuously develops resistance to the available drugs, which is one of 

the major challenges in disease control. This situation confirms the need to develop new drugs that 

target virulence factors of malaria. The malarial parasite has three main life cycle stages, which 

include the host liver stage, host blood stage and vector stage. In the blood stage, parasites degrade 

hemoglobin to amino acids, which is important as these parasites cannot produce their own amino 

acids. Different proteases are involved in this hemoglobin degradation process. M1 alanyl 

aminopeptidase is one of these proteases involved at the end of hemoglobin degradation. This 

study focused on M1 alanyl aminopeptidase as a potential drug target. M1 alanyl aminopeptidase 

consists of four domains: N-terminal domain, catalytic domain, middle domain and C-terminal 

domain. The catalytic domain remains conserved among different Plasmodium species. Inhibition 

of this enzyme might prevent Plasmodium growth as it can’t produce its own amino acids. In this 

study, sequence analysis was carried out in both human and Plasmodium M1 alanyl 

aminopeptidase to identify conserved and divergent regions between them. 3D protein models of 

the M1 alanyl aminopeptidase from Plasmodium species were built and validated. Then the 

generated models were used for virtual screening against 623 compounds retrieved from the South 

African Natural Compounds Database (SANCDB, https://sancdb.rubi.ru.ac.za/).  Virtual screening 

was done using blind and targeted docking methods. Docking was used to identify compounds 

with selective high binding affinity to the active site of the parasite protein. In this study, one 
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SANCDB compound was selected for each protein: SANC00531 was selected against P. 

falciparum M1 alanyl aminopeptidase, SANC00469 against P. knowlesi, SANC00660 against P. 

vivax, SANC00144 against P. ovale and SANC00109 against P. malariae. It was found that 

Plamsodium M1 alanyl aminopeptidase can be used as a potential drug target as it showed selective 

binding against different inhibitor compounds. This result will be investigated in future work 

though molecular dynamic analysis to investigate the stability of protein-ligand complexes.  
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Chapter 1 - Literature Review 

1.1 Introduction 

Human malaria infection can be caused  by any of the 5 different parasite species that belong 

to the Plasmodium species. These parasites include Plasmodium falciparum, Plasmodium 

vivax, Plasmodium malariae, Plasmodium ovale and Plasmodium knowlesi. The parasite is 

transmitted to the human body through the bite of an infected female Anopheles mosquito. The 

female Anopheles mosquito’s saliva contains the parasite which is transmitted to human blood 

when the mosquito bites the human. The parasite matures and reproduces in the human liver 

before it infects and destroys red blood cells. The most pathogenic parasites in the Plasmodium 

genus are the P. falciparum and P. vivax species [1]. 

Around 1 million people are killed each year by malaria and in 2002, 515 million (range 300-

600 million) were attributed to episodes of clinical P. falciparum. 90% of malaria cases and 

deaths occur in sub-Saharan Africa, but malaria is also a public health problem in South 

America and South East Asia [2]. P. falciparum is responsible for most deaths in humans, 

however, other malaria-causing parasites such as P. vivax, P. ovale, and P. malariae do cause 

a milder form of the disease [3]. 

1.2 Signs and Symptoms 

Malaria symptoms usually appear after 10 – 15 days following the infective mosquito bite. The 

malaria symptoms can be delayed by using the appropriate antimalarial drugs [4]. The first 

symptoms are flu-like symptoms which make it difficult to diagnose malaria. These symptoms 

include: headaches, fever, chills, and vomiting. It is very important to treat malaria within 24 

hours or it can progress to severe illness, which could lead to death [5]. The symptoms can 

develop into severe anemia, cause respiratory distress, cerebral complications, hypoglycemia, 

and glomerulonephritis [6]. 

1.3 Malaria life cycle 

Malaria has a complex life cycle involving two different hosts, the first one being a female 

Anopheles mosquito while the second is the human host [4].  In general, it involves three main 

stages. Firstly, there is a human liver stage, followed by a human blood cell stagewhich finally 

ends in the mosquito stages. Malaria infection begins with a bite from an infected female 

Anopheles mosquito that transmits sporozoites to vertebrate host (e.g: human host). Once they 

enter the host, they travel through blood vessels and infect hepatocytes where the parasite 

grows and reproduces asexually to produce merozoites to infect red blood cells, as shown in 
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Figure 1-1. Some of this merozoites develop into a sexual form that arev transmitted later to 

another mosquito during mosquito blood feeding as shown in Figure 1-2 [7]. 

1.3.1 Liver stage 

During Anopheles mosquito bite, parasite sporozoites are transmitted to the human dermis. A 

portion of sporozoites penetrates blood vessels by using gliding motility, which depends on the 

Trap-like protein (TLP) [8]. Then they invade hepatocytes by using a moving junction-

independent process via cell traversal (CT) and a moving junction-dependent process, thus 

creating parasitophorous vacuoles (PVs). CT starts with the breakdown of hepatocyte cell 

membranes to move through the cell cytoplasm using proteins such as the Perforin-Like Protein 

1 (PLP1), the sporozoite microneme protein essential for traversal (SPECT) [7], phospholipase 

(PL) and the gamete egress and sporozoite traversal protein (GEST). To avoid degradation by 

lysosomes, sporozoites use pH sensing and PLP1 [8]. 

To invade host hepatocytes, the surface of sporozoites are coated by a key protein called 

circumsporozoite protein (CSP),which consist of a type I thrombospondin repeat (TSR) and a 

highly repetitive region. CSP binds with heparin sulfate proteoglycans (HSPGs), which are 

located on the hepatocyte surface. These activate CSP and remove the N-terminus to expose 

the TSR domain. Sporozoites also contains important organelles for hepatocyte invasion, such 

as micronemes and rhoptries. In order to form the PV microneme, proteins P52 and P36 interact 

with each other and with the hepatocyte Ephrin A2 receptor (EphA2).  Additionally, the 

hepatocyte receptor CD81 plays an important role in PV formation [9]. Once a sporozoite 

successfully infects a hepatocyte, it resides within the PV. The sporozoite remains in the liver 

stage from 2 – 10 days. The result of this stage is the development and release of up to 40000 

merozoites per hepatocyte cell into the bloodstream in the form of merosomes, which are 

vesicles filled with parasites [8].  

1.3.2 Intra-erythrocyte stage (Blood stage) 

After infecting liver hepatocytes for 2 – 10 days, the merozoites are released into the 

bloodstream to infect erythrocytes via ligand-receptor interactions. For P. falciparum, basigin, 

red blood cell antigen, and P. falciparum reticulocyte binding protein homologue 5 (PFRh5) 

interact to form a complex. This complex consists of PfRh5, PfRh5-interacting protein (PfRipr) 

and Cysteine-rich protective antigen (CyRPA), which bind the basigin of erythrocyte cell. This 

leads to the invasion of this erythrocyte[10]. For P. vivax it requires the presence of the Duffy 

blood group antigen Fya or Fyb. P. vivax cannot infect a host with the Duffy negative FyFy 

phenotype, and that explains why most people in West Africa are resistant to this species [11]. 
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The parasite has two alternative methods of reproduction, namely asexual (Figure 1-1) and 

sexual (Figure 1-2) multiplication. An asexual cycle takes between 24 hours to 72 hours 

depending on the parasite species whereby P. knowlesi takes 24 hours, P. falciparum and P. 

vivax take 48 hours, and P. malariae takes 72 hours [11]. Most Plasmodium species take 48 

hours to complete the sexual cycle while in P. falciparum it usually takes 10-12 days to 

complete a full cycle [12]. 

Each released merozoite invades an erythrocyte and begins the asexual cycle, which consumes 

the erythrocyte’s contents [12]. Malaria cannot produce its own amino and acids and thus it 

needs to degrade erythrocyte hemoglobin. The degradation takes place in the parasite digestive 

vacuole at pH 5.2 and occurs during the blood stage [13].  Inside this vacuole, a massive 

proteolytic pathway degrades hemoglobin into amino acids [14]. Each asexual cycle produces 

16-32 new merozoites, which invade new erythrocytes. As a result, the parasite population is 

enlarged by a factor of 6 to 20 times per cycle. The Plasmodium parasite selectively invades 

erythrocytes, for example young erythrocytes are usually infected by P. vivax [9].  

The asexual cycle consists of ring stage, a trophozoite stage, and a schizont stage. The first 

stage that is established after entering the erythrocyte is the ring stage. This stage is 

characterized by a ring-like shape under the microscope. Then they enter the trophozoite stage, 

in which surface antigens are expressed, during which high metabolic activity is observed. The 

last step is the schizont stage, which produces around 16-32 merozoites through cell division 

to result in the rupture of the erythrocyte andin the invasion of new erythrocytes. These stages 

are classified under the asexual blood stage [15].    
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Figure 1-1: The malaria parasite asexual cycle. Merozoite invasion of erythrocyte cells and the 

asexual cycle result in the production of 16-32 merozoites, which invade new healthy erythrocytes 

to initiate the second wave of erythrocyte invasion [8].  

The resulting merozoites cannot be transmitted to a mosquito; thus a small portion of 

merozoites - usually less than 10% - go through with sexual reproduction (gametocytogenesis) 

and develop into sexual form (gametocytes) of the parasite. This results in a male and female 

gametocyte, which can be transmitted to a female mosquito during a blood meals. The duration 

of a gametocyte of P. vivax after releasing merozoites from hepatocytes takes around one week. 

However, in P. falciparum the precise time of developing gametocyte is not fixed and is unclear 

as it depends on many factors. For example, if the parasite is exposed to an antimalarial drug, 

it will force the gametocyte to develop and survive. The same could happen if the human host 

is dying due to denaturation of red blood cells. At the same time, it could be affected with 

reproductive restraint such that the precise time of developing gametocyte is generally not clear 

and varies from one case to another and from one species to another [15].  
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Figure 1-2: Malaria parasite sexual cycle. The sexual cycle of Plasmodium parasite which takes 

place in erythrocyte cell and results in the production of sexual ring then male and female 

gametocytes. After maturation, they transmit to another mosquito during a blood meal [8].  

1.3.3 Mosquito stage 

During the Plasmodial life cycle, the parasite undergoes one sexual reproduction, which takes 

place only in the mosquito stage. Ingestion of male and female gametocytes activates the 

gametocytes in the mosquito midgut [16]. This activation is caused by the temperature drop, 

pH change and xanthurenic acid. Thus, the gametocytes mature and develop into gametes. Male 

gametes form the octoploid nucleus so that it goes through three fast DNA replication events. 

Additionally, male gametes go through exflagellation, which results in the formation of eight 

flagella. The time needed to complete the maturation process differs from one Plasmodium 

species to another, as shown in Table 1-1. After completing the maturation step for both male 

(microgametes) and female gametes (macrogametes), the male gamete fertilizes female gamete 

to form a fertilized female gamete which will develop into an ookinete, as shown in Figure 1-

3. Ookinetes go through the mosquito’s midgut wall (epithelial cell wall) and form oocysts 

[15].  

Each oocyst contains thousands of sporozoites. The sporozoite develops inside an oocyst until 

its rupture, resulting in the release of sporozoites into the body cavity. The sporozoites travel 

and migrate to the mosquito’s salivary gland where they wait for the mosquito to take the next 
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blood meal. During this blood meal, they are transmitted to another human host and start the 

liver stage infection [15]. 

 

Figure 1-3: The mosquito stage, in which most of the steps take place inside mosquito midgut, to 

result in the production sporozoites. In the end, sporozoites migrate to the salivary gland where 

they stay until the next mosquito blood meal [17].   

Table 1-1:  Summary of needed time for complete maturation of gametocytes [15] 

Plasmodium species Time needed (days) 

Plasmodium falciparum 8:10 

P. malariae   6:8 

P. vivax  3:4 

P. ovale 3:4 

 

1.4 Peptidases 

According to the MEROPS database [18],  there are different families of protease enzymes 

include Aspartic peptidases, Cysteine peptidases, Glutamic peptidases, Metallopeptidases, 

Asparagine peptidases, Mixed peptidases, Serine peptidases, Threonine peptidases and 

peptidase of unknown catalytic type (See Table 1-2). Each one of these families is identified 
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by a single letter representing the type of reaction of the protease enzyme and a unique number. 

For example, M1 belongs to metallopeptidase family [19].  

Malaria peptidases have two main functions. These are invasion and rupture of erythrocytes, 

and hemoglobin degradation. Hemoglobin degradation involves different proteases such as 

aspartic proteases, falcilysin, plasmepsins, cysteine proteases, metalloproteases, dipeptidyl 

aminopeptidase 1 (DPAP1) and falcipains [20]. 

The first cleavage occurs between Phe at position 33 and Leu at position 34. Then falcipains 

and plasmepsins degrade the resulting molecule into small peptides. The enzymes DPAP1 and 

falcilysin degrade the small peptides into shorter oligopeptides or dipeptides which are 

transported to the parasite cytosol where they will be degraded into free amino acids by neutral 

aminopeptidase [14] 

1.4.1 Metallopeptidases 

Metallopeptidases are a set of homologous peptidases which need metal a ion for their catalytic 

mechanism. This metal is usually Zinc (Zn2+), but could be Copper (Cu2+) or Cobalt (Co2+). 

Usually, three amino acid coordinate the metal ion in its position in the protein [19]. As shown 

in Table 1-2 and 1-3, there are over 50 metallopeptidase families and subfamilies, making them 

the largest peptidase enzyme family. Based on the cleavage site metallopeptidase are classified 

as end-opeptidase EC 3.4.21-25 and exo-peptidase EC 3.4.11-19 [21].    

1.4.2 Exo-aminopeptidases 

Exo-aminopeptidases can eliminate amino acids from N-termini of peptides. In Plasmodium 

parasites, in addition to providing free amino acids, they also have a role in re-invasion of 

erythrocytes [22]. Plasmodium parasites use nine different exo-aminopeptidases. Four of these 

enzymes are methionine aminopeptidases. The other enzymes are alanyl aminopeptidase, 

aspartic aminopeptidase, leucine aminopeptidase, prolyl aminopeptidase and post prolyl 

aminopeptidase. Exo-aminopeptidases have different functions depending on the catalytic 

activity of the enzyme. For example, they have the activity to remove the N-terminal 

methionine, which is the activity of methionine aminopeptidases. On the other hand, alanyl 

aminopeptidase and leucine aminopeptidase can digest dipeptides into free amino acids, which 

is very important for the parasite to grow. Inhibition of these enzymes can thus stop protein 

biosynthesis and as a result, inhibit the Plasmodium parasite growth [14].  
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M1 Aminopeptidases (EC 3.4.11) are enzymes that catalyze peptide bonds between amino 

acids from the amino terminal of proteins or polypeptide chains. M1 Aminopeptidase belongs 

to the metzincins clan, which are zinc-dependent metallopeptidases [23]. There are more than 

10000 protein sequences that belong to the M1 aminopeptidase family and 25 PDB structures. 

M1 Alanyl aminopeptidase (EC 3.4.11.2) (PfM1-AAP) depend on single catalytic zinc ion, 

which is coordinated by two histidines and one glutamate. The optimum pH for the activity of 

this enzyme is 7.4. P. falciparum M1 Alanyl aminopeptidase has been detected in an asexual 

cycle of the erythrocyte stage during the trophozoite and schizont step, which makes it an ideal 

antimalarial drug target. There are some studies that have shown that Bestatin or quinolone-

based inhibitors could be used to inhibit the activity of this enzyme. McGrown et al. [22] have 

reported the crystal structure of the empty form of this enzyme with PDB ID 3EBG [22]. 

