
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

7-2010

Design and Implementation of a Middleware for
Easy Development and Provision of Stream-based
Services
Seungwoo KANG

Youngki LEE
Singapore Management University, YOUNGKILEE@smu.edu.sg

Sunghwan IHM

Souneil PARK

Su-Myeon KIM

See next page for additional authors

DOI: https://doi.org/10.1109/COMPSAC.2010.15

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Software Engineering Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
KANG, Seungwoo; LEE, Youngki; IHM, Sunghwan; PARK, Souneil; KIM, Su-Myeon; and SONG, Junehwa. Design and
Implementation of a Middleware for Easy Development and Provision of Stream-based Services. (2010). COMPSAC 2010:
Proceedings, 34th Annual IEEE International Computer Software and Applications Conference: 19-23 July 2010, Seoul, Korea. 92-100.
Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/2084

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/19634238?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2084&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2084&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2084&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/COMPSAC.2010.15
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2084&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2084&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Author
Seungwoo KANG, Youngki LEE, Sunghwan IHM, Souneil PARK, Su-Myeon KIM, and Junehwa SONG

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/2084

https://ink.library.smu.edu.sg/sis_research/2084?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2084&utm_medium=PDF&utm_campaign=PDFCoverPages

Design and Implementation of a Middleware for Development and Provision of
Stream-based Services

Seungwoo Kang1, Youngki Lee1, Sunghwan Ihm2, Souneil Park1, Su-Myeon Kim3, Junehwa Song1
1Computer Science, KAIST, Korea

{swkang, youngki, spark, junesong}@nclab.kaist.ac.kr
2Computer Science, Princeton University, USA

sihm@cs.princeton.edu
3SAIT, Korea

sumyeon.kim@samsung.com

Abstract— This paper proposes MISSA, a novel middleware to
facilitate the development and provision of stream-based
services in emerging pervasive environments. The stream-
based services utilize voluminous and continuously updated
data streams as their input. The characteristics of data streams
bring new requirements on the development and provision of
the services. To satisfy the requirements, a unique service
model and a runtime system are designed in MISSA. The key
concept of our service model is to separate service logic from
handling data streams. This significantly mitigates the burden
on service developers by allowing them to only concentrate on
the service logic. Job of handling data streams is completely
delegated to the runtime. In this paper, we first present the
importance of stream-based services and their requirements.
Also, we describe a best route finding service as an example to
motivate the need for MISSA. Then, we envision overall
architecture for provisioning of stream-based services and
detail our design of service model and runtime. Lastly, we
demonstrate the efficiency of service model and runtime
through experiments.

Keywords-Pervasive computing; sensor network; data
stream; stream-based services; middleware; service model;
runtime environment

I. INTRODUCTION
Due to advances in wireless communication and

embedded device technologies, many useful data are
generated and collected in various ways. Among them,
continuous data streams generated by electronic devices such
as sensors, RFID readers, and GPS devices are coming into
the spotlight. This opens up new opportunities to provide
value-added stream-based services in diverse application
domains, e.g., location-based services (LBS), intelligent
transportation services (ITS), intelligent logistics services,
environmental monitoring, medical monitoring services, and
so on [18][22][23]. For example, a service which provides
traffic status exploits a large amount of data streams
generated by traffic sensors deployed on the road or devices
equipped in vehicles. Also, a child tracking or friend finder
service is based on continuously changing location
information.

It is totally different from conventional applications to
develop and provide emerging stream-based services. It
mainly results from the unique characteristics of data streams,

e.g., unbounded, diverse and voluminous. However, there
has not been much effort to facilitate the development and
provision of stream-based services. This motivates us to put
our effort on support for the services. As a first step, we
envision new and unique requirements of the stream-based
services.

Abstraction of data stream processing: In addition to
core computation logic, stream-based services require extra
modules to properly receive and manage streams of data. It is
arduous burden for a service developer to make such
modules whenever she develops new stream-based services.
Thus, freeing the developer from the details of data stream
processing is an essential requirement.

Stream source independence: For a single service,
multiple data stream sources can provide data streams of the
same context. In such an environment, a service provider
selects an appropriate stream source for the service, and even
switches the stream source to meet QoS constraints or
enhance business revenue. Thus, it is extremely important to
make the service logic reusable with various stream sources.

Changeable execution mode: The stream-based services
can run in two execution modes: push and pull. A push mode
service continuously provides responses to users for a certain
period of time, whereas a pull mode service gives one-time
response upon a user request. Although the services
differently interact with the users in two cases, core
computation logic to generate results is almost the same. It is
cumbersome for a developer to write different service logic
in order to support each execution mode of a service. Thus, it
is highly desirable to support different execution modes with
the same service logic.

Efficient stream buffering: To serve user requests, a
service computes its logic with a finite set of data. To obtain
and maintain the necessary data set from unbounded and
voluminous data streams, an efficient buffering mechanism
is essential. The buffering mechanism should be capable of
handling time-varying and unpredictable data rates. In
addition, various buffering semantics should be considered
since services need different set of data for the computation.

