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Abstract— This paper proposes MISSA, a novel middleware to 
facilitate the development and provision of stream-based 
services in emerging pervasive environments. The stream-
based services utilize voluminous and continuously updated 
data streams as their input. The characteristics of data streams 
bring new requirements on the development and provision of 
the services. To satisfy the requirements, a unique service 
model and a runtime system are designed in MISSA. The key 
concept of our service model is to separate service logic from 
handling data streams. This significantly mitigates the burden 
on service developers by allowing them to only concentrate on 
the service logic. Job of handling data streams is completely 
delegated to the runtime. In this paper, we first present the 
importance of stream-based services and their requirements. 
Also, we describe a best route finding service as an example to 
motivate the need for MISSA. Then, we envision overall 
architecture for provisioning of stream-based services and 
detail our design of service model and runtime. Lastly, we 
demonstrate the efficiency of service model and runtime 
through experiments. 

Keywords-Pervasive computing; sensor network; data 
stream; stream-based services; middleware; service model; 
runtime environment 

I.  INTRODUCTION 
Due to advances in wireless communication and 

embedded device technologies, many useful data are 
generated and collected in various ways. Among them, 
continuous data streams generated by electronic devices such 
as sensors, RFID readers, and GPS devices are coming into 
the spotlight. This opens up new opportunities to provide 
value-added stream-based services in diverse application 
domains, e.g., location-based services (LBS), intelligent 
transportation services (ITS), intelligent logistics services, 
environmental monitoring, medical monitoring services, and 
so on [18][22][23]. For example, a service which provides 
traffic status exploits a large amount of data streams 
generated by traffic sensors deployed on the road or devices 
equipped in vehicles. Also, a child tracking or friend finder 
service is based on continuously changing location 
information. 

It is totally different from conventional applications to 
develop and provide emerging stream-based services. It 
mainly results from the unique characteristics of data streams, 

e.g., unbounded, diverse and voluminous. However, there 
has not been much effort to facilitate the development and 
provision of stream-based services. This motivates us to put 
our effort on support for the services. As a first step, we 
envision new and unique requirements of the stream-based 
services. 

Abstraction of data stream processing: In addition to 
core computation logic, stream-based services require extra 
modules to properly receive and manage streams of data. It is 
arduous burden for a service developer to make such 
modules whenever she develops new stream-based services. 
Thus, freeing the developer from the details of data stream 
processing is an essential requirement. 

Stream source independence: For a single service, 
multiple data stream sources can provide data streams of the 
same context. In such an environment, a service provider 
selects an appropriate stream source for the service, and even 
switches the stream source to meet QoS constraints or 
enhance business revenue. Thus, it is extremely important to 
make the service logic reusable with various stream sources. 

Changeable execution mode: The stream-based services 
can run in two execution modes: push and pull. A push mode 
service continuously provides responses to users for a certain 
period of time, whereas a pull mode service gives one-time 
response upon a user request. Although the services 
differently interact with the users in two cases, core 
computation logic to generate results is almost the same. It is 
cumbersome for a developer to write different service logic 
in order to support each execution mode of a service. Thus, it 
is highly desirable to support different execution modes with 
the same service logic. 

Efficient stream buffering: To serve user requests, a 
service computes its logic with a finite set of data. To obtain 
and maintain the necessary data set from unbounded and 
voluminous data streams, an efficient buffering mechanism 
is essential. The buffering mechanism should be capable of 
handling time-varying and unpredictable data rates. In 
addition, various buffering semantics should be considered 
since services need different set of data for the computation. 

Concurrent long-lived service session: Session time of 
stream-based services is usually long, specifically in the push 
mode. This is mainly because the services continuously 
execute service logic to monitor users’ interested information. 
Also, many service instances are concurrently alive in the 
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system to handle multiple user requests. Therefore, it is 
important to support lots of concurrent long-lived service 
sessions. 

To address the above requirements, we propose MISSA, 
a middleware for easy development and provision of the 
stream-based services. MISSA includes a service model and 
a runtime. The MISSA service model defines programming 
interfaces and configurations to develop stream-based 
services and specifies how to implement them. The MISSA 
runtime provides a computing environment to run the 
services developed according to the MISSA service model. 

The MISSA service model has three key features for easy 
service development and deployment. First, the MISSA 
service model requires a service developer only to write a 
service unit which includes service logic and a service 
description. The service developer does not need to concern 
about details of data stream processing such as stream source 
binding, network I/O processing, and stream buffering. 
Second, the service unit is developed without specifying data 
stream sources. Through simple configuration, a service 
provider can easily bind desirable sources for input of the 
service unit. Third, the service developer only needs to 
implement a single service unit regardless of execution 
modes. The service provider can configure an execution 
mode when activating the services. 