A single gene encodes M1 Alanyl aminopeptidase which consists of 1095 amino acid arranged 

into 4 domains. These domains comprise the N-terminal, catalytic domain, middle domain and 

C-terminal domain. The enzyme shares ~70% identity across different Plasmodium species. 

The active region of M1 Alanyl aminopeptidase is conserved and the most divergent region is 

located at the N-terminal extension. The 3D structure shows that it contains 26 α-helices and 

26 β-sheets. Five β-sheets and eight α-helices form the catalytic domain. The active site is 

located between β-sheet number 18 and α-helices number 2, 3 and 5. Putative substrate entry 

could be used to access the active site [24].   

Due to the similarity between M1 and M17 aminopeptidases, a drug can be designed to 

potentially target both enzymes. Drinkwater et al. [25] developed (1H-pyrazole-1-

yl)phenyl)(amino)methyl) phosphonic acid which can bind within the S1 socket of the active 

site. However, the molecular dynamic (MD) simulation performed for this enzyme with the 

drug did not take into account the correct geometry of the metal active site [25].  

Human aminopeptidase homologs play an important role after protein hydrolysis by gastric 

and pancreatic proteases, whereby they digest the generated peptides to release an N-terminal 

amino acid [26]. 
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Figure 1-4: Hemoglobin digestion to release free amino acid in the erythrocyte stage during the 

sexual cycle of the Plasmodium parasite. 



 10 

Table 1-2: Protease clans,families and sub-families, based on catalytic type (adapted from MEROPS) [19] 

Catalytic type  Clan Family Sub-family  

Aspartic peptidases AA, AC, AD, 

AE and AF 

A1, A2, A3, A5, A8, A9, A11, A22, A24, A25, A26, 

A28, A31, A32, A36 and A37  

A1A, A1B, A2A, A2B, A2C, A2D, A3A, A3B, A11A, 

A11B, A22A, A22B, A24A, A28A and A28B 

Cysteine peptidases CA, CD, CE, 

CF, CL, CM, 

CN, CO, CP and 

CQ 

C1:C28, C30, C31, C32, C33, C36, C37, C40, C41, 

C42, C44, C45, C46, C47, C48, C50, C51, C53, C54, 

C56, C57, C58, C59, C60, C62:C80, C82, C83, C84, 

C85, C86, C87, C89, C93, C95, C96, C97, C98, C99, 

C100, C101, C102, C104, C105, C107, C108, C110, 

C111, C113, C115 and C117 

C1A, C1B, C2A, C3A, C3B, C3C, C3D, C3E, C3F, 

C3G, C3H, C11A, C11B, C14A, C14B, C16A, C16B, 

C58A, C58B, C60A, C60B, C82A, C85A and C85B 

Mixed peptidases PA, PB, PC, PD 

and PE 

C3, C4, C24, C26, C30, C37, C46, C56, C62, C74, C99, 

C107, S1, S3, S6, S7, S29, S30, S31, S32, S39, S46, 

S55, S64, S65, S75, C44, P1 and P2 

P2A and P2B 

Serine peptidases SB, SC, SE, SF, 

SH, SJ, SK, SO, 

SP, SR, SS and 

ST  

S8, S53, S9, S10, S15, S28, S33, S37, S11, S12, S13, 

S24, S26, S21, S73, S77, S78, S80, S16, S50, S69, S14, 

S41, S49, S74, S59, S60, S66, S54, S48, S62, S68, S71, 

S72, S79 and S81  

S1A, S1B, S1C, S1D, S1E, S1F, S8A, S8B, S9A, S9B, 

S9C, S9D, S26A, S26B, S26C, S39A, S39B, S41A, 

S41B, S49A, S49B and S49C 

Metallopeptidases MA, MC, MD 

ME, MF, MG, 

MH, MJ, MM, 

MN, MO, MP, 

MQ, MS and 

MT 

M1:M13, M26, M27, M30, M32, M34, M35, M36, 

M41, M43, M48, M49, M54, M56, M57, M60, M61, 

M64, M66, M72, M76, M78, M80, M84, M85, M90, 

M91, M93, M95, M97, M98, M14, M86, M99, M15, 

M75 and M81 

M3A, M3B, M9A, M9B, M10A, M10B, M10C, 

M12A, M12B, M14A, M14B, M14C, M14D, M15A, 

M15B, M15C, M15D, M16A, M16B, M16C, M20A, 

M20B, M20C, M20D, M20F, M23A, M23B, M24A, 

M24B, M28A, M28B and M28C.  

Threonine peptidases  T1, T2, T3, T5, T7, and T8 T1A and T1B 

Peptidase of unknown 

catalytic type 

 U32, U40, U49, U56, U57, U62, U69, U72, U73 and 

U74 
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Table 1-3: Summary of MA metallopeptidase enzymes (adapted from MEROPS database )[19] 

Clan Family Sub-family Example (Organism name) 

MA M1  aminopeptidase N (Homo sapiens) 

M2  angiotensin-converting enzyme peptidase unit 1 (Homo sapiens) 

M3 M3A thimet oligopeptidase (Rattus norvegicus) 

M3B oligopeptidase F (Lactococcus lactis) 

M4  thermolysin (Bacillus thermoproteolyticus) 

M5  mycolysin (Streptomyces cacaoi) 

M6  immune inhibitor A peptidase (Bacillus thuringiensis) 

M7  snapalysin (Streptomyces lividans) 

M8  leishmanolysin (Leishmania major) 

M9 M9A bacterial collagenase V (Vibrio alginolyticus) 

M9B bacterial collagenase H (Clostridium histolyticum) 

M10 M10A matrix metallopeptidase-1 (Homo sapiens) 

M10B serralysin (Serratia marcescens) 

M10C fragilysin (Bacteroides fragilis) 

M11  gametolysin (Chlamydomonas reinhardtii) 

M12 M12A astacin (Astacus astacus) 

M12B adamalysin (Crotalus adamanteus) 

M13  neprilysin (Homo sapiens) 

M26  IgA1-specific metallopeptidase (Streptococcus sanguinis) 

M27  tentoxilysin (Clostridium tetani) 

M30  hyicolysin (Staphylococcus hyicus) 

M32  carboxypeptidase Taq (Thermus aquaticus) 

M34  anthrax lethal factor (Bacillus anthracis) 

M35  deuterolysin (Aspergillus flavus) 

M36  fungalysin (Aspergillus fumigatus) 

M41  FtsH peptidase (Escherichia coli) 

M43 M43A cytophagalysin (Cytophaga sp.) 

M43B pappalysin-1 (Homo sapiens) 

M49  dipeptidyl-peptidase III (Rattus norvegicus) 



 12 

M54  archaelysin (Methanocaldococcus jannaschii) 

M56  BlaR1 peptidase (Staphylococcus aureus) 

M57  prtB g.p. (Myxococcus xanthus) 

M60  enhancin (Lymantria dispar nucleopolyhedrovirus) 

M61  glycyl aminopeptidase (Sphingomonas capsulata) 

M64  IgA peptidase (Clostridium ramosum) 

M66  StcE peptidase (Escherichia coli) 

M72  peptidyl-Asp metallopeptidase (Pseudomonas aeruginosa) 

M76  Atp23 peptidase (Homo sapiens) 

M78  ImmA peptidase (Bacillus subtilis) 

M80  Wss1 peptidase (Saccharomyces cerevisiae) 

M84  MpriBi peptidase (Bacillus intermedius) 

M85  NleC peptidase (Escherichia coli) 

M90  MtfA peptidase (Escherichia coli) 

M91  NleD peptidase (Escherichia coli) 

M93  BACCAC_01431 g.p. and similar (Bacteroides caccae) 

M95  selecase (Methanocaldococcus jannaschii) 

 

1.5 Malaria diagnosis  

It is important to diagnose malaria early to reduce the disease symptoms and prevent the 

complications which may lead to death. Different tools from different commercial kits are now 

available for accurate diagnosis of malaria in a short period of time. It is also important to 

identify the correct Plasmodium species as the choice of treatment options depends on the 

Plasmodium species [21]. 

Light microscopy could be used to diagnose malaria by obtaining well-stained thick and thin 

films, whereby the thick film is used to improve diagnosis sensitivity while the thin film is 

better for species identification. The sample should be prepared for examination with light 

microscope immediately after collection. This should be done to minimize deformation of 

parasite and erythrocytes [27]. 

Rapid diagnostic tests (RDTs) can be used to detect Plasmodium parasites by using monoclonal 

antibodies specific to their antigens. Mainly RDTs should be used as an alternative to 
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microscopy diagnosis when high-quality microscope diagnosis cannot be done. The advantage 

of using RDTs includes simplicity, ease-of-understanding and interpretation; they do not 

require electricity and generate rapid results. Usually, it takes 15 minutes to get the result [28]. 

There are different Plasmodium parasite antigens available for use in RDTs, which include 

histidine-rich protein, parasite lactate dehydrogenase, and Plasmodium aldolase. Based on the 

antigen used, the RDTs can detect single species - usually P. falciparum or P. vivax. Other RDTs 

can detect all malaria parasites. Now in the market, there are more than 200 RDTs specific to 

malaria (the complete list of those RDTs can be found on 

http://www.who.int/malaria/news/2016/rdt-procurement-criteria/en/) [27].   

The Polymerase chain reaction PCR has been used to detect Plasmodium species by targeting 

the 18s rRNA [27] and by using Nested PCR it is possible to distinguish between different 

Plasmodium species with high sensitivity and specificity [29].  

It is recommended to use RDTs or PCR to diagnose malaria because the accuracy of diagnosis 

by microscopy depends on the level of the parasite in a blood sample. Moreover, now there is 

a wide range of commercially-available RDTs that offer higher accuracy and faster results, but 

they cannot detect how many parasites are in the host. 

1.6 Malaria treatment  

Antimalarial drugs have different goals, including (1) targeting the asexual cycle of the 

erythrocyte stage, (2) the prevention of recurrent infections and (3) the prevention of parasite 

transmission. The choice of a particular antimalarial drug is largely dependent on the 

Plasmodium species concerned. For example, P. vivax requires special treatment strategies 

because it can form dormant hypnozoites. Another factor to consider is the stage of infection - 

if it is complicated or severe, then a different treatment approach is required as opposed to 

early-diagnosed malaria. Hence no single drug can accomplish all goals while achieving 

antimalarial drug resistance. A solution is to use a combination of the different antimalarial 

drugs to achieve complete elimination of the Plasmodium parasite from the body. Drugs 

targeting the asexual cycle are called blood schizonticidal drugs, while those targeting the 

sexual cycle are called gametocytocidal  [30]. 

There are three main groups of antimalarial drugs which include quinolines, antifolates, and 

artemisinin derivatives. Quinoline derivatives usually accumulate in the plasmodial digestive 

vacuole and prevent degradation of hemoglobin. Examples of quinoline derivative drugs 

http://www.who.int/malaria/news/2016/rdt-procurement-criteria/en/
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include chloroquine, quinine, mefloquine, and primaquine. The only drug that belongs to the 

quinoline derivatives but has a different mode of action is atovaquone, which interacts with the 

respiratory pathway of the parasite to inhibit parasite growth. Antifolate derivatives inhibit 

folate biosynthesis by different ways, including the inhibition of dihydropteroate synthetase or 

dihydrofolate reductase. Examples of antifolate derivative drugs are sulfadoxine and proguanil 

[31]. Artemisinin derivatives depend upon the production of carbon-centered free radicals. 

Artemisinin is toxic to malaria parasites because it targets hemoglobin molecule [32].  In 

addition to the previous main three antimalarial drug categories, there are antibiotics and other 

new antimalarial drugs. These include for example clindamycin, which inhibits the protein 

synthetic pathway [33]. 

Due to increasing levels of malarial parasite resistance to sulfadoxine/pyrimethamine and 

chloroquine, a combination of different antimalarial drugs with different modes of action is 

currently used, however there is still a high need for new drugs with new targets. World Health 

Organization (WHO) recommends artemisinin combination therapies as treatment for 

chloroquine-resistant Plasmodium parasites and uncomplicated malaria. In the case of severe 

malaria the recommended treatment includes a combination of artesunate, artemether, and 

quinine [30]. 

1.7 Antimalarial drug resistance  

Aminoquinoline chloroquine was one of the favorable antimalarial drugs due to its efficacy 

and low side effects. However, since 1957 the Plasmodium parasite has started to develop 

resistance to this drug, and now the resistance has reached so many areas in the world that 

chloroquine is only effective in Central America [34]. In South East-Asia P. falciparum has 

started to  develop resistance to the last available treatment which is artemisinin [35]. Another 

antimalarial drug, amodiaquine, which was more efficient than chloroquine has been used as 

an alternative where the parasite has already developed resistance to chloroquine. However, 

the Plasmodium parasite has later developed resistance to this drug as reported in Tanzania and 

Africa [36]. Currently artesunate-mefloquine is used as first-line treatment. To decrease the 

chance of developing resistance to this drug, WHO recommends using this drug with a 

combination of any other drug having a different mode of action. However, the failure rate for 

this combination is less than 10%, which raises global health concerns because the Plasmodium 

parasite that develops resistance to this combination could lead to a global outbreak[34]. 
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Most drug resistance comes from a genetic mutation. It begins with a genetic mutation that 

gives the parasite the ability to survive in the presence of the drug. Then the resistant parasite 

multiplies and grows to lead to a parasite population resistant to the drug. These genetic 

mutations could be single point mutations or occur most commonly as multiple mutations. A 

complication happens when cross-resistance occurs. Cross-resistance means that if the parasite 

becomes resistant to a specific drug, it also becomes resistant to all drugs of the same chemical 

family or to those having the same mode of action, for example resistance against both 

halofantrine and mefloquine. Another factor that can lead to drug resistance is the drug half-

life. As its half-life increases, the chance of developing drug resistance increases as the parasite 

encounters lower concentrations that are not enough to kill them, thus giving time for drug 

resistance to develop [34].  

There are several reported mutations associated with antimalarial drug resistance. For example, 

mutations in P. falciparum chloroquine resistance transporter (Pfcrt) have been associated with 

chloroquine resistance. The main mutation occurs in position 76 in which lysine changes to 

threonine; other mutations in the same protein include C72S, M74I, N75E, A220S, Q271E, 

N326S, I356T, and R371I. Those mutations are associated with the main mutation to give 

resistance to chloroquine [31]. 

1.8 Malaria vaccine  

To control malaria, different vaccines have been developed to eliminate malaria and protect 

healthy humans. Based on the Plasmodium parasite life cycle stages, malaria vaccines can be 

divided into three main groups: pre-erythrocyte, erythrocyte, and other vaccines. In pre-

erythrocytes, the goal is to prevent sporozoite from invading hepatocytes. This can be achieved 

with the help of both T-cells and the humoral response. Pre-erythrocyte vaccines target the 

circumsporozoite protein (CSP). The CSP antigen prevents sporozoites from invading 

hepatocytes. Due to its low immunogenicity, the vaccine RTS,S was developed. RTS,S was 

developed by PATH Malaria Vaccine Initiative (MVI) and GlaxoSmithKline (GSK) and is also 

commercially known as Mosquirix. RTS,S consists of hepatitis B surface antigen fused with 

CSP and a liposome-based adjuvant. RTS,S has reduced the number of infected children by 

almost 50% [37]. 

In the erythrocyte malaria vaccine, the goal is to prevent the merozoites from invading 

erythrocytes, and to prevent death and disease without complete prevention of infection. The 

targets are antigens expressed on the merozoites’ surface or on that of infected erythrocytes. 



 16 

These include the merozoite surface protein, glutamate-rich proteins and the apical membrane 

antigen 1 [37], [38]. 

