
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

6-2011

High-Performance Composite Event Monitoring
System Supporting Large Numbers of Queries and
Sources
Sang Jeong LEE
KAIST

Youngki LEE
Singapore Management University, YOUNGKILEE@smu.edu.sg

Byoungjip KIM
KAIST

K. Selcuk CANDAN
Arizona State University

Yunseok RHEE
Hankuk University of Foreign Studies

See next page for additional authors

DOI: https://doi.org/10.1145/2002259.2002280
Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

Part of the Software Engineering Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
LEE, Sang Jeong; LEE, Youngki; KIM, Byoungjip; CANDAN, K. Selcuk; RHEE, Yunseok; and SONG, Junehwa. High-Performance
Composite Event Monitoring System Supporting Large Numbers of Queries and Sources. (2011). DEBS '11: Proceedings of the 5th
ACM International Conference on Distributed Event-Based Systems: New York, July 11-15, 2011. 137-148. Research Collection School Of
Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/2081

https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2081&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2081&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2081&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1145/2002259.2002280
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2081&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2081&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Author
Sang Jeong LEE, Youngki LEE, Byoungjip KIM, K. Selcuk CANDAN, Yunseok RHEE, and Junehwa SONG

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/2081

https://ink.library.smu.edu.sg/sis_research/2081?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2081&utm_medium=PDF&utm_campaign=PDFCoverPages

High-Performance Composite Event Monitoring System
Supporting Large Numbers of Queries and Sources

SangJeong Lee, Youngki Lee, Byoungjip Kim, K. Selçuk Candan*,
Yunseok Rhee§, Junehwa Song

Korea Advanced Institute of
Science and Technology

Computer Science Department

{peterlee, youngki, bjkim,
junesong}@nclab.kaist.ac.kr

 *Arizona State University
School of Computing, Informatics,
and Decision Science Engineering

candan@asu.edu

§Hankuk University of Foreign Studies
School of Electronics and
Information Engineering

rheeys@hufs.ac.kr

ABSTRACT
This paper presents a novel data structure, called Event-centric
Composable Queue (ECQ), a basic building block of a new
scalable composite event monitoring (CEM) framework, SCEMon.
In particular, we focus on the scalability issues when large
numbers of CEM queries and event sources exist in upcoming
CEM environments. To address these challenges effectively, we
take an event-centric sharing approach rather than dealing with
queries and sources separately. ECQ is a shared queue, which
stores incoming event instances of a primitive event class. ECQs
are designed to facilitate efficient shared evaluations of multiple
queries over very large volumes of event streams from numerous
event sources. ECQs are composable and form a single shared
network within which multiple queries are simultaneously
evaluated. In this paper, we present efficient shared processing
techniques operating on top of the proposed shared ECQ network.
The performance evaluation shows that the proposed approach
achieves a high level of scalability compared to conventional
separate processing approaches in large-scale CEM environments.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval – Information filtering; H.2.4 [Database
Management]: Systems – Query processing

General Terms: Algorithms, Performance, Design.

Keywords: Composite Event Monitoring, Scalable Processing,
Event Streams.

1. INTRODUCTION
Efficient monitoring of composite events over large volumes of
event streams is critical in many application domains, including
product management [1], network monitoring [2], stock market
analysis [3], and traffic monitoring [4]. In many applications, a
multitude of composite event monitoring (CEM) queries are
registered and all of them are simultaneously monitored by the
system over the same event streams. Previous research in

composite event detection, however, has focused on optimizing
the monitoring of individual queries [1][3][5]. We note that
optimizing system resources “separately” for each query has
inherent limitations when the system needs to deal with large
numbers of simultaneous queries and event sources. Thus, we
propose a novel scalable CEM framework that efficiently
evaluates in a “shared” manner large numbers of CEM queries
against input streams from numerous event sources.

Challenges. CEM frameworks are often confronted with the
scalability challenges that arise from the presence of very large
numbers of (a) simultaneous CEM queries and (b) event sources.
For example, to identify effective advertising targets, a credit card
company may want to identify card holders following certain
purchasing event patterns of many diverse scenarios such as
couple dating, sporting events, shopping sprees, travel, etc. Each
of these cases would be represented as a multitude of CEM
queries registered in the system and they all would be tracked
simultaneously over the stream of credit card transaction events.
In a metropolitan city, there often exist thousands of purchasing
patterns of interest as well as millions of credit card holders.

A straightforward approach to process simultaneous CEM queries
is to evaluate these individual queries separately [1][3][5]. Figure
1-(a) describes the approach using multiple CEM queries. In this
setup, given a set of CEM queries, as many query processing
plans need to be created and evaluated. Moreover, incoming event
instances need to be delivered to the relevant plans and possibly
stored in each plan for later query evaluation. It is obvious that
such an approach would be extremely wasteful: Although there
are common events engaged in multiple processing plans, their
storage and computation cannot be shared effectively across
different plans. Processing times would then increase with the
number of queries and input rates. Moreover, the approach would
require considerable storage space to hold incoming instances and
intermediate states for each plan; this would make high-
performance in-memory processing of large-scale CEMs difficult.

Recently, the researcher community started considering multiple
event sources. Yet, effective approaches dealing with very large
numbers of sources are elusive. Wu et al. showed that in non-
deterministic finite automata (NFA) based CEMs, unnecessary
state transitions can frequently occur when there are different
event sources [1]. To tackle this challenge, they partition stacks of
event instances for separate processing of individual sources. Note
that there exist separate stacks partitioned for different sources in
the processing plan of query Q1 in Figure 1-(a). However, when
the number of sources is very large, this implies that a large

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DEBS’11, July 11–15, 2011, New York, New York, USA.
Copyright 2011 ACM 978-1-4503-0423-8/11/07…$10.00.

137

number of separate stacks need to be created, resulting in severe
storage and management overheads.

Proposed Solution. In this paper, we take an event-centric
sharing approach to address the inefficiencies due to duplicated
data structures and separate processing of conventional CEMs
when supporting large numbers of queries and sources. Our
approach is based on the idea that a primitive event, specified
commonly in multiple queries, can be shared for efficient
processing and storage. Moreover, all incoming instances of a
given event class, regardless of their sources, can be stored and
handled together within a shared storage, e.g. a queue. Based on
the composition patterns of all registered CEM queries, these
shared queues can form a single shared network in which
processing and storage for each primitive event class are
inherently shared by all relevant queries. For instance, Figure 1-
(b) illustrates the key idea of the proposed approach; the queues
are shared by two event sources as well as two CEM queries. The
comprehensive discussion on Figure 1 will be given in Section 3.

Our Contributions. Based on the observations of shared
processing opportunities, we develop a new scalable composite
event monitoring (CEM) framework, SCEMon. SCEMon, in its
core, is an automata-based architecture; but it consists of data
structures and algorithms that are designed to maximize event and
sub-pattern sharing across multiple queries as well as sources. The
contributions of this paper can be summarized as follows:

· We explore the scalability problem arising in large-scale CEM
environments. We investigate the performance of conventional
separate processing schemes and explore inherent limitations
when dealing with large numbers of queries and sources.

· We then propose a novel data structure, event-centric
composable queue (ECQ), that enables efficient shared
processing of large numbers of simultaneous queries and event
sources. An ECQ is a shared queue storing incoming event
instances of a primitive event class. For each primitive event
class, only a single ECQ is allocated and is shared by multiple
CEM queries. ECQs are composed flexibly within a single
shared network to support the diverse composition semantics
of the queries. Each ECQ is also shared by all event sources.
This design substantially reduces processing and storage
overhead necessary to manipulate intermediate results for each
query and event source separately.

· On top of this sharable data structure, we develop a suit of
efficient shared processing techniques including event instance

sharing, sub-pattern sharing, and partial matching block
(PMB) reduction. These techniques are brought together in
SCEMon which localizes each instance manipulation on a
corresponding ECQ and a few adjacent ECQs, and evaluates
CEM queries incrementally with each subsequent event
instance. SCEMon supports various types of composite event
patterns such as sequence, conjunction and disjunction.

· We experimentally demonstrate that relying on the novel data
structures and shared processing techniques, the scalability
issues can be tackled effectively. The performance results of
our extensive evaluation show the competitive performance of
SCEMon against conventional CEM approaches.

The rest of the paper is organized as follows: Section 2 introduces
related work. Section 3 discusses the proposed approach of
SCEMon in comparison to conventional approaches. Section 4
presents the data structure of ECQ and Section 5 describes the
shared processing techniques using ECQs. Section 6 gives the
performance cost analysis. Section 7 discusses the experimental
results for performance, and finally Section 8 concludes the paper.