The MISSA runtime has several unique characteristics. 
Most important, the MISSA runtime is an abstraction layer 
of managing data streams, which are essential for stream-
based services. It takes care of stream source binding, 
network I/O processing, and stream buffering. Especially, the 
MISSA runtime provides an efficient buffering mechanism. 
For efficient stream buffering, the MISSA runtime 
concentrates on two aspects. First, it supports various buffer 
semantics for diverse needs of services, e.g., sampling 
conditions on a data stream. Currently, we support three 
types of buffering: buffering of recent N consecutive data, 
the most recent data per distinct key value, and N recent data 
per distinct key value. Second, the MISSA runtime supports 
buffer sharing among services if the services exploit similar 
data streams. The buffer sharing improves resource 
utilization and avoids redundant data delivery. 

MISSA is differentiated from the previous research on 
data stream processing [1][2][3][4][5] in that MISSA 
uniquely targets on facilitating development and provision of 
generic stream-based services. The previous research 
concentrates on developing new query models and prototype 
systems for efficient processing of data streams. It is very 
difficult to develop and run a generic stream-based service 
by only using the declarative continuous query languages 
and stream processing engines (SPEs). Most value-added 
services need complex computation logic beyond query 
operations such as selection and join. For example, a best 
route finding service needs a Dijkstra’s shortest path 
algorithm which is infeasible to be expressed in the query 
language. MISSA is designed to provide more value-added 
services beyond the query operations provided. We envision 
that the role of the SPEs will be data processing and the role 
of MISSA will be service provisioning. MISSA and the 

SPEs will be complementary to each other for proliferation 
of the stream-based services. 

The rest of the paper is organized as follows. Section II 
describes a motivating example. Section III briefs the 
architectural overview of MISSA. Section IV explains the 
MISSA service model in detail. Section V presents the 
design of the MISSA runtime. Section VI presents our 
current implementation and experimental results. Finally, 
Section VII discusses the related work and Section VIII 
concludes the paper. 

II. MOTIVATING EXAMPLE 
Data streams in various contexts bring unprecedented 

opportunities to create useful services. There already have 
been several example scenarios of stream-based services 
such as supply chain management [5], emergency medical 
service [18]. We strongly believe that the stream-based 
services will be widely required in the near future as 
continuous and real-time data collection becomes available. 
This section discusses an example of traffic information 
service in greater detail and motivates the need for MISSA. 

Traffic information services provide traffic data of a 
certain region such as average speeds of road segments, 
events on roads, and weather information for numerous users 
through car navigation systems or web. Currently, many 
commercial services [19][20][21] providing traffic 
information have already become popular in daily life and 
proved their usefulness. In the near future, these services will 
utilize more fine-grained and real-time traffic data streams 
from RFIDs and sensors deployed on the roads and cars 
equipped with GPS to generate precise and value-added 
information. For example, a best route finding service will 
predict the most appropriate path for users based on real time 
road condition, weather, and current events obtained from 
sensors and various devices. 

To develop such a service, a service developer will 
encounter new challenges. For empirical data, we actually 
implemented a simple best route finding service over 
simulated traffic data streams. Table I describes the 
implemented components for the service and their code sizes. 
First, traffic stream resolver contacts a stream source and 
requests for necessary data. In our example, the stream 
source sends a tuple of (road_id, segment_id, direction, 
speed) every 0.1 second. Network I/O handler receives those 

TABLE I.  LINES OF CODE (LOC) OF COMPONENTS FOR A BEST 
ROUTE FINDING SERVICE 

Service components Lines of Code 

Traffic stream resolver 10 

Network I/O handler 196 

Buffer manager 118 

Etc. (server module, instance handler …) 103 

Best route finding algorithm 169 

Total 596 
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tuples using non-blocking I/O and transfers them to the 
buffer manager. In many cases, network I/O handler is not 
easy to implement since variable size tuples are continuously 
inputted from multiple sources. Also, naïve I/O mechanism 
may defer the service delivery by blocking other components. 

The best route finding algorithm requires an average road 
speed of every road segment to generate complete and 
correct result. Thus, the buffer manager buffers recent tuples 
for every road segment. The efficient collection and updates 
of the required data entail much effort on a developer due to 
the variable and high rates of data streams. Besides handling 
data streams, we should also consider continuous executions 
of the algorithm to serve a user who requires real-time 
updates of new best paths. In addition, it is troublesome to 
implement supplementary code for server functionality to 
deal with concurrent multiple users. In the table, the core 
algorithm is only a small part of entire service; it converts 
data in the buffer into graphs representing a map and 
computes the best route. Note that the large part of the 
service is taken by the components for traffic data retrieval, 
network I/O, and data buffer management. 