1.9 Problem statement and hypothesis 

It is important to develop new antimalarial drugs for alternative malaria targets due to the 

declining efficacy of available antimalarial drugs, as well as the development of drug 

resistance. The erythrocyte stage is mainly responsible for the symptoms of malaria, and it is 

the main source of amino acids for the Plasmodium parasite. Therefore, the erythrocyte stage 

has become the most targeted stage for antimalarial drug design. During this stage, especially 

during the asexual cycle, Plasmodium parasites use different proteases to degrade erythrocyte 

hemoglobin. About 65% to 75% of erythrocyte hemoglobin is digested, which results in the 

release of free amino acids. These proteases include aspartic proteases, falcilysin, 

plasmepsins, cysteine proteases, metalloproteases, dipeptidyl aminopeptidase 1 (DPAP1), 

falcipains and exo-aminopeptidases. One of the exo-aminopeptidases used by Plasmodium 

parasite is M1 Alanyl aminopeptidase. M1 Alanyl aminopeptidase is a zinc-dependent protease 

involved in the terminal stage of hemoglobin degradation and in the release of amino acids. 

Since the Plasmodium parasite cannot synthesize its own amino acids, inhibition of this enzyme 

has the potential to block Plasmodium parasite growth. M1 Alanyl aminopeptidase shares high 

sequence identity among different Plasmodium species, which makes it possible to use the 

same drug against different Plasmodium species.  

1.10 Aim and objectives 

The main aim of this study was to use structural bioinformatics tools to identify potential 

inhibitors against M1 alanyl aminopeptidase. To achieve this, homology modelling of P. 

falciparum M1 alanyl aminopeptidase and its homologs from other Plasmodium species was 

performed. To identify potential inhibitors, compounds from the South African National 

Compounds Database (SANCDB) and selected compounds from the ZINC and PubChem 

databaseswere screened in silico against these proteins. . Finally, top selected ligands were 

evaluated to ensure they selectively bind to the M1 alanyl aminopeptidase from Plasmodium 

species. 
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Chapter 2 – Sequence Analysis 

Plasmodium M1 alanyl aminopeptidase could be considered a possible drug target against 

malaria. M1 alanyl aminopeptidase is present in different species including Homo sapiens and 

plays an essential role in the degradation of peptides, resulting in the release of free amino 

acids. Due to the presence of a human homolog, we need to analyze Plasmodium M1 alanyl 

aminopeptidase as well in order to highlight the difference between them. This chapter focuses 

on the analysis of the H. sapiens M1 alanyl aminopeptidase and its homologs in Plasmodium 

species, including P. vivax, P. knowlesi, P. ovale, P. malriae, and P. falciparum. These analyses 

include motif analysis, multiple sequence alignment and phylogenetic tree generation. The 

purpose of these analyses is to identify sequence and structural differences between the 

Plasmodium M1 alanyl aminopeptidase and human homologs, which may help in improving 

the specificity of the identified compounds against the Plasmodium M1 alanyl aminopeptidase 

protein. 

2.1 Introduction  

Sequence analysis is important to understand sequence features, conserved regions, motifs 

associated with functions, homology, sequence diversity between similar sequences and is an 

important part of structural analysis. Sequence analysis entails various techniques, such as 

motif analysis, multiple sequence analysis and phylogenetic analysis. 

2.1.1 Motif Analysis 

Motifs are short sequences with conserved patterns among different homologous sequences 

and through the evolution. Sequence motifs vary from DNA to amino acid short sequences 

depending on the sequence. Sequence motif lengths range from 3 letters to 50 letters depends 

on the motif type [39]. Motifs can be an indicator of a protein binding site and interaction 

domains, such as restriction enzyme binding sites, or transcription factor binding sites, 

regulatory regions on DNA, termination sites or active sites. Motifs can fall into two categories: 

they can be structural motifs or sequence motifs. A structural motif located in the exon region 

of a gene will also be in the encoded amino acid sequence [40], while a sequence motif would 

only be found in the intron region of a gene. All structural motifs are sequence motifs, but not 

all sequence motifs are structural motifs. Based on the toll used in motif analysis, motifs could 

be showed as sequence logo Figure 2-1. A sequence logo is a representation of a conserved 

region across analyzed sequences, in which the letter height corresponds to the amino acid 

conservation[40].   
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Figure 2-1: Example of a sequence logo. It shows the frequency of occurrence of each amino acid 

in the analyzed sequences on Y-axis against the amino acid letter, shown on the X-axis. 

Currently, there are different motif analysis tools. Some are specialized in motif analysis only 

while others do additional sequence analysis. Examples include the Multiple Em for Motif 

Elicitation (MEME) [41] tool, the Regulatory Sequence Analysis Tools (RSAT) [42] and the 

Protein Family Database (Pfam) [43]. 

2.1.1.1 Multiple EM for Motif Elicitation suite 

MEME is a toolkit that can be used either via its web server interface or by installing it locally 

for use as a command line tool. This software contains different tools covering different motif 

analysis types, including discovery and searching of motifs, comparing discovered motifs with 

known motifs and correlating previously known functions with discovered motifs [41]. 

For motif discovery, the user should input different sequences in unaligned (ungapped) format. 

These sequences should share some sequence similarity, for example, all the sequences should 

be orthologous, or they could have similar domains. Then MEME searches for motifs using 

different algorithms including the expectation maximization algorithm, the maximum 

likelihood and greedy search [44]. 

The ideal input sequence length should be less than 1000 bp, which means it is inefficient at 

analyzing large data sets. Both repetitive DNA elements and low information segments should 

be eliminated before submitting the sequences to motif analysis. It is easier and better to carry 

out motif analysis with protein sequences than with DNA sequences. This is because the protein 

alphabet consists of 20 amino acids while the DNA alphabet consists of 4 nucleic acids, which 

gives more significant results for motifs discovered from proteins. The same criterion applies 

to protein sequences as it should be free from low complexity regions. The MEME guide 

suggests using the SEG program to remove low complexity regions from protein sequences 

and the RepeatMasker program with DNA sequences [44]. 

As some motifs may contain insertions and deletions, the MEME suite includes a gapped local 

alignment of motifs (GLAM2) tool to discover gapped motifs [45]. It is highly recommended 
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to do an ungapped motif analysis after a gapped motif analysis and compare the results to avoid 

false positives[41].  

Depending on whether you are working with DNA or protein sequences, there are different 

ways to analyze the motif results, as shown in Figure 2-2. It includes comparing the resulting 

motifs against known ones, such as known regulatory motifs, identifying corresponding GO 

(Gene Ontology) annotations and identifying additional motif occurrence for the desired 

motifs. Unfortunately comparing the resulting motifs with known ones is available for DNA 

motifs only [46]. 

The MEME suite became online in 1996, and has now become an essential tool for motif 

analysis, offering 13 different tools with different features including motif discovery and 

enrichment, and database comparison [46].  

Figure 2-2: Summary of the MEME suite features and a suggested workflow with the output of 

each analysis. 

For motif discovery, there are four different algorithms. The first and oldest one is MEME, 

which performs basic motif discovery from both DNA and protein sequences. The MEME 

algorithm is limited by being poor at finding short DNA motifs. The second algorithm is 
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implemented by the discriminative regular expression motif elicitation (DREME) tool, which 

was developed to produce more sensitive motifs, especially in the case of short motifs, as 

opposed to MEME [47]. Both MEME and DREME cannot discover ungapped motifs; to 

overcome this limitation GLAM2 developed. The last tool, termedMEME-chip, was developed 

to overcome the length limitation as a means to discover motifs from whole genome sequences. 

MEME, DREME and GLAM2 can only do motif discovery, while MEME-chip performs 

enrichment and comparative analyses as well as motif discovery, also giving a full report in 

comparison to the other tools [39]. 

2.1.1.2 Pfam 

The first developed Pfam database was released in 1997 [48]. Currently, Pfam 31.0 was 

released on March 8, 2017, with 16712 protein families and 604 clans. Pfam is a multiple 

sequence alignment and a hidden Markov model representation of different protein families. It 

uses clans to organize its data, in which all related sequences are grouped as clans based on 

sequence similarity, sequence structure and profile. Pfam also takes advantage of protein 

domains in order to infer possible protein function. Initially a seed alignment is created for each 

protein family. This seed alignment used to train a hidden Markov model profile using the 

HMMER software. Clan quality heavily depends on seed quality. This model is then used to 

search against a large dataset to identify all possible homologous sequences [49].  Pfam can be 

used to identify the protein family of an input sequence by searching Pfam stored models, 

which help in identification of protein sequences and homologs sequences [50]. 

2.1.2 Sequence alignments 

Sequence alignments are used to compare two or more nucleic acid or amino acid sequences 

to identify a conserved region in the sequences that may correspond to a function or an 

evolutionary relationship. Based on the number of aligned sequences, the alignment can be a 

pairwise alignment or a multiple sequence alignment [51]. Both approaches are performed 

using global alignment or local alignment. In global alignment, the aim is to create an end-to-

-end alignment, which includes the entire length of the sequences being aligned. Local 

alignments, on the other hand, aim to identify the most similar regions between aligned 

sequences as shown in Figure 2-3.   
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Figure 2-3: Global and local alignment. It shows the difference between a global alignment and a 

local alignment. In a global alignment, the entire first sequence aligned with the entire second 

sequence (end-to-end alignment), while in local alignment only includes the most similar parts 

[52].   

2.1.2.1 Pairwise sequence alignment  

A fundamental objective of bioinformatic analysis is used to find the best match between two 

sequences. There are many different methods that have been developed to perform pairwise 

alignment.  The most common methods consist of dot matrices, dynamic programming and the 

word method [53]. Dynamic programming is very accurate but requires high computational 

power because it calculates all possible alignments between the query sequence to choose the 

one with the highest alignment score. This approach is highly impractical for very large 

genomic sequences [54].   

The pairwise alignment algorithm uses comparison matrices to evaluate the significance of any 

match or mismatch. These matrices define a score for every possible match; the algorithm uses 

these scores to find the best total score for the alignment between aligned sequences.  In DNA 

or RNA sequence alignment, the most common scoring matrix is the identity matrix. For 

protein sequence alignment, the most common matrices are the point (or percent) accepted 

matrix (PAM) [55] and block substitution matrix (BLOSUM) [56].   The identity matrix is very 

simple - it gives a value of one for a positive match and zero for a mismatch. The simplicity of 

this matrix lowers the computational cost needed for alignment calculation while at the same 

time it does not provide weights for insertions and deletions for the aligned sequences [53].  

PAM matrices measure the likelihood of a mutation that occurs between homologous 

sequences, in which one amino acid changes to another specific amino acid during evolution. 

As a result, PAM matrices are based on the mutational model. BLOSUM matrices measure 

amino acid conservation and substitution probabilities in protein families (blocks) which are 

based on a starburst model. Therefore PAM matrices are very useful in evolutionary studies 
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while BLOSUM matrices are mainly used to find conserved domains. It is better to choose 

BLOSUM for local alignment [57].  

2.1.2.2 Multiple sequence alignment (MSA) 

A multiple sequence alignment (MSA) is an extension of pairwise alignments whereby three 

or more query sequences are aligned. An MSA is very important for evolution studies and 

phylogenetic tree construction. It improves the accuracy of the identified conserved residues 

and increases the ability to correctly identify insertions and deletions. MSA is important in 

many bioinformatics applications including secondary structure prediction, homology 

modelling, motif finding and phylogenetic analysis [54].  

MSA is mainly performed using heuristic methods or exhaustive methods. The exhaustive 

methods like dynamic programming for MSA are highly impractical. Heuristic alignment 

methods have two common methods for MSA. These comprise the progressive alignment and 

iterative alignment Figure 2-4. Progressive alignments are usually fast but the accuracy is not 

guaranteed. In progressive alignment, errors that occur in any step of the algorithm are retained 

and carried over to the final step. The alignment starts by aligning the most similar sequences 

together, then the algorithm adds more sequences to this alignment until all query sequences 

are aligned [58]. The iterative method starts with a low-quality alignment then the algorithm 

iterates and improves the alignment until no improvement can be made to the alignment. The 

main idea of the iterative method is to continuously modify the alignment until an optimal 

alignment is produced [59]. 

 

Figure 2-4: Steps for the iterative alignment method [60]. 

2.1.2.3 Phylogenetic analysis  
 

Phylogenetic analysis is the representation of the evolutionary relationship between various 

species in the form of a branched diagram. The possible evolutionary relationship are 

constructed based on the physical or genetic differences and similarities [61]. The phylogenetic 
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tree could be a species tree or a gene tree. A species tree represents the evolutionary 

relationships between species or groups of the population while a gene tree measures the 

phylogenetic relationships between a group of homologous genes. Phylogenetic trees can be 

rooted or unrooted. A rooted  phylogenetic tree is branched from a unique node that represents 

a common ancestor while in the unrooted tree there is no single common ancestor [62]. 

While a phylogenetic tree can be useful in understanding the history of evolutionary events, it 

can be biased if the input data is noisy or not accurate. Another limitation is using a small input 

set. For example, the construction of a species tree based on sequence similarity between 

conserved genes (ex: housekeeping genes) could be limited. This due to the  fact that this tree  

is based on a single gene which may not reflect the complete organism genome [63]. The more 

genes used in the analysis, the more reliable the resulting phylogenetic tree. Using a small set 

of input genes results in a phylogenetic tree that requires further validation through techniques 

such as bootstrapping and the use of an outgroup [64]. An outgroup is group of distantly related 

sequences in a set of input genes. This outgroup acts as negative control which should appear 

near the root [64]. Bootstrapping includes pre-defined iterations meant to increase the 

confidence of the phylogenetic tree. In each iteration, the input MSA is randomly permuted 

then the phylogenetic tree is calculated. In the end, each branch of the final tree is labeled with 

a number. This number represents how many times the branch was recovered across all the 

iterations [65]. Different algorithms could be used to construct a phylogenetic tree. These 

include the Unweighted Pair Group Method with Arithmetic Mean (UPGMA), Neighbor-

joining (NJ), Maximum parsimony (MP) and Maximum-likelihood (ML). UPGMA is based 

on a distance matrix calculated from an MSA and a constant evolution rate [66]. NJ is bottom-

up clustering method suitable for large datasets since the algorithm is fast; however, accuracy 

is not guaranteed [66]. MP tries to produce a phylogenetic tree that minimizes the number of 

steps needed to reflect the variation between the sequences and the common ancestral sequence 

[67]. ML is based on a statistical approach and is very optimal for small input data of distantly-

related sequences. However ML is not the best choice for large input data because it is 

computationally expensive [68].    
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2.2 Methods 

2.2.1 Sequence retrieval 

The M1 P. falciparum alanyl aminopeptidase sequence (accession number XP_001349846.1) 

was retrieved from the National Centre for Biotechnology Information (NCBI) using the NCBI 

global cross search tool. The retrieved sequence was submitted to pBLAST [69] (protein Basic 

Local Alignment Search Tool) to retrieve M1 alanyl aminopeptidase from other Plasmodium 

species including P.vivax, P. knowlesi, P. ovale, P. malriae, P. gaboni, P. reichenowi and P. 

coatenyi (the accession number for each species is shown in Table 2-1) using default BLAST 

parameters and restricting the organism search to Plasmodium species. The Ensembl genome 

browser [70] was used to retrieve a human sequence of M1 alanyl aminopeptidase (accession 

number NP_001141.2). The Ensembl orthologs finder was used to retrieve mammalian 

homologs. Bacterial homologs of the M1 P. falciparum alanyl aminopeptidase sequence were 

retrieved from UniProtKB [71] using UniRef [72] data available from the M1 P. falciparum 

alanyl aminopeptidase record found in the UniProtKB. At the end, 18 sequence were retrieved 

(shown in Table 2-1) 

2.2.2 Motif analysis 

2.2.2.1 Pfam 

In order to investigate the relationship between human protein and Plasmodium sp. Homologs, 

the HMMER tool [73] was used to search for protein families and domains in all retrieved 

sequences. HMMER was accessed through  

https://www.ebi.ac.uk/Tools/hmmer/search/hmmscan, and a FASTA-formatted file containing 

all the retrieved sequences was submitted to the HMMER tool using default parameters. 

