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ABSTRACT 
This paper presents a novel data structure, called Event-centric 
Composable Queue (ECQ), a basic building block of a new 
scalable composite event monitoring (CEM) framework, SCEMon. 
In particular, we focus on the scalability issues when large 
numbers of CEM queries and event sources exist in upcoming 
CEM environments. To address these challenges effectively, we 
take an event-centric sharing approach rather than dealing with 
queries and sources separately. ECQ is a shared queue, which 
stores incoming event instances of a primitive event class. ECQs 
are designed to facilitate efficient shared evaluations of multiple 
queries over very large volumes of event streams from numerous 
event sources. ECQs are composable and form a single shared 
network within which multiple queries are simultaneously 
evaluated. In this paper, we present efficient shared processing 
techniques operating on top of the proposed shared ECQ network. 
The performance evaluation shows that the proposed approach 
achieves a high level of scalability compared to conventional 
separate processing approaches in large-scale CEM environments.  

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval – Information filtering; H.2.4 [Database 
Management]: Systems – Query processing 

General Terms: Algorithms, Performance, Design. 

Keywords: Composite Event Monitoring, Scalable Processing, 
Event Streams. 

1. INTRODUCTION 
Efficient monitoring of composite events over large volumes of 
event streams is critical in many application domains, including 
product management [1], network monitoring [2], stock market 
analysis [3], and traffic monitoring [4]. In many applications, a 
multitude of composite event monitoring (CEM) queries are 
registered and all of them are simultaneously monitored by the 
system over the same event streams. Previous research in 

composite event detection, however, has focused on optimizing 
the monitoring of individual queries [1][3][5]. We note that 
optimizing system resources “separately” for each query has 
inherent limitations when the system needs to deal with large 
numbers of simultaneous queries and event sources. Thus, we 
propose a novel scalable CEM framework that efficiently 
evaluates in a “shared” manner large numbers of CEM queries 
against input streams from numerous event sources. 

Challenges. CEM frameworks are often confronted with the 
scalability challenges that arise from the presence of very large 
numbers of (a) simultaneous CEM queries and (b) event sources. 
For example, to identify effective advertising targets, a credit card 
company may want to identify card holders following certain 
purchasing event patterns of many diverse scenarios such as 
couple dating, sporting events, shopping sprees, travel, etc. Each 
of these cases would be represented as a multitude of CEM 
queries registered in the system and they all would be tracked 
simultaneously over the stream of credit card transaction events. 
In a metropolitan city, there often exist thousands of purchasing 
patterns of interest as well as millions of credit card holders. 

A straightforward approach to process simultaneous CEM queries 
is to evaluate these individual queries separately [1][3][5]. Figure 
1-(a) describes the approach using multiple CEM queries. In this 
setup, given a set of CEM queries, as many query processing 
plans need to be created and evaluated. Moreover, incoming event 
instances need to be delivered to the relevant plans and possibly 
stored in each plan for later query evaluation. It is obvious that 
such an approach would be extremely wasteful: Although there 
are common events engaged in multiple processing plans, their 
storage and computation cannot be shared effectively across 
different plans. Processing times would then increase with the 
number of queries and input rates. Moreover, the approach would 
require considerable storage space to hold incoming instances and 
intermediate states for each plan; this would make high-
performance in-memory processing of large-scale CEMs difficult. 

Recently, the researcher community started considering multiple 
event sources. Yet, effective approaches dealing with very large 
numbers of sources are elusive. Wu et al. showed that in non-
deterministic finite automata (NFA) based CEMs, unnecessary 
state transitions can frequently occur when there are different 
event sources [1]. To tackle this challenge, they partition stacks of 
event instances for separate processing of individual sources. Note 
that there exist separate stacks partitioned for different sources in 
the processing plan of query Q1 in Figure 1-(a). However, when 
the number of sources is very large, this implies that a large 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
DEBS’11, July 11–15, 2011, New York, New York, USA. 
Copyright 2011 ACM 978-1-4503-0423-8/11/07…$10.00. 
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number of separate stacks need to be created, resulting in severe 
storage and management overheads. 

Proposed Solution. In this paper, we take an event-centric 
sharing approach to address the inefficiencies due to duplicated 
data structures and separate processing of conventional CEMs 
when supporting large numbers of queries and sources. Our 
approach is based on the idea that a primitive event, specified 
commonly in multiple queries, can be shared for efficient 
processing and storage. Moreover, all incoming instances of a 
given event class, regardless of their sources, can be stored and 
handled together within a shared storage, e.g. a queue. Based on 
the composition patterns of all registered CEM queries, these 
shared queues can form a single shared network in which 
processing and storage for each primitive event class are 
inherently shared by all relevant queries. For instance, Figure 1-
(b) illustrates the key idea of the proposed approach; the queues 
are shared by two event sources as well as two CEM queries. The 
comprehensive discussion on Figure 1 will be given in Section 3. 

Our Contributions. Based on the observations of shared 
processing opportunities, we develop a new scalable composite 
event monitoring (CEM) framework, SCEMon. SCEMon, in its 
core, is an automata-based architecture; but it consists of data 
structures and algorithms that are designed to maximize event and 
sub-pattern sharing across multiple queries as well as sources. The 
contributions of this paper can be summarized as follows: 

· We explore the scalability problem arising in large-scale CEM 
environments. We investigate the performance of conventional 
separate processing schemes and explore inherent limitations 
when dealing with large numbers of queries and sources. 

· We then propose a novel data structure, event-centric 
composable queue (ECQ), that enables efficient shared 
processing of large numbers of simultaneous queries and event 
sources. An ECQ is a shared queue storing incoming event 
instances of a primitive event class. For each primitive event 
class, only a single ECQ is allocated and is shared by multiple 
CEM queries. ECQs are composed flexibly within a single 
shared network to support the diverse composition semantics 
of the queries. Each ECQ is also shared by all event sources. 
This design substantially reduces processing and storage 
overhead necessary to manipulate intermediate results for each 
query and event source separately. 

· On top of this sharable data structure, we develop a suit of 
efficient shared processing techniques including event instance 

sharing, sub-pattern sharing, and partial matching block 
(PMB) reduction. These techniques are brought together in 
SCEMon which localizes each instance manipulation on a 
corresponding ECQ and a few adjacent ECQs, and evaluates 
CEM queries incrementally with each subsequent event 
instance. SCEMon supports various types of composite event 
patterns such as sequence, conjunction and disjunction. 