These technical difficulties put heavy burden on a service 
developer even for the creation of the simple best route 
finding service. To alleviate the difficulties and expedite the 
implementation process, system-level support is highly 
desirable. Motivated by the needs, we design MISSA service 
model and runtime, which significantly accelerates and ease 
the service development and provision. 

III. ARCHITECTURE OVERVIEW 
Fig. 1 shows the overall architecture of MISSA. 

Externally, MISSA interacts with four parties. They are 
service developers, service providers, users, and data stream 
sources. The service developers write service logic of a 
stream-based service according to the MISSA service model. 
The service providers host a computing node to provide the 
stream-based service for users. They couple the service logic 

developed by the service developers and appropriate data 
stream sources to make the service logic executable. Note 
that we separate the role of the service developers from the 
service providers although the service providers can play a 
role of service development. This is advantageous to the 
service providers because they can reuse the service logic 
developed by the third-party service developers. As a result, 
the service provider can quickly build new services reusing 
existing service logic and provide them to the users. 

The users request the services provided by the service 
providers and receive their responses. The data stream 
sources provide various data streams such as location data 
streams and traffic data streams to the service providers. We 
envision that the sources will be the third-party entities 
independent of the service providers. Currently, service 
providers and data sources are tightly coupled in general. 
That is, the service providers have their own data sources 
used for service provision. However, in the near future, data 
sources will be pervasive. It will be a new business 
opportunity to independently provide data for various 
services. Thus, it is important to consider the data sources 
separately from the service providers and to support the 
service development and deployment in such an environment. 
We assume that the sources are able to process continuous 
queries over raw data streams generated by sensors or mobile 
devices. Stream processing engines or sensor proxies are 
examples of the sources. 

MISSA includes the MISSA service model and the 
MISSA runtime. The MISSA service model defines how to 
implement service logic. In addition to the service logic, it 
specifies three configuration scripts, each of which is written 
by the service developer, service provider, and stream 
sources, respectively for easy coupling of services with 
sources and simple service provision. The MISSA runtime is 
a computing environment that hosts the stream-based 
services developed in conformity with the MISSA service 
model. It is comprised of three major components – Service 

 
Figure 1. Overall architecture of MISSA. 
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Deployer, Stream Handler, and Service Operator. The 
Service Deployer takes charge of the functions to register the 
services developed by the service developer and deploy the 
services configured by the service provider. The Stream 
Handler interacts with the data stream sources to receive the 
data streams necessary for the services. The Service Operator 
computes service logic in order to respond to the users. In the 
following sections, we describe the MISSA service model 
and present the design of the MISSA runtime in detail. 

IV. MISSA SERVICE MODEL 
In this section, we detail our novel service model for 

stream-based services, which maximizes reusability and re-
configurability of the services. There are three design 
principles of the MISSA service model. First of all, our 
model clearly separates the roles of participating parties: 
service developers, data stream sources, and service 
providers. Secondly, it supports dynamic binding of service 
logic and data stream sources at runtime with description 
languages. Finally, it allows the service developers to write 
service logic independently of data stream sources and 
execution modes. Based on these principles, we design the 
MISSA service model that consists of three components: 
Service Unit (SU), data stream source, and Runnable Service 
Unit (RSU). Fig. 2 shows the components and their 
relationship. 

The role of a service developer is to create a SU that 
includes service logic and a Service Unit Description 
Language (SUDL) file which describes the service logic. 
Since the SU and its required runtime parameters are coupled 
not in the development phase but in the execution phase, the 
SU can be easily reused. Data stream source providers write 
and advertise Stream Source Description Language (SSDL) 
files which describe the semantics of their data streams. The 
SU can be bound to any data stream source whose data 
stream semantic conforms to the input semantic of the SU. 
The binding is not hard coded so that it is easy to select and 
replace data stream sources. A service provider writes a 
Service Unit Activation Language (SUAL) file which 
specifies a SU, SSDLs, and the runtime parameters in order 
to provide a stream-based service. Based on the specified 
information, the MISSA runtime binds the SU and data 
stream sources described in the SSDLs. Then, it operates the 
stream-based service according to the runtime parameters. 
Since the binding and the runtime parameters can be re-
configured in the execution phase, the services can be 
flexibly operated. 

A. Service Unit (SU) 
1) Service Logic (SL) 

SL is the core business logic of a stream-based service. 
Service developers can make the SL by implementing 
ServiceLogic interface as shown in Fig. 3. There are five 
abstract functions to implement: init(), uninit(), process(), 
getBufferSemantic(), and tupleHandler(). These functions are 
classified into two groups. The first three functions are 
related to service execution, the others are related to data 
stream handling.  

For the service execution, init() handles initialization of 
member variables or resource allocation which are 
performed at the beginning of the service execution. 
process() expresses main service logic to generate responses. 
uninit() is in charge of cleaning up or releasing resources at 
the end of the service execution. 