2.2.2.2 MEME suite  

A locally-installed version of the MEME suite was used to discover motifs in all retrieved 

sequences. MEME version 4.12.0 was downloaded from the MEME official site and installed 

locally, after which a FASTA-formatted file containing all retrieved sequences was submitted 

to the MEME tool using default parameters. The generated files were submitted to the MAST 

tool [74]. The motif width was set to 6 as minimum and 50 as the maximum value. Moreover, 

repeated motifs were set to be skipped and 10000 was used as the maximum number of 

discovered motifs. 

https://www.ebi.ac.uk/Tools/hmmer/search/hmmscan
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2.2.3 Sequence alignment 

MSA was performed using MAFFT [75] for all retrieved sequences. MAFFT was accessed 

through the MAFFT online web server hosted on EBI servers 

https://www.ebi.ac.uk/Tools/msa/mafft/ and a FASTA file containing all sequences was 

submitted using MAFFT default parameters. A separate MSA for all Plasmodium species 

sequences was also created. Structural MSA was performed using T-Coffee expresso, which 

can be accessed through http://tcoffee.crg.cat/apps/tcoffee/do:expresso. A FASTA file 

containing all sequences and a 3D structure sequence of Plasmodium M1 alanyl 

aminopeptidase (PDB ID: 3Q43) were submitted using default parameters.  

2.2.4 Phylogenetic analysis  

MEGA 7 [76] was used to generate a phylogenetic tree representing the evolutionary 

relationships between Plasmodium sequences and their homologous sequences. The T-Coffee 

expresso alignment result was used as input to generate the phylogenetic tree using the 

Neighbor-joining algorithm. All gaps were eliminated and 1000 bootstrap iterations were used 

to increase the phylogenetic tree confidence. The evolutionary model was measured and 

selected based on the best BIC (Bayesian Information Criterion) score obtained using the 

MEGA goodness of fit test. The selected model was the “Le Gascuel” (LG) statistical model.  

 

 

   

https://www.ebi.ac.uk/Tools/msa/mafft/
http://tcoffee.crg.cat/apps/tcoffee/do:expresso
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2.3 Result and Discussion  

2.3.1 Sequence retrieval  

Different Plasmodium species and homologs sequences were retrieved from different databases 

(NCBI, UniProtKB, and Ensembl). The retrieved sequences were confirmed using other 

databases, including PlasmoDB. The retrieved data was checked and compared against 

available data. All the retrieved sequences were submitted to BLAST to measure the percentage 

similarity between P. falciparum (XP_001349846) and all other retrieved sequences.  

Table 2-1: Summary of M1 alanyl aminopeptidase P. falciparum sequence and its 

retrieved orthologs.   

Name 
Length 

(aa) 

Accession 

number 

Query 

Cover 

Identity 

percentage 

P. malariae   1100 SBS90191 100% 72% 

Plasmodium gaboni 1080 XP_018639924.1 100% 97% 

Plasmodium reichenowi 1087 CDO65912 100% 99% 

P. knowlesi 1097 XP_002262014.1 99% 71% 

P. ovale 1078 SBT47239 100% 73% 

P. vivax 1097 SCO69705 99% 72% 

Lactobacillus delbrueckii 843 WP_011544314.1 40% 25% 

Klebsiella pneumoniae 870 CDK69214 81% 35% 

Escherichia coli 870 WP_069905499.1 81% 35% 

Shigella sp. 870 WP_094320956.1 81% 35% 

Salmonella typhimurium 914 WP_069905499.1 82% 36% 

Homo sapiens 967 NP_001141.2 42% 26% 

Gorilla gorilla 967 XP_018866310 42% 27% 

Macaca mulatta 968 XP_001093727.2 39% 27% 

Sus scrofa 963 P15145.4 35% 26% 

Trypanosoma grayi 869 XP_009314710 47% 25% 

Trypanosoma theileri 868 ORC86065 51% 26% 

Trypanosoma cruzi 870 XP_809697.1 39% 26% 

 

M1 alanyl aminopeptidase 3D structures for both human and P. falciparum were retrieved from 

the Protein Databank (PDB) [77]. Currently, there are 17 different PDB records for P. 

falciparum and 4 human ones. By comparing resolution values, PDB ID: 3Q43 was selected 

as 3D structure for P. falciparum M1 alanyl aminopeptidase while 4FYT was selected for the 

human. 

2.3.2 Motif analysis  

2.3.2.1 Pfam 
 

Pfam was used to confirm the relationship between retrieved sequences and also to search for 

conserved domains in retrieved sequences. The results are shown in Table 2-2.  
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Table 2-2: Summary of Pfam results shows the start and end position of founded domains. 

Family Clan 

 

Description 

 

 Organism 

 

Start 

 

End 

Name Accession n. 

Peptidase_M1 PF01433.19 CL0126 Peptidase 

family M1 

domain 

Human and Gorilla 296 543 

M.a mulatta 296 543 

S. scrofa 291 539 

P. malariae   397 635 

P. falciparum  406 643 

Plasmodium gaboni 401 638 

P. knowlesi 414 652 

P. ovale 395 633 

P. vivax 414 652 

P. reichenowi 408 645 

L. delbrueckii 197 434 

E. coli and Shigella sp 

and Klebsiella 
207 440 

S. typhimurium 251 484 

ERAP1_C PF11838.7 n/a ERAP1-like 

C-terminal 

domain 

M. mulatta 620 947 

Human and Gorilla 619 946 

S. scrofa 616 943 

L. delbrueckii 505 820 

DUF3458 PF11940.7 n/a Domain of 

unknown 

function 

(DUF3458) 

Ig-like fold 

P. malariae   641 736 

P. falciparum  650 745 

P. gaboni 645 740 

P. reichenowi 652 645 

P. knowlesi 658 753 

P. ovale 639 734 

P. vivax 658 753 

E. coli and Shigella sp 

and Klebsiella 
444 545 

S. typhimurium 488 589 

DUF3458_C PF17432.1 CL0020 Domain of 

unknown 

function 

(DUF3458_C) 

ARM repeats 

P. malariae   739 1099 

P. falciparum  748 1083 

P. gaboni 743 1078 

P. reichenowi 750 1085 

P. knowlesi 756 1095 

P. ovale 756 1095 

P. vivax 737 1076 

S. typhimurium 592 914 

E. coli and Shigella sp 

and Klebsiella 
548 870 

 

The results from the Pfam analysis show that all retrieved sequences belong to metalloproteases 

("zincins") superfamily with ID: 55486 and the aminopeptidases superfamily (ID: 63737). All 

the sequences were found to have the M1 aminopeptidase domain, which confirms they have 

the zinc coordinating active site needed for aminopeptidase activity. This domain position is 

almost in the same position in each closely-related group. All the Plasmodium species have 

this domain, starting from amino acid number 390 to amino acid number 650, while the 
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mammalian group (Human, Macaca mulatta, and Gorilla) has this domain exactly in the same 

region (296-543) with the exception of Sus scrofa. This confirms the importance of the M1 

domain for this protein as it is conserved among different species of different evolutionary 

distance.  

2.3.2.2 MEME suite 

To confirm Pfam results and understand the conserved and divergent regions in this protein 

among different organisms, retrieved sequences were submitted to the MEME suite for motif 

discovery. The result was then submitted to the MAST tool to align the discovered motifs with 

retrieved sequences. The result was shown as a heat map in Figure 2-5. The MEME results 

shows that motif number 1 was conserved in all retrieved sequences, which is located in the 

peptidase family M1 domain retrieved from Pfam database. It was observed that all sequences 

have three different motifs located in the peptidase domain. Other domains are otherwise 

divergent between different organisms. 
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Figure 2-5: MEME heatmap, summarizing alanyl aminopeptidase motifs among all retrieved 

sequences.    
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2.3.3 Multiple sequence alignment 

Different tools were used to perform MSA including MAFFT and T-Coffee expresso. 3D 

coffee takes the 3D structure of M1 alanyl aminopeptidase as an additional input, which 

increases the quality and accuracy of the resulting alignment. MSA was found to confirm the 

result obtained from motif analysis. This indicates that all sequences share a peptidase domain 

while the remaining sections of those sequences are more divergent in all the retrieved 

sequences, as indicated in Figure 2-7.  

There are different degrees of conservation that can be observed from the sequence alignments. 

For Plasmodium species, there is high conservation between their aligned peptidase sequences, 

while there is more divergence in the N-terminal region with exception to P. malariae. The 

latter has an additional divergent part at the end of its sequence (Figure 2-6). 

 

Figure 2-6: MUSCLE alignment result. The MSA alignment produced by MUSCLE for different 

Plasmodium sequences was viewed in the JalView software.  
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Figure 2-7: T – Coffee expresso alignment result. The MSA alignment produced by T – Coffee 

expresso for different Plasmodium sequences was viewed in the JalView software  
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Figure 2-8: The active site residues conserved in all retrieved sequences, are highlighted in violet. 

As shown in Figure 2-8, the active site residues (histidine, histidine, and glutamine) are 

conserved in all organisms, while the flanking regions are similar between closely-related 

groups. 

2.3.4 Phylogenetic tree  

The phylogenetic tree was constructed to investigate the evolutionary relationship between 

Plasmodium M1 alanyl aminopeptidase and its homolog sequences. The model selection tool 

provided by MEGA was used to investigate the best evolutionary model according to BIC 

scores and the bootstrap consensus. As shown in Table 2-3, the top three models were all based 

on the “Le Gascuel” statistical model with different rates among sites.  

Table 2-3: BIC scores of evolutionary models generated by the MEGA model selection 

tool.  

Model BIC score 

LG+G+I 28762.72206 

LG+G 28763.56086 

LG+G+I+F 28871.46676 

WAG+G+I 28906.10044 

WAG+G 28932.00326 

JTT+G+I 28943.83602 

JTT+G+I+F 28951.95335 

WAG+G+I+F 28955.33038 

LG+G+F 28961.62294 
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The best phylogenetic tree was generated using the “Le Gascuel” statistical model combined 

with a gamma distribution with Invariant sites (LG + G + I), which is shown in Figure 2-9. 

The generated phylogenetic tree showed clear species clustering in which all Plasmodium 

sequences clustered together as well as homologs from bacteria, fungi and mammals. Within 

the Plasmodium cluster the most similar sequence to P. falciparum was P. richenowi, followed 

by P. gaboni while P. knowlesi, P. coatenyi and P. vivax showed slight evolutionary distance 

to P. falciparum. This finding correlates with motif finding and MSA analysis as P. knowlesi, 

P. coatenyi and P. vivax share motifs 38 and 46, while P. falciparum, P. richenowi and P. 

gaboni did not have those motifs.  

While the bacterial cluster was most similar to the Plasmodium cluster, the mammalian cluster 

was least similar to the Plasmodium cluster. This evolutionary difference points to the 

possibility of designing a drug with selective activity against Plasmodium species by targeting 

different regions.   

 

Figure 2-9: Molecular phylogenetic analysis by the Maximum Likelihood method generated by 

MEGA7. The generated tree based on the “Le Gascuel” 2008 model. A discrete gamma 

distribution was used to model evolutionary rate differences among sites (5 categories (+G, 

parameter = 1.4895)). The rate variation model allowed for some sites to be evolutionarily 

invariable ([+I], 2.97% sites). All positions containing gaps and missing data were eliminated. 

There was a total of 767 positions in the final dataset.  
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2.4 Conclusion 

This chapter includes an in-depth sequence analysis of P. falciparum M1 alanyl 

aminopeptidase and its homolog sequences from different organisms. These organisms include 

bacteria, fungi, and mammals. Seven M1 alanyl aminopeptidases from Plasmodium sequences, 

and 10 homolog sequences from other organisms were retrieved from NCBI, UniProtKB and 

Ensembl. All retrieved sequences were analyzed using different sequence analysis methods. 

This involved motif discovery, sequence alignments and phylogenetic tree calculations. Motif 

discovery shows that all sequences share the peptidase family M1 domain, which contains zinc 

coordinating residues. The domain position was mostly conserved within each species group. 

MEME motif analysis and MSA confirmed the conservation of metal-coordinating residues, 

including His 496, His 500 and Glu 519. Located near the entrance of the active site were 

conserved residues Glu 460, Ala 461, Met 462, Glu 463, Asn 464, Glu 466 and Leu 467. This 

highlights sequence diversity in the active sites, including Asn 501, Tyr 502, Thr 503, Arg 506, 

Arg 510, Asp 511 and Gln 514, which are conserved in all M1 alanyl aminopeptidases from 

Plasmodium species but are divergent when compared to human and other homologs. These 

sequence dissimilarities may indicate the presence of structural regions that may be exploited 

to obtain a selective drug against Plasmodium M1 alanyl aminopeptidase. An MSA was used 

to produce a phylogenetic tree to study the evolutionary relationships between the parasite and 

its host. The study shows the human protein and Plasmodium M1 alanyl aminopeptidase 

protein are distantly-related.  
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Chapter 3 - Homology Modelling 

While the M1 alanyl aminopeptidase 3D structure of P. falciparum is available, the 3D 

structure of M1 alanyl aminopeptidase of other Plasmodium species is not yet determined. In 

this chapter, homology modelling techniques were used to generate 3D structures of the M1 

alanyl aminopeptidase protein for other pathogenic Plasmodium species. The steps start with 

template identification and sequence alignment. Then model building is done based on the 

sequence alignment between the target sequence and template sequence for each species. At 

the end, the generated models underwent different refinement steps and validation tools were 

used to obtain the most accurate model. Then the generated models were used for the prediction 

of protein function and possible interactions with potential drugs.   

3.1 Introduction 

Homology modelling is a technique to calculate a 3D structure of a protein using related 

homolog proteins with experimentally-determined structures. Homology modelling could be 

done by using one (single template) or more (multiple templates) known structures. 

Thproduced obtained 3D structure can then be used in the determination of protein function, 

studies of disease-causing mutations and mutation impact on protein activity and in drug design 

experiments [77]. Currently, there are approximately 146,000 3D structure entries hosted on 

PDB [77], while there are over 550,000 protein sequences hosted on the UniProtKB/SwissProt 

database [78]. From this data, it is very clear the number of determined 3D structures is very 

low compared to the number of known sequences with unknown 3D structures, which 

emphasizes the need for using homology modelling. Homology modelling is based on the idea 

that homologous proteins share a similar 3D structural arrangement [79]. It starts with template 

identification and is followed by sequence alignment to highlight insertion, deletion, match and 

mismatch regions. Then the sequence alignment output is used to build the model. This model 

undergoes model refinement which includes loop refinement. Finally, the model is assessed for 

quality [80].  

Homology modelling multi-steps: 

3.1.1 Template identification  

Template identification involves searching for all known structures using a query sequence to 

find its homologous structures. This includes a pairwise alignment between the query and a 

structure databases (e.g., PDB) by using alignment searching tools, for example the Basic Local 

Alignment Search Tool (BLAST) [81], [82]. BLAST gives a list of similar protein structures 



 36 

based on sequence alignment. In order to get the optimal result, BLAST uses a residue 

exchange matrix and an alignment-matrix based on the latter. This is because we need to give 

a better score for residues that are easily exchanged for example, in the case of a Ile to Leu 

mutation, these residues should get a better score than residues that have different properties, 

while conserved residues with a specific function get the best score  [83]. 