2. RELATED WORK
Event monitoring systems have evolved and been expanded for
diverse application domains, online transaction logs [8], built-in-
sensor reporting in a building [9], RFID readings in a market [1]
and stock trading [3]. The current approaches can be roughly
classified into automata-based complex event management
systems, such as SASE [1] and Cayuga [5], Petri Net-based
systems like SAMOS [6], event tree-based systems, such as
Sentinel [7] and ZStream [3], and event graph-based systems
including InfoFilter [10].

There have been continuous research efforts to improve the
performance of CEMs. SASE [1][11] extends non-deterministic
finite automata (NFA) to deal with multiple event sources.
Cayuga [5], also NFA-based, focuses on efficient predicate
evaluation using indices along with automata transition.
Recognizing that NFA-based CEMs are limited to sequential
patterns due to the explicit state transitions of NFAs, ZStream [3]
takes an event tree-based approach to support rich composition
semantics such as concurrent events or negated events that should
not occur. It provides the cost model for different composition
patterns and the optimization technique to search for an optimal
evaluation plan. Akdere et al. also develop the event graph-based
CEM across distributed event nodes [2]. They generate multi-step
event acquisition and processing plans that minimize event

0 2 31A B C

a1 b3 c5

c7

a4 b6 c9

s1:

s2:

...
s_
id

0 2-1 31-1
A B D

...

Q1:

Q2:

q_
id

a1 d2 b3 a4 c5 b6 c7 d8 c9 d10 TimeEvents
Source ID 1 2 1 1 1 12 2 2 2

...

ECQ[A]

ECQ[B]
ECQ[C]

ECQ[D]

a1(1)

b3(1)

a4(2)

c5(1)

b6(2)
c7(1)

d8(1)

c9(2)

d10(2) ECQ[...]

CEM Queries
Q1: A;B;C / Q2: A&B&D / ...

Equivalent
Processing

Plans

1-2

1-3

DB
D

B

...

 (a) Separate processing scheme (b) Event-centric sharing approach
Figure 1. “Separate processing” scheme vs. proposed “event-centric sharing” approach

138

transmission costs. However, conventional CEMs have difficulties
in dealing with large numbers of simultaneous queries and event
sources together. Most of them treat multiple queries and sources
separately; their main contributions are not to develop shared
processing techniques, but to optimize individual processing plans
per query and source. Such separate CEM processing may
potentially limit the scalability required for massive processing.

Previous works on multi-query optimization, e.g., predicate
indexing [5], sub-graph merging [10], and sub-event sharing [2]
can be considered as efforts to address the problem. However, it is
not straightforward to make the data structures of existing CEMs
be shared effectively, since they are still founded on NFAs or
event trees. A state in an NFA represents not only the current
event class but also the history of state transitions with past event
instances. Thus, the state can hardly be shared unless the state
transitions to the state from the beginning are identical between
different NFAs. Achieving performance benefits through sharing
would be moderate due to the rare chance of sharing. Since an
intermediate node in an event tree also designates partial
compositions, it can be rarely shared among multiple queries.

3. COMPOSITE EVENT MONITORING
The CEM semantics and language we adopt in this paper are
analogous to those used in other CEM systems [1][3][11]. Based
on the basic CEM notation, we present a common approach of
CEM processing and discuss the potential challenges in large-
scale CEM environments. Then, we introduce our event-centric
sharing approach dealing with such scalability challenges.

3.1 CEM Notation
We define primitive events as atomic occurrences of interest.
More precisely, we represent an incoming event instance as a
tuple <src_id, event_class, start_ts, end_ts, attrs[]>, where src_id
refers to the identifier of the event source, event_class refers to the
class that the instance belongs to, start_ts and end_ts refer to the
start and end timestamps of the event instance respectively, and
attrs[] refers to the list of attribute values.

On receiving primitive events, composite events are detected
from a collection of primitive and/or other composite events.
CEM queries associate primitive or composite events together to
form new composite events. The most frequently used
composition type sequence (A;B) finds the instances of event B
following the instances of event A within a specific time window.
Conjunction (A&B), i.e., concurrent events, denotes that event A
and event B occur within a specified time window in any orders.
Disjunction (A|B) means that either event A or event B occurs.
This is simply a union of the two event classes and, in its most
generic definition, no time constraints on the events are included.
The formal semantics of CEM queries with different patterns is
given in Table 1. The PATTERN clause specifies the type of
composition patterns such as sequence, conjunction, and
disjunction. The WITH clause presents a list of the event classes
that should occur to form the composite event. The WHERE
clause imposes predicates on event attributes while the WITHIN
clause describes the time window for the events.
Upon an input event instance, each CEM query can generate
different results depending on a selection mode. It can generate at
most one composite event instance which represents the most
recent composition of participating events. This can be considered
as a recent selection mode in active database among several
different composition modes [8]. An all selection mode is also

used frequently that generates all composite event instances
satisfying the monitoring conditions. SCEMon can support the
two modes; different output generation of SCEMon depending on
different selection modes is discussed later in Section 5.1.
CEM queries can be used to specify diverse purchasing event
patterns for credit card companies. CEM query 1 below presents
an example of a sequential pattern.

This query is intended to represent a particular purchasing event
pattern potentially related to “dating”, i.e., two seats purchased at
a theater (CNMA_A), meals for two at a restaurant (RSTR_B),
and some (but not too much) drinking at a bar (BAR_C). Note
that [symbol] means the condition of matching source ids among
incoming event instances.

CEM query 2 may represent a shopping pattern in an outlet mall.
Since the shopping order does not matter here, the query uses the
conjunction type. As discussed in [12], such queries can be handy
for shop managers who would like to send coupons or
advertisements to attract the customers who have not bought
brand goods sufficiently.

These types of queries open the opportunity for credit card
companies to advanced mobile advertising and business
promotions based on credit card holders’ purchasing patterns. A
large number of CEM queries can be created in various ways over
a given set of available purchasing event classes, and issued by

CEM query 2. Conjunction pattern
PATTERN Conjunction
WITH BRND_A, BRND_B, BRND_C
WHERE [symbol]
 BRND_A.payment + BRND_B.payment
 + BRND_C.payment < $200
WITHIN 1.5 hours

CEM query 1. Sequential pattern
PATTERN Sequence
WITH CNMA_A, RSTR_B, BAR_C
WHERE [symbol]
 $20 < CNMA_A.payment < $50 AND
 $80 < RSTR_B.payment < $120 AND
 BAR_C.payment < $50
WITHIN 5 hours

Table 1. Formal semantics of CEM queries
Given event instance stream, e_strm = (e1, e2, ..., ei, ...) – infinite series
Upon the arrival of ei= <src_id, event_class, start_ts, end_ts, attrs[]>,
each query generates composite event instances, c’s, satisfying the below conditions:

Pattern Query Language Monitoring Semantics

S
eq

ue
nc

e qry_seq:
PATTERN Sequence
WITH E1, E2, ..., En
WHERE [symbol]
WITHIN t_cond

c = <src_id, qry_id=qry_seq.id, start_ts, end_ts, (eM1,
eM2, ..., eMn)>, where

• c.src_id = ei.src_id = eMj.src_id for all 1 ≤ j ≤ n,
• eMj is an instance of the event class Ej for all 1 ≤ j ≤ n,
• eMj-1.end_ts ≤ eMj.start_ts for all 2 ≤ j ≤ n,
• c.start_ts = eM1.start_ts, c.end_ts = eMn.end_ts,
• (c.end_ts – c.start_ts) ≤ qry_seq.t_cond,
• eMn = ei, and
• " ek ' ek.src_id = ei.src_id and

c.start_ts < ek.start_ts ≤ ek.end_ts < c.end_ts.

C
on

ju
nc

tio
n qry_cnj:

PATTERN Conjunction
WITH E1, E2, ..., En
WHERE [symbol]
WITHIN t_cond

c = <src_id, qry_id=qry_cnj.id, start_ts, end_ts, (eM1,
eM2, ..., eMn)>, where

• c.src_id = ei.src_id = eMj.src_id for all 1 ≤ j ≤ n,
• eMj is an instance of the event class Ej for all 1 ≤ j ≤ n,
• c.start_ts = min({eMj.start_ts}) for all 1 ≤ j ≤ n,

c.end_ts = ei.end_ts = max({eMj.end_ts}) for all 1 ≤ j ≤ n,
• (c.end_ts – c.start_ts) ≤ qry_cnj.t_cond, and
• " ek ' ek.src_id = ei.src_id and

c.start_ts < ek.start_ts ≤ ek.end_ts < c.end_ts.