For the data stream handling, getBufferSemantic() 
specifies the semantics of buffer which service logic requires. 
Return value of the function includes a type of buffer 
semantic and corresponding parameters such as maximum 
buffer size and key attributes. Currently, the MISSA service 
model supports three types of buffer semantics. They are 
recent N tuples ordered by their arrival times (BUFSEM_1), 
tuples categorized by their key attributes (BUFSEM_2), and 
recent N tuples categorized by their key attributes 
(BUFSEM_3). tupleHandler() specifies how to update data 
tuples in the buffer into data structures such as lists or trees 
used in process(). The update of the data tupes is 
automatically performed by the MISSA runtime. 
Additionally, the MISSA service model provides MISSA 
Data Stream Connectivity (MDSC) API which has the same 
functionality as a standard SQL database access interface 
such as JDBC API. Using the API, service developers can 
access and retrieve data as if they are programming over 
persistent databases. 

With the implemented functions, the MISSA runtime 
runs the service as follows. At first, it invokes init() for 
service initialization. During the initialization, the runtime 

Figure 2. Components of the MISSA service model. 

 
public abstract interface ServiceLogic { 
 
 // constants 
 public static final int BUFSEM_1 = 0x00000001; 
 public static final int BUFSEM_2 = 0x00000002; 
 public static final int BUFSEM_3 = 0x00000003; 
 
 // functions related to service execution 
 public abstract boolean init(); 
 public abstract boolean uninit(); 
 public abstract Object process(Object[] userParam); 
 
 // functions related to data handling 
 public abstract Object getBufferSemantic(); 
 public abstract boolean tupleHandler(Object[] tuple); 
 
} 
  

Figure 3. Service Logic interface. 
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prepares buffers required by the service, whose semantic is 
obtained by calling getBufferSemantic(). While running a 
service, process() is invoked after calling tupleHandler() 
whenever a tuple arrives in a push mode. In a pull mode, 
process() is called after tupleHandler() is called over all 
currently buffered tuples upon receiving a user request. 
When finishing the service, uninit() is called by the runtime 
for service termination. 

2) Service Unit Description Language (SUDL) 
SUDL is an XML file which describes a SU. It contains a 

service name, an input schema, an output schema, user 
parameters, and all other related information about the SU. 
The input schema represents the schema of data streams 
which the SL expects to receive, and the output schema 
stands for the schema of processed results which the SL 
generates. Service providers refer the SUDL file when using 
the SU, just like accessing the Web Service Definition 
Language (WSDL) [12] file in Web Services. Fig. 4 depicts 
an example of SUDL. 

B. Stream Source Description Language (SSDL) 
The SSDL file represents information of a data stream 

source. It contains the name, location, and data stream 
schemas of the data stream source. We assume that the 
SSDL is registered in a central registry such as UDDI [13] or 
distributed registry [15][16][17]. Service developers/ 
providers can search the registry and access appropriate 
stream sources they need to use. Fig. 5 shows an example of 
SSDL. 

C. Service Unit Activation Language (SUAL) 
SUAL acts like glue which associates a SU and SSDLs. 

It contains the location of the SU, the locations of the SSDL 
files, the queries that will be imposed on the data streams 
specified in the SSDLs, and execution mode. It is the queries 

that link the SU and the input data streams. The schemas of 
the query results should match the input schemas described 
in the SUDL file. It is like specifying appropriate arguments 
when we call a function. The execution mode defines in 
which mode the service will be executed. There are three 
options for the execution mode – push, pull, and both. Fig. 6 
illustrates an example of the SUAL. 

V. MISSA RUNTIME 
This section describes the architecture of the MISSA 

runtime. First, we show the internal component design of the 
MISSA runtime and the processing flow among the 
components. Then, we present several issues of the 
components in detail. 

A. Service Processing Flow 
Fig. 7 depicts the three major components of the MISSA 

runtime, sub-components, and their interactions. The Service 
Deployer registers and activates the service units. The 
Service Unit Handler (SUH) receives a service unit from a 
service developer or a SUAL file from a service provider. 
When it receives a service unit, it stores the service unit in 
the Service Unit Registry (SUR) to enable service providers 
to use the service unit. Upon receiving a SUAL file, the SUH 
fetches the service unit specified in the SUAL file from the 
SUR, and then passes it to the Service Unit Activator (SUA) 
with the SUAL file. 

<?xml version="1.0"?> 
<streamSource> 
 <name>Traffic Information</name> 
 <description>......</description> 
 <location>192.168.0.1:1234</location> 
 <schema> 
  <name>roadTraffic</name> 
  <description>......</description> 
  <element name="roadID" type="int"/> 
  <element name="avgSpeed" type="int"/> 
  <element name="timeStamp" type="time"/> 
 </schema> 
 <schema> 
  <name>carTraffic</name> 
  ...... 
 </schema> 
</streamSource>  

Figure 5. An example of SSDL. 