Template retrieval is an important step in homology modelling and to increase the sensitivity 

of template identification, evolutionary models and profiles can be used. Commonly-used 

profiles include sequence profiles and those based on Hidden Markov Models (HMM). The 

most common tools implementing these methods are PSI-BLAST [84] and HHpred [85], [86].  

Once the final list of potential templates is obtained, it is necessary to select one or more 

templates. In order to filter the obtained list, the template with the highest sequence similarity 

to the input sequence is selected. Then the template sharing the same conditions as the input 

sequence is selected, for example, they might have the same solvent, pH, ligands and 

quaternary interactions. Finally, the resolution and R-factor of the template should be 

considered. It is preferred to choose more than one template to improve the model accuracy 

[87].  

Depending on the identity percent between template and target, the best model is when the 

identity is greater than 90%. In this case, we can compare the model structure against 

experimentally-determined structures. If it is between 90% and 50%, it is considered to contain 

larger local errors. If it drops to 25%, it turns out to be the main bottleneck for homology 

modelling, which can often lead to very large errors [88]. 

3.1.2 Sequence alignment  

Alignment errors are the main cause of deviations in homology modelling.  Even when the 

correct template is chosen, alignment error can result from an incorrect insertion or deletion. 

Therefore, there is huge need to improve alignment result sensitivity. One of the suggested 

methods to improve the sensitivity is by using an iterative method to identify the template and 

generate the final sequence alignment to guide the model building process. It is also 

recommended to use an MSA to correct the alignment and highlight the features of the protein 

family and conservation degree.  A change of Ala to Glu is possible, but unlikely to happen in 

a hydrophobic core, so this Ala and Glu cannot be aligned. By using an MSA program such as 

MUSCLE [89], Clustal Omega [90] or MAFFT [59], the residues and properties that must be 

conserved can be found [91]. 
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In order to improve alignment quality, structural alignment can be used. This includes programs 

such as  3DCoffee [92] or PROMALS3D [93]. The idea of using a structural alignment tool is 

based on the conservation of structural configuration across homologous sequences.  It is also 

suggested to manually optimize the final alignment to avoid any possible alignment errors. For 

example, a gap in structural element should be avoided.  [80].  

3.1.3 Model building 

The main aim of this step to build the model based on the 3D template structure, such that the 

best models rely on alignments with the fewest possible errors. Based on the alignment, the 

model building tool copies the coordinates of the template residues to the residues in the input 

sequence if there is a match. In this case, it can include the side chain positions as well. While 

in the case of a mismatch, only backbone coordinates are copied. In the case of using multiple 

templates structures, errors can be fixed if the error is present in one template. as Additionally, 

the insertion and deletion present in one of the templates can be fixed by using the structural 

information of another template [86]. 

A variety of methods can be used to build a protein model for the target. Generally, rigid-body 

assembly, segment matching, spatial restraint, and artificial evolution are used for model 

building.  Rigid-body assembly relies on the assembly of a complete model 

from conserved structural fragments identified from closely-related solved structures. Model 

accuracy is based on the template selection and alignment accuracy. Segment matching is based 

on dividing the target into the short part, then each part will be matched to its own template in 

PDB database. Modelling by the satisfaction of spatial restraints is based on the generation of 

many constraints or restraints on the structure of a target sequence, using its alignment to 

related protein structures as a guide. The most common tool used for this step is MODELLER 

[94], [95]. 

3.1.4 Structural refinement 

This step includes improving and refining the alignment; loops and side chains are also 

modeled. It is very important to correct the alignment because it is the main source of error 

which results from misalignments. The correction and refinement of the alignment lead to 

changes in the backbone structure of the homology model. The changed backbone affects side 

chain which also leads to other changes on the backbone [96]. 

Gaps in sequence alignment can occur in the template sequence or target sequence. In both 

cases, this leads to conformational changes and problems in the modeled structure. Knowing 

that secondary structure elements remain conserved between homologous sequences, it is 
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preferable to insert any gaps in turn or loop structures. Loop modelling could be used to solve 

this problem. Loop modelling can be done using knowledge-based or energy-based methods 

[97]. The knowledge-based method depends on previously known structures hosted on PDB 

databases, in which the PDB database is searched for matched loops that have the same length 

and similar geometries. Then, the coordination of the best-matched loop is copied to model 

structure [98].The energy-based method depends on applying an energy function to assess the 

quality of the loop and modify its conformation to find the best conformation. In some cases, 

the produced loop could not fit properly to the modeled protein structure [99]. Side-chain 

modeling uses a combination of knowledge-based methods and energy functions to improve 

side chain conformation quality. The knowledge-based method is used to identify commonly 

known side chain conformations. Then an energy function is applied to select the best 

conformation. This could be computationally expensive in case of low-level similarity side 

chains [100].   

3.1.5 Model validation  

After the model building and refinement process is completed, it is important to check for errors 

in the model. Model quality depends on different factors including the percentage identity 

between the template and target sequence, and the alignment quality. Also, errors in the 

template itself should be considered [100]. Different tools are available to assist and validate 

model quality. These tools can be used to either validate the whole protein in addition to other 

tools that validate individual regions of proteins. These tools assist in the evaluation of protein 

stereochemistry, z-DOPE score estimation, geometry and residue fitness. Examples of 

commonly-used tools are PROCHECK, WHATIF, VERIFY3D, GRASP2, ANOLEA, and 

PROSAII. Also, it is very important to manually inspect any error present in the model [101]. 

3.2 Methodology  

3.2.1 Template identification  

HHpred (https://toolkit.tuebingen.mpg.de/#/tools/hhpred) and BLAST 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi) were used to identify the best available template. A 

sequence retrieved from NCBI (accession number XP_001349846) was used as the M1 alanyl 

aminopeptidase P. vivax input for both tools. The PDB proteins were used as database search 

set for BLAST. The other BLAST parameters included an E-value threshold of ten, a word size 

of six, use of the BLOSUM62 scoring matrix and a gap penalty of 11 for new gaps and a gap 

extension value of 1. The HHpred parameters employed HHblits uniprot20_2016_02 as the 

MSA generation method, a maximal number of three MSA generation steps, an E-value 
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threshold of 1e-3, the local alignment mode and a MAC realignment threshold of 0.3. The same 

step with the same parameters were used for other Plasmodium species, where sequence 

accession number and the species names are shown in Table 3-1. 

Table 3-1: Summary of Plasmodium species and their corresponding accession number 

Name Accession number 

P. malariae  SBS90191 

P. knowlesi XP_002262014.1 

P. ovale SBT47239 

P. vivax SCO69705 

3.2.2 Sequence alignment 

The best-selected templates combined with the target sequence and homologous sequences 

were submitted for structural alignment using 3D-Coffee with default parameters. The final 

MSA output was refined manually for alignment errors by eliminating gaps in functional 

regions of the M1 alanyl aminopeptidase enzyme using Jalview. The resulting alignment 

profile was compared with the that generated from MODELLER using the align2d() function 

implemented in MODELLER. The best alignment profile was selected based on gap positions 

and mismatches between target and template sequences. 

3.2.3 Model building and refinement   

The MSA output was used to generate a .pir file for each of P. malariae, P. knowlesi, P. ovale 

and   P. vivax sequences. The generated .pir files were submitted to MODELLER to generate 

the models. Modelling was done on local Linux machine using a locally-installed MODELLER 

(version 9.17) to produce 100 models for each Plasmodium sequence. The refinement method 

used was the “Refine.very_slow” MODELLER function, used to provide the highest 

refinement level (very slow). The generated models were sorted using the Discrete Optimized 

Protein Energy (DOPE) assessment method which generates z-DOPE scores. The best three 

models were selected for model validation and evaluation.  

3.2.4 Model evaluation 

The best three models for each Plasmodium target were submitted to different evaluation tools. 

Those tools include Verify3D, PROCHECK, and ProSA. The best model among each of the 

three tools was selected. This selected model was visualized using PyMol and superimposed 

with its corresponding template. The different regions were investigated to check if they affect 

the active site and protein function.   
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3.3 Result and Discussion  

3.3.1 Template identification  

As mentioned in the methodology section, both BLAST and HHpred were used to identify 

templates. The most similar templates were first selected based on percentage similarity and 

E-value. Templates with an E-value close to zero were selected to eliminate the chance of 

getting a random result. Also, templates with similarity and percentage identities higher than 

30 % were selected to match the safe alignment zone [102]. The second step was to filter the 

selected templates based on the total number of gaps and gaps position. Finally, each template 

was assessed based on its R-value, number of missing residues and the position of these missing 

residues.  

Results retrieved from BLAST are shown in Figure 3-1 and Table 3-2. BLAST returned 100 

templates for each target sequence because BLAST parameters were adjusted to show the first 

100 query result based on E-value. From those 100 templates, 11 were found to have an E-

value equal to 0. Unfortunately, there is no template covering the first 150 residues of target 

sequences. The template PDB ID  5DLL was found to have the lowest percentage identity and 

the highest percentage mismatch, which exclude this template from the possible template list. 

Further, templates with PDB ID: 4R5X, 4J3B, 4K5L, 4R5T and 4R5V had unaligned tails. This 

exclude them from the possible template list because other remaining templates had similar 

percentage identities, percentage query coverage values and E-values. Only one expression for 

4J3B as it covers position where other templates have mismatches or gaps, which suggest using 

this template when performing multiple template alignment. The five remaining possible 

templates are those with PDB IDs 3Q43, 3EBG, 3EBI, 4K5N and 3T8V. As shown in Table 

3-3, all possible templates have missing residues or atoms. Fortunately, all the missing residues 

are found at the N-terminal or C-terminal, which have no effect on important functional 

positions of the protein. According to R-free values, the best templates were 3T8V and 3Q43. 

Template 3Q43 had a higher alignment score and query coverage.  The template 3T8V was 

found to have eight mutations while 3Q43 has seven mutations.  

As shown in Table 3-4, the HHpred result had lower E-values, percentage sequence similarities 

and identities in comparison to BLAST. The HHpred best result was retrieved for Escherichia 

coli, while the BLAST result was used in the case of P. falciparum, which is more evolutionary 

related to other Plasmodium species compared to E. coli. 

 



 41 

Table 3-2: Summary of templates retrieved from BLAST with e-value = 0, showing the 

identity percent and query cover percent among 

Accession number  E-Value Identity percent  Query cover Target organism sequence 

4R5X 0.0 78% 83% P. malariae   

0.0 80% 81% P. knowlesi 

0.0 80% 81% P. vivax 

0.0 80% 82% P. ovale 

3Q43 0.0 87% 83% P. malariae   

0.0 80% 81% P. knowlesi 

0.0 80% 81% P. vivax 

0.0 80% 83% P. ovale 

4J3B 0.0 78% 83% P. malariae   

0.0 80% 81% P. knowlesi 

0.0 81% 82% P. vivax 

0.0 81% 82% P. ovale 

3T8V 0.0 78% 83% P. malariae   

0.0 80% 81% P. knowlesi 

0.0 80% 81% P. vivax 

0.0 80% 83% P. ovale 

3EBG 0.0 78% 83% P. malariae   

0.0 80% 81% P. knowlesi 

0.0 80% 81% P. vivax 

0.0 80% 82% P. ovale 

3EBI 0.0 78% 83% P. malariae   

0.0 80% 81% P. knowlesi 

0.0 80% 81% P. vivax 

0.0 80% 82% P. ovale 

4K5N 0.0 78% 83% P. malariae   

0.0 80% 81% P. knowlesi 

0.0 80% 81% P. vivax 

0.0 80% 82% P. ovale 

5DLL 0.0 37% 82% P. malariae   

0.0 37% 80% P. knowlesi 

0.0 37% 80% P. vivax 

0.0 37% 81% P. ovale 

 

Table 3-3: Possible templates without unaligned tails sorted from left to right according 

to resolution then number of missing residues.  

PDB ID 3Q43 3T8V 4K5N 3EBI 3EBG 4J3B 

Length  891 895 895 890 889 889 

N. Chains 1 1 1 1 1 1 

Resolution (A) 1.8 1.8 1.91 2.0 2.1 2.2 

Number of missing 

residues 

2 6 6 1 1 1 

Number of missing 

atoms 

30 29 30 4 38 32 
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Figure 3-1: Summary of target Plasmodium sequences with the best 10 possible templates. A:  shows the alignment of P. ovale sequence against the 

best ten templates, B:  shows the alignment of P. vivax sequence against the best ten templates, C:  shows the alignment of P. knowlesi sequence against 

the best ten templates, D:  shows the alignment of P. malariae sequence against the best ten templates.  The red vertical lines show mismatch positions 

while the grey bars show the matched positions between the target and each possible template.  

 

C 

D 

Unaligned tail 
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Table 3-4: Summary of the best template for each sequence retrieved from HHpred with 

the lowest E-value, showing the percentage identity and percentage query coverage 

among 

Target organism sequence PDB ID E-value  Identity percent  Similarity percent 

P. malariae   4XO5 2.3E-127 35% 60% 

P. knowlesi 4XO5 2.2E-126 34% 60% 

P. vivax 4XO5 3.6E-125 34% 59% 

P. ovale 4XO5 3.2E-124 34% 59% 

 

 

Figure 3-2: wwPDB validation, representing the overall structure quality for A: 3T8V and B: 

3Q43  

Homology modelling is based on transferring the 3D coordinates of amino acid positions to 

those of the template, which is why the template quality and suitability are evaluated to ensure 

the best template is selected. Both potential templates 3Q43 and 3T8V were submitted to 

QMEAN and verify 3D. From verify 3D both have 3D-1D Averaged Scores higher than zero. 

Additionally, 3Q43 has 97.19% residues with an averaged 3D-1D score >= 0.2, while 3T8V 

has 97.08%. In 3Q43, the active site residue scores were 0.52 for HIS number 301, 0.53 for 

HIS number 305 and 0.3 for GLN number 324, while in 3T8V these were 0.52 for HIS number 

301, 0.47 for HIS number 305 and 0.29 for GLN number 324. Also, 3Q43 showed higher 

scores than 3T8V, as shown in Figure 3-3. 

http://www.rcsb.org/pdb/explore/explore.do?structureId=4XO5
http://www.rcsb.org/pdb/explore/explore.do?structureId=4XO5
http://www.rcsb.org/pdb/explore/explore.do?structureId=4XO5
http://www.rcsb.org/pdb/explore/explore.do?structureId=4XO5
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Figure 3-3: Graphical representation of 3D-1D averaged scores per residue number (blue for 

3T8V and Orange for 3Q43) The lowest value for 3Q43 was 0.04 while for 3T8V was 0.07. 

 

 

Figure 3-4: QMEAN validation result. A: comparison of 3T8V with a non-redundant set of PBD 

entries. B: comparison of 3Q43 with a non-redundant set of PBD entries. C: 3T8V sequence 

coloured by local quality (Orange low quality – blue high quality). C: 3Q43 sequence coloured by 

local quality (Orange low quality – blue high quality) 

In the QMEAN result, the QMEAN4 score for 4T8V was 0.08 while being 0.06 for 3Q43. 

While both models were in the safe zone when compared to other non-redundant sets of PDB 

entries, as both get normalized Z-scores lower than 1. For local quality, both templates have 
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bad residue qualities for the first three residues while the active site residues have good local 

quality scores. Based on QMEAN and verify 3D results, the 3Q43 template was selected for 

homology modelling.  