· We experimentally demonstrate that relying on the novel data 
structures and shared processing techniques, the scalability 
issues can be tackled effectively. The performance results of 
our extensive evaluation show the competitive performance of 
SCEMon against conventional CEM approaches. 

The rest of the paper is organized as follows: Section 2 introduces 
related work. Section 3 discusses the proposed approach of 
SCEMon in comparison to conventional approaches. Section 4 
presents the data structure of ECQ and Section 5 describes the 
shared processing techniques using ECQs. Section 6 gives the 
performance cost analysis. Section 7 discusses the experimental 
results for performance, and finally Section 8 concludes the paper. 

2. RELATED WORK 
Event monitoring systems have evolved and been expanded for 
diverse application domains, online transaction logs [8], built-in-
sensor reporting in a building [9], RFID readings in a market [1] 
and stock trading [3]. The current approaches can be roughly 
classified into automata-based complex event management 
systems, such as SASE [1] and Cayuga [5], Petri Net-based 
systems like SAMOS [6], event tree-based systems, such as 
Sentinel [7] and ZStream [3], and event graph-based systems 
including InfoFilter [10]. 

There have been continuous research efforts to improve the 
performance of CEMs. SASE [1][11] extends non-deterministic 
finite automata (NFA) to deal with multiple event sources. 
Cayuga [5], also NFA-based, focuses on efficient predicate 
evaluation using indices along with automata transition. 
Recognizing that NFA-based CEMs are limited to sequential 
patterns due to the explicit state transitions of NFAs, ZStream [3] 
takes an event tree-based approach to support rich composition 
semantics such as concurrent events or negated events that should 
not occur. It provides the cost model for different composition 
patterns and the optimization technique to search for an optimal 
evaluation plan. Akdere et al. also develop the event graph-based 
CEM across distributed event nodes [2]. They generate multi-step 
event acquisition and processing plans that minimize event 
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                         (a) Separate processing scheme                                                      (b) Event-centric sharing approach 
Figure 1. “Separate processing” scheme vs. proposed “event-centric sharing” approach 
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transmission costs. However, conventional CEMs have difficulties 
in dealing with large numbers of simultaneous queries and event 
sources together. Most of them treat multiple queries and sources 
separately; their main contributions are not to develop shared 
processing techniques, but to optimize individual processing plans 
per query and source. Such separate CEM processing may 
potentially limit the scalability required for massive processing. 

Previous works on multi-query optimization, e.g., predicate 
indexing [5], sub-graph merging [10], and sub-event sharing [2] 
can be considered as efforts to address the problem. However, it is 
not straightforward to make the data structures of existing CEMs 
be shared effectively, since they are still founded on NFAs or 
event trees. A state in an NFA represents not only the current 
event class but also the history of state transitions with past event 
instances. Thus, the state can hardly be shared unless the state 
transitions to the state from the beginning are identical between 
different NFAs. Achieving performance benefits through sharing 
would be moderate due to the rare chance of sharing. Since an 
intermediate node in an event tree also designates partial 
compositions, it can be rarely shared among multiple queries. 

3. COMPOSITE EVENT MONITORING 
The CEM semantics and language we adopt in this paper are 
analogous to those used in other CEM systems [1][3][11]. Based 
on the basic CEM notation, we present a common approach of 
CEM processing and discuss the potential challenges in large-
scale CEM environments. Then, we introduce our event-centric 
sharing approach dealing with such scalability challenges. 

3.1 CEM Notation 
We define primitive events as atomic occurrences of interest. 
More precisely, we represent an incoming event instance as a 
tuple <src_id, event_class, start_ts, end_ts, attrs[]>, where src_id 
refers to the identifier of the event source, event_class refers to the 
class that the instance belongs to, start_ts and end_ts refer to the 
start and end timestamps of the event instance respectively, and 
attrs[] refers to the list of attribute values. 

On receiving primitive events, composite events are detected 
from a collection of primitive and/or other composite events. 
CEM queries associate primitive or composite events together to 
form new composite events. The most frequently used 
composition type sequence (A;B) finds the instances of event B 
following the instances of event A within a specific time window. 
Conjunction (A&B), i.e., concurrent events, denotes that event A 
and event B occur within a specified time window in any orders. 
Disjunction (A|B) means that either event A or event B occurs. 
This is simply a union of the two event classes and, in its most 
generic definition, no time constraints on the events are included. 
The formal semantics of CEM queries with different patterns is 
given in Table 1. The PATTERN clause specifies the type of 
composition patterns such as sequence, conjunction, and 
disjunction. The WITH clause presents a list of the event classes 
that should occur to form the composite event. The WHERE 
clause imposes predicates on event attributes while the WITHIN 
clause describes the time window for the events.  
Upon an input event instance, each CEM query can generate 
different results depending on a selection mode. It can generate at 
most one composite event instance which represents the most 
recent composition of participating events. This can be considered 
as a recent selection mode in active database among several 
different composition modes [8]. An all selection mode is also 

used frequently that generates all composite event instances 
satisfying the monitoring conditions. SCEMon can support the 
two modes; different output generation of SCEMon depending on 
different selection modes is discussed later in Section 5.1. 
CEM queries can be used to specify diverse purchasing event 
patterns for credit card companies. CEM query 1 below presents 
an example of a sequential pattern. 

 
This query is intended to represent a particular purchasing event 
pattern potentially related to “dating”, i.e., two seats purchased at 
a theater (CNMA_A), meals for two at a restaurant (RSTR_B), 
and some (but not too much) drinking at a bar (BAR_C). Note 
that [symbol] means the condition of matching source ids among 
incoming event instances. 

 
CEM query 2 may represent a shopping pattern in an outlet mall. 
Since the shopping order does not matter here, the query uses the 
conjunction type. As discussed in [12], such queries can be handy 
for shop managers who would like to send coupons or 
advertisements to attract the customers who have not bought 
brand goods sufficiently. 