<?xml version="1.0"?> 
<runnableServiceUnit> 
 <name>Activated Shortest Path Service</name> 
 <description>......</description> 
 <serviceUnit name="sps" location="./shortestPathService.jar"/>
 <dataStreamSource> 
  <source name="s1" location="http://192.168.0.1/ 
avgRoadSpd.ssdl"/> 
  <source name="s2" location="......"/> 
 </dataStreamSource> 
 <binding target="sps.input1" query="select roadID, timeStamp, 
avgSpeed from s1.roadTraffic"/> 
 <binding target="sps.input2" query="......"/> 
 <executionMode type="push"/>  
</runnableServiceUnit>  

Figure 6. An example of SUAL. 

<?xml version="1.0"?> 
<serviceUnit> 
 <name>Shortest Path Service</name> 
 <description>......</description> 
 <inputSchema> 
  <name>input1</name> 
  <description>......</description> 
  <element name="id" type="int"/> 
  <element name="time" type="time"/> 
  <element name="averageSpeed" type="int"/> 
 </inputSchema> 
 <inputSchema> 
  <name>input2</name> 
  ...... 
 </inputSchema> 
 <outputSchema> 
  <description>......</description> 
  <element name="id" type="int"/> 
  <element name="time" type="time"/> 
  <element name="averageSpeed" type="int"/> 
 </outputSchema> 
 <userParameter> 
  <description>......</description> 
  <element name="startPoint" type="string"/> 
  <element name="endPoint" type="string"/> 
 </userParameter> 
 …… 
</serviceUnit> 

Figure 4.  An example of SUDL. 
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The SUA bootstraps a service unit in cooperation with 
the Stream Handler (SH) and the Service Unit Instance 
Manager (SUIM). The service bootstrapping includes three 
actions – buffer creation, stream source connection, and 
instance management initiation. For the buffer creation, the 
SUA parses the queries in the SUAL file and passes the 
schema information of the query results to the Buffer 
Manager. Then, the Buffer Manager creates buffers 
according to the schemas. For the stream source connection, 
the SUA provides the Data Stream Receiver (DSR) with the 
address of data stream sources and queries after interpreting 
the SSDLs specified in the SUAL file. Then, the DSR 
establishes connections with the sources and sends the 
queries in order to receive data. When the buffers are created 
and connections are established, the SUA signals the SUIM 
to prepare service instance management. It also informs the 
execution mode. 

If a service unit is ready to execute, the Service Operator 
serves user requests, while the SH updates data from the 
sources. The User Request Handler (URH) receives the user 
requests and forwards them to the Scheduler. The Scheduler 
selects a request to serve and invokes the SUIM. 
Subsequently, the SUIM executes a service instance with the 
buffered data. After the execution, it delivers the result to the 
user through the URH. 

B. Issues in the Functional Components 
The SUA has to resolve overlapping answers of queries 

to reduce redundant transmission of data. For example, 
answers of a query asking road-id, speed, and timestamp will 
contain the answers of a query asking road-id, and speed. 
Redundant transmission of these answers is inefficient in 
terms of network I/O cost and memory consumption. To 
address this problem, the SUA supports query merging as in 
[14]. For this, it maintains a list of running queries. Upon a 
new query, the SUA determines if the query has overlapping 
answers with a query in the list. If so, it merges the query 

with the existing query in the list. Also, it adjusts the running 
query in the DSR and the corresponding buffer in the BM. 
The detailed mechanism for the query merging is under 
development. 

The buffer manager allocates one buffer for each query, 
and manages the buffered data according to the buffer 
semantic specified in the service logic. It also updates the 
buffered data to the service instances. For each update, the 
BM dynamically transforms an incoming data tuple to the 
input of the service logic through type conversion and 
attributes mapping. Since one buffer is created for one query 
in a service unit, the buffer is shared by multiple instances of 
the service. This saves the memory consumed for stream 
buffering. 

The SUIM manages instances differently according to the 
execution mode. Since push mode services retain 
connections with users unlike pull mode services, we 
consider push mode services are stateful and pull mode 
services are stateless. For push mode services, the SUIM 
creates an instance per user request to serve the request 
during the specified life time. The instance is destroyed when 
the life time expires. On the other hand, the SUIM manages 
an instance pool and fetches an instance from the pool to 
serve pull mode service requests. After a result generation, it 
returns the instance back to the pool. 

VI. IMPLEMENTATION AND EXPERIMENT 

A. Implementation 
We implemented an initial version of the MISSA runtime 

with JAVA, which includes all core components described in 
Section V. Among them, the Data Source Receiver (DSR) is 
implemented using non-blocking I/O multiplexing to handle 
multiple data streams efficiently. The Buffer Manager (BM) 
is implemented with hash tables and linked lists to deal with 
three buffer semantics. In the Service Unit Instance Manager 
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Figure 7. The MISSA runtime. 
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(SUIM), a thread pool is used to avoid unnecessary thread 
creation and termination. 