Concurrent long-lived service session: Session time of
stream-based services is usually long, specifically in the push
mode. This is mainly because the services continuously
execute service logic to monitor users’ interested information.
Also, many service instances are concurrently alive in the

2010 IEEE 34th Annual Computer Software and Applications Conference

0730-3157/10 $26.00 © 2010 IEEE

DOI 10.1109/COMPSAC.2010.15

92

2010 34th Annual IEEE Computer Software and Applications Conference

0730-3157/10 $26.00 © 2010 IEEE

DOI 10.1109/COMPSAC.2010.15

92

system to handle multiple user requests. Therefore, it is
important to support lots of concurrent long-lived service
sessions.

To address the above requirements, we propose MISSA,
a middleware for easy development and provision of the
stream-based services. MISSA includes a service model and
a runtime. The MISSA service model defines programming
interfaces and configurations to develop stream-based
services and specifies how to implement them. The MISSA
runtime provides a computing environment to run the
services developed according to the MISSA service model.

The MISSA service model has three key features for easy
service development and deployment. First, the MISSA
service model requires a service developer only to write a
service unit which includes service logic and a service
description. The service developer does not need to concern
about details of data stream processing such as stream source
binding, network I/O processing, and stream buffering.
Second, the service unit is developed without specifying data
stream sources. Through simple configuration, a service
provider can easily bind desirable sources for input of the
service unit. Third, the service developer only needs to
implement a single service unit regardless of execution
modes. The service provider can configure an execution
mode when activating the services.

The MISSA runtime has several unique characteristics.
Most important, the MISSA runtime is an abstraction layer
of managing data streams, which are essential for stream-
based services. It takes care of stream source binding,
network I/O processing, and stream buffering. Especially, the
MISSA runtime provides an efficient buffering mechanism.
For efficient stream buffering, the MISSA runtime
concentrates on two aspects. First, it supports various buffer
semantics for diverse needs of services, e.g., sampling
conditions on a data stream. Currently, we support three
types of buffering: buffering of recent N consecutive data,
the most recent data per distinct key value, and N recent data
per distinct key value. Second, the MISSA runtime supports
buffer sharing among services if the services exploit similar
data streams. The buffer sharing improves resource
utilization and avoids redundant data delivery.

MISSA is differentiated from the previous research on
data stream processing [1][2][3][4][5] in that MISSA
uniquely targets on facilitating development and provision of
generic stream-based services. The previous research
concentrates on developing new query models and prototype
systems for efficient processing of data streams. It is very
difficult to develop and run a generic stream-based service
by only using the declarative continuous query languages
and stream processing engines (SPEs). Most value-added
services need complex computation logic beyond query
operations such as selection and join. For example, a best
route finding service needs a Dijkstra’s shortest path
algorithm which is infeasible to be expressed in the query
language. MISSA is designed to provide more value-added
services beyond the query operations provided. We envision
that the role of the SPEs will be data processing and the role
of MISSA will be service provisioning. MISSA and the

SPEs will be complementary to each other for proliferation
of the stream-based services.

The rest of the paper is organized as follows. Section II
describes a motivating example. Section III briefs the
architectural overview of MISSA. Section IV explains the
MISSA service model in detail. Section V presents the
design of the MISSA runtime. Section VI presents our
current implementation and experimental results. Finally,
Section VII discusses the related work and Section VIII
concludes the paper.

II. MOTIVATING EXAMPLE
Data streams in various contexts bring unprecedented

opportunities to create useful services. There already have
been several example scenarios of stream-based services
such as supply chain management [5], emergency medical
service [18]. We strongly believe that the stream-based
services will be widely required in the near future as
continuous and real-time data collection becomes available.
This section discusses an example of traffic information
service in greater detail and motivates the need for MISSA.

Traffic information services provide traffic data of a
certain region such as average speeds of road segments,
events on roads, and weather information for numerous users
through car navigation systems or web. Currently, many
commercial services [19][20][21] providing traffic
information have already become popular in daily life and
proved their usefulness. In the near future, these services will
utilize more fine-grained and real-time traffic data streams
from RFIDs and sensors deployed on the roads and cars
equipped with GPS to generate precise and value-added
information. For example, a best route finding service will
predict the most appropriate path for users based on real time
road condition, weather, and current events obtained from
sensors and various devices.

To develop such a service, a service developer will
encounter new challenges. For empirical data, we actually
implemented a simple best route finding service over
simulated traffic data streams. Table I describes the
implemented components for the service and their code sizes.
First, traffic stream resolver contacts a stream source and
requests for necessary data. In our example, the stream
source sends a tuple of (road_id, segment_id, direction,
speed) every 0.1 second. Network I/O handler receives those

TABLE I. LINES OF CODE (LOC) OF COMPONENTS FOR A BEST
ROUTE FINDING SERVICE

Service components Lines of Code

Traffic stream resolver 10

Network I/O handler 196

Buffer manager 118

Etc. (server module, instance handler …) 103

Best route finding algorithm 169

Total 596

9393

tuples using non-blocking I/O and transfers them to the
buffer manager. In many cases, network I/O handler is not
easy to implement since variable size tuples are continuously
inputted from multiple sources. Also, naïve I/O mechanism
may defer the service delivery by blocking other components.