These types of queries open the opportunity for credit card 
companies to advanced mobile advertising and business 
promotions based on credit card holders’ purchasing patterns. A 
large number of CEM queries can be created in various ways over 
a given set of available purchasing event classes, and issued by 

CEM query 2. Conjunction pattern 
PATTERN Conjunction 
WITH BRND_A, BRND_B, BRND_C 
WHERE [symbol] 
 BRND_A.payment + BRND_B.payment 
   + BRND_C.payment < $200 
WITHIN 1.5 hours 

CEM query 1. Sequential pattern 
PATTERN Sequence 
WITH CNMA_A, RSTR_B, BAR_C 
WHERE [symbol]  
 $20 < CNMA_A.payment < $50 AND 
 $80 < RSTR_B.payment < $120 AND 
 BAR_C.payment < $50 
WITHIN 5 hours 

Table 1. Formal semantics of CEM queries 
Given event instance stream, e_strm = (e1, e2, ..., ei, ...) – infinite series
Upon the arrival of ei= <src_id, event_class, start_ts, end_ts, attrs[]>,
each query generates composite event instances, c’s, satisfying the below conditions:

Pattern Query Language Monitoring Semantics

S
eq

ue
nc

e qry_seq:
PATTERN Sequence
WITH       E1, E2, ..., En
WHERE   [symbol]
WITHIN t_cond

c = <src_id, qry_id=qry_seq.id, start_ts, end_ts, (eM1, 
eM2, ..., eMn)>, where

• c.src_id = ei.src_id = eMj.src_id for all 1 ≤ j ≤ n,
• eMj is an instance of the event class Ej for all 1 ≤ j ≤ n,
• eMj-1.end_ts ≤ eMj.start_ts for all 2 ≤ j ≤ n,
• c.start_ts = eM1.start_ts, c.end_ts = eMn.end_ts,
• (c.end_ts – c.start_ts) ≤ qry_seq.t_cond,
• eMn = ei, and
•  " ek ' ek.src_id = ei.src_id and 

c.start_ts < ek.start_ts ≤ ek.end_ts < c.end_ts.

C
on

ju
nc

tio
n qry_cnj:

PATTERN Conjunction
WITH        E1, E2, ..., En
WHERE    [symbol]
WITHIN t_cond

c = <src_id, qry_id=qry_cnj.id, start_ts, end_ts, (eM1, 
eM2, ..., eMn)>, where

• c.src_id = ei.src_id = eMj.src_id for all 1 ≤ j ≤ n,
• eMj is an instance of the event class Ej for all 1 ≤ j ≤ n,
• c.start_ts = min({eMj.start_ts}) for all 1 ≤ j ≤ n, 

c.end_ts = ei.end_ts = max({eMj.end_ts}) for all 1 ≤ j ≤ n,
• (c.end_ts – c.start_ts) ≤ qry_cnj.t_cond, and
• " ek ' ek.src_id = ei.src_id and 

c.start_ts < ek.start_ts ≤ ek.end_ts < c.end_ts.

D
is

ju
nc

tio
n

qry_dsj:
PATTERN Disjunction
WITH         E1, E2, ..., En

c = <src_id, qry_id=qry_dsj.id, start_ts, end_ts, (ei)>, 
where

• c.src_id = ei.src_id,
• ei is an instance of the event class Ej for any 1 ≤ j ≤ n,
• c.start_ts = ei.start_ts, and c.end_ts = ei.end_ts
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third-party advertising agencies or business owners to target their 
own potential customers in mobile computing environments.  

3.2 Query/Source-Separate Processing 
A common approach to CEM processing involves developing 
separate processing plans for individual queries and dealing with 
individual sources separately in each plan; this is illustrated in 
Figure 1-(a) with multiple CEM queries, i.e., Q1, Q2, etc. Such an 
approach mostly takes full advantage of indices built over many 
queries and sources. Upon an input event instance, it would 
identify queries of interest (which involve an event class of the 
instance in their patterns) by using the query index. For each 
relevant query processing plan, it would search for the data 
structure designated to an event source of the instance, evaluate 
relevant composition transitions and store the instance and 
intermediate evaluation results into the data structure if necessary. 
Additionally, it would delete any obsolete stored instances from 
query plans for efficient memory management. 

For example, upon an input event instance b3 from source #1, the 
approach would identify Q1 and Q2 using the ‘q_id’ index and 
invoke the processing plans of Q1 and Q2 respectively. Each plan 
would be evaluated with b3 and store it into the instance stacks 
responsible for the corresponding source respectively. Note that 
b3 is stored twice in the stacks of s1 in Q1 and Q2 plans. Later, it 
would be deleted from each plan if it is determined to be no more 
necessary for further processing. 

In large-scale CEM environments, there may exist numerous 
CEM queries of interest for each input event instance since a large 
number of simultaneous queries are specified using a set of event 
classes. In such cases, the same search, evaluate/store, and delete 
operations may need to be invoked repeatedly many times and this 
may result in very huge processing overheads. Specifically, the 
processing cost is significantly influenced by the numbers of 
queries and sources. First, the processing overhead caused by 
search, evaluate/store, and delete operations are multiplied by the 
number of the evaluated query plans which would substantially 
increase with larger numbers of simultaneous queries. Second, 
when there are a large number of event sources, the costs of the 
individual operations can be significantly raised due to the severe 
management overhead of numerous separate data structures 
assigned for individual sources. Even with an index built on 
source ids, searching for the data structure of a specific event 
source mostly takes up O(log Ns) time1, where Ns is the number 
of sources. Thus, “separate processing” schemes can hardly cope 
with large-scale CEM environments. 

3.3 Event-centric Sharing Approach 
In this paper, our goal is to develop an efficient shared processing 
approach that deals with such large numbers of simultaneous 
CEM queries and event sources. SCEMon takes advantage of a 
novel data structure, called ECQ, which manages all incoming 
instances of a primitive event class together regardless of queries 
and sources. SCEMon identifies a set of essential primitive event 
classes for all queries, constructs a single network of 
corresponding ECQs respectively taking each class in charge, and 
evaluates all the queries simultaneously in conjunction with the 

                                                                 
1 Due to the memory limit, the hash lookup with O(1) search time can 

hardly be used in practical main-memory systems. Memory-efficient 
tree-based hash tables could be used instead. 

constructed network. Figure 1-(b) illustrates the proposed event-
centric sharing approach of SCEMon; it visualizes a shared ECQ 
network where four ECQs are composed into two virtual 
processing plans which are equivalent to the first two plans in 
Figure 1-(a). Note that, in this example, upon arrival of b3 or b6, 
Q1 and Q2 can be evaluated together by ECQ[B]. In essence, ECQ 
enables multiple sources to easily share the processing for their 
respective instances, and further enables multiple queries to 
aggressively share their common processing. 

Our event-centric sharing approach is especially advantageous 
when there are many popular event classes of common interest 
specified in registered CEM queries. Let us consider the mobile 
advertising application discussed earlier and note that modern 
cities have many hot spots such as popular shopping complexes 
and multiplex cinemas. A large portion of CEM queries will 
involve such hot places, and primitive events happening in the 
places may trigger the evaluation of large numbers of 
simultaneous CEM queries. SCEMon is expected to be highly 
effective in such a scenario. 