3.3.2- Sequence alignment  

Two different methods were used to generate sequence alignments between the template and 

the target sequence. The first method was an MSA using 3D-Coffee [103]. The purpose of 

doing the MSA was to use the structural alignment tool to perform multiple sequence 

alignment with a focus on evolutionary distance and changes between the template and target 

sequence, as well as a structural element in aligned sequences [104], [105]. The second method 

was using align2d implemented function of MODELLER which automatically generates a 

pairwise alignment or multiple alignments depending on the number of input templates [106]. 

The generated alignment was in MODELLER-compatible format, which doesn’t require an 

additional step to prepare the alignment output for modelling. In both methods, 3Q43 was used 

as the template sequence. As shown in the alignment retrieved from 3D-Coffee (Figure 3-5), 

the active site from the template matched the active site from the target sequence, while it 

mismatched in the alignment retrieved from align2d() function.  

In align2d the alignment starts from the first residue, which later introduces gaps in functional 

positions, while in 3D-coffee it inserts gaps in the N-terminal positions, which improve the 

overall alignment quality. Hence 3D-coffee alignment was used for all target sequence. The 

alignment was used to create a .PIR file for each template, as shown in Figure 3-6. Each 

alignment was manually curated and edited if needed.  
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Figure 3-5: Alignment between the template (PDB ID 3Q43) and the target M1 alanyl 

aminopeptidase sequence from P. vivax. A. The alignment produced by the align2d function. B. 

The alignment produced from 3D-Coffee. The active site is highlighted in red boxes.  

A 

B 
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A- P. ovale 

B- P. knowlesi 
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 C - P. malariae   

D- P. vivax 

Figure 3-6: Template-target alignment generated by 3D-coffee. A, B, C and D: Graphical 

representations of alignment used to prepare a .pir file for each target sequence using a single 

template (PDB ID 3Q43). Each alignment was generated by 3D-Coffee. Matched residues are 

highlighted in blue. 
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3.3.3- Model Building 

The generated .PIR files were modified to include zinc metal ions in the model building 

process. This was done by adding “/.” at the end of each .PIR file because the zinc atom was 

the first atom after the last amino acid residue. Once all files were prepared, MODELLER was 

used to calculate 100 3D-models for each target.  100 models were created based on the 3Q43 

template. All MODELLER runs were done using slow refinement. All generated 3D models 

were assessed using the z-DOPE score [107]. The z-DOPE scores for the best three models for 

each MODELLER run are shown in Table 3-5. 

Table 3-5: Summary of DOPE-Z score and RMS score of best three models for each run. 

Source organism Model name RMS score z-DOPE score 

P. malariae    

Model 0024 0.106 -1.5775 

Model 0052 0.100 -1.5872 

Model 0084 0.100 -1.6159 

P. knowlesi  

Model 0008 0.107 -1.7606 

Model 0083 0.099 -1.7660 

Model 0086 0.093 -1.7493 

P. vivax  

Model 0038 0.103 -1.7925 

Model 0041 0.098 -1.8403 

Model 0094 0.094 -1.7666 

P. ovale  

Model 0044 0.110 -1.7295 

Model 0070 0.100 -1.7114 

Model 0079 0.115 -1.7100 

The overall quality of produced structures was good, and the homology models had z-DOPE 

scores close to those of the template (PDB ID 3Q43), which was -2.0740. All three models 

were superimposed with the template, as shown in Figure 3-7. 
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Model 0008 

P. knowlesi models 

Model 0083 

 

Model 0086 

 

Model 0024 

P. malariae   models 

Model 0052 

 

Model 0084 

 

Model 0044 

P. ovale models 

Model 0070 

 

 

Model 0079 

 

 

Model 0038 

P. vivax models 

 

Model 0041 

 

 

Model 0094 

Figure 3-7: Top three model for each run superimposed onto the original template (PDB ID: 

3Q43). 
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3.3.4- Model Evaluation 

The accuracy of homology modelling structures is largely dependent on the inputs and 

upstream steps, including template selection and template-target alignment. As a result, any 

problem happening during any step will generate a model with errors. Possible errors could 

result from gaps in wrong places or errors in the template 3D structure. Due to the complexity 

of loop regions, loop modelling may also introduce errors. As such, the generated model should 

pass through different model evaluation tools to evaluate the accuracy of the models. In this 

work, different tools were used to evaluate the produced top three models for each source 

organism. The tools used include PROCHECK, ANOLEA, QMEAN and verify 3D. The 

purpose of using different tools is to evaluate different criteria in which PROCHECK was used 

to assess model stereochemistry. PROCHECK results are shown in Table 3-6. ANOLEA was 

used to evaluate the energy of the protein chain, including all non-local interactions of all heavy 

atoms in the evaluated model. QMEAN was used to evaluate the protein structure through a 

different scoring function that evaluates the entire protein as well as each residue. Finally, 

verify 3D was used to measure the relationship between the 3D structure and its amino acid 

sequence, based on amino acid favorable geometries and good known structures. 

Table 3-6: PROCHECK local quality assessment scores. It represents each model with 

its corresponding QMEAN 4 score and percentage of residues in the most favored 

regions, residues in additional allowed regions, residues in generously allowed regions 

and residues in disallowed regions. 

Source 

Organism 
Model name 

PROCHECK - Ramachandran Plot 

QMEAN 4  
Residues in 

most 

favored 

regions 

Residues in 

additional 

allowed 

regions 

Residues in 

generously 

allowed 

regions 

Residues in 

disallowed 

regions 

P. malariae   

Model 0024 800 (94.5%) 45 (5.3%) 2 (0.2%) 0 (0.0%) - 0.70   

Model 0052 802 (94.7%) 43 (5.1%)) 2 (0.2%) 0 (0.0%) - 0.86 

Model 0084 804 (94.9%) 41 (4.8%) 2 (0.2%) 0 (0.0%) - 0.76 

P. knowlesi 

Model 0008 783 (94.7%) 41 (5.0%) 3 (0.4%) 0 (0.0%) - 0.70 

Model 0083 786 (95.0%) 39 (4.7%) 2 (0.2%) 0 (0.0%) - 0.92 

Model 0086 788 (95.3%) 37 (4.5%) 2 (0.2%) 0 (0.0%) -0.60 

P. vivax 

Model 0038 784 (94.9%) 39 (4.7%) 3 (0.4%) 0 (0.0%) -0.61 

Model 0041 781 (94.6%) 42 (5.1%) 3 (0.4%) 0 (0.0%) - 0.76 

Model 0094 781 (94.6%) 43 (5.2%) 2 (0.2%) 0 (0.0%) - 0.71 

P. ovale 

Model 0044 782 (95.1%) 38 (4.6%) 2 (0.2%) 0 (0.0%) - 0.83 

Model 0070 779 (94.8%) 41 (5.0%) 2 (0.2%) 0 (0.0%) - 0.74 

Model 0079 781 (95.0%) 38 (4.6%) 3 (0.4%) 0 (0.0%) - 0.78 
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Figure 3-8: verify 3D results for the top selected three models for M1 alanyl aminopeptidase from 

1) P. vivax, 2) P. ovale, 3) P. malariae and 4) P. knowlesi. 

 

Table 3-7: Verify 3D quality assessment score for each model.  

Source Organism Model name Verify 3D score 

P. malariae   

Model 0024 95.41% 

Model 0052 94.54% 

Model 0084 96.72% 

P. knowlesi 

Model 0008 96.65% 

Model 0083 91.62% 

Model 0086 96.31% 

P. vivax 

Model 0038 95.30% 

Model 0041 94.97% 

Model 0094 96.64% 

P. ovale 

Model 0044 98.43% 

Model 0070 97.54% 

Model 0079 97.43% 
 

As shown in Figure 3-8 and Table 3-7, all the 12 models (3 models for each Plasmodium 

species) pass the verify 3D assessment analysis. In P. vivax, Model 0041 has been eliminated 

as it has negative values for the residue position 592. Then Model 0094 was selected as the 

best model because its active site residues have higher scores than those of Model 0038. For 

P. ovale, Model 0079 show score lower than that of the two other models. While the difference 

between the remaining models was very low, Model 0044 was selected as it has a higher overall 

score and a higher score for active site residues. In Plasmodium malaraie, Model 0024 was 

eliminated as it shows a lower score. The Model 0084 was selected because it has a higher 3D-

1D average score for active site residues. Finally, for P. knowlesi, the difference between the 

three models was very low, while Model 0083 showed lower overall quality compared to the 
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other models. In the end, Model 0008 was chosen because it has a higher score than Model 

0086.  

Table 3-8: Top selected model with the corresponding Plasmodium species. 

Organism name Top selected model 

P. malariae   Model 0024 

P. knowlesi Model 0008 

P. vivax Model 0094 

P. ovale Model 0044 
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1) P. vivax model 
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2) P. malariae   model 

  

 

3) P. ovale model 
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4) P. knowlesi model 



 59 

 

Figure 3-9: QMEAN analysis result. A) Residues coloured by residues error, representing the estimated residue inaccuracy where blue corresponds 

to the more accurate regions while red represents the inaccurate regions. B) Estimated absolute model quality generated by QMEAN, where the model 

is highlighted in red. C) Model amino acid sequence coloured according to local quality score in which the lowest scores are in red while the blue colour 

represents the highest scores. 
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As shown in Figure 3-9, all top selected models for the Plasmodium species passed QMEAN 

analysis, in which the QMEAN6 value for P. vivax was 0.962, 0.691 for P. ovale, 0.664 for P. 

malariae   and 0.712 for P. knowlesi. The problematic residues were located mainly in the loop 

regions, while the active site residues (histidine 301, histidine 305 and glutamine 324) in all 

selected models had a high local quality score. All models were found to have Z-scores lower 

than one, which is considered a good Z-score [108]. 

All top selected models show low local quality scores for residues located in the N-terminal. 

This was attributed to the missing residues in the N-terminal of the used template, the mismatch 

and gaps located at the start region of template-target alignment used in homology modelling. 

  

 
Figure 3-10:  The PROCHECK results, showing Ramachandran plots for the top selected models. 

A) P. vivax, B) P. ovale, C) P. malariae and D) Plasmodium knowlesi. 

A B 

C D 
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For each Plasmodium species, a Ramachandran plot was generated using PROCHECK for the 

top selected models. As shown in Figure 3-10, no model was found to have residues in the 

disallowed regions. The lowest quality model was that of P. vivax, which has three residues in 

the generously allowed regions. The other models were found to have only two residues in the 

generously allowed regions. However, overall this does not cause a structural problem [109].  

1) 

 
2) 

 
3) 

 
4) 

 

Figure 3-11:  ANOLEA result for the active site region. 1) P. vivax. 2) P. ovale. 3) P. malariae. 4) 

Plasmodium knowlesi. The green part shows the favourable energy parts while red corresponds 

to the unfavourable parts.  

All top selected models passed ANOLEA analysis. As shown in Figure 3-11, all the active site 

residues have energy values below zero, which means that they are located in the favorable 

energy regions, while the positive energy regions do not consist of large regions and do not 

have a big impact on the overall structure quality. 

 

3.4 Conclusion 

This chapter presents the use of homology modelling to build a 3D representative structure for 

M1 alanyl aminopeptidase from pathogenic Plasmodium species including P. malariae, P. 

knowlesi, P. ovale and P. vivax. Homology modelling starts with template identification. 

Different 3D structures for M1 alanyl aminopeptidase from P. falciparum were retrieved from 
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the PDB. Then all retrieved structures were assessed to choose the best quality templates that 

are most similar to the target sequences. The 3D structure with PDB ID 3Q43 was selected as 

the best template. The selected structure showed high sequence coverage with high-resolution. 

Template–target alignment was done using the 3D-coffee alignment tool. The produced 

alignment was manually trimmed to remove the N terminal region. Then, 100 models were 

generated for M1 alanyl aminopeptidase from each Plasmodium species. The top model was 

selected based on different quality assessment tools. The selected models were of best local 

and global quality.  
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Chapter 4 - Virtual Screening 

All generated models from homology modelling and the 3D structure of M1 alanyl 

aminopeptidase from P. falciparum and the human protein were submitted to virtual screening. 

Each protein was screened against 623 compounds retrieved from the SANCDB. This chapter 

aims to identify potential inhibitors against Plasmodium M1 alanyl aminopeptidases, which 

involve eliminating ligands with inhibition properties against the human protein. As a result, 

the final selected ligands would be selective against the M1 alanyl aminopeptidase from 

Plasmodium species.  

4.1 Introduction 

4.1.1 Computation docking 

3D structures of proteins and ligands make it possible to study the interaction between different 

proteins involved in vital pathways and also enable the study of protein-ligand interactions, 

protein inhibition and activation [110]. Currently, there are different ways to study protein-

ligand interactions. One of them is computational docking., which is a process involved in 

testing different orientations and conformations of a small molecule (ligand) until it finds the 

best orientation and conformation upon binding the target protein structure to form a stable 

protein-ligand complex. The process of selecting the best orientation and conformation is done 

by using a mathematical function that calculates the binding free energy. Then the lowest 

binding energy corresponds to the best orientation and conformation. Hence it corresponds 

with the best complex stability [111]. The process starts with selecting a protein with an 

available or a generated 3D structure. This protein mainly corresponds to a medical disease. 

Then a small molecule (ligand) library is optimized for the screening process. Finally, a 

docking tool calculates the binding free energy of ligands with respect to the target protein 

[112]. 

4.1.2 Virtual screening 

Virtual screening involves selecting the best binding compound from possible ligand 

compounds databases by using different in silico tools [113]. There are two main strategies to 

perform virtual screening, namely and ligand-based and structure-based methods. Ligand-

based virtual screening (LBVS) is very useful when the 3D structure of target protein is 

unknown. LBVS is involved in different techniques, such as molecular representation, data 

mining methods, similarity searching and pharmacophore mapping [114]. Structure-based 

virtual screening (SBVS) is usually used when the 3D structure is known. SBVS involves 
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docking of ligands from a database against a selected target site. Additionally, SBVS applies a 

different scoring function; the generated scores could be used to rank the docked molecules 

[115]. 

4.1.3 Structural based virtual screening 

 SBVS consists of four different steps: 1) Target preparation, 2) ligand database selection, 3) 

molecular docking and 4) analysis of docking results. SBVS starts with the preparation of a 

target 3D structure., which involves adding any missing atoms, the protonation of the target 

structure by adding hydrogen atoms [116], the removal of water molecules (with exception of 

water molecules that coordinate active site or are involved in important interactions) and the 

choice of the correct protonation state for each amino acid - especially for active site residues 

[117]. After preparation of the target 3D structure, it is time to select ligand database. Currently, 

there are many databases to be considered. Those includes ZINC [118], PubChem [119], 

DrugBank [120], Binding DB [121],  [122], SANCDB [123], ChEMBL [124], [125] and 

ChemBank [126]. Most databases include a query engine to search and select compounds that 

meet predetermined chemical characteristics. Selected compounds should be prepared to match 

the correct stereochemistry and ionization states. The third step is to perform molecular 

docking, in which the prepared subset is docked into a previously selected target site in the 3D 

structure of target protein [127].  

Currently, there are different software applications that can be used to perform molecular 

docking depending on the docking strategy. The most common docking strategies comprise 

the rigid body docking and flexible docking [128].  The most common tools that apply rigid 

body docking are FRODOCK [129], ZDOCK [130] and  MEGADOCK [131], while for 

flexible docking the most common tools are: AutoDock [132], AutoDock Vina [133], 

ParaDockS [134] and GOLD [135].  

The main difference between rigid body docking and flexible docking is the flexibility of both 

target protein and ligand, whereby the former allows for ligand flexibility and treats the protein 

as a rigid body, which means that bond, angles and the dihedral lengths between protein atoms 

are fixed during the docking experiment [136]. The purpose of rigid protein is to minimize the 

search space. However, ignoring flexibility of target protein reduce the accuracy of the docking 

result [137], while in flexible docking both ligand and target protein are flexible. This allows 

for the inclusion of conformational changes (backbone and side chain) in the docking 

experiment. However, incorporating this degree of flexibility increases the search space, which 
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increases the running time and can lead to an increase in the number of the false positive results 

[138]. 