The best route finding algorithm requires an average road
speed of every road segment to generate complete and
correct result. Thus, the buffer manager buffers recent tuples
for every road segment. The efficient collection and updates
of the required data entail much effort on a developer due to
the variable and high rates of data streams. Besides handling
data streams, we should also consider continuous executions
of the algorithm to serve a user who requires real-time
updates of new best paths. In addition, it is troublesome to
implement supplementary code for server functionality to
deal with concurrent multiple users. In the table, the core
algorithm is only a small part of entire service; it converts
data in the buffer into graphs representing a map and
computes the best route. Note that the large part of the
service is taken by the components for traffic data retrieval,
network I/O, and data buffer management.

These technical difficulties put heavy burden on a service
developer even for the creation of the simple best route
finding service. To alleviate the difficulties and expedite the
implementation process, system-level support is highly
desirable. Motivated by the needs, we design MISSA service
model and runtime, which significantly accelerates and ease
the service development and provision.

III. ARCHITECTURE OVERVIEW
Fig. 1 shows the overall architecture of MISSA.

Externally, MISSA interacts with four parties. They are
service developers, service providers, users, and data stream
sources. The service developers write service logic of a
stream-based service according to the MISSA service model.
The service providers host a computing node to provide the
stream-based service for users. They couple the service logic

developed by the service developers and appropriate data
stream sources to make the service logic executable. Note
that we separate the role of the service developers from the
service providers although the service providers can play a
role of service development. This is advantageous to the
service providers because they can reuse the service logic
developed by the third-party service developers. As a result,
the service provider can quickly build new services reusing
existing service logic and provide them to the users.

The users request the services provided by the service
providers and receive their responses. The data stream
sources provide various data streams such as location data
streams and traffic data streams to the service providers. We
envision that the sources will be the third-party entities
independent of the service providers. Currently, service
providers and data sources are tightly coupled in general.
That is, the service providers have their own data sources
used for service provision. However, in the near future, data
sources will be pervasive. It will be a new business
opportunity to independently provide data for various
services. Thus, it is important to consider the data sources
separately from the service providers and to support the
service development and deployment in such an environment.
We assume that the sources are able to process continuous
queries over raw data streams generated by sensors or mobile
devices. Stream processing engines or sensor proxies are
examples of the sources.

MISSA includes the MISSA service model and the
MISSA runtime. The MISSA service model defines how to
implement service logic. In addition to the service logic, it
specifies three configuration scripts, each of which is written
by the service developer, service provider, and stream
sources, respectively for easy coupling of services with
sources and simple service provision. The MISSA runtime is
a computing environment that hosts the stream-based
services developed in conformity with the MISSA service
model. It is comprised of three major components – Service

Figure 1. Overall architecture of MISSA.

9494

Deployer, Stream Handler, and Service Operator. The
Service Deployer takes charge of the functions to register the
services developed by the service developer and deploy the
services configured by the service provider. The Stream
Handler interacts with the data stream sources to receive the
data streams necessary for the services. The Service Operator
computes service logic in order to respond to the users. In the
following sections, we describe the MISSA service model
and present the design of the MISSA runtime in detail.

IV. MISSA SERVICE MODEL
In this section, we detail our novel service model for

stream-based services, which maximizes reusability and re-
configurability of the services. There are three design
principles of the MISSA service model. First of all, our
model clearly separates the roles of participating parties:
service developers, data stream sources, and service
providers. Secondly, it supports dynamic binding of service
logic and data stream sources at runtime with description
languages. Finally, it allows the service developers to write
service logic independently of data stream sources and
execution modes. Based on these principles, we design the
MISSA service model that consists of three components:
Service Unit (SU), data stream source, and Runnable Service
Unit (RSU). Fig. 2 shows the components and their
relationship.

The role of a service developer is to create a SU that
includes service logic and a Service Unit Description
Language (SUDL) file which describes the service logic.
Since the SU and its required runtime parameters are coupled
not in the development phase but in the execution phase, the
SU can be easily reused. Data stream source providers write
and advertise Stream Source Description Language (SSDL)
files which describe the semantics of their data streams. The
SU can be bound to any data stream source whose data
stream semantic conforms to the input semantic of the SU.
The binding is not hard coded so that it is easy to select and
replace data stream sources. A service provider writes a
Service Unit Activation Language (SUAL) file which
specifies a SU, SSDLs, and the runtime parameters in order
to provide a stream-based service. Based on the specified
information, the MISSA runtime binds the SU and data
stream sources described in the SSDLs. Then, it operates the
stream-based service according to the runtime parameters.
Since the binding and the runtime parameters can be re-
configured in the execution phase, the services can be
flexibly operated.