D
is

ju
nc

tio
n

qry_dsj:
PATTERN Disjunction
WITH E1, E2, ..., En

c = <src_id, qry_id=qry_dsj.id, start_ts, end_ts, (ei)>,
where

• c.src_id = ei.src_id,
• ei is an instance of the event class Ej for any 1 ≤ j ≤ n,
• c.start_ts = ei.start_ts, and c.end_ts = ei.end_ts

139

third-party advertising agencies or business owners to target their
own potential customers in mobile computing environments.

3.2 Query/Source-Separate Processing
A common approach to CEM processing involves developing
separate processing plans for individual queries and dealing with
individual sources separately in each plan; this is illustrated in
Figure 1-(a) with multiple CEM queries, i.e., Q1, Q2, etc. Such an
approach mostly takes full advantage of indices built over many
queries and sources. Upon an input event instance, it would
identify queries of interest (which involve an event class of the
instance in their patterns) by using the query index. For each
relevant query processing plan, it would search for the data
structure designated to an event source of the instance, evaluate
relevant composition transitions and store the instance and
intermediate evaluation results into the data structure if necessary.
Additionally, it would delete any obsolete stored instances from
query plans for efficient memory management.

For example, upon an input event instance b3 from source #1, the
approach would identify Q1 and Q2 using the ‘q_id’ index and
invoke the processing plans of Q1 and Q2 respectively. Each plan
would be evaluated with b3 and store it into the instance stacks
responsible for the corresponding source respectively. Note that
b3 is stored twice in the stacks of s1 in Q1 and Q2 plans. Later, it
would be deleted from each plan if it is determined to be no more
necessary for further processing.

In large-scale CEM environments, there may exist numerous
CEM queries of interest for each input event instance since a large
number of simultaneous queries are specified using a set of event
classes. In such cases, the same search, evaluate/store, and delete
operations may need to be invoked repeatedly many times and this
may result in very huge processing overheads. Specifically, the
processing cost is significantly influenced by the numbers of
queries and sources. First, the processing overhead caused by
search, evaluate/store, and delete operations are multiplied by the
number of the evaluated query plans which would substantially
increase with larger numbers of simultaneous queries. Second,
when there are a large number of event sources, the costs of the
individual operations can be significantly raised due to the severe
management overhead of numerous separate data structures
assigned for individual sources. Even with an index built on
source ids, searching for the data structure of a specific event
source mostly takes up O(log Ns) time1, where Ns is the number
of sources. Thus, “separate processing” schemes can hardly cope
with large-scale CEM environments.

3.3 Event-centric Sharing Approach
In this paper, our goal is to develop an efficient shared processing
approach that deals with such large numbers of simultaneous
CEM queries and event sources. SCEMon takes advantage of a
novel data structure, called ECQ, which manages all incoming
instances of a primitive event class together regardless of queries
and sources. SCEMon identifies a set of essential primitive event
classes for all queries, constructs a single network of
corresponding ECQs respectively taking each class in charge, and
evaluates all the queries simultaneously in conjunction with the

1 Due to the memory limit, the hash lookup with O(1) search time can

hardly be used in practical main-memory systems. Memory-efficient
tree-based hash tables could be used instead.

constructed network. Figure 1-(b) illustrates the proposed event-
centric sharing approach of SCEMon; it visualizes a shared ECQ
network where four ECQs are composed into two virtual
processing plans which are equivalent to the first two plans in
Figure 1-(a). Note that, in this example, upon arrival of b3 or b6,
Q1 and Q2 can be evaluated together by ECQ[B]. In essence, ECQ
enables multiple sources to easily share the processing for their
respective instances, and further enables multiple queries to
aggressively share their common processing.

Our event-centric sharing approach is especially advantageous
when there are many popular event classes of common interest
specified in registered CEM queries. Let us consider the mobile
advertising application discussed earlier and note that modern
cities have many hot spots such as popular shopping complexes
and multiplex cinemas. A large portion of CEM queries will
involve such hot places, and primitive events happening in the
places may trigger the evaluation of large numbers of
simultaneous CEM queries. SCEMon is expected to be highly
effective in such a scenario.

In addition, the proposed approach is highly beneficial in
monitoring long term patterns, where the processing tends to
rapidly increase the volume of intermediate evaluation results. For
example, human activity patterns of interest often involve long-
term processing for several hours or even days. Our sharing
approach can substantially reduce the amount of the intermediate
results, and thus makes the long-term processing more effective in
terms of storage consumption as well as computation.

4. EVENT-CENTRIC COMPOSABLE
QUEUE (ECQ)
As the basis of SCEMon, this section presents the data structure
of ECQ, and constructs the shared network of ECQs developed
for the efficient shared processing of SCEMon.

ECQ maintains three data structures shared instance queue (SIQ),
composition link table (CLT), and partial matching block (PMB).
Figure 2 illustrates the state of a specific ECQ, denoted as ECQi,
that deals with the k-th incoming event instance, ek.

Shared Instance Queue (SIQ) manages the recent event
instances for all event sources with regard to all event classes. It
stores the event instances in the order of their arrivals. This single
instance queue in an ECQ is shared by all relevant event sources.
SIQ uses a hash table with source_id as its key to facilitate
accesses to the recent instance ek.

Composition Link Table (CLT) enables the construction of an
integrated ECQ network that supports the shared processing of
CEM queries. For ECQi, the corresponding CLT contains a set of
composition links, one for each CEM query that ECQi participates
in. Each link, denoted as CLink(ECQi, Qj), represents the
association of ECQi with the other ECQs specified in the j-th
CEM query, Qj.

CLink(ECQi, Qj) is formally described as a 6-tuple (query_id, type,
t_cond, {ptr_ECQ}, flag, attr_cond), where query_id, type,
t_cond, and attr_cond are the identifier, type, time constraint and
attribute condition of Qj, respectively2.

{ptr_ECQ} and flag play critical roles in network construction:

2 We regard the query_id of Qj as j for the convenience of explanation.

140

· {ptr_ECQ} contains the pointers to the other ECQs. The
pointers facilitate tracing of the related ECQs in the network.

· flag marks the position of the ECQi in the query; it can be INIT
to indicate the first ECQ starting the composition, FINE to
indicate the last ECQ finishing the composition.

Figure 1-(b) shows the composition link examples using the blue
and red arrows for Q1 and Q2, respectively. For the sequence
query Q1, the CLink of ECQ[A], i.e., CLink(ECQ[A], Q1), is (1,
SEQ, t1, {}, INIT, null), while that of ECQ[C] is (1, SEQ, t1,
{ptr_ECQ[B]}, FINE, null). For the conjunction query Q2,
CLink(ECQ[A], Q2) is (2, CNJ, t2, {ptr_ECQ[B], ptr_ECQ[D]},
INIT|FINE, null). Note that CLink(ECQ[A], Q2) points to the
other two ECQs and it is also marked as INIT and FINE since any
ECQ in Q2 can start and finish the conjunction composition.

Partial Matching Block (PMB) supports incremental evaluation
of CEM queries. As shown in Figure 2, a block is allocated to
each event instance ek to store the current states of partial
matching in which ek participates. The block has a set of partial
matching entries, one for each composition query. The block
allows the incremental extension of partial matching until the
matching becomes completed. PMatch(ek, Qj), if it exists,
represents that the partial matching of the query Qj has been
successfully extended by the instance ek at ECQi. PMatch(ek, Qj)
is formally specified as a tuple (query_id, t_start, {ptr_instance});

· query_id is the identifier of Qj,
· t_start is the start time of the partial matching, and
· {ptr_instance} is a set of pointers to the precedent instances,

stored in other ECQs, leading to the current partial matching.

For example, an input event instance b3 in Figure 1-(b) would
have two PMatch entries for Q1 and Q2. PMatch(b3, Q1) is (1, 1,
{a1(1)}) since the partial matching is initiated at time 1, i.e., the
start time of a1(1), and the precedent instance is a1(1). On the other
hand, PMatch(b3, Q2) is (2, 3, {}) since b3 initiates a new partial
matching of conjunction and no precedents are required.

When the matching is complete, the pointers are followed
iteratively to obtain all the participating event instances.
Intuitively, the CLT of the ECQi for a primitive event class shows
the schematic compositions in which ECQi participates, while the

PMB shows the status of current partial matching in which a
specific instance ek of the primitive event class participates.

Given a set of CEM queries, SCEMon constructs a single network
of ECQs. In the network, the ECQs of each query are networked
with each other via composition links, or CLink’s.

The algorithm for the network construction is presented in Figure
3. It is constructed by inserting a CEM query into the network as
follows: For a new query, a new ECQ is instantiated for each
primitive event specified in the WITH clause (Lines 1-3 in the
figure). Some ECQs might not be created if they have already
been defined in already registered queries. For the new query, the
comprising ECQs are associated with each other by adding a
CLink entry in their CLT (Line 5). For the sequence type, ECQs
are linked sequentially; each CLink(ECQi, Qj) points to the ECQ
of the precedent activity, and the first and final ECQs are marked
accordingly in the flag field (Lines 6-8). For the conjunction type,
ECQs are linked and marked accordingly (Line 9-10).