AutoDock Vina is a newly developed version of AutoDock. The main difference was removal 

of an empirical scoring function to implement a sophisticated method with the Monte Carlo 

sampling technique during the local optimization procedure. This scientifically increases the 

prediction accuracy and decreases the docking time, especially when using multithreading 

[139]. Molecular docking using AutoDock or AutoDock vina require the identification of the 

grid box size. This is used to define the search space and docking regions to identify low energy 

binding pose regions. The grid box size is usually calculated based on the 3D position of active 

site residues [140]. Depending on the grid box (search box), docking can be blind or targeted. 

In blind docking, the grid box includes the entire protein surface, which allows for the detection 

of possible binding sites. In targeted docking, the grid box size is selected to include only part 

of the target protein, usually the active site or a cofactor binding site [141]. Finally, the last 

step is to analyze the docking result, which includes validation of docking experiment, 

geometric analysis and consensus scoring. Also, it is very important to visually inspect the 

produced result and check the bonds between the ligand and target protein [142]. In this study, 

structure-based virtual screening was used by applying a flexible docking strategy in both case 

blind docking and targeted docking by using AutoDock Vina. 
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4.2 Methodology  

4.2.1 Target and ligand preparation 

Six structures were prepared for molecular docking. These include the M1 alanyl 

aminopeptidase 3D structure of P. falciparum (PDB ID: 3Q43), the top selected model for 

other Plasmodium species (P. malariae, P. knowlesi, P. ovale and P. vivax (as shown in 

Chapter 3)) and a Homo sapiens structure. Target preparation starts with the removal of all 

water and ligand/inhibitor atoms. Then, hydrogen atoms were added to protein residues. The 

protonation state of protein residues was manually checked, especially for the active site 

residues. In the end, each target structure had all residue atoms and one zinc atom. This step 

was performed using discovery studio 2016.  

A ligand dataset was retrieved from the SANCDB. All the retrieved ligands were in minimized 

form. The compound Bestatin was retrieved from the ZINC database since it has been used as 

protein inhibitor against M1 alanyl aminopeptidase [20]. Also, the human ligand and the 

Plasmodium ligand were isolated from the protein 3D structure which was used later in the 

docking validation step. In the end, the ligand dataset contained 626 compounds. 

All target and ligand structures were in PDB format. However, AutoDock Vina requires the 

input structures go be in .pdbqt format. The Python scripts prepare_receptor4.py and 

prepare_ligand4.py were used to convert PDB files to .pdbqt format for the proteins and ligands 

respectively. Both these scripts are provided by AutoDock MGL tools. The Python scripts 

merge non-polar hydrogens and add polar hydrogens. The scripts also change hydrogen atom 

names to match the AutoDock atom type symbols. The Python scripts also identify aromatic 

carbons and automatically adds Gasteiger charges [132]. As shown in the Figure, this problem 

occurs due to the presence of zinc atom in all target structures. ESP charge calculation was 

used to overcome this problem. Finally, the zinc Gasteiger charge was manually assigned a 

value of 1.125. 

4.2.2 Grid box calculation and parameter file generation 

The Grid box calculation was performed by using Pymol v 1.8 and the AutoDock plugin. In 

the blind docking experiment, the grid box center for the human protein was set to 108.7, 20.81, 

19.27 Angstroms and the grid spacing set to 46.50, 40, 46.50. For all Plasmodium species, the 

center of grid box was set to 20.002, 15.945, 3.313 and the grid box size was set to 60, 60, 60. 

The parameter files were generated for each target and ligand. A total of 3756 parameter files 

were generated by AutoDock Vina. These files were generated by python script (Appendix 1). 
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Each parameter file had specific information including the target and ligand pdbqt file names, 

x, y and z coordinates and size, and the exhaustiveness value. In both blind and targeted 

docking, the exhaustiveness value was set to 576.  

Example of a parameter file: 

 

 

 

 

 

  

 

 

 

 

 

4.2.3 Molecular docking 

Molecular docking was performed using AutoDock Vina. Since AutoDock Vina accepts one 

ligand and one target per run, a customized python script (Appendix 2) was used to automate 

the docking process. After running all docking experiments, another customized python script 

was used to submit each output file to the vina_split tool, which split the output grouped 

conformations as separate structures, according to their binding energy score (The lowest 

energy corresponds to the first produced conformational structure). The Python script then 

extracts the best ligand conformation with the corresponding binding energy (Appendix 3). 

4.2.4 Docking validation  

The ability of AutoDock Vina to reproduce the same ligand conformation for the original 

ligand was evaluated. The original ligands for all target structures were included in the docking 

experiments. Then the poses produced from docking were compared with the original poses of 

the ligand before docking. Discovery studio and LigPlot were used to validate and compare the 

ligand-target bonds and confirm that they were the same before and after docking. 

4.2.5 Docking analysis 

Ligands structures were converted from pdbqt to PDB format to prepare the docking result for 

analysis using the following command: 

receptor = ../Target/receptor_name.pdbqt 

ligand = ../Ligand/ligand_name.pdbqt 

center_x =  2 

center_y =  6 

center_z = -7 

size_x = 25 

size_y = 25 

size_z = 25 

exhaustiveness= 4 
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cut -c-66 input.pdbqt > output.pdb 

Then each ligand name was stored in a text file with the corresponding binding energy. This 

file was used to draw a heat map using Microsoft Excel and an R-script. All ligands were 

analyzed to choose the best ligands. First, all docked ligands were sorted according to their 

binding energy. Then ligands with binding energies better than the original ligand were 

selected. The selected ligands were submitted to X-Score to calculate their binding affinities. 

The ligands were then submitted to Discovery studio, and the bonds between each ligand and 

target structure were counted using a Discovery studio script and a customized Python script. 

This python script counts the number of bonds and the bond type. The selected ligands were 

filtered according to the number of bonds between them and their target structure as well as 

those that bind the active site of the Plasmodium structure but not the human structure. The 

best ten ligands were manually visualized using Discovery studio and LigPlot. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3 Result and Discussion  

Molecular docking was done at the Center for High-Performance Computing (CHPC) using 

240 cores and 14 computing hours to dock all ligands against all target structures.  
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4.3.1 Grid box calculation 

The zyx points of original co-crystalized ligand were identified using Discovery studio to 

calculate the grid box for blind docking. Then PyMol and the Autodock plugin were used to 

identify the grid box size. In blind docking, it was necessary to include all target protein 

residues inside the grid box Figure 4-1 and 4-2.  

 

Figure 4-1: The human structure and the grid box in which all human residues were 

included.  

 

Figure 4-2: The P. falciparum structure and the grid box in which all human residues 

were included.  

4.3.2 Docking validation  

The docking experiment was validated by redocking the original ligands with their respective 

original structure. In Plasmodium species and human 3D structure (PDB ID 4FYR), the original 

co-crystalized ligand was bestatin. In all cases, the original co-crystalized ligand was removed 

and re-docked using AutoDock Vina. As shown in Figure 4-3 and 4-4, AutoDock Vina was 

able reproduce the same conformation and bonds between the ligand and the target Plasmodium 
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protein, while in the human target structure AutoDock Vina produced a similar conformation 

and bonds as observed from the original ligand. Thus, the ability of AutoDock Vina to produce 

the correct conformation poses was validated.  

 

Figure 4-3: Ligand-Target 2D interactions, created by LigPlot for P. falciparum target, where 

compound D661087 is the original co-crystalized ligand. A: original interactions between the 

ligand and its target before docking. B: the original co-crystalized ligand with the target after 

redocking.  

 

Figure 4-4: Ligand-Target 2D interactions, created by LigPlot for the human target. Compound 

Bes1014 is the original co-crystalized ligand. A: original interactions between ligand and target 
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before docking. B: the original co-crystalized ligand with its target after redocking. While the 

conformation slightly changed. but in both cases the active site residues bind with the ligand. 

4.3.3 Docking analysis  

All retrieved SANCDB compounds were in an energy-minimized form so, they were submitted 

directly for virtual screening. Each AutoDock Vina run produces two different files. The first 

file is a log file, which is used to capture the binding energy. The second file is a pdbqt file that 

contains different conformation poses for the same ligand. Vina_split was used to split these 

poses. Then the lowest binding energy poses were selected among them. All ligand names with 

their corresponding binding energy were captured in a Microsoft Excel file. This file was used 

to produce a heat map (Figure 4-5). As shown in the heat map, there is a huge difference in 

binding energy between the human and the Plasmodium species. The difference ranges from 

5.5 Kcal/mol to 0.4 Kcal/mol. To select the best binders, all ligands having a binding energy 

lower than that of the original ligand were selected. The docked ligands in Plasmodium species 

which bind to the active site as well as other allosteric sites in the structure are shown in Figure 

4-6. In the human protein (as shown in Figure 4-7) the majority of the ligands bound to 

allosteric regions but not the active site. Therefore, ligand selection based on binding energy 

difference was not used to select the best ligand.  

 

Figure 4-5: Heatmap for all docked compounds against the M1 alanyl aminopeptidase of human 

and Plasmodium species. The dark violet color corresponds to a high binding affinity and a low 

binding energy, while the yellow corresponds to the low binding affinity and high binding energy. 
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A) P. falciparum  

 

 

 

 

 

B) P. knowlesi  

 

C) P. vivax 
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D) P. malariae   

 

E) P. ovale 

 

Figure 4-6: Protein-ligand complexes. A) M1 Alanyl aminopeptidase P. falciparum structure and 

all ligand complexes. B) A:M1 Alanyl aminopeptidase P. knowlesi structure complexed to all 

ligands. C) A: M1 Alanyl aminopeptidase P. vivax structure complexed to all ligands. D) A: M1 

Alanyl aminopeptidase P. malariae structure complexed to all ligands. D) A: M1 Alanyl 

aminopeptidase P. ovale structure complexed to all ligands. 
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Figure 4-7: M1 Alanyl aminopeptidase human structure complexed to all ligands. 

 

The first selection process involved selecting ligands which have binding energies lower than 

original ligand. 265 ligands were selected in the case of M1 P. falciparum alanyl 

aminopeptidase. Other organisms are shown in Table 4-1. (Figure 4-8). 

 

Figure 4-8: Heatmap for ligands with binding energies higher than that of the original ligand 

against the human and plasmodial M1 alanyl aminopeptidases. The dark violet color corresponds 
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to a high binding affinity and a low binding energy, while the yellow stripes correspond to a low 

binding affinity and a high binding energy. 

The next step was selecting ligands that bind the active site of Plasmodium species. A protein-

ligand interaction script implemented in Discovery studio and was used to calculate the bond 

between ligand and active site residues automatically. This generated a text file containing the 

ligand file name and the found interactions. An example of generated output is shown below:  

 

This text file was analyzed using a customized python script to select ligands which interact 

with the active site residues and the zinc atom.  This selection process resulted in 58 ligands 

for the M1 alanyl aminopeptidase of P. falciparum, as shown in Table 4-1. All ligands that 

bind using at least one hydrogen bond to one of the active site residues were selected. The 

result generated from X-Score was similar to binding energy generated by AutoDock Vina, as 

shown in Figure 4-9. 

Table 4-1: Number of selected ligands in ligand selection steps for each target organism. 

Target organism name 

First selection step 

(Ligand with binding energy 

lower than original ligand) 

Second selection step 

(Ligand bind with active site 

residues) 

Plasmodium falciparum 265 58 

P. knowlesi 263 57 

P. ovale 265 58 

P. vivax 261 54 

P. malariae   263 57 

plasmo_falci.pdbqt_SANC00170_minRM1.vinaall_ligand_1.pdbqt 

Found 2 non-bond interactions (total): 

 2 of these are favorable interactions (such as H-bonds) 

 0 of these are unfavorable interactions (such as bumps). 

Analyze all non-bond interaction: 

The NonbondTypes property can be used to identify all interaction types of a non-bond. 

- A:THR896:OG1 (H-Donor) and :LIG1:O (H-Acceptor):conventionalHBondType 

- A:ASN899:ND2 (H-Donor) and :LIG1:O (H-Acceptor):conventionalHBondType 
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Figure 4-9: Graphical representation of X-Score result and binding energy for each ligand docked against the M1 alanyl aminopeptidase of Plasmodium 

falciparum. X-Score values are in orange and binding energy scores are in blue.  
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The next step was aimed at selecting the best ten ligands based on hydrogen bond between the 

ligand and the corresponding target protein. Additionally, other bonds between the ligand and 

target protein were taken into consideration, together with ligand efficiency. Durability 

properties based on Lipinski’s rule of five [143] and possible unfavorable bond interactions 

were also considered. The first step comprised the elimination of ligands with unfavorable 

bonding interactions with the target protein. For example, in P. falciparum out of 58 ligands, 

19 ligands were eliminated because they had at least one unfavorable interaction, which 

consisted of bumps. (Table 4-2). 

Table 4-2: Summary of eliminated ligands representing the number of unfavorable 

bonding interactions between each ligand and their P. falciparum target protein 

structure. 

Ligand name Number of unfavorable interactions 

SANC00545 4 

SANC00548 4 

SANC00286 3 

SANC00244 2 

SANC00263 2 

SANC00320 2 

SANC00680 2 

SANC00526 2 

SANC00369 1 

SANC00368 1 

SANC00323 1 

SANC00547 1 

SANC00282 1 

SANC00426 1 

SANC00407 1 

SANC00404 1 

SANC00521 1 

SANC00180 1 

SANC00137 1 
 

The remaining 39 ligands were analyzed and the number of favorable interactions were 

captured. In P. falciparum the number of interactions ranges from 18 to 5, as shown in Figure 

4-10. 
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Figure 4-10: Graphical representation of the number of bonding interactions between each ligand 

and their M1 alanyl aminopeptidase in the case of P. falciparum, sorted in ascending order. 

Ligands with more than ten favorable interactions were selected and submitted to FAF-Drugs4, 

which measure the durability characteristics to apply Lipinski’s rule of five. Lipinski’s rule 

tests 4 properties including molecular weight, lipophilicity, hydrogen bond donors and 

hydrogen bond acceptors. A ligand is considered acceptable if it passes three of the properties. 
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Ligands that fail in two or more properties were considered poorly-absorbed[143]. As shown 

in Table 4-3, SANC00524 was eliminated, while SANC00103, SANC00719, and SANC00237 

were accepted as they failed in only one parameter. 