A. Service Unit (SU)
1) Service Logic (SL)

SL is the core business logic of a stream-based service.
Service developers can make the SL by implementing
ServiceLogic interface as shown in Fig. 3. There are five
abstract functions to implement: init(), uninit(), process(),
getBufferSemantic(), and tupleHandler(). These functions are
classified into two groups. The first three functions are
related to service execution, the others are related to data
stream handling.

For the service execution, init() handles initialization of
member variables or resource allocation which are
performed at the beginning of the service execution.
process() expresses main service logic to generate responses.
uninit() is in charge of cleaning up or releasing resources at
the end of the service execution.

For the data stream handling, getBufferSemantic()
specifies the semantics of buffer which service logic requires.
Return value of the function includes a type of buffer
semantic and corresponding parameters such as maximum
buffer size and key attributes. Currently, the MISSA service
model supports three types of buffer semantics. They are
recent N tuples ordered by their arrival times (BUFSEM_1),
tuples categorized by their key attributes (BUFSEM_2), and
recent N tuples categorized by their key attributes
(BUFSEM_3). tupleHandler() specifies how to update data
tuples in the buffer into data structures such as lists or trees
used in process(). The update of the data tupes is
automatically performed by the MISSA runtime.
Additionally, the MISSA service model provides MISSA
Data Stream Connectivity (MDSC) API which has the same
functionality as a standard SQL database access interface
such as JDBC API. Using the API, service developers can
access and retrieve data as if they are programming over
persistent databases.

With the implemented functions, the MISSA runtime
runs the service as follows. At first, it invokes init() for
service initialization. During the initialization, the runtime

Figure 2. Components of the MISSA service model.

public abstract interface ServiceLogic {

 // constants
 public static final int BUFSEM_1 = 0x00000001;
 public static final int BUFSEM_2 = 0x00000002;
 public static final int BUFSEM_3 = 0x00000003;

 // functions related to service execution
 public abstract boolean init();
 public abstract boolean uninit();
 public abstract Object process(Object[] userParam);

 // functions related to data handling
 public abstract Object getBufferSemantic();
 public abstract boolean tupleHandler(Object[] tuple);

}

Figure 3. Service Logic interface.

9595

prepares buffers required by the service, whose semantic is
obtained by calling getBufferSemantic(). While running a
service, process() is invoked after calling tupleHandler()
whenever a tuple arrives in a push mode. In a pull mode,
process() is called after tupleHandler() is called over all
currently buffered tuples upon receiving a user request.
When finishing the service, uninit() is called by the runtime
for service termination.

2) Service Unit Description Language (SUDL)
SUDL is an XML file which describes a SU. It contains a

service name, an input schema, an output schema, user
parameters, and all other related information about the SU.
The input schema represents the schema of data streams
which the SL expects to receive, and the output schema
stands for the schema of processed results which the SL
generates. Service providers refer the SUDL file when using
the SU, just like accessing the Web Service Definition
Language (WSDL) [12] file in Web Services. Fig. 4 depicts
an example of SUDL.

B. Stream Source Description Language (SSDL)
The SSDL file represents information of a data stream

source. It contains the name, location, and data stream
schemas of the data stream source. We assume that the
SSDL is registered in a central registry such as UDDI [13] or
distributed registry [15][16][17]. Service developers/
providers can search the registry and access appropriate
stream sources they need to use. Fig. 5 shows an example of
SSDL.

C. Service Unit Activation Language (SUAL)
SUAL acts like glue which associates a SU and SSDLs.

It contains the location of the SU, the locations of the SSDL
files, the queries that will be imposed on the data streams
specified in the SSDLs, and execution mode. It is the queries

that link the SU and the input data streams. The schemas of
the query results should match the input schemas described
in the SUDL file. It is like specifying appropriate arguments
when we call a function. The execution mode defines in
which mode the service will be executed. There are three
options for the execution mode – push, pull, and both. Fig. 6
illustrates an example of the SUAL.

V. MISSA RUNTIME
This section describes the architecture of the MISSA

runtime. First, we show the internal component design of the
MISSA runtime and the processing flow among the
components. Then, we present several issues of the
components in detail.

A. Service Processing Flow
Fig. 7 depicts the three major components of the MISSA

runtime, sub-components, and their interactions. The Service
Deployer registers and activates the service units. The
Service Unit Handler (SUH) receives a service unit from a
service developer or a SUAL file from a service provider.
When it receives a service unit, it stores the service unit in
the Service Unit Registry (SUR) to enable service providers
to use the service unit. Upon receiving a SUAL file, the SUH
fetches the service unit specified in the SUAL file from the
SUR, and then passes it to the Service Unit Activator (SUA)
with the SUAL file.