Deleting a CEM query from SCEMon is straightforward. For each
event class participating in the query, we remove the
corresponding CLink entry in the corresponding ECQs. If the
CLT becomes empty, the ECQ is deleted since it does not
participate in any CEM queries.

5. SHARED PROCESSING TECHNIQUES
This section presents the shared processing algorithm running on
top of the ECQ network. Then, the performance benefit for the
proposed algorithm is discussed. We further develop advanced
techniques available to improve the processing efficiency.

5.1 Shared Processing Algorithm with
Instance Sharing
Upon arrival, each new event instance ek is dispatched to its
corresponding ECQ, say ECQi. The evaluation process inside the
ECQi consists of two major phases: test and insert. The test phase
evaluates whether ek could lead to a partial or complete matching
for some CEM queries. The insert phase updates the data
structures of ECQi if a new composition happens.

5.1.1 Test Phase
ECQi identifies the set of active queries associated with it in the
CLT. For each CLink entry of the CLT, it may probe the other
neighboring ECQs specified in {ptr_ECQ} of the entry for testing
the extension of partial matching. The probing is based on the

source_id 1 .. x ...
ptr_instnace

t

ek+1ek

Partial Matching Block

PMatch(ek, Qj)

CLink(ECQi, Qj)

query_id type t_cond ptr_ECQ flag attr_condi (CNF)

a SEQ tx {ptr_ECQl} INIT price>$100

... CNJ ... {} FINE ...

j DSJ ... {}

query_id t_start ptr_instance

a t1 {ptr_ep}

j

query_id t_start ptr_instance

b t2 {ptr_eq’}

...

Hash Table
(HT)

Composition Link Table

Shared Instance Queue

Figure 2. Data structure of ECQ

Input: N-ECQ and Qj

Output: N-ECQ

1. foreach event class specified in Qj do
2. if ECQ of the class does not exist in N-ECQ then
3. create a new ECQ for the class and insert it into N-ECQ
4. foreach ECQi corresponding to each event class specified in Qj do
5. create CLink(ECQi, Qj) such that query_idßQj.query_id, type ßQj.type,

and t_condßQj.t_cond
6. if CLink(ECQi, Qj).type = SEQ then
7. set INIT or FINE to CLink(ECQi, Qj).flag w.r.t. position of ECQi in sequence
8. add the pointer of the previous ECQp into CLink(ECQi, Qj).ptr_ECQ
9. if CLink(ECQi, Qj).type = CNJ then
10. add the pointers of all the other ECQs into CLink(ECQi, Qj).ptr_ECQ
11. return N-ECQ
Figure 3. Algorithm for inserting a CEM query to SCEMon:

N-ECQ denotes the shared network of ECQs

141

source identifier of the incoming instance, i.e., ek.source_id, and
performed by looking at the target SIQ through the hash table.
Probing is implemented as a single Probe function. Figure 4
illustrates the processing flow of the function using the two ECQs
of the CEM query 1. Upon arrival of ek in ECQ[B], the function
looks up the recent event instance, ep, of the same source with the
incoming instance, ek, in the target ECQ[A], i.e., ep.source_id =
ek.source_id (Step (1) and (2) in the figure). It then finds from the
PMB of ep the existing partial matching entry for the query,
PMatch(ep, Q1) (Step (3)). With PMatch(ep, Q1), the function tests
if ek can successfully extend the existing partial matching of Q1.
In detail, it is tested if the starting time of the partial composition,
PMatch(ep, Qj).t_start, satisfies the time constraints of Qj, i.e.,
Qj.t_cond. If so, it returns the partial matching entry to designate
the extension of the partial matching (Step (4)).

Using this Probe function, the test phase handles each
composition pattern differently:

Sequences. The test phase deals with three different cases with
respect to the position of ECQi in a sequence; start, middle and
end. The pseudo code for the algorithm is presented in Figure 5. It
first deals with the “start” case in which ECQi is marked as INIT
in CLink(ECQi, Qj). At ECQi, incoming ek starts a new partial
matching of Qj; PMatch(ek, Qj) is created and the start time is set
to the start time of ek (Lines 1-3 in the figure). For the “middle”
and “end” cases, the test phase probes the precedent ECQ, i.e.,
ECQp, in the sequence. If the Probe function confirms the
extension of the partial matching, it creates a new entry PMatch(ek,
Qj) for ek (Lines 4-7). Especially for the “end” case that ECQi is
marked as FINE in the CLink, if PMatch(ek, Qj) has been created
already, the test phase completes the matching of Qj with ek and
generates composite event instances as output by following the
pointers in {ptr_instance} of PMatch entries (Lines 8-10). Finally,
it returns the created PMatch(ek, Qj) to inform the insert phase of
the status update (Line 11).

The output generation is different to support different selection
modes, i.e., recent and all. For the recent selection mode, it
follows the precedent instance pointers specified in {ptr_instance}
of PMatch entries recursively to the initial matching ECQ and
output a series of those instances in the form of a composite event
instance. To support the all mode, every previous instance of the
same source, stored in the same ECQ of the pointed instances, is
harvested to compose output results as long as they satisfy the
time conditions.

Conjunctions. Conjunction is similar to sequence except that all
the incoming event instances can initiate a new matching and thus
we need to probe all the other connected ECQs via the Probe
function. As such, the proposed ECQ-based processing algorithm
can easily support conjunction queries of simultaneous queries,
compared to conventional automata-based CEMs.

Disjunctions. The evaluation of disjunction is straightforward: it
simply generates union of its inputs. It does not need to look up
other ECQs nor check time constraints. Thus, SCEMon does not
create any PMatch entries, resulting in no insertion of instances.

5.1.2 Insert Phase
The insert phase updates ECQi, reflecting the dynamic
composition status affected by the event instance ek. That is, ek as
well as the PMatch entries, newly created in the test phase, are
stored into ECQi. (1) First, the entries are added into the PMB of
ek. (2) Then, ek is inserted into the SIQ. (3) Finally, the insertion
updates the hash entry HT(ek.source_id) so that it points to the
newly added ek in the queue. Note that, for an incoming ek,
insertion takes place at most once even for the case where ek
extends multiple partial matching.

For efficient memory management, SCEMon needs to delete any
obsolete stored instances from ECQs. All the ECQs in the shared
network are accessed periodically to remove old instances from
each SIQ and update the corresponding hash table accordingly.

5.1.3 Correctness of Incremental Query Processing
Receiving event instances, SCEMon changes the state of the
shared ECQ network. It computes the matching results for
multiple queries incrementally, as if multiple query processing
plans are evaluated independently. Let ek Î Ei denote an instance
ek of event class Ei (for all ek, there is a single Ei such that ek Î Ei).
Also, let Ei Î Qj denote that Ei is a member event class of the
CEM query Qj. Then the following theorem holds:

Theorem 1. Correctness of Incremental Processing for Sequence:
For a sequence query Qj with event classes E1, E2, ..., and En
with time condition t_cond, if there exists PMatch(en, Qj) such
that en Î En, then there exists (e1, e2, ..., en-1) such that

· e1 Î E1, e2 Î E2, ..., en-1 Î En-1,
· ei.end_ts ≤ ei+1.start_ts, and

en.end_ts - e1.start_ts ≤ Qj.t_cond for 1 ≤	i ≤ n-1.

Input: CLink(ECQi, Qj) and an instance ek

Output: PMatch(ek, Qj) or null

1. if CLink(ECQi, Qj).flag = INIT then
2. create PMatch(ek, Qj) such that t_start ß ek.start_ts and ptr_instanceß null
3. return PMatch(ek, Qj)
4. ECQp ß CLink(ECQi, Qj).ptr_ECQ[0] // only one pointer for sequence
5. PMatch(ep, Qj) ß ECQp.Probe (ek, Qj)
6. if PMatch(ep, Qj) != null then
7. create PMatch(ek, Qj) such that t_start ß PMatch(ep, Qj).t_start

and ptr_instanceß {ep}
8. if CLink(ECQi, Qj).flag = FINE then
9. follow the pointers in PMatch(ek, Qj).ptr_instance iteratively

and retrieve participating instances
10. construct and output the matching result

(ek.source_id, Qj.query_id, PMatch(ek, Qj).t_start, ek.end_ts, ({..., ep, ek}))
11. return PMatch(ek, Qj)
12. return null

Figure 5. Algorithm for sequence in test phase

CLink(ECQ[B], Q1)

query_id type ptr_ECQ ...