As an example service, we adopted the best route finding 
service described in Section II. For comparison, we 
implemented the service in two types: the service based on 
MISSA (w/ MISSA service) and the service without MISSA 
(w/o MISSA service). Note that the w/o MISSA service is 
different from the w/ MISSA service in that it creates a 
buffer and a connection with a data source upon each user 
request. To serve user requests, both services run Dijkstra’s 
shortest path algorithm upon an incoming data tuple. We 
made a simple data generator and a user request generator for 
experiments. The data generator sends data streams in a 
configured rate, and the user request generator issues 
multiple requests at the same time. 

B. Experimental Setup 
The services run on the machine equipped with a 1.81 

GHz CPU, 512MB RAM and Window XP. The data 
generator and the user request generator run on the machine 
equipped with a 2.4 GHz CPU, 256MB RAM and Linux. 
The machines are connected via 100Mbps link. 

We evaluate the benefits of MISSA in two aspects: 
convenience of development and efficiency of service 
operation. We measure lines of code (LOC) to show the 
convenience of development. For efficiency metrics of the 
MISSA runtime, we measure buffer size and processing 
delay as functions of the number of concurrent requests and 
data rates. The buffer size is the number of data tuples in the 
buffers of each service, and the processing delay is the 
average time taken to generate a result upon an incoming 
data tuple. 

C. Experimental Results 
1) Convenience of Development 

Table II shows LOC of two services. The total LOC of 
the w/ MISSA service is only 31.2% of the w/o MISSA 
service. The difference is caused since the w/o MISSA 
service contains more code for connection and buffer 
management in addition to the service logic. To write such 
code, specific knowledge on low-level system details and 
socket-level network programming is required. Generally, it 
is much more complicated to develop such parts compared to 
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TABLE II.  LINES OF CODE (LOC) OF TWO SERVICES 

 w/o MISSA w/ MISSA 

Network I/O 206 0 

Buffering 118 0 

Etc. 103 0 

Service Logic 169 186 

Total 596 186 
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the service logic. Since the MISSA runtime takes charge of 
all those burdens, the w/ MISSA service only contains the 
service logic. Although MISSA requires the developers to 
follow the MISSA service model, e.g., writing SUDL files, 
those jobs are relatively simple and can be automated. Thus, 
the developers can concentrate on the service logic.  

2) Efficiency of Convenience of Development 
We measured processing delay and buffer size while 

varying the number of concurrent requests. The number of 
concurrent requests was increased from 30 to 180 and the 
data rate was fixed to 10 tuples per second. Fig. 8 and Fig. 9 
show the experimental results.  

Both services show acceptable processing delay and 
small buffer size until the number of concurrent requests 
reaches 120. The processing delay slightly increase as the 
number of concurrent requests grows, ranging from 90 ms to 
160 ms. Buffer size also grows similarly, however, the rate 
of increase of the w/o MISSA service is faster than that of 
the w/ MISSA service. 

When the number of requests exceeds 120, the w/o 
MISSA service reaches the limit of processing capacity. 
Thus the processing delay and the buffer size increase 
exponentially. The w/o MISSA service performs poorly 
since it maintains a separate buffer and a data source 
connection for each user request. The buffer size increases 
since duplicate data are maintained in individual buffers. 
Since more data have to be processed, the processing 
capacity is reached earlier. On the other hand, the w/ MISSA 
service handles up to 150 concurrent requests since it shares 
the data source connection and the buffer. 

We measured processing delay and buffer size while 
varying the data rates. The data rate was increased from 10 to 
50 data tuples per second and the number of concurrent 
requests was fixed to 50. The results are depicted in Fig. 10 
and Fig. 11. Similar to the above result, the w/ MISSA 
service exhibits better processing capacity due to the sharing 
effect. Tolerating high data rate is desirable since numerous 
data stream sources will generate data at high data rate in a 
real environment. 

Table III shows processing capacities of two services. 
We assume that a service exceed the capacity when the 
processing delay is longer than 1000ms. The w/ MISSA 
service stably supports 21% more requests and 52% faster 
data rate compared to the w/o MISSA service. The 
performance gap between two approaches will grow as the 
sharing effect increases. 