<?xml version="1.0"?>
<streamSource>
 <name>Traffic Information</name>
 <description>......</description>
 <location>192.168.0.1:1234</location>
 <schema>
 <name>roadTraffic</name>
 <description>......</description>
 <element name="roadID" type="int"/>
 <element name="avgSpeed" type="int"/>
 <element name="timeStamp" type="time"/>
 </schema>
 <schema>
 <name>carTraffic</name>

 </schema>
</streamSource>

Figure 5. An example of SSDL.

<?xml version="1.0"?>
<runnableServiceUnit>
 <name>Activated Shortest Path Service</name>
 <description>......</description>
 <serviceUnit name="sps" location="./shortestPathService.jar"/>
 <dataStreamSource>
 <source name="s1" location="http://192.168.0.1/
avgRoadSpd.ssdl"/>
 <source name="s2" location="......"/>
 </dataStreamSource>
 <binding target="sps.input1" query="select roadID, timeStamp,
avgSpeed from s1.roadTraffic"/>
 <binding target="sps.input2" query="......"/>
 <executionMode type="push"/>
</runnableServiceUnit>

Figure 6. An example of SUAL.

<?xml version="1.0"?>
<serviceUnit>
 <name>Shortest Path Service</name>
 <description>......</description>
 <inputSchema>
 <name>input1</name>
 <description>......</description>
 <element name="id" type="int"/>
 <element name="time" type="time"/>
 <element name="averageSpeed" type="int"/>
 </inputSchema>
 <inputSchema>
 <name>input2</name>

 </inputSchema>
 <outputSchema>
 <description>......</description>
 <element name="id" type="int"/>
 <element name="time" type="time"/>
 <element name="averageSpeed" type="int"/>
 </outputSchema>
 <userParameter>
 <description>......</description>
 <element name="startPoint" type="string"/>
 <element name="endPoint" type="string"/>
 </userParameter>
 ……
</serviceUnit>

Figure 4. An example of SUDL.

9696

The SUA bootstraps a service unit in cooperation with
the Stream Handler (SH) and the Service Unit Instance
Manager (SUIM). The service bootstrapping includes three
actions – buffer creation, stream source connection, and
instance management initiation. For the buffer creation, the
SUA parses the queries in the SUAL file and passes the
schema information of the query results to the Buffer
Manager. Then, the Buffer Manager creates buffers
according to the schemas. For the stream source connection,
the SUA provides the Data Stream Receiver (DSR) with the
address of data stream sources and queries after interpreting
the SSDLs specified in the SUAL file. Then, the DSR
establishes connections with the sources and sends the
queries in order to receive data. When the buffers are created
and connections are established, the SUA signals the SUIM
to prepare service instance management. It also informs the
execution mode.

If a service unit is ready to execute, the Service Operator
serves user requests, while the SH updates data from the
sources. The User Request Handler (URH) receives the user
requests and forwards them to the Scheduler. The Scheduler
selects a request to serve and invokes the SUIM.
Subsequently, the SUIM executes a service instance with the
buffered data. After the execution, it delivers the result to the
user through the URH.

B. Issues in the Functional Components
The SUA has to resolve overlapping answers of queries

to reduce redundant transmission of data. For example,
answers of a query asking road-id, speed, and timestamp will
contain the answers of a query asking road-id, and speed.
Redundant transmission of these answers is inefficient in
terms of network I/O cost and memory consumption. To
address this problem, the SUA supports query merging as in
[14]. For this, it maintains a list of running queries. Upon a
new query, the SUA determines if the query has overlapping
answers with a query in the list. If so, it merges the query

with the existing query in the list. Also, it adjusts the running
query in the DSR and the corresponding buffer in the BM.
The detailed mechanism for the query merging is under
development.

The buffer manager allocates one buffer for each query,
and manages the buffered data according to the buffer
semantic specified in the service logic. It also updates the
buffered data to the service instances. For each update, the
BM dynamically transforms an incoming data tuple to the
input of the service logic through type conversion and
attributes mapping. Since one buffer is created for one query
in a service unit, the buffer is shared by multiple instances of
the service. This saves the memory consumed for stream
buffering.

The SUIM manages instances differently according to the
execution mode. Since push mode services retain
connections with users unlike pull mode services, we
consider push mode services are stateful and pull mode
services are stateless. For push mode services, the SUIM
creates an instance per user request to serve the request
during the specified life time. The instance is destroyed when
the life time expires. On the other hand, the SUIM manages
an instance pool and fetches an instance from the pool to
serve pull mode service requests. After a result generation, it
returns the instance back to the pool.