#1 SEQ {ECQ[A]}

PMatch(ek, Q1)

query_id t_start ptr_instance

#1 t1 {ep}

source_id 1 .. x ...
ptr_instnace

t

ep

PMatch(ep, Q1)

query_id t_start ptr_instance

#1 t1 {}

(1)

(2)

(3)

(4)

ECQ[A] ECQ[B]

Figure 4. Processing flow of Probe function

142

The complete matching result is given by (e1, e2, ..., en-1, en).

Proof.
By definition, if there exists PMatch(ek, Qj) such that ek Î E1, then
PMatch(ek, Qj).t_start = ek.start_ts.
By Lemma 1, if there exists PMatch(en, Qj) such that en Î En,
there exists PMatch(en-1, Qj) such that en-1 Î En-1, en-1.end_ts £
en.start_ts, (en.end_ts - PMatch(en-1, Qj).t_start) £ Qj.t_cond. ¼(1)
By induction, there exist PMatch(en-2, Qj), ..., PMatch(e2, Qj), and
PMatch(e1, Qj) such that en-2 Î En-2, ..., e2 Î E2, e1 Î E1, and en-

2.end_ts £ en-1.start_ts, ..., e1.end_ts £ e2.start_ts.
By definition, PMatch(en-1, Qj).t_start = PMatch(en-2, Qj).t_start
= ... = PMatch(e1, Qj).t_start = e1.start_ts.
Thus, (en.end_ts - e1.start_ts) £ Qj.t_cond. (By equation (1))
\ Corresponding (e1, e2, ..., en-1) exists.
End of Proof
Lemma 1.

For any Ek Î Qj where k > 1, if there exists PMatch(ek, Qj) such
that ek Î Ek, then there exists PMatch(ek-1, Qj) such that

· ek-1 Î Ek-1,
· ek-1.end_ts £ ek.start_ts, and
· (ek.end_ts - PMatch(ek-1, Qj).t_start) £ Qj.t_cond.

Proof.
There exists PMatch(ek, Qj) such that ek Î Ek for k > 1, if and only
if there exists ek-1 such that

ek-1 Î Ek-1 (∵ Ek-1 Î CLink(ECQk, Qj).ptr_ECQ),

ek-1.end_ts £ ek.start_ts (∵ ek-1 was already stored), and

(ek.end_ts - PMatch(ek-1, Qj).t_start) £ Qj.t_cond.
\ Corresponding PMatch(ek-1, Qj) exists.
End of Proof
For conjunction, the algorithm probes all participating ECQs to
check where the matching is complete; for disjunction it probes
none. Therefore, for these patterns, correctness follows trivially.

5.1.4 Shared Processing with Instance Sharing
The processing algorithm presented in this section is designed to
inherently share incoming event instances by multiple CEM
queries on top of the shared ECQ network. We note that the
performance improvement of SCEMon is brought mainly at the
insert phase; the algorithm stores a small number of instances in
ECQs. The cost of the delete operation necessary to clean memory
with obsolete instances is also reduced accordingly. Thus, the
costs of insert and delete operations become constant regardless of
the number of queries, resulting in significant performance
improvement. Next, we discuss how to further optimize the
processing of SCEMon by leveraging additional sharing and
redundancy reduction opportunities.

5.2 Sub-Pattern Sharing
In the basic SCEMon discussed so far, individual queries are
handled separately during the test phase since CLT maintains
them separately. Thus, when different queries share a partial
pattern, this pattern is tested multiple times (See Figure 1 for the
example of a partial pattern, i.e., A;B and A&B, in our two
example queries; here it is necessary to probe ECQ[A] twice for
an input instance of ECQ[B]).

Specifically, for a binary pattern formed by two adjoining ECQs,
its former ECQ needs to be probed by the later ECQ multiple
times. Thus, this redundant work can be eliminated substantially
by sharing a probing result among different queries. The probing
result can also be shared between the queries of different
composition patterns, e.g., between sequence and conjunction
queries. In addition, successive application of such binary pattern
sharing can effectively support any longer sub-patterns. Note that
such sub-pattern sharing opportunities, especially sharing of any
binary patterns rather than longer sub-patterns, exist plentifully in
large-scale CEM environments, for instance, monitoring
population patterns in hot spots of a city.

Figure 6 illustrates the general case of the sub-pattern between
two adjoining ECQs, i.e., ECQ[X] and ECQ[Y]. For a number of
CEM queries, ECQ[Y] is specified to be probed by ECQ[X]
multiple times in any positions of any composition patterns. Note
that it is not identical to the case of prefix sharing techniques such
as ‘prefix-caching of automata states’ in [16] and ‘pre-fix state
merging’ in [17]. Unlike in previous work, instead of trying to
reuse intermediate results matching entire common prefixes, we
reuse partial processing results through probing as shown in the
figure. Since common prefixes require complete matches from the
beginning of the pattern, they are less frequently available than
the partial results we are probing. Thus the proposed mechanism
results in further savings by taking advantage of extended sub-
pattern sharing opportunities.

5.2.1 Reverse CLT (R-CLT) and R-CLinks
To share a probing result among all relevant queries, we extend
the CLT structure to include the information on the many diverse
queries to share the probing result. For this purpose, we introduce
a new table, called Reverse CLT (R-CLT). Reverse CLT (R-
CLT) is generated from CLT in each ECQ and contains a set of
Reverse CLinks (R-CLinks), which is formally defined as 5–tuple
(ptr_ECQ, {ptr_SEQ_CLinks}, {ptr_CNJ_CLinks}, {ptr_DSJ_
CLinks}, t_cond), where

· ptr_ECQ is a pointer to an ECQ that needs to be probed;
· the three sets, {ptr_SEQ_CLinks}, {ptr_CNJ_CLinks}, and

{ptr_DSJ_CLinks}, contain the pointers of CLinks including
the probed ECQ in the CLT, which correspond to sequence,
conjunction, and disjunction queries respectively; and

· t_cond is the maximum value of the time conditions among the
CLinks in {ptr_SEQ_CLinks} and {ptr_CNJ_CLinks}.

R-CLT is derived easily from CLT. (a) For each distinct ptr_ECQ
specified in CLinks, an R-CLink entry is created. (b) Then, the
corresponding CLinks are inserted into {ptr_SEQ_CLinks},

ECQ[...]

ECQ[...]

...
ECQ[Y] ECQ[X]

... ECQ[...]

ECQ[...]

...

ek

Single
shared probing

using R-CLT

q_id type t_cond ptr_ECQ ...

1 SEQ t1 {ECQ[Y]} ...

2 SEQ t2 {ECQ[Y]} ...

3 CNJ t3 {ECQ[Y], ...} ...

...

Composition Link Table in ECQ[X]

ptr_ECQ
{ptr_SEQ_

CLinks}
{ptr_CNJ_

CLinks}
{ptr_DSJ_

CLinks} t_cond

ECQ[Y] {1, 2, ...} {3, ...} {} tmax

...

Reverse CLT generated for ECQ[X]

Figure 6. Sub-pattern sharing using R-CLT

143

{ptr_CNJ_CLinks}, or {ptr_DSJ_CLinks}. (c) Finally, those
CLinks which do not have any pointers to other ECQs, (i.e.,
CLinks of disjunction or CLinks flagged as INIT in sequence), are
gathered into a special R-CLink whose ptr_ECQ is null.

When sub-pattern sharing is enabled, SCEMon enumerates R-
CLT instead of CLT in the test phase. For each R-CLink in R-
CLT, it probes the corresponding ECQ only once with the largest
time condition. If the Probe function returns a precedent instance
that satisfies the time condition, SCEMon evaluates the extension
of partial matching for each CLink specified in the sets,
{ptr_SEQ_CLinks} and {ptr_CNJ_CLinks}. If it returns null,
then no further evaluation is needed. For those R-CLink’s whose
ptr_ECQ is null, it is not necessary to probe another ECQ; thus,
SCEMon simply proceeds to the insert phase.

5.2.2 Shared Processing with Sub-Pattern Sharing
The cost of the Probe function is mainly caused by searching for a
precedent instance of a specified event source stored in SIQ,
especially with the presence of a large number of event sources.
Thus, the reuse of precedent event instances once returned by the
Probe function plays a critical role in sharing benefits. This
sharing is highly beneficial when there exist a large number of the
CEM queries that monitor some binary patterns of common
interest frequently. The cost of the probe operation during the test
phase can be reduced significantly as the degree of sub-pattern
sharing among CEM queries. Even for the worst case, the cost is
bounded by the number of primitive event classes (or the number
of ECQs), not by the number of CEM queries.

5.3 PMB Reduction
SCEMon also shares among multiple queries the partial matching
information of individual event instances. This is especially useful
when those queries are triggered initially by common event
instances. For those cases, the PMB size can be reduced by
helping share the PMatch entries across queries.