In addition, the proposed approach is highly beneficial in 
monitoring long term patterns, where the processing tends to 
rapidly increase the volume of intermediate evaluation results. For 
example, human activity patterns of interest often involve long-
term processing for several hours or even days. Our sharing 
approach can substantially reduce the amount of the intermediate 
results, and thus makes the long-term processing more effective in 
terms of storage consumption as well as computation. 

4. EVENT-CENTRIC COMPOSABLE 
QUEUE (ECQ) 
As the basis of SCEMon, this section presents the data structure 
of ECQ, and constructs the shared network of ECQs developed 
for the efficient shared processing of SCEMon. 

ECQ maintains three data structures shared instance queue (SIQ), 
composition link table (CLT), and partial matching block (PMB). 
Figure 2 illustrates the state of a specific ECQ, denoted as ECQi, 
that deals with the k-th incoming event instance, ek. 

Shared Instance Queue (SIQ) manages the recent event 
instances for all event sources with regard to all event classes. It 
stores the event instances in the order of their arrivals. This single 
instance queue in an ECQ is shared by all relevant event sources. 
SIQ uses a hash table with source_id as its key to facilitate 
accesses to the recent instance ek.  

Composition Link Table (CLT) enables the construction of an 
integrated ECQ network that supports the shared processing of 
CEM queries. For ECQi, the corresponding CLT contains a set of 
composition links, one for each CEM query that ECQi participates 
in. Each link, denoted as CLink(ECQi, Qj), represents the 
association of ECQi with the other ECQs specified in the j-th 
CEM query, Qj. 

CLink(ECQi, Qj) is formally described as a 6-tuple (query_id, type, 
t_cond, {ptr_ECQ}, flag, attr_cond), where query_id, type, 
t_cond, and attr_cond are the identifier, type, time constraint and 
attribute condition of Qj, respectively2. 

{ptr_ECQ} and flag play critical roles in network construction: 

                                                                 
2 We regard the query_id of Qj as j for the convenience of explanation. 
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· {ptr_ECQ} contains the pointers to the other ECQs. The 
pointers facilitate tracing of the related ECQs in the network.   

· flag marks the position of the ECQi in the query; it can be INIT 
to indicate the first ECQ starting the composition, FINE to 
indicate the last ECQ finishing the composition.  

Figure 1-(b) shows the composition link examples using the blue 
and red arrows for Q1 and Q2, respectively. For the sequence 
query Q1, the CLink of ECQ[A], i.e., CLink(ECQ[A], Q1), is (1, 
SEQ, t1, {}, INIT, null), while that of ECQ[C] is (1, SEQ, t1, 
{ptr_ECQ[B]}, FINE, null). For the conjunction query Q2, 
CLink(ECQ[A], Q2) is (2, CNJ, t2, {ptr_ECQ[B], ptr_ECQ[D]}, 
INIT|FINE, null). Note that CLink(ECQ[A], Q2) points to the 
other two ECQs and it is also marked as INIT and FINE since any 
ECQ in Q2 can start and finish the conjunction composition. 

Partial Matching Block (PMB) supports incremental evaluation 
of CEM queries. As shown in Figure 2, a block is allocated to 
each event instance ek to store the current states of partial 
matching in which ek participates. The block has a set of partial 
matching entries, one for each composition query. The block 
allows the incremental extension of partial matching until the 
matching becomes completed. PMatch(ek, Qj), if it exists, 
represents that the partial matching of the query Qj has been 
successfully extended by the instance ek at ECQi.  PMatch(ek, Qj) 
is formally specified as a tuple (query_id, t_start, {ptr_instance});  

· query_id is the identifier of Qj, 
· t_start is the start time of the partial matching, and  
· {ptr_instance} is a set of pointers to the precedent instances, 

stored in other ECQs, leading to the current partial matching.  

For example, an input event instance b3 in Figure 1-(b) would 
have two PMatch entries for Q1 and Q2. PMatch(b3, Q1) is (1, 1, 
{a1(1)}) since the partial matching is initiated at time 1, i.e., the 
start time of a1(1), and the precedent instance is a1(1). On the other 
hand, PMatch(b3, Q2) is (2, 3, {}) since b3 initiates a new partial 
matching of conjunction and no precedents are required. 

When the matching is complete, the pointers are followed 
iteratively to obtain all the participating event instances. 
Intuitively, the CLT of the ECQi for a primitive event class shows 
the schematic compositions in which ECQi participates, while the 

PMB shows the status of current partial matching in which a 
specific instance ek of the primitive event class participates. 

Given a set of CEM queries, SCEMon constructs a single network 
of ECQs. In the network, the ECQs of each query are networked 
with each other via composition links, or CLink’s.  

The algorithm for the network construction is presented in Figure 
3. It is constructed by inserting a CEM query into the network as 
follows: For a new query, a new ECQ is instantiated for each 
primitive event specified in the WITH clause (Lines 1-3 in the 
figure). Some ECQs might not be created if they have already 
been defined in already registered queries. For the new query, the 
comprising ECQs are associated with each other by adding a 
CLink entry in their CLT (Line 5). For the sequence type, ECQs 
are linked sequentially; each CLink(ECQi, Qj) points to the ECQ 
of the precedent activity, and the first and final ECQs are marked 
accordingly in the flag field (Lines 6-8). For the conjunction type, 
ECQs are linked and marked accordingly (Line 9-10).  

Deleting a CEM query from SCEMon is straightforward. For each 
event class participating in the query, we remove the 
corresponding CLink entry in the corresponding ECQs. If the 
CLT becomes empty, the ECQ is deleted since it does not 
participate in any CEM queries. 

5. SHARED PROCESSING TECHNIQUES 
This section presents the shared processing algorithm running on 
top of the ECQ network. Then, the performance benefit for the 
proposed algorithm is discussed. We further develop advanced 
techniques available to improve the processing efficiency. 

5.1 Shared Processing Algorithm with 
Instance Sharing 
Upon arrival, each new event instance ek is dispatched to its 
corresponding ECQ, say ECQi. The evaluation process inside the 
ECQi consists of two major phases: test and insert. The test phase 
evaluates whether ek could lead to a partial or complete matching 
for some CEM queries. The insert phase updates the data 
structures of ECQi if a new composition happens. 