VII. RELATED WORK 
Extensive research on data stream processing and its 

application has been conducted [1][2][3][4][5]. In Aurora [1], 
TelegraphCQ [2], STREAM [3] project, they proposed new 
query models and stream processing engines (SPEs). A 
common feature of the proposed SPEs is to process 
continuous queries over voluminous data streams in an 
adaptive and resource efficient manner. However, there has 
not been much effort to support for easy development of 
generic stream-based services. Most value-added services 
need complex computation logic beyond query operations 
such as selection, join, and aggregation. MISSA targets on 

simplifying development and provision of generic stream-
based services beyond the query operations. We envision 
that MISSA and the SPE will be complementary to each 
other for proliferation of stream-based services. 

For developing and executing context-sensitive 
applications, iQueue has been proposed. It includes a data 
composition framework [6] and a programming language for 
such applications [7]. iQueue targets on the applications 
based on networked pervasive data sources which are 
intermittent and heterogeneous. Thus, iQueue mainly 
supports continuous discovery and binding of the proper data 
sources. In contrast, MISSA targets on the environment 
where data streams are voluminous and rapidly incoming. In 
order to hide the complex management of such data streams, 
MISSA separates the stream processing from service logic; it 
supports efficient data stream management, e.g., data stream 
buffering. In addition, MISSA concentrates on reusability 
and re-configurability for the stream-based services, which 
iQueue does not mainly deal with. 

As popular service platforms, Web Services [24], J2EE 
[9] and OSGi [8] are widely used. They provide standardized 
and component-based computing environments for 
networked services. However, they are not feasible solutions 
to emerging stream-based services. Data streams are not 
considered as input for services so that they lack in system 
support such as stream handling and diverse execution 
modes support. Although they do not target on the stream-
based services, integrating the features of MISSA into the 
service platforms will broaden their application areas. 

There have been much research efforts to develop 
efficient publish-subscribe systems such as Gryphon [25], 
Siena [26], Sieve [27], and SemCast [28]. Also, there have 
been standardization activities for publish-subscribe 
middleware systems such as OMG Data Distribution Service 
(DDS) standard specification [29] and commercial products 
based on the specification [30][31]. Publish-subscribe 
systems enable data dissemination among multiple data 
producers and data consumers. They create data distribution 
paths regarding different consumers’ interests and network 
conditions, supporting content-based data filtering. They 
have been applied to a variety of application domains 
[32][33]. While these systems mainly focus on construction 
and maintenance of distributed data dissemination networks, 
MISSA concentrates on providing a development and 
execution environment for services based on continuous data 
streams. MISSA automatically loads or removes application 
service instances upon user requests, runs the instances 
according to its execution mode, and enable buffer sharing 
among the instances.  

Finally, we give an overview of the previous works on 
middleware to support applications with data streams. It 
includes Grid-based distributed data stream processing 

TABLE III. PROCESSING CAPACITY OF TWO SERVICES

w/o MISSA w/ MISSA
Maximum number of 
concurrent requests 137 166 

Maximum data rate  
(tuples per sec) 31.3 47.6 
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middleware and RFID middleware. In GATES project [10], 
they proposed a Grid-based middleware for applications 
requiring real-time analysis of data streams from distributed 
sources. GATES employs an adaptation algorithm to analyze 
data with the highest accuracy while meeting a real-time 
constraint. However, they do not consider how to deal with 
various challenges in developing and providing the stream-
based services. Auto-ID center proposed a specification for 
RFID middleware, Savant [11], and some companies 
introduced commercial RFID middleware. The RFID 
middleware continuously obtains RFID tag data through 
RFID readers and forwards processed data to applications. 
The main focus of the RFID middleware is to correct 
erroneous data and reduce the large volume of data through 
the operations such as filtering, counting and aggregation. 
The RFID middleware concentrates on low level data 
processing rather than high level support for generic stream-
based services. 

VIII. CONCLUSION 
Data streams generated by lots of sensors or mobile 

devices envision the prevalence of stream-based services. 
However, there was little consideration for the development 
and provision of stream-based services. This motivates us to 
design a novel middleware, MISSA that facilitates the 
development and provision of stream-based services. In this 
paper, we presented the essential requirements of stream-
based services and described them through the best route 
finding service example. To meet the requirements, we 
proposed the MISSA service model that facilitates the 
development of stream-based services and the MISSA 
runtime that operates the services efficiently. Our 
experimental results show that our service model and 
runtime is greatly advantageous.  

REFERENCES 
[1] D. Carney, et al., “Monitoring Streams: A New Class of Data 

Management Applications,” Proc. VLDB, Hong Kong, August 2002. 
[2] Sirish Chandrasekaran, et al., “TelegraphCQ: Continuous Dataflow 

Processing for an Uncertain World,” Proc. CIDR, January 2003. 
[3] R. Motwani, et al., “Query Processing, Resource Management, and 

Approximation in a Data Stream Management System,” Proc. CIDR, 
January 2003 

[4] A. Arasu, S. Babu, and J. Widom, “The CQL Continuous Query 
Language: Semantic Foundations and Query Execution,” Stanford 
Technical Report, 2003 

[5] M. Franklin, et al., “Design Considerations for High Fan-in Systems: 
The HiFi Approach,” Proc. CIDR, 2005 

[6] Norman H. Cohen, et al., “iQueue: a pervasive data-composition 
framework,” Proc. MDM, Singapore, January 2002, pp. 146-153. 