Since SCEMon investigates each PMatch entry to evaluate the
possible extension of partial matching of a corresponding query,
the PMB size corresponding to an event instance can influence
the processing cost. As the size of PMB increases, SCEMon needs
to spend more time for accessing necessary PMatch entries.

Let Ps denote the selection probability, meaning how many
subsequent instances extend the partial matching in sequence
queries. If Ps is small enough, PMatch entries of initial matching
for the sequence queries are dominant in PMB. We note that the
PMatch entries of initial matching contain redundant information
for the corresponding sequence queries: all the recorded
PMatch.t_start’s corresponding to the same start timestamp.
Moreover, the PMatch.{ptr_instance} values are null. Thus, we
can drop these entries from PMB and substitute the start
timestamp of the event instance for the corresponding initial
matching time. By doing this, we can reduce the size of PMB
approximately as a factor of Ps. Consequently, we can reduce the
evaluation cost of partial matching extensions during the test
phase significantly for small values of Ps.

6. PERFORMANCE ANALYSIS
The processing cost of SCEMon mainly includes five
components: the cost of searching for an ECQ (CECQ), the cost of
probing other ECQs to search for precedent instances (CProbe), the
cost to evaluate the extension of partial matching (CEvaluate), the

cost to insert an instance into an ECQ (CInsert), and the cost to
clean obsolete instances (CClean). Therefore, the cost CP is:
 CP = k1 CECQ + k2 CProbe + k3 CEvaluate+ k4 CInsert+ k5 CClean

The weights k1 through k5 are infrastructure-specific.
CECQ depends on the number of all ECQs, which is equal to the
total number of primitive event classes, Npc. As long as a small
number of primitive events are shared by a large number of CEM
queries, the cost can be considered tiny compared to other terms.
CProbe is a function of the average number of queries that an ECQ
participates in (nq), the average number of probing for a query
(npr), and the unit cost of probing (cpr).

· nq can be computed as the degree of event class sharing DS,
(Nq Nqec) / Npc, where Nq is the number of queries, Nqec is
the average number of event classes used in a query, and Npc
is the total number of primitive event classes used in SCEMon.

· npr is estimated differently for different composition types: it is
approximately 1 for sequence, Nqec for conjunction, 0 for
disjunction.

· Cpr involves lookups to the index in the SIQ. This cost depends
on the implementation of ECQ. In SCEMon, these lookups
have logarithmic complexity O(log Ns) by using STL:map [13]
for the index3, where Ns is the number of event sources.

Hence, the term CProbe is calculated as (DS npr log Ns), which is
proportional to Nq and log Ns. Yet, thanks to the sub-pattern
sharing discussed in Section 5.2, this cost can be bounded by
(Npc npr log Ns) since nq is at most the number of ECQs, i.e., Npc.
CEvalute is mainly dependent on the size of the PMB of a precedent
instance, since it looks up the partial matching information for a
query. The average size of PMB can be approximated to nq, which
is DS. Therefore, CEvaluate can be computed as O(log DS).
According to Section 5.3, this cost can be reduced by the PMB
reduction by a factor of Ps.
CInsert is a function of the probability of insertions (pins) and the
unit insertion cost (cins): CInsert = pins cins. Since we use STL:deque
and STL:map for the queue and the index in the SIQ, cins has the
logarithmic complexity O(log Ns) for the insertions. The
probability, pins, is between 0 and 1; our experiments in Section 7
showed that in practice most input event instances are inserted
into some ECQ. Hence, taking a conservative approach, pins can
be approximated as 1 for all composition types (except for
disjunction, for which pins is approximated as 0 since we do not
store event instances for disjunction). Note that CInsert is not
proportional to the number of CEM queries, Nq. This is because
of the instance sharing technique presented in Section 5.1.

Finally, CClean is a sum of the cost to check all SIQs (cchk) and the
cost to delete obsolete instances in them (cdel).

· cchk is estimated as the number of ECQs, i.e., Npc. Note that for
the conventional separate processing scheme in Figure 1-(a), it
is very large, i.e., (Nq Ns).

· cdel is proportional to the average number of stored instances
and the unit cost of deletions. Due to the instance sharing,
SCEMon stores incoming event instances at most once
regardless of the number of queries. Thus, it is only
proportional to Ns, not to Nq.

3 Refer to http://www.cplusplus.com/reference/stl/ for the

complexity of STL containers.

144

The storage cost of SCEMon, CS, can be estimated as follows: Let
the rate of input event instances incoming to SCEMon is (Ns re),
where re is the average rate of event generation from a source. The
length, TW, of the time window for storing events is determined
based on the time constraints of the registered CEM queries. Let
cs is the size of the memory consumed by each instance, then CS
can be calculated as (pins Ns re TW cs). As we discussed above, pins
is 0 for disjunction and approximately 1 for all the other types
with a large number of the queries. Note that, thanks to the ECQ
sharing, CS is proportional to Ns, but not to Nq.

7. PERFORMANCE EVALUATION
In this section, we evaluate the performance improvement of
SCEMon over conventional separate processing (SP) schemes in
large-scale CEM environments. The experiments were run on
Intel Core 2 Quad Yorkfield Q9550 CPU (2.83GHz) and 8 GB
RAM. The machine was running Debian Linux 2.6.18 64-bit.

Workloads. For the evaluation, we generate synthetic input event
instances and CEM queries. Input event instances are generated
randomly in the form of a tuple (source_id, event_class, start_ts,
end_ts), as described in Section 3.1. CEM queries are generated
based on the sequential query templates given below.

The primitive event classes in the WITH clause, i.e., A, B and C,
are randomly selected among a given set of primitive event classes.
The time condition in the WITHIN clause is also randomly
specified in the value range. In this work, we focus on the
efficient processing of composition patterns so that any additional
predicate conditions in the WHERE clause are not included.

As default setting, we use 1K sequential queries and 1K event
sources assuming 50 primitive event classes. Upon the start of
experimental runs, queries are registered into the system. Also,
generated event instances are loaded into the main memory and
pulled into the system at the maximum rate it could accept.

Evaluation metrics. We measured the performance in terms of
processing and storage costs. First, for the processing cost, we use
the unit processing time as an evaluation metric; it is defined as
telapsed / Ntotal_event, where Ntotal_event is the total number of the input
event instances, and telapsed is the total elapsed processing time, not
including time to deliver the output. Second, for the storage cost,
we count the average number of event instances stored in ECQs;
note that the amount of stored instances indicates the storage
consumption in CEM processing. The number of the stored
instances is counted before and after each memory cleaning, and
the average is computed over 15 cleanings after warm-up.

Comparing techniques. For comparison, we have implemented a
conventional SP scheme based on the work done by Wu et al. [1].
The SP scheme illustrated in Section 3.2 is implemented in C++
using STL [13]. The SP scheme is fairly implemented by
performance comparisons with publically available CEM
implementations, Cayuga [14] and Esper [15] (See Section 7.6 for
the detailed discussion).

To closely investigate the effectiveness of the shared processing
techniques employed in this work, we use three different SCEMon
implementations: (1) with event instance sharing (Section 5.1), (2)

with instance sharing and sub-pattern sharing (Section 5.2), (3)
with instance sharing, sub-pattern sharing and PMB reduction
(Section 5.3). For fair comparison, SCEMon is also implemented
in C++ using STL [13].

Memory cleaning period. The system performs periodic cleaning,
where it deletes obsolete instances older than the maximum time
window of all relevant queries. Cleaning obsolete activity
instances is critical for in-memory processing of CEM queries. It
has significant impact on the processing as well as storage cost. It
is especially important for the SP scheme since the memory space
would quickly be exhausted due to the numerous per-object stacks.

We examine the effect of the cleaning on the processing and the
storage cost. Figure 7 shows the results while we perform the
cleaning every Nc updates of event instances. We observe that
there exists a trade-off between the cleaning time and memory
usage. The cleaning time of SCEMon is not much affected by the
cleaning period. The time-ordered instances stored in shared
ECQs make the cleaning process highly efficient since the number
of the queues to be scanned is relatively small and the set of
obsolete instances is easily identified. On the other hand, for the
SP scheme, a huge number of the per-source stacks should be
scanned to delete obsolete event instances as well as empty stacks.
The figure presents that too frequent cleaning causes unnecessary
scanning with rarely effective deletions, resulting in the excessive
cleaning time. The figure also shows that it is hardly beneficial to
defer cleaning beyond some extent, since the cleaning time
decreases marginally. Meanwhile, deferred cleaning substantially
increases the memory consumption to hold more obsolete
instances and unused stacks. In the experiments below, we set the
base cleaning period to 100K where the cleaning time starts to be
saturated while the memory consumption increases linearly.