VI. IMPLEMENTATION AND EXPERIMENT

A. Implementation
We implemented an initial version of the MISSA runtime

with JAVA, which includes all core components described in
Section V. Among them, the Data Source Receiver (DSR) is
implemented using non-blocking I/O multiplexing to handle
multiple data streams efficiently. The Buffer Manager (BM)
is implemented with hash tables and linked lists to deal with
three buffer semantics. In the Service Unit Instance Manager

User Request Handler

Runtime
MonitorScheduler

Service Unit
Handler

Data
Stream

Receiver

Buffer
Manager

S
T
R
E
A
M

S
O
U
R
C
E

SU
Instance

SU
Instance

SUALService Unit

Service Unit
Registry

Service Deployer

Stream Handler

Service Operator

Service Unit
Instance Manager

Control flow
Data flow

Service Unit
Activator

User Request Handler

Runtime
MonitorScheduler

Service Unit
Handler

Data
Stream

Receiver

Buffer
Manager

S
T
R
E
A
M

S
O
U
R
C
E

SU
Instance

SU
Instance

SUALService Unit

Service Unit
Registry

Service Deployer

Stream Handler

Service Operator

Service Unit
Instance Manager

Service Unit
Instance Manager

Control flow
Data flow

Service Unit
Activator

Figure 7. The MISSA runtime.

9797

(SUIM), a thread pool is used to avoid unnecessary thread
creation and termination.

As an example service, we adopted the best route finding
service described in Section II. For comparison, we
implemented the service in two types: the service based on
MISSA (w/ MISSA service) and the service without MISSA
(w/o MISSA service). Note that the w/o MISSA service is
different from the w/ MISSA service in that it creates a
buffer and a connection with a data source upon each user
request. To serve user requests, both services run Dijkstra’s
shortest path algorithm upon an incoming data tuple. We
made a simple data generator and a user request generator for
experiments. The data generator sends data streams in a
configured rate, and the user request generator issues
multiple requests at the same time.

B. Experimental Setup
The services run on the machine equipped with a 1.81

GHz CPU, 512MB RAM and Window XP. The data
generator and the user request generator run on the machine
equipped with a 2.4 GHz CPU, 256MB RAM and Linux.
The machines are connected via 100Mbps link.

We evaluate the benefits of MISSA in two aspects:
convenience of development and efficiency of service
operation. We measure lines of code (LOC) to show the
convenience of development. For efficiency metrics of the
MISSA runtime, we measure buffer size and processing
delay as functions of the number of concurrent requests and
data rates. The buffer size is the number of data tuples in the
buffers of each service, and the processing delay is the
average time taken to generate a result upon an incoming
data tuple.

C. Experimental Results
1) Convenience of Development

Table II shows LOC of two services. The total LOC of
the w/ MISSA service is only 31.2% of the w/o MISSA
service. The difference is caused since the w/o MISSA
service contains more code for connection and buffer
management in addition to the service logic. To write such
code, specific knowledge on low-level system details and
socket-level network programming is required. Generally, it
is much more complicated to develop such parts compared to

0

100

200

300

400

500

30 60 90 120 150 180
of concurrent requests

pr
oc

es
si

ng
 d

el
ay

 (m
s)

w/o MISSA

w/ MISSA

Figure 8. Processing delay over the number of concurrent requests.

0

50

100

150

200

250

30 60 90 120 150 180
of concurrent requests

bu
ff

er
 si

ze

w/o MISSA

w/ MISSA

Figure 9. Buffer size over the number of concurrent requests.

TABLE II. LINES OF CODE (LOC) OF TWO SERVICES

 w/o MISSA w/ MISSA

Network I/O 206 0

Buffering 118 0

Etc. 103 0

Service Logic 169 186

Total 596 186

0

100

200

300

400

500

10 20 30 40 50
data rate (tuples/sec)

pr
oc

es
si

ng
 d

el
ay

 (m
s)

w/o MISSA

w/ MISSA

Figure 10. Processing delay over data rate.

0

50

100

150

200

250

10 20 30 40 50
data rate (tuples/sec)

bu
ff

er
 si

ze

w/o MISSA

w/ MISSA

Figure 11. Buffer size over data rate.

9898

the service logic. Since the MISSA runtime takes charge of
all those burdens, the w/ MISSA service only contains the
service logic. Although MISSA requires the developers to
follow the MISSA service model, e.g., writing SUDL files,
those jobs are relatively simple and can be automated. Thus,
the developers can concentrate on the service logic.

2) Efficiency of Convenience of Development
We measured processing delay and buffer size while

varying the number of concurrent requests. The number of
concurrent requests was increased from 30 to 180 and the
data rate was fixed to 10 tuples per second. Fig. 8 and Fig. 9
show the experimental results.

Both services show acceptable processing delay and
small buffer size until the number of concurrent requests
reaches 120. The processing delay slightly increase as the
number of concurrent requests grows, ranging from 90 ms to
160 ms. Buffer size also grows similarly, however, the rate
of increase of the w/o MISSA service is faster than that of
the w/ MISSA service.

When the number of requests exceeds 120, the w/o
MISSA service reaches the limit of processing capacity.
Thus the processing delay and the buffer size increase
exponentially. The w/o MISSA service performs poorly
since it maintains a separate buffer and a data source
connection for each user request. The buffer size increases
since duplicate data are maintained in individual buffers.
Since more data have to be processed, the processing
capacity is reached earlier. On the other hand, the w/ MISSA
service handles up to 150 concurrent requests since it shares
the data source connection and the buffer.