[7] Norman H. Cohen, et al., “Composing pervasive data using iQL,” 
Proc. WMCSA, New York, June 2002, pp. 94-104.  

[8] OSGiTM Alliance, “OSGi Service Platform Release 4,” 
http://www.osgi.org/Specifications/HomePage 

[9] Java 2 Platform, Enterprise Edition (J2EE), 
http://java.sun.com/j2ee/index.jsp 

[10] L. Chen, et al., “GATES: A Grid-Based Middleware for Distributed 
Processing of Data Streams,” Proc. HPDC, Hawaii, June 2004. 

[11] Sean Clark, et al., “Auto-ID Savant Specification 1.0,” 
http://www.rfida.com/nb/autosavant.htm 

[12] Web Service Definition Language, http://www.w3.org/TR/wsdl 
[13] Universal Description, Discovery and Integration, 

http://uddi.xml.org/uddi-org/ 
[14] Arturo Crespo, Orkut Buyukkokten, and Hector Garcia-Molina, 

“Query Merging: Improving Query Subscription Processing in a 
Multicast Environment,” Proc. ICDE, 2003. 

[15] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, 
“Chord: A scalable peer-to-peer lookup service for internet 
applications,” Proc. the ACM SIGCOMM, August 2001. 

[16] Java Naming and Directory Interface (JNDI). 
http://java.sun.com/products/jndi/ 

[17] P. Mockapetris, “Domain Name Standard: RFC 1034,” November 
1987. 

[18] J. Shneidman, et al., “Hourglass: An Infrastructure for Connecting 
Sensor Networks and Applications,” Harvard Technical Report TR-
21-04, 2004 

[19] MBC idio, http://i-dio.imbc.com/ 
[20] RealTraffic Technologies, http://www.realtraffictech.com/ 
[21] San Diego Area Traffic Report, 

http://www.dot.ca.gov/dist11/d11tmc/sdmap/mapmain.html 
[22] Chun-Te Wu and Hsing Mei, “Location-Based-Service Roaming 

Based on Web Services,” Proc. the 19th International Conference on 
Advanced Information Networking and Applications, 2005, pp. 277-
280. 

[23] Aloizio P. Silva and Geraldo R. Mateus, “Location-Based Taxi 
Service in Wireless Communication Environment,” Proc. the 36th 
Annual Simulation Symposium, 2003. 

[24] Web services, http://www.webservices.org 
[25] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R. Strom, and 

D. Sturman, “An Efficient Multicast Protocol for Content-based 
Publish-Subscribe Systems,” Proc. ICDCS, 1999. 

[26] A. Carzaniga, M. Rutherford, and A. Wolf, “A Routing Scheme for 
Content-based Networking,” Proc. IEEE INFOCOM, 2004. 

[27] S. Ganguly, S. Bhatnagar, A. Saxena, R. Izmailov, and S. Banerjee, 
“A Fast Content-Based Data Distribution Infrastructure,” Proc. IEEE 
INFOCOM, 2006. 

[28] O. Papaemmanouil, and U. Cetintemel, “SemCast: Semantic 
multicast for content-based data dissemination,” Proc. IEEE ICDE, 
2005. 

[29] Object Management Group (OMG), “Data Distribution Service for 
Real-Time Systems (DDS), version 1.2,” http://www.omg.org/ 

[30] Real-Time Innovations, Inc., “RTI Data Distribution Service,”  
http://www.rti.com/ 

[31] OpenSplice, “OpenSplice DDS,”  
http://www.opensplice.com/ 

[32] Eduardo R. B. Marques, Gil M. Gonçalves, João B. Sousa, “The use 
of real-time publish-subscribe middleware in networked vehicle 
systems,” Proc. IFAC Workshop on Multivehicle Systems, 2006. 

[33] Marco Ryll and Svetan Ratchev, “Application of the Data 
Distribution Service for Flexible Manufacturing Automation,” 
International Journal of Mechanical, Industrial and Aerospace 
Engineering, 2:3, 2008. 

 

 

100100


	Singapore Management University
	Institutional Knowledge at Singapore Management University
	7-2010

	Design and Implementation of a Middleware for Easy Development and Provision of Stream-based Services
	Seungwoo KANG
	Youngki LEE
	Sunghwan IHM
	Souneil PARK
	Su-Myeon KIM
	See next page for additional authors
	Citation
	Author


	Design and Implementation of a Middleware for Development and Provision of Stream-Based Services