7.1 Processing Scalability
This section shows the scalability of the SP scheme and SCEMon
in large-scale CEM environments. Figure 8 presents the unit
processing time in microsecond.

Scalability with the number of queries (Nq). We increase the
number of queries from 100 to 5K. As shown in Figure 8-(a), the
unit processing times of the SP scheme drastically increase for
larger Nq’s compared to SCEMon. In contrast, the suit of shared
processing techniques based on ECQs enables SCEMon to
significantly reduce the processing time, especially at larger Nq’s
With 5K simultaneous queries, for instance, it shows about 32
times better performance than the SP scheme.

Scalability with the number of sources (Ns). Figure 8-(b) shows
the performance with increasing the number of sources up to 5K.
The result illustrates that the processing times of the SP scheme
and SCEMon increase proportionally to (log Ns); note that X-axis

CEM query template
PATTERN Sequence
WITH A, B, C
WHERE [symbol]
WITHIN [200-240] mins

0

20

40

60

80

0 100 200 300
Memory cleaning period (x1,000)

SP scheme
SCEMon

0

20

40

60

80

100

120

0 100 200 300
Memory cleaning period (x1,000)

SP scheme
SCEMon

 (a) Cleaning time (ms) (b) Memory consumption (MB)

Figure 7. Effect of memory cleaning period (Nc)

145

of the graph has a logarithmic scale. Yet, it also shows that
SCEMon deals with a large number of event sources much more
efficiently than the SP scheme.

7.2 Effectiveness of SCEMon Techniques
In this section, we closely investigate where the significant
performance gain comes from. Figure 9 shows the breakdowns on
the unit processing times of the SP scheme and SCEMon in
default setting, i.e., 1K queries and 1K sources. The figure shows
that almost a half of the processing time in the SP scheme is spent
to search for a proper data structure corresponding to a source of
an incoming instance (labeled “Source(SP)”) due to the overhead
of managing many event sources. The time for deleting obsolete
event instances in separate data structures (“Clean”) takes the
second place. Yet, the time for evaluating state transitions for
individual instances (“Evaluate”) is shown to be relatively small.

In SCEMon with the instance sharing, the times for storing
incoming event instances and deleting obsolete instances (“Insert”
and “Clean”) are reduced significantly, compared to those of the
SP scheme. The performance improvement conforms to our
expectations and analysis we performed while designing the
shared storage of ECQs. However, the times for probing other
ECQs and evaluating the extension of partial matching
(“Probe(SCEMon)” and “Evaluate”) are not reduced sufficiently.

For SCEMon with additional sub-pattern sharing, the time for
probing other ECQs (“Probe(SCEMon)”) is reduced. This shows
that the probing operation is optimized by using the R-CLT and
happens only once for each target ECQ. Moreover, we simplify
the probing operation by omitting the step for checking up the
initial matching time in the PMB and defer it to the evaluation
step. Thus, the time for evaluating the extension of partial
matching (“Evaluate”) increases slightly. This result also
conforms to the analysis in Section 6.

Finally, for SCEMon with full sharing techniques, the time for
evaluating the extension of partial matching (“Evaluate”) is

reduced, since the PMB reduction technique is designed to reduce
the PMB access time during the evaluation. In addition, event
instances stored in ECQs are associated with smaller PMBs,
resulting in the time for deleting obsolete event instances
(“Clean”) is reduced accordingly.

7.3 Storage Scalability
We also evaluate the storage performance of SCEMon compared
with the SP scheme. Figure 10-(a) shows the average number of
event instances stored in the data structure as the number of
queries (Nq) increases. The SP scheme stores event instances in
each NFA separately and does not share them at all. This leads to
the redundant storage consumption proportional to the number of
queries. For SCEMon, however, the numbers of stored instances
are saturated for larger Nq’s. This is the result of instance sharing
by which only a single copy of individual incoming instances is
stored regardless of a multitude of simultaneous queries.

Figure 10-(b) demonstrates the remarkable storage efficiency of
SCEMon over the SP scheme for large numbers of sources. In fact,
the storage costs of SCEMon also increase linearly with the
number of sources (Ns) due to the higher rates of incoming event
instances for larger Ns’s. However, SCEMon keeps the storage
costs much lower, almost 10% in the setting, compared to the SP
scheme by virtue of instance sharing.

7.4 Performance Characteristics of SCEMon
with Other Attributes
We have also performed the performance evaluation of SCEMon
and the SP scheme with varying numbers of primitive event
classes and sequence steps in the template sequence query.

Performance with the number of primitive event classes (Npc).
We investigate how the performance of SCEMon varies due to the
degree of event class sharing. We change the number of primitive
event classes from 10 to 200 so that an identical number of
simultaneous queries share them in different levels of sharing.

0

200

400

600

800

100 200 500 1K 2K 5K

Separate processing
Instance sharing
+Sub-pattern sharing
+PMB reduction

0

50

100

150

200

100 200 500 1K 2K 5K

Separate processing
Instance sharing
+Sub-pattern sharing
+PMB reduction

0

20

40

60

80

Separate
processing

Instance
sharing

+Sub-pattern
sharing

+PMB
reduction

Query(SP)/ECQ(SCEMon)
Source(SP)/Probe(SCEMon)
Evaluate
Insert
Clean

 (a) Increasing Nq (b) Increasing Ns Figure 9. Performance breakdown of conventional
 Figure 8. Unit processing times (msec) of SP scheme vs. SCEMon SP scheme vs. SCEMon

0

0.5

1

1.5

0 1000 2000 3000 4000 5000

SP scheme
SCEMon

0

0.5

1

1.5

0 1000 2000 3000 4000 5000

SP scheme
SCEMon

0

200

400

600

800

10 20 50 100 200

Separate processing
Instance sharing
+Sub-pattern sharing
+PMB reduction

0

50

100

150

200

250

300

3 4 5 6 7

Separate processing
Instance sharing
+Sub-pattern sharing
+PMB reduction

 (a) Increasing Nq (b) Increasing Ns (a) Increasing Npc (b) Increasing Nstep

 Figure 10. Number of stored event instances (M) Figure 11. Unit processing times (msec)

146

(See Figure 11-(a).) When Npc is 10, i.e., we only use 10
primitive event classes in the setting, an event class should be
shared by large numbers of simultaneous queries. On the other
hand, when Npc is 200, the degree of sharing decreases. Due to
the proposed event-centric sharing approach, the performance of
SCEMon becomes much better than that of the SP scheme with
smaller Npc’s. As expected, with larger Npc’s, the performance
gap between the SP scheme and SCEMon gets smaller, but
SCEMon still performs better than the SP scheme.

Performance with the number of sequence steps (Nstep). The
number of sequence steps also influences the degree of event-class
sharing, since each query can contain more numbers of primitive
event classes with larger Nstep’s. Figure 11-(b) demonstrates that
the unit processing times of the SP scheme and SCEMon increase
as Nstep increases, similar to the impact of increasing Nq.
However, the impact is not as significant as that of increasing Nq,
since a large portion of incoming event instances fails to extend
partial matching and is discarded without any further evaluation.

7.5 Performance Evaluation with
Conjunction and Disjunction
We have also evaluated the performance of SCEMon with
conjunction and disjunction queries. Figure 12 and 13 show that
SCEMon outperforms the SP scheme significantly for conjunction
for increasing Nq’s and Ns’s. This is because the SP scheme
instantiates all the permutated sequences of the participating event
classes in an NFA, which results in a huge number of NFA states
loaded in the system. Our results show the sharp increase in the
processing cost for the conjunction queries of three event classes,
i.e., CNJ3. On the other hand, Figure 14 shows the results of
disjunction. As a larger number of NFAs are instantiated (see

disjunction of five events, i.e., DSJ5, compared to DSJ3), the
processing time of the SP scheme gets longer due to the lack of
sharing. In Figure 14-(b), note that the processing cost of
disjunction queries remains almost constant with a fixed number
of queries. This is because the incoming event instances are not
stored and looked up for disjunction at all.

7.6 Performance of Publically Available
Implementations
To understand the performance of conventional SP schemes with
large numbers of queries and sources, we have conducted the
performance evaluation using publically available
implementations. First, we retrieved the Cayuga implementation
from [14] and ran it on a 32-bit Windows XP machine of Intel
Core 2 CPU (2.13GHz) and 3.50GB RAM. The Linux
configuration of the Cayuga implementation is not correctly
supported so that we use Windows instead.