We measured processing delay and buffer size while
varying the data rates. The data rate was increased from 10 to
50 data tuples per second and the number of concurrent
requests was fixed to 50. The results are depicted in Fig. 10
and Fig. 11. Similar to the above result, the w/ MISSA
service exhibits better processing capacity due to the sharing
effect. Tolerating high data rate is desirable since numerous
data stream sources will generate data at high data rate in a
real environment.

Table III shows processing capacities of two services.
We assume that a service exceed the capacity when the
processing delay is longer than 1000ms. The w/ MISSA
service stably supports 21% more requests and 52% faster
data rate compared to the w/o MISSA service. The
performance gap between two approaches will grow as the
sharing effect increases.

VII. RELATED WORK
Extensive research on data stream processing and its

application has been conducted [1][2][3][4][5]. In Aurora [1],
TelegraphCQ [2], STREAM [3] project, they proposed new
query models and stream processing engines (SPEs). A
common feature of the proposed SPEs is to process
continuous queries over voluminous data streams in an
adaptive and resource efficient manner. However, there has
not been much effort to support for easy development of
generic stream-based services. Most value-added services
need complex computation logic beyond query operations
such as selection, join, and aggregation. MISSA targets on

simplifying development and provision of generic stream-
based services beyond the query operations. We envision
that MISSA and the SPE will be complementary to each
other for proliferation of stream-based services.

For developing and executing context-sensitive
applications, iQueue has been proposed. It includes a data
composition framework [6] and a programming language for
such applications [7]. iQueue targets on the applications
based on networked pervasive data sources which are
intermittent and heterogeneous. Thus, iQueue mainly
supports continuous discovery and binding of the proper data
sources. In contrast, MISSA targets on the environment
where data streams are voluminous and rapidly incoming. In
order to hide the complex management of such data streams,
MISSA separates the stream processing from service logic; it
supports efficient data stream management, e.g., data stream
buffering. In addition, MISSA concentrates on reusability
and re-configurability for the stream-based services, which
iQueue does not mainly deal with.

As popular service platforms, Web Services [24], J2EE
[9] and OSGi [8] are widely used. They provide standardized
and component-based computing environments for
networked services. However, they are not feasible solutions
to emerging stream-based services. Data streams are not
considered as input for services so that they lack in system
support such as stream handling and diverse execution
modes support. Although they do not target on the stream-
based services, integrating the features of MISSA into the
service platforms will broaden their application areas.

There have been much research efforts to develop
efficient publish-subscribe systems such as Gryphon [25],
Siena [26], Sieve [27], and SemCast [28]. Also, there have
been standardization activities for publish-subscribe
middleware systems such as OMG Data Distribution Service
(DDS) standard specification [29] and commercial products
based on the specification [30][31]. Publish-subscribe
systems enable data dissemination among multiple data
producers and data consumers. They create data distribution
paths regarding different consumers’ interests and network
conditions, supporting content-based data filtering. They
have been applied to a variety of application domains
[32][33]. While these systems mainly focus on construction
and maintenance of distributed data dissemination networks,
MISSA concentrates on providing a development and
execution environment for services based on continuous data
streams. MISSA automatically loads or removes application
service instances upon user requests, runs the instances
according to its execution mode, and enable buffer sharing
among the instances.

Finally, we give an overview of the previous works on
middleware to support applications with data streams. It
includes Grid-based distributed data stream processing

TABLE III. PROCESSING CAPACITY OF TWO SERVICES

w/o MISSA w/ MISSA
Maximum number of
concurrent requests 137 166

Maximum data rate
(tuples per sec) 31.3 47.6

9999

middleware and RFID middleware. In GATES project [10],
they proposed a Grid-based middleware for applications
requiring real-time analysis of data streams from distributed
sources. GATES employs an adaptation algorithm to analyze
data with the highest accuracy while meeting a real-time
constraint. However, they do not consider how to deal with
various challenges in developing and providing the stream-
based services. Auto-ID center proposed a specification for
RFID middleware, Savant [11], and some companies
introduced commercial RFID middleware. The RFID
middleware continuously obtains RFID tag data through
RFID readers and forwards processed data to applications.
The main focus of the RFID middleware is to correct
erroneous data and reduce the large volume of data through
the operations such as filtering, counting and aggregation.
The RFID middleware concentrates on low level data
processing rather than high level support for generic stream-
based services.

VIII. CONCLUSION
Data streams generated by lots of sensors or mobile

devices envision the prevalence of stream-based services.
However, there was little consideration for the development
and provision of stream-based services. This motivates us to
design a novel middleware, MISSA that facilitates the
development and provision of stream-based services. In this
paper, we presented the essential requirements of stream-
based services and described them through the best route
finding service example. To meet the requirements, we
proposed the MISSA service model that facilitates the
development of stream-based services and the MISSA
runtime that operates the services efficiently. Our
experimental results show that our service model and
runtime is greatly advantageous.