5.1.1 Test Phase 
ECQi identifies the set of active queries associated with it in the 
CLT. For each CLink entry of the CLT, it may probe the other 
neighboring ECQs specified in {ptr_ECQ} of the entry for testing 
the extension of partial matching. The probing is based on the 

source_id 1 .. x ...
ptr_instnace

t

ek+1ek

Partial Matching Block

PMatch(ek, Qj)

CLink(ECQi, Qj)

query_id type t_cond ptr_ECQ flag attr_condi (CNF)

a SEQ tx {ptr_ECQl} INIT price>$100

... CNJ ... {} FINE ...

j DSJ ... {} ... ...

query_id t_start ptr_instance

a t1 {ptr_ep}

j ... ...

query_id t_start ptr_instance

b t2 {ptr_eq’}

... ... ...

Hash Table
(HT)

Composition Link Table

Shared Instance Queue

 
Figure 2. Data structure of ECQ 

Input: N-ECQ and Qj

Output: N-ECQ

1. foreach event class specified in Qj do
2. if ECQ of the class does not exist in N-ECQ then
3. create a new ECQ for the class and insert it into N-ECQ
4. foreach ECQi corresponding to each event class specified in Qj do
5. create CLink(ECQi, Qj) such that query_idßQj.query_id, type ßQj.type, 

and t_condßQj.t_cond
6. if CLink(ECQi, Qj).type = SEQ then
7. set INIT or FINE to CLink(ECQi, Qj).flag w.r.t. position of ECQi in sequence
8. add the pointer of the previous ECQp into CLink(ECQi, Qj).ptr_ECQ
9. if CLink(ECQi, Qj).type = CNJ then
10. add the pointers of all the other ECQs into CLink(ECQi, Qj).ptr_ECQ
11. return N-ECQ  
Figure 3. Algorithm for inserting a CEM query to SCEMon: 

N-ECQ denotes the shared network of ECQs 
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source identifier of the incoming instance, i.e., ek.source_id, and 
performed by looking at the target SIQ through the hash table. 
Probing is implemented as a single Probe function. Figure 4 
illustrates the processing flow of the function using the two ECQs 
of the CEM query 1. Upon arrival of ek in ECQ[B], the function 
looks up the recent event instance, ep, of the same source with the 
incoming instance, ek, in the target ECQ[A], i.e., ep.source_id = 
ek.source_id (Step (1) and (2) in the figure). It then finds from the 
PMB of ep the existing partial matching entry for the query, 
PMatch(ep, Q1) (Step (3)). With PMatch(ep, Q1), the function tests 
if ek can successfully extend the existing partial matching of Q1. 
In detail, it is tested if the starting time of the partial composition, 
PMatch(ep, Qj).t_start, satisfies the time constraints of Qj, i.e., 
Qj.t_cond. If so, it returns the partial matching entry to designate 
the extension of the partial matching (Step (4)). 

Using this Probe function, the test phase handles each 
composition pattern differently: 

Sequences. The test phase deals with three different cases with 
respect to the position of ECQi in a sequence; start, middle and 
end. The pseudo code for the algorithm is presented in Figure 5. It 
first deals with the “start” case in which ECQi is marked as INIT 
in CLink(ECQi, Qj). At ECQi, incoming ek starts a new partial 
matching of Qj; PMatch(ek, Qj) is created and the start time is set 
to the start time of ek (Lines 1-3 in the figure). For the “middle” 
and “end” cases, the test phase probes the precedent ECQ, i.e., 
ECQp, in the sequence. If the Probe function confirms the 
extension of the partial matching, it creates a new entry PMatch(ek, 
Qj) for ek (Lines 4-7). Especially for the “end” case that ECQi is 
marked as FINE in the CLink, if PMatch(ek, Qj) has been created 
already, the test phase completes the matching of Qj with ek and 
generates composite event instances as output by following the 
pointers in {ptr_instance} of PMatch entries (Lines 8-10). Finally, 
it returns the created PMatch(ek, Qj) to inform the insert phase of 
the status update (Line 11). 

The output generation is different to support different selection 
modes, i.e., recent and all. For the recent selection mode, it 
follows the precedent instance pointers specified in {ptr_instance} 
of PMatch entries recursively to the initial matching ECQ and 
output a series of those instances in the form of a composite event 
instance. To support the all mode, every previous instance of the 
same source, stored in the same ECQ of the pointed instances, is 
harvested to compose output results as long as they satisfy the 
time conditions. 

Conjunctions. Conjunction is similar to sequence except that all 
the incoming event instances can initiate a new matching and thus 
we need to probe all the other connected ECQs via the Probe 
function. As such, the proposed ECQ-based processing algorithm 
can easily support conjunction queries of simultaneous queries, 
compared to conventional automata-based CEMs.  

Disjunctions. The evaluation of disjunction is straightforward: it 
simply generates union of its inputs. It does not need to look up 
other ECQs nor check time constraints. Thus, SCEMon does not 
create any PMatch entries, resulting in no insertion of instances. 

5.1.2 Insert Phase 
The insert phase updates ECQi, reflecting the dynamic 
composition status affected by the event instance ek. That is, ek as 
well as the PMatch entries, newly created in the test phase, are 
stored into ECQi. (1) First, the entries are added into the PMB of 
ek. (2) Then, ek is inserted into the SIQ. (3) Finally, the insertion 
updates the hash entry HT(ek.source_id) so that it points to the 
newly added ek in the queue. Note that, for an incoming ek, 
insertion takes place at most once even for the case where ek 
extends multiple partial matching. 

For efficient memory management, SCEMon needs to delete any 
obsolete stored instances from ECQs. All the ECQs in the shared 
network are accessed periodically to remove old instances from 
each SIQ and update the corresponding hash table accordingly. 

5.1.3 Correctness of Incremental Query Processing 
Receiving event instances, SCEMon changes the state of the 
shared ECQ network. It computes the matching results for 
multiple queries incrementally, as if multiple query processing 
plans are evaluated independently.  Let ek Î Ei denote an instance 
ek of event class Ei (for all ek, there is a single Ei such that ek Î Ei). 
Also, let Ei Î Qj denote that Ei is a member event class of the 
CEM query Qj. Then the following theorem holds: 

Theorem 1. Correctness of Incremental Processing for Sequence: 
For a sequence query Qj with event classes E1, E2, ..., and En 
with time condition t_cond, if there exists PMatch(en, Qj) such 
that en Î En, then there exists (e1, e2, ..., en-1) such that 

· e1 Î E1, e2 Î E2, ..., en-1 Î En-1,  
· ei.end_ts ≤ ei+1.start_ts, and  

en.end_ts - e1.start_ts ≤ Qj.t_cond for 1 ≤	i ≤ n-1. 