The evaluation shows that Cayuga is not efficient for large
numbers of queries and sources. We measured the unit processing
time in microsecond as we increase the number of queries (Nq)
and the number of sources (Ns) from 10 to 1K respectively. (We
used 10 as the default values of Nq and Ns in each experiment. It

0

2000

4000

6000

8000

10000

12000

0 200 400 600 800 1000

FRIndex
No index

0

100

200

300

400

500

600

0 200 400 600 800 1000

FRIndex
No index

 (a) Increasing Nq (b) Increasing Ns
Figure 15. Unit processing time of Cayuga: FRIndex is a primary
optimization technique suggested in Cayuga that provides optimized
access to attributes among different queries. We have built the index
on the event class ids so that the effectiveness of the index gets
significant with increasing Nq.

0

200

400

600

800

1000

0 200 400 600 800 1000

Timer(10s)
No timer

0

10

20

30

40

0 200 400 600 800 1000

Timer(10s)
No timer

 (a) Increasing Nq (b) Increasing Ns
Figure 16. Unit processing time of Esper: Timer is a kind of
stopwatch. If associated pattern expressions do not turn true within
the specified time period, they are stopped and permanently false. The
setting of no timer with 1000 sources causes out-of-memory exception.

0

20

40

60

80

100

0 200 400 600 800 1000

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000
 (a) Increasing Nq (b) Increasing Ns

Figure 17. Unit processing time of our SP scheme
implementation

0

0.5

1

1.5

0 1000 2000 3000 4000 5000

SP scheme-CNJ3
SP scheme-CNJ2
SCEMon-CNJ3
SCEMon-CNJ2

0

0.1

0.2

0.3

0.4

0 1000 2000 3000 4000 5000

SP scheme-CNJ3
SP scheme-CNJ2
SCEMon-CNJ3
SCEMon-CNJ2

 (a) Increasing Nq (b) Increasing Ns

Figure 12. Unit processing time (ms) with conjunction

0

100

200

300

400

0 1000 2000 3000 4000 5000

SP scheme-CNJ3
SP scheme-CNJ2
SCEMon-CNJ3
SCEMon-CNJ2

0

100

200

300

400

0 1000 2000 3000 4000 5000

SP scheme-CNJ3
SP scheme-CNJ2
SCEMon-CNJ3
SCEMon-CNJ2

 (a) Increasing Nq (b) Increasing Ns

Figure 13. Number of stored instances (M) with conjunction

0

5

10

15

20

25

0 1000 2000 3000 4000 5000

SP scheme-DSJ5
SP scheme-DSJ3
SCEMon-DSJ5
SCEMon-DSJ3

0

1

2

3

4

5

0 1000 2000 3000 4000 5000

SP scheme-DSJ5
SP scheme-DSJ3
SCEMon-DSJ5
SCEMon-DSJ3

 (a) Increasing Nq (b) Increasing Ns

Figure 14. Unit processing time (ms) with disjunction

147

could not support 1K queries and 1K sources at the same time.)
The results shown in Figure 15 demonstrate that the unit
processing time of Cayuga increases linear proportionally to Nq
and Ns. We further challenged Cayuga with larger scales and
observed that the implementation consumes too much memory to
run in the experimental setting.

Figure 16 presents the performance evaluation of another publically
available CEM implementation, Esper. We retrieved the
implementation from [15] and performed evaluation in the same
setting as Cayuga. It shows better performance than Cayuga, yet the
processing times are larger than those of our SP scheme
implementation (See Figure 17 that presents the processing times of
our implementation in the same setting). This is because ours is
much specialized to the core processing of CEM while Cayuga and
Esper are involved in additional processing such as dealing with
XML input. Based on these results, we note that our implementation
of conventional SP schemes is reasonable for fair comparison to
SCEMon.

8. CONCLUSION and DISCUSSIONS
In this paper, we focused on the scalability issues when large
numbers of CEM queries and event sources exist in upcoming CEM
environments. To address these challenges effectively, we take an
event-centric sharing approach rather than conventional
query/source-separate processing approaches. ECQ is a novel data
structure designed to facilitate efficient evaluations of multiple
queries over very large volumes of event streams from numerous
event sources. ECQs are composable to build a single shared
network within which multiple queries are efficiently evaluated. We
developed a set of the shared processing techniques on top of the
ECQ network. Our evaluation showed that our approach
outperforms the conventional approaches in large-scale CEM
environments.

While we did not discuss it in this paper, SCEMon can easily
support negation and Kleene closure; these require slight
modifications in the Probe function. For negation, the condition
testing, i.e., if any event instance exists and satisfies the time
constraints, should be inversed; for Kleene closure, the Probe
function checks the number of the stored precedent instances
satisfying the time and value constraints in the SIQ. In addition, the
test phases for sequence and conjunction also need to be modified.
All ECQs designated to generate outputs need to look up the ECQs
participating for negation and Kleene closure, before it generates
output results. Since these modifications are straightforward, we do
not present the algorithms in this paper.
Another aspect of CEM processing not discussed in this paper is
nested query monitoring. A nested query consists of different
patterns, e.g., a conjunction of sequences, a sequence of
conjunctions and disjunctions, etc. Supporting such nested queries
has been considered as an important issue in composite event
processing research, yet rarely addressed. SCEMon can have virtual
primitive event classes for individual composition patterns in nested
queries. We register each pattern as a CEM query and define a
virtual primitive event class (VPEC) for the results of the query.
SCEMon feedbacks the results redefined as the instances of the
VPEC as input. In other words, SCEMon constructs the shared
network of ECQs that are responsible for real primitive event classes

and VPEC’s. Treating nested patterns as primitive event classes,
SCEMon can evaluate complicatedly nested queries effectively
within the shared network of ECQs.

9. ACKNOWLEDGMENTS
This research was supported by Future-based Technology
Development Program through the National Research Foundation of
Korea (NRF) funded by the Ministry of Education, Science and
Technology (2010-0020729).

10. REFERENCES
[1] Wu, E., Diao, Y. and Rizvi, S. 2006. High-performance

complex event processing over streams. In Proc. of SIGMOD.
[2] Akdere, M., Çetintemel, U. and Tatbul, N. 2008. Plan-based

Complex Event Detection across Distributed Sources. In Proc.
of VLDB.

[3] Mei, Y. and Madden, S. 2009. ZStream: A Cost-based Query
Processor for Adaptively Detecting Composite Events. In Proc.
of SIGMOD.

[4] Yang, D., Rundensteiner , E. and Ward, M. 2009. A Shared
Execution Strategy for Multiple Pattern Mining Requests over
Streaming Data. In Proc. of VLDB.

[5] Demers, A., Gehrke, J., Panda, B., Riedewald, M., Sharma, V.
and White, W. 2007. Cayuga: A general purpose event
monitoring system. In Proc. of CIDR.

[6] Gatziu, S. and Dittrich, K. 1994. Events in an active object-
oriented database, In Workshop on Rules in Database Systems.

[7] Chakravarthy, S., Krishnaprasad, V., Anwar, E. and Kim, S.
1994. Composite events for active databases: Semantics,
contexts and detection. In Proc. of VLDB.

[8] Urban, S., Biswas, I. and Dietrich, S. 2006. Filtering features
for a composite event definition language. In Proc. of SAINT.

[9] Hinze, A. 2003. Efficient filtering of composite events, In Proc.
of BNCD.

[10] Elkhalifa, L., Adaikkalavan, R. and Chakravarthy, S. 2005.
InfoFilter: A system for expressive pattern specification and
detection over text streams. In Proc. of SAC.

[11] Agrawal, J., Diao, Y., Gyllstrom, D. and Immerman, N. 2008
Efficient pattern matching over event streams. In Proc. of
SIGMOD.

[12] Ananthanarayanan, G., Haridasan, M., Mohomed, I., Terry, D.
and Thekkath, C. 2009. StarTrack: A framework for enabling
track-based applications. In Proc. of MobiSys.

[13] Standard Template Library,
http://www.cplusplus.com/reference/stl/

[14] Cayuga source code, http://sourceforge.net/projects/cayuga/
[15] Esper official site, http://esper.codehaus.org
[16] Candan, K., Hsiung, W., Chen, S., Tatemura, J. and Agrawal,

D. 2006. AFilter: Adaptable XML Filtering with Prefix-
Caching and Suffix-Clustering. In Proc. of VLDB.

[17] Hong, M., Riedewald, M., Koch, C., Gehrke, J. and Demers, A.
2009. Rule-based multi-query optimization. In Proc. of EDBT.

148

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	6-2011

	High-Performance Composite Event Monitoring System Supporting Large Numbers of Queries and Sources
	SangJeong LEE
	Youngki LEE
	Byoungjip KIM
	K. Selcuk CANDAN
	Yunseok RHEE
	See next page for additional authors
	Citation
	Author

	High-performance composite event monitoring system supporting large numbers of queries and sources