Table 4-3: The tabulated result of Lipinski’s test for the best ten ligands against M1 alanyl 

aminopeptidase from Plasmodium falciparum. The acceptable values for each parameter 

are: molecular weight ≤ 500, lipophilicity ≤ 5, hydrogen bond donors ≤ 5 and hydrogen 

bond acceptors ≤ 10 

Ligand Name 

molecular 

weight  lipophilicity  

hydrogen 

bond donors  

hydrogen bond 

acceptors  
Status 

SANC00524 848.75 -2.61 13 21 Fail 

SANC00721 284.26 3.04 2 5 Pass 

SANC00103 306.27 0.15 6 7 Accepted 

SANC00345 329.35 1.34 0 6 Pass 

SANC00550 456.49 3.42 0 8 Pass 

SANC00552 442.5 4.39 0 7 Pass 

SANC00719 304.42 6.66 2 3 Accepted 

SANC00221 314.29 1.38 2 6 Pass 

SANC00237 392.53 5.48 0 5 Accepted 

SANC00531 354.4 4.64 2 5 Pass 

The next step was to manually analyze the best six filtered ligands. This step was done using 

Discovery studio and LigPlot. The aim of this step was to select for the best ligands based on 

residues which interact with the ligand and the number of hydrogen bonds. 
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Figure 4-11: Graphic representation showing the interactions between Ligand SANC0531 and M1 alanyl aminopeptidase from the P. falciparum 

protein. 
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Figure 4-12: Graphic representation shows the interactions between Ligand SANC0552 and the M1 alanyl aminopeptidase from the P. falciparum 

protein.
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From the selected ten ligands, SANC0531 was selected as the best ligand for the M1 alanyl 

aminopeptidase of P. falciparum. As shown in Figure 4-11, SANC0531 interacts with histidine 

number 496 which is one of the active site residues. Also, it has a hydrogen bond with the zinc 

metal ion. The next ligand after SANC0531 was SANC0552, which has a hydrogen bond with 

alanine number 461, but this residue is not located in the active site as well as another hydrogen 

bond with the Zinc metal ion as shown in Figure 4-12. In Figure 4-13 a hydrogen bond can be 

seen between the ligand, the zinc metal ion and glutamine number 497, which increases the 

bond stability between the ligand and the target protein [144].  

 

Figure 4-13: Graphical representation created by LigPlot for SANC00531 and the M1 alanyl 

aminopeptidase of P. falciparum the protein. Hydrogen bonds are shown in green. 

The top 10 ligands for P. knowlesi (Table 4-4), P. ovale (Table 4-5), P. vivax (Table 4-6) and 

Plasmodium malariae (Table 4-7) were selected and submitted to FAF-Drugs4. 
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Table 4-4: The tabulated result of Lipinski’s test for the best ten ligands against M1 alanyl 

aminopeptidase of P. knowlesi. 

Ligand Name 
molecular 

weight 
Lipophilicity 

hydrogen 

bond donors 

hydrogen bond 

acceptors 
Status 

SANC00137 317.34 2.28 2 5 Pass 

SANC00143 311.46 4.95 1 4 Pass 

SANC00719 304.42 6.66 2 3 Accepted 

SANC00176 168.23 2.03 1 2 Pass 

SANC00654 331.36 0.36 2 6 
Pass 

SANC00659 348.39 1.48 0 6 Pass 

SANC00469 164.16 1.46 2 3 Pass 

SANC00404 955.13 3.92 9 18 Fall 

SANC00407 594.78 3.92 5 9 Accepted 

SANC00426 230.26 0.8 2 5 Pass 

Table 4-5: Tabulated result of Lipinski’s test for the best ten ligands against M1 alanyl 

aminopeptidase of P. ovale. 

Ligand Name 
molecular 

weight 
Lipophilicity 

hydrogen 

bond donors 

hydrogen bond 

acceptors 
Status 

SANC00144 295.42 4 1 4 Pass 

SANC00323 330.33 2.74 2 6 Pass 

SANC00426 230.26 0.8 2 5 Pass 

SANC00638 289.33 0.75 2 5 Pass 

SANC00130 194.19 0.06 2 5 Pass 

SANC00524 848.75 -2.61 13 21 Fall 

SANC00578 352.47 2.38 2 5 Pass 

SANC00526 980.87 -4.69 15 25 Fall 

SANC00550 456.49 3.42 0 8 Pass 

SANC00547 650.84 2.57 6 10 Fall 

 

 

 

 

Table 4-6: Tabulated result of Lipinski’s test for the best ten ligands against the M1 alanyl 

aminopeptidase of P. vivax. 

Ligand Name 
molecular 

weight 
Lipophilicity 

hydrogen bond 

donors 

hydrogen bond 

acceptors 
Status 

SANC00660 306.35 0.91 1 5 
Pass 

SANC00282 476.6 2.84 2 7 Pass 

SANC00286 290.27 0.51 5 6 Pass 

SANC00320 288.25 2.02 4 6 Pass 

SANC00521 256.25 3.18 3 4 Pass 

SANC00680 304.34 3.34 2 5 Pass 

SANC00704 244.24 2.48 1 4 Pass 

SANC00137 317.34 2.28 2 5 Pass 
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SANC00130 194.19 0.06 2 5 Pass 

SANC00176 168.23 2.03 1 2 Pass 

 

Table 4-7: Tabulated result of Lipinski’s test for the best ten ligands against the M1 alanyl 

aminopeptidase of Plasmodium malaraie 

Ligand Name 
molecular 

weight 
Lipophilicity 

hydrogen bond 

donors 

hydrogen bond 

acceptors 
Status 

SANC00101 290.27 0.51 5 6 
Pass 

SANC00103 306.27 0.15 6 7 Accepted 

SANC00105 256.25 2.88 2 4 Pass 

SANC00407 594.78 3.92 5 9 Accepted 

SANC00426 230.26 0.8 2 5 Pass 

SANC00551 454.47 2.91 0 8 Pass 

SANC00552 442.5 4.39 0 7 Pass 

SANC00689 298.29 3.29 2 5 Pass 

SANC00722 324.41 3.69 0 5 Pass 

SANC00109 239.31 1.32 1 4 Pass 

In order to select the best ligand for each Plasmodium species, Discovery studio and LigPlot 

were used to manually investigate each ligand interaction with the target protein and to 

determine which residues interact with the ligand and hydrogen bond between the ligand and 

the target protein.
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Figure 4-14: Graphical representation showing the interactions between Ligand SANC0469 and the M1 alanyl aminopeptidase from the P. knowlesi 

protein. 
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Figure 4-15: Graphical representation showing the interactions between Ligand SANC0144 and the M1 alanyl aminopeptidase from the P. ovale 

protein. 
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Figure 4-16: Graphical representation showing the interactions between Ligand SANC0660 and M1 alanyl aminopeptidase of P. vivax protein. 
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Figure 4-17: Graphical representation showing the interactions between Ligand SANC0109 and M1 alanyl aminopeptidase of Plasmodium malariae 

protein. 
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Ligand SANC00469 was selected for the M1 alanyl aminopeptidase of P. knowlesi as it 

interacts with the target protein with three hydrogen bonds, while other ligands had one 

hydrogen bond with the target protein. In P. ovale, SANC00144 was selected because it 

interacts with histidine number 496, which located in the active site. SANC00144 has three 

hydrogen bonds with the target protein. For the M1 alanyl aminopeptidase of P. vivax, Ligand 

SANC00660 was selected because it passes all of Lipinski’s tests in addition to having more 

hydrogen bonds compared to the other ligands. Finally, SANC00109 was selected as the best 

ligand for M1 alanyl aminopeptidase of P. malariae because it binds to histidine number 496, 

which is located in the active site. SANC00109 also forms a hydrogen bond with glutamine 

number 497 and arginine number 489. To analyze top selected ligand interactions with the 

human M1 alanyl aminopeptidase, LigPlot was used. For all ligands, there is no interaction 

with the active site residues of the human protein. As shown in Figures 4-17,18,19,20 and 21, 

none of the top selected ligands bind the active site of the human protein.  

 

Figure 4-18: Graphical representation created by LigPlot for SANC00531 and M1 alanyl 

aminopeptidase of Homo sapiens protein. Hydrogen bonds are coloured green. 
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Figure 4-19: Graphical representation created by LigPlot for SANC00469 and M1 alanyl 

aminopeptidase of Homo sapiens protein. Hydrogen bonds are coloured green 

 

Figure 4-20: Graphical representation created by LigPlot for SANC00660 and M1 alanyl 

aminopeptidase of Homo sapiens protein. Hydrogen bonds are coloured green 



 91 

 

Figure 4-21: Graphical representation created by LigPlot for SANC00144 and M1 alanyl 

aminopeptidase of Homo sapiens protein. Hydrogen bonds are coloured green 

 

Figure 4-22: Graphical representation created by LigPlot for SANC00109 and M1 alanyl 

aminopeptidase of Homo sapiens protein. Hydrogen bonds are coloured green  
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4.4 Conclusion  

In this chapter, 623 compounds were retrieved from SANCDB in energy minimized form. 

These compounds were virtually screened against Plasmodium parasite proteins and a human 

protein. The molecular virtual screening retrieved compounds with selective inhibition against 

the parasite protein and not its human counterpart. Blind docking was used to perform the 

virtual screening on all the retrieved compounds. Then the compounds were curated according 

to their binding energy, hydrogen bonding and binding to the active site or metal-coordinating 

residues. All selected ligands pass the Lipinski’s rule of 5. The selected ligands were chosen 

such that they interact with the target protein, including active site residues and their ability to 

hydrogen bond the zinc metal ion. None of the ligands bound the active site of the human 

protein. In the end ligand, SANC00531 was selected against P. falciparum, SANC00469 

against P. knowlesi, SANC00660 against P. vivax, SANC00144 against P. ovale and 

SANC00109 against P. malariae. 
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Chapter 5 - Summary and future 

perspectives  

M1 alanyl aminopeptidase protein sequences from Plasmodium sp., bacteria, fungus, human 

and mammals were retrieved from the NCBI nucleotide, UniProt and Ensembl databases. 

Retrieved sequences went through different sequence and comparative analysis techniques, 

starting with motif and domain identification, followed by multiple sequence analysis and 

phylogenetic analysis. Domain analysis showed the presence of the Peptidase family M1 

domain at almost the same position in Plasmodium  M1 alanyl aminopeptidase. Also, it showed 

presence of different domains, if we compare human and Plasmodium M1 alanyl 

aminopeptidase domains. Motif analysis showed many common motifs between different M1 

alanyl aminopeptidase retrieved from different Plasmodium species, while it showed few 

common motifs between mammals (including humans) and Plasmodium species, using protein 

sequences. Multiple sequence alignment confirms motif and domain analysis findings in which 

all M1 alanyl aminopeptidases from Plasmodium sequences shared a high similarity, which 

significantly decreased when Plasmodium M1 alanyl aminopeptidase sequences were 

compared to mammalian alanyl aminopeptidase or other retrieved sequences. Also, multiple 

sequence alignment showed a slight sequence variation in the protein N-terminus. However, 

the active site residues remain conserved in all Plasmodium M1 alanyl aminopeptidase 

sequences. These comparative analyses allowed the identification of key differences between 

the human sequence and Plasmodium alanyl aminopeptidase sequences, which were used later 

in virtual screening. Phylogenetic analysis showed the evolutionary relationship between all 

retrieved Plasmodium M1 alanyl aminopeptidase sequences - all the sequences were clustered 

together while mammalian sequences clustered together but far from the Plasmodium M1 

alanyl aminopeptidase cluster. All these findings prove the possibility of selective inhibition of 

Plasmodium M1 alanyl aminopeptidase. 

3D structures of P. falciparum M1 alanyl aminopeptidase and human homologues proteins 

were retrieved from the Protein Data Bank, while those of the M1 alanyl aminopeptidase for 

the remaining Plasmodium species were not available. To overcome this problem, homology 

modelling was used to generate the missing structures. The quality of generated models was 

evaluated through different model validation tools. The resulting models have good local and 

global quality. 
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After getting 3D structures for all M1 alanyl aminopeptidases for the Plasmodium and human 

proteins, virtual screening was used to identify possible compounds with selective binding 

activity against the M1 alanyl aminopeptidase from different Plasmodium species. Blind 

docking and targeted docking were used to identify compounds with high binding affinity to 

the Plasmodium alanyl aminopeptidase protein. Human homolog proteins showed low binding 

affinity against the best-selected compounds. The best ligand selection criteria started with 

selecting any ligand that binds to the active site residues. Then any ligand with unfavorable 

interactions were eliminated. The best ligands were selected based on hydrogen bonding 

between the ligand and the target protein. Other bonds between the ligand and the targeted 

protein were also taken into consideration. Ligand efficiency, as well as durability properties 

based on Lipinski’s rule of five were also used.  

SANC00531 was selected against the P. falciparum M1 alanyl aminopeptidase, SANC00469 

against the P. knowlesi M1 alanyl aminopeptidase, SANC00660 against the P. vivax M1 alanyl 

aminopeptidase, SANC00144 against the P. ovale M1 alanyl aminopeptidase and SANC00109 

against the P. malariae M1 alanyl aminopeptidase. In future analysis of these compounds and 

their similar compounds from the ZINC and BioChem databases will be done to improve 

protein inhibition. as Additionally, molecular dynamic simulations of selected ligands will be 

performed to investigate the protein-ligand complexes and their stability. 
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Appendices 

Appendix 1 

import os 

 

Ligand_files = os.listdir('../Ligand') 

 

PDB_files = os.listdir('../Target') 

 

for ligand in Ligand_files: 

 if ".pdb" in ligand: 

  ligand_name = ligand[:-6] 

  for PDB in PDB_files: 

   vina_name = PDB+"_"+ligand_name+".vina" 

   with open("/mnt/lustre/users/osamir/Docking_v2/Vina/" + 

vina_name, "w") as vw: 

   

 vw.writelines(["receptor=/mnt/lustre/users/osamir/Docking_v2/Target/"+PDB+"qt" 

,"\n"]) 

   

 vw.writelines(["ligand=/mnt/lustre/users/osamir/Docking_v2/Ligand/"+ligand_name+".pd

bqt", "\n"]) 

   

 vw.writelines(["out=/mnt/lustre/users/osamir/Docking_v2/Out/"+vina_name+"all.pdbqt", 

"\n"]) 

   

 vw.writelines(["log=/mnt/lustre/users/osamir/Docking_v2/Log/"+vina_name+"all.log", 

"\n"]) 

    vw.writelines(["center_x=20.002", "\n"]) 

    vw.writelines(["center_y=15.945", "\n"]) 

    vw.writelines(["center_z=3.313", "\n"]) 

    vw.writelines(["size_x=58.88", "\n", "size_y=53.62"]) 

    vw.writelines(["\n", "size_z=57.38", "\n"]) 

    vw.writelines(["cpu=8", "\n", "exhaustiveness=192"]) 

 

 

Appendix 2 

import os  

vina_files = os.listdir('../Vina') 

gnu_w = open("gnu_parallel.jobs", "w") 

for vina in vina_files: 

 gnu_w.writelines(["/home/osamir/lustre/Docking/Script/vina --config " + 

"/home/osamir/lustre/Docking/Vina/"+vina+"\n"+"\n"]) 

 

gnu_w.close() 

 

 

 

 

 

 

 

 

 

 

Appendix 3 

 
Out = os.listdir("./Out") 

 

for pdbqt in Out: 

    os.system("vina_split --input Out/" + pdbqt) 
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    ligand_1 = ligand_1 + "Out/" + pdbqt[:-6] + "_ligand_1.pdbqt " 

 

os.system("babel -ipdbqt " + ligand_1 + " -osdf all.sdf") 

 

with open("all.sdf", "r") as sdf: 

    lines = sdf.readlines() 

temp = 0 

for line in range(len(lines)): 

    if "VINA RESULT" in lines[line]: 

        temp = line 

        lines[temp + 4] = "\n" + ">  <Score> \n" + lines[line].split()[2] + 

"\n" 

        lines[temp + 5] = "\n" + lines[temp + 5] 

with open("news.sdf", "w") as ss: 

    ss.writelines(lines) 

 

log = os.listdir("./Log") 

 

names = {} 

 

for files in log: 

    tmp = files[5:] 

    tmp = tmp[:-10] 

    with open("Log/"+files, "r") as tmpr: 

        lines = tmpr.readlines() 

        for line in lines: 

            if line.startswith("   1"): 

                names[tmp] = line.split()[1] 

 

with open("Output.csv", "w") as tmpw: 

    for i in names: 

        tmp = i,",", names[i], "\n" 

 

        tmpw.writelines(tmp) 

 