Input: CLink(ECQi, Qj) and an instance ek

Output: PMatch(ek, Qj) or null

1. if CLink(ECQi, Qj).flag = INIT then
2. create PMatch(ek, Qj) such that t_start ß ek.start_ts and ptr_instanceß null
3. return PMatch(ek, Qj)
4. ECQp ß CLink(ECQi, Qj).ptr_ECQ[0]    // only one pointer for sequence
5. PMatch(ep, Qj) ß ECQp.Probe (ek, Qj)
6. if PMatch(ep, Qj) != null then
7. create PMatch(ek, Qj) such that t_start ß PMatch(ep, Qj).t_start

and ptr_instanceß {ep}
8. if CLink(ECQi, Qj).flag = FINE then
9. follow the pointers in PMatch(ek, Qj).ptr_instance iteratively

and retrieve participating instances
10. construct and output the matching result

(ek.source_id, Qj.query_id, PMatch(ek, Qj).t_start, ek.end_ts, ({..., ep, ek}))
11. return PMatch(ek, Qj)
12. return null  

Figure 5. Algorithm for sequence in test phase 
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query_id type ptr_ECQ ...

#1 SEQ {ECQ[A]}

PMatch(ek, Q1)
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#1 t1 {}

(1)

(2)

(3)
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Figure 4. Processing flow of Probe function 
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The complete matching result is given by (e1, e2, ..., en-1, en). 

Proof. 
By definition, if there exists PMatch(ek, Qj) such that ek Î E1, then 
PMatch(ek, Qj).t_start = ek.start_ts. 
By Lemma 1, if there exists PMatch(en, Qj) such that en Î En, 
there exists PMatch(en-1, Qj) such that en-1 Î En-1, en-1.end_ts £ 
en.start_ts, (en.end_ts - PMatch(en-1, Qj).t_start) £ Qj.t_cond. ¼(1) 
By induction, there exist PMatch(en-2, Qj), ..., PMatch(e2, Qj), and 
PMatch(e1, Qj) such that en-2 Î En-2, ..., e2 Î E2, e1 Î E1, and en-

2.end_ts £ en-1.start_ts, ..., e1.end_ts £ e2.start_ts. 
By definition, PMatch(en-1, Qj).t_start = PMatch(en-2, Qj).t_start 
= ... = PMatch(e1, Qj).t_start = e1.start_ts.  
Thus, (en.end_ts - e1.start_ts) £ Qj.t_cond. (By equation (1)) 
\ Corresponding (e1, e2, ..., en-1) exists. 
End of Proof 
Lemma 1. 

For any Ek Î Qj where k > 1, if there exists PMatch(ek, Qj) such 
that ek Î Ek, then there exists PMatch(ek-1, Qj) such that  

· ek-1 Î Ek-1,  
· ek-1.end_ts £ ek.start_ts, and 
· (ek.end_ts - PMatch(ek-1, Qj).t_start ) £ Qj.t_cond. 

Proof. 
There exists PMatch(ek, Qj) such that ek Î Ek for k > 1, if and only 
if there exists ek-1 such that  

ek-1 Î Ek-1 (∵ Ek-1 Î CLink(ECQk, Qj).ptr_ECQ), 

ek-1.end_ts £ ek.start_ts (∵ ek-1 was already stored), and 

(ek.end_ts - PMatch(ek-1, Qj).t_start ) £ Qj.t_cond. 
\ Corresponding PMatch(ek-1, Qj) exists. 
End of Proof 
For conjunction, the algorithm probes all participating ECQs to 
check where the matching is complete; for disjunction it probes 
none. Therefore, for these patterns, correctness follows trivially. 

5.1.4 Shared Processing with Instance Sharing 
The processing algorithm presented in this section is designed to 
inherently share incoming event instances by multiple CEM 
queries on top of the shared ECQ network. We note that the 
performance improvement of SCEMon is brought mainly at the 
insert phase; the algorithm stores a small number of instances in 
ECQs. The cost of the delete operation necessary to clean memory 
with obsolete instances is also reduced accordingly. Thus, the 
costs of insert and delete operations become constant regardless of 
the number of queries, resulting in significant performance 
improvement. Next, we discuss how to further optimize the 
processing of SCEMon by leveraging additional sharing and 
redundancy reduction opportunities. 

5.2 Sub-Pattern Sharing 
In the basic SCEMon discussed so far, individual queries are 
handled separately during the test phase since CLT maintains 
them separately. Thus, when different queries share a partial 
pattern, this pattern is tested multiple times (See Figure 1 for the 
example of a partial pattern, i.e., A;B and A&B, in our two 
example queries; here it is necessary to probe ECQ[A] twice for 
an input instance of ECQ[B]).  

Specifically, for a binary pattern formed by two adjoining ECQs, 
its former ECQ needs to be probed by the later ECQ multiple 
times. Thus, this redundant work can be eliminated substantially 
by sharing a probing result among different queries. The probing 
result can also be shared between the queries of different 
composition patterns, e.g., between sequence and conjunction 
queries. In addition, successive application of such binary pattern 
sharing can effectively support any longer sub-patterns. Note that 
such sub-pattern sharing opportunities, especially sharing of any 
binary patterns rather than longer sub-patterns, exist plentifully in 
large-scale CEM environments, for instance, monitoring 
population patterns in hot spots of a city. 

Figure 6 illustrates the general case of the sub-pattern between 
two adjoining ECQs, i.e., ECQ[X] and ECQ[Y]. For a number of 
CEM queries, ECQ[Y] is specified to be probed by ECQ[X] 
multiple times in any positions of any composition patterns. Note 
that it is not identical to the case of prefix sharing techniques such 
as ‘prefix-caching of automata states’ in [16] and ‘pre-fix state 
merging’ in [17]. Unlike in previous work, instead of trying to 
reuse intermediate results matching entire common prefixes, we 
reuse partial processing results through probing as shown in the 
figure. Since common prefixes require complete matches from the 
beginning of the pattern, they are less frequently available than 
the partial results we are probing. Thus the proposed mechanism 
results in further savings by taking advantage of extended sub-
pattern sharing opportunities. 