REFERENCES
[1] D. Carney, et al., “Monitoring Streams: A New Class of Data

Management Applications,” Proc. VLDB, Hong Kong, August 2002.
[2] Sirish Chandrasekaran, et al., “TelegraphCQ: Continuous Dataflow

Processing for an Uncertain World,” Proc. CIDR, January 2003.
[3] R. Motwani, et al., “Query Processing, Resource Management, and

Approximation in a Data Stream Management System,” Proc. CIDR,
January 2003

[4] A. Arasu, S. Babu, and J. Widom, “The CQL Continuous Query
Language: Semantic Foundations and Query Execution,” Stanford
Technical Report, 2003

[5] M. Franklin, et al., “Design Considerations for High Fan-in Systems:
The HiFi Approach,” Proc. CIDR, 2005

[6] Norman H. Cohen, et al., “iQueue: a pervasive data-composition
framework,” Proc. MDM, Singapore, January 2002, pp. 146-153.

[7] Norman H. Cohen, et al., “Composing pervasive data using iQL,”
Proc. WMCSA, New York, June 2002, pp. 94-104.

[8] OSGiTM Alliance, “OSGi Service Platform Release 4,”
http://www.osgi.org/Specifications/HomePage

[9] Java 2 Platform, Enterprise Edition (J2EE),
http://java.sun.com/j2ee/index.jsp

[10] L. Chen, et al., “GATES: A Grid-Based Middleware for Distributed
Processing of Data Streams,” Proc. HPDC, Hawaii, June 2004.

[11] Sean Clark, et al., “Auto-ID Savant Specification 1.0,”
http://www.rfida.com/nb/autosavant.htm

[12] Web Service Definition Language, http://www.w3.org/TR/wsdl
[13] Universal Description, Discovery and Integration,

http://uddi.xml.org/uddi-org/
[14] Arturo Crespo, Orkut Buyukkokten, and Hector Garcia-Molina,

“Query Merging: Improving Query Subscription Processing in a
Multicast Environment,” Proc. ICDE, 2003.

[15] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet
applications,” Proc. the ACM SIGCOMM, August 2001.

[16] Java Naming and Directory Interface (JNDI).
http://java.sun.com/products/jndi/

[17] P. Mockapetris, “Domain Name Standard: RFC 1034,” November
1987.

[18] J. Shneidman, et al., “Hourglass: An Infrastructure for Connecting
Sensor Networks and Applications,” Harvard Technical Report TR-
21-04, 2004

[19] MBC idio, http://i-dio.imbc.com/
[20] RealTraffic Technologies, http://www.realtraffictech.com/
[21] San Diego Area Traffic Report,

http://www.dot.ca.gov/dist11/d11tmc/sdmap/mapmain.html
[22] Chun-Te Wu and Hsing Mei, “Location-Based-Service Roaming

Based on Web Services,” Proc. the 19th International Conference on
Advanced Information Networking and Applications, 2005, pp. 277-
280.

[23] Aloizio P. Silva and Geraldo R. Mateus, “Location-Based Taxi
Service in Wireless Communication Environment,” Proc. the 36th
Annual Simulation Symposium, 2003.

[24] Web services, http://www.webservices.org
[25] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R. Strom, and

D. Sturman, “An Efficient Multicast Protocol for Content-based
Publish-Subscribe Systems,” Proc. ICDCS, 1999.

[26] A. Carzaniga, M. Rutherford, and A. Wolf, “A Routing Scheme for
Content-based Networking,” Proc. IEEE INFOCOM, 2004.

[27] S. Ganguly, S. Bhatnagar, A. Saxena, R. Izmailov, and S. Banerjee,
“A Fast Content-Based Data Distribution Infrastructure,” Proc. IEEE
INFOCOM, 2006.

[28] O. Papaemmanouil, and U. Cetintemel, “SemCast: Semantic
multicast for content-based data dissemination,” Proc. IEEE ICDE,
2005.

[29] Object Management Group (OMG), “Data Distribution Service for
Real-Time Systems (DDS), version 1.2,” http://www.omg.org/

[30] Real-Time Innovations, Inc., “RTI Data Distribution Service,”
http://www.rti.com/

[31] OpenSplice, “OpenSplice DDS,”
http://www.opensplice.com/

[32] Eduardo R. B. Marques, Gil M. Gonçalves, João B. Sousa, “The use
of real-time publish-subscribe middleware in networked vehicle
systems,” Proc. IFAC Workshop on Multivehicle Systems, 2006.

[33] Marco Ryll and Svetan Ratchev, “Application of the Data
Distribution Service for Flexible Manufacturing Automation,”
International Journal of Mechanical, Industrial and Aerospace
Engineering, 2:3, 2008.

100100

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	7-2010

	Design and Implementation of a Middleware for Easy Development and Provision of Stream-based Services
	Seungwoo KANG
	Youngki LEE
	Sunghwan IHM
	Souneil PARK
	Su-Myeon KIM
	See next page for additional authors
	Citation
	Author

	Design and Implementation of a Middleware for Development and Provision of Stream-Based Services