5.2.1 Reverse CLT (R-CLT) and R-CLinks 
To share a probing result among all relevant queries, we extend 
the CLT structure to include the information on the many diverse 
queries to share the probing result. For this purpose, we introduce 
a new table, called Reverse CLT (R-CLT). Reverse CLT (R-
CLT) is generated from CLT in each ECQ and contains a set of 
Reverse CLinks (R-CLinks), which is formally defined as 5–tuple 
(ptr_ECQ, {ptr_SEQ_CLinks}, {ptr_CNJ_CLinks}, {ptr_DSJ_ 
CLinks}, t_cond), where 

· ptr_ECQ is a pointer to an ECQ that needs to be probed; 
· the three sets, {ptr_SEQ_CLinks}, {ptr_CNJ_CLinks}, and 

{ptr_DSJ_CLinks}, contain the pointers of CLinks including 
the probed ECQ in the CLT, which correspond to sequence, 
conjunction, and disjunction queries respectively; and 

· t_cond is the maximum value of the time conditions among the 
CLinks in {ptr_SEQ_CLinks} and {ptr_CNJ_CLinks}. 

R-CLT is derived easily from CLT. (a) For each distinct ptr_ECQ 
specified in CLinks, an R-CLink entry is created. (b) Then, the 
corresponding CLinks are inserted into {ptr_SEQ_CLinks}, 
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...
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{ptr_CNJ_CLinks}, or {ptr_DSJ_CLinks}. (c) Finally, those 
CLinks which do not have any pointers to other ECQs, (i.e., 
CLinks of disjunction or CLinks flagged as INIT in sequence), are 
gathered into a special R-CLink whose ptr_ECQ is null. 

When sub-pattern sharing is enabled, SCEMon enumerates R-
CLT instead of CLT in the test phase. For each R-CLink in R-
CLT, it probes the corresponding ECQ only once with the largest 
time condition. If the Probe function returns a precedent instance 
that satisfies the time condition, SCEMon evaluates the extension 
of partial matching for each CLink specified in the sets, 
{ptr_SEQ_CLinks} and {ptr_CNJ_CLinks}. If it returns null, 
then no further evaluation is needed. For those R-CLink’s whose 
ptr_ECQ is null, it is not necessary to probe another ECQ; thus, 
SCEMon simply proceeds to the insert phase. 

5.2.2 Shared Processing with Sub-Pattern Sharing 
The cost of the Probe function is mainly caused by searching for a 
precedent instance of a specified event source stored in SIQ, 
especially with the presence of a large number of event sources. 
Thus, the reuse of precedent event instances once returned by the 
Probe function plays a critical role in sharing benefits. This 
sharing is highly beneficial when there exist a large number of the 
CEM queries that monitor some binary patterns of common 
interest frequently. The cost of the probe operation during the test 
phase can be reduced significantly as the degree of sub-pattern 
sharing among CEM queries. Even for the worst case, the cost is 
bounded by the number of primitive event classes (or the number 
of ECQs), not by the number of CEM queries. 

5.3 PMB Reduction 
SCEMon also shares among multiple queries the partial matching 
information of individual event instances. This is especially useful 
when those queries are triggered initially by common event 
instances. For those cases, the PMB size can be reduced by 
helping share the PMatch entries across queries.  

Since SCEMon investigates each PMatch entry to evaluate the 
possible extension of partial matching of a corresponding query, 
the PMB size corresponding to an event instance can influence 
the processing cost. As the size of PMB increases, SCEMon needs 
to spend more time for accessing necessary PMatch entries. 

Let Ps denote the selection probability, meaning how many 
subsequent instances extend the partial matching in sequence 
queries. If Ps is small enough, PMatch entries of initial matching 
for the sequence queries are dominant in PMB. We note that the 
PMatch entries of initial matching contain redundant information 
for the corresponding sequence queries: all the recorded 
PMatch.t_start’s corresponding to the same start timestamp. 
Moreover, the PMatch.{ptr_instance} values are null. Thus, we 
can drop these entries from PMB and substitute the start 
timestamp of the event instance for the corresponding initial 
matching time. By doing this, we can reduce the size of PMB 
approximately as a factor of Ps. Consequently, we can reduce the 
evaluation cost of partial matching extensions during the test 
phase significantly for small values of Ps. 

6. PERFORMANCE ANALYSIS 
The processing cost of SCEMon mainly includes five 
components: the cost of searching for an ECQ (CECQ), the cost of 
probing other ECQs to search for precedent instances (CProbe), the 
cost to evaluate the extension of partial matching (CEvaluate), the 

cost to insert an instance into an ECQ (CInsert), and the cost to 
clean obsolete instances (CClean). Therefore, the cost CP is: 
      CP = k1 CECQ + k2 CProbe + k3 CEvaluate+ k4 CInsert+ k5 CClean 

The weights k1 through k5 are infrastructure-specific. 
CECQ depends on the number of all ECQs, which is equal to the 
total number of primitive event classes, Npc. As long as a small 
number of primitive events are shared by a large number of CEM 
queries, the cost can be considered tiny compared to other terms. 
CProbe is a function of the average number of queries that an ECQ 
participates in (nq), the average number of probing for a query 
(npr), and the unit cost of probing (cpr). 

· nq can be computed as the degree of event class sharing DS, 
(Nq Nqec) / Npc, where Nq is the number of queries, Nqec is 
the average number of event classes used in a query, and Npc 
is the total number of primitive event classes used in SCEMon. 

· npr is estimated differently for different composition types: it is 
approximately 1 for sequence, Nqec for conjunction, 0 for 
disjunction. 

· Cpr involves lookups to the index in the SIQ. This cost depends 
on the implementation of ECQ. In SCEMon, these lookups 
have logarithmic complexity O(log Ns) by using STL:map [13] 
for the index3, where Ns is the number of event sources. 

Hence, the term CProbe is calculated as (DS npr log Ns), which is 
proportional to Nq and log Ns. Yet, thanks to the sub-pattern 
sharing discussed in Section 5.2, this cost can be bounded by 
(Npc npr log Ns) since nq is at most the number of ECQs, i.e., Npc. 
CEvalute is mainly dependent on the size of the PMB of a precedent 
instance, since it looks up the partial matching information for a 
query. The average size of PMB can be approximated to nq, which 
is DS. Therefore, CEvaluate can be computed as O(log DS). 
According to Section 5.3, this cost can be reduced by the PMB 
reduction by a factor of Ps. 
CInsert is a function of the probability of insertions (pins) and the 
unit insertion cost (cins): CInsert = pins cins. Since we use STL:deque 
and STL:map for the queue and the index in the SIQ, cins has the 
logarithmic complexity O(log Ns) for the insertions. The 
probability, pins, is between 0 and 1; our experiments in Section 7 
showed that in practice most input event instances are inserted 
into some ECQ. Hence, taking a conservative approach, pins can 
be approximated as 1 for all composition types (except for 
disjunction, for which pins is approximated as 0 since we do not 
store event instances for disjunction). Note that CInsert is not 
proportional to the number of CEM queries, Nq. This is because 
of the instance sharing technique presented in Section 5.1. 

Finally, CClean is a sum of the cost to check all SIQs (cchk) and the 
cost to delete obsolete instances in them (cdel). 

· cchk is estimated as the number of ECQs, i.e., Npc. Note that for 
the conventional separate processing scheme in Figure 1-(a), it 
is very large, i.e., (Nq Ns). 

· cdel is proportional to the average number of stored instances 
and the unit cost of deletions. Due to the instance sharing, 
SCEMon stores incoming event instances at most once 
regardless of the number of queries. Thus, it is only 
proportional to Ns, not to Nq. 

                                                                 
3  Refer to http://www.cplusplus.com/reference/stl/ for the 

complexity of STL containers. 
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The storage cost of SCEMon, CS, can be estimated as follows: Let 
the rate of input event instances incoming to SCEMon is (Ns re), 
where re is the average rate of event generation from a source. The 
length, TW, of the time window for storing events is determined 
based on the time constraints of the registered CEM queries. Let 
cs is the size of the memory consumed by each instance, then CS 
can be calculated as (pins Ns re TW cs). As we discussed above, pins 
is 0 for disjunction and approximately 1 for all the other types 
with a large number of the queries. Note that, thanks to the ECQ 
sharing, CS is proportional to Ns, but not to Nq. 

7. PERFORMANCE EVALUATION 
In this section, we evaluate the performance improvement of 
SCEMon over conventional separate processing (SP) schemes in 
large-scale CEM environments. The experiments were run on 
Intel Core 2 Quad Yorkfield Q9550 CPU (2.83GHz) and 8 GB 
RAM. The machine was running Debian Linux 2.6.18 64-bit. 

Workloads. For the evaluation, we generate synthetic input event 
instances and CEM queries. Input event instances are generated 
randomly in the form of a tuple (source_id, event_class, start_ts, 
end_ts), as described in Section 3.1. CEM queries are generated 
based on the sequential query templates given below. 

 
The primitive event classes in the WITH clause, i.e., A, B and C, 
are randomly selected among a given set of primitive event classes. 
The time condition in the WITHIN clause is also randomly 
specified in the value range. In this work, we focus on the 
efficient processing of composition patterns so that any additional 
predicate conditions in the WHERE clause are not included.  

As default setting, we use 1K sequential queries and 1K event 
sources assuming 50 primitive event classes. Upon the start of 
experimental runs, queries are registered into the system. Also, 
generated event instances are loaded into the main memory and 
pulled into the system at the maximum rate it could accept. 

Evaluation metrics. We measured the performance in terms of 
processing and storage costs. First, for the processing cost, we use 
the unit processing time as an evaluation metric; it is defined as 
telapsed / Ntotal_event, where Ntotal_event is the total number of the input 
event instances, and telapsed is the total elapsed processing time, not 
including time to deliver the output. Second, for the storage cost, 
we count the average number of event instances stored in ECQs; 
note that the amount of stored instances indicates the storage 
consumption in CEM processing. The number of the stored 
instances is counted before and after each memory cleaning, and 
the average is computed over 15 cleanings after warm-up. 

Comparing techniques. For comparison, we have implemented a 
conventional SP scheme based on the work done by Wu et al. [1]. 
The SP scheme illustrated in Section 3.2 is implemented in C++ 
using STL [13]. The SP scheme is fairly implemented by 
performance comparisons with publically available CEM 
implementations, Cayuga [14] and Esper [15] (See Section 7.6 for 
the detailed discussion). 

To closely investigate the effectiveness of the shared processing 
techniques employed in this work, we use three different SCEMon 
implementations: (1) with event instance sharing (Section 5.1), (2) 

with instance sharing and sub-pattern sharing (Section 5.2), (3) 
with instance sharing, sub-pattern sharing and PMB reduction 
(Section 5.3). For fair comparison, SCEMon is also implemented 
in C++ using STL [13]. 

Memory cleaning period. The system performs periodic cleaning, 
where it deletes obsolete instances older than the maximum time 
window of all relevant queries. Cleaning obsolete activity 
instances is critical for in-memory processing of CEM queries. It 
has significant impact on the processing as well as storage cost. It 
is especially important for the SP scheme since the memory space 
would quickly be exhausted due to the numerous per-object stacks.  

We examine the effect of the cleaning on the processing and the 
storage cost. Figure 7 shows the results while we perform the 
cleaning every Nc updates of event instances. We observe that 
there exists a trade-off between the cleaning time and memory 
usage. The cleaning time of SCEMon is not much affected by the 
cleaning period. The time-ordered instances stored in shared 
ECQs make the cleaning process highly efficient since the number 
of the queues to be scanned is relatively small and the set of 
obsolete instances is easily identified. On the other hand, for the 
SP scheme, a huge number of the per-source stacks should be 
scanned to delete obsolete event instances as well as empty stacks. 
The figure presents that too frequent cleaning causes unnecessary 
scanning with rarely effective deletions, resulting in the excessive 
cleaning time. The figure also shows that it is hardly beneficial to 
defer cleaning beyond some extent, since the cleaning time 
decreases marginally. Meanwhile, deferred cleaning substantially 
increases the memory consumption to hold more obsolete 
instances and unused stacks. In the experiments below, we set the 
base cleaning period to 100K where the cleaning time starts to be 
saturated while the memory consumption increases linearly. 

7.1 Processing Scalability 
This section shows the scalability of the SP scheme and SCEMon 
in large-scale CEM environments. Figure 8 presents the unit 
processing time in microsecond. 

Scalability with the number of queries (Nq). We increase the 
number of queries from 100 to 5K. As shown in Figure 8-(a), the 
unit processing times of the SP scheme drastically increase for 
larger Nq’s compared to SCEMon. In contrast, the suit of shared 
processing techniques based on ECQs enables SCEMon to 
significantly reduce the processing time, especially at larger Nq’s 
With 5K simultaneous queries, for instance, it shows about 32 
times better performance than the SP scheme. 

Scalability with the number of sources (Ns). Figure 8-(b) shows 
the performance with increasing the number of sources up to 5K. 
The result illustrates that the processing times of the SP scheme 
and SCEMon increase proportionally to (log Ns); note that X-axis 
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of the graph has a logarithmic scale. Yet, it also shows that 
SCEMon deals with a large number of event sources much more 
efficiently than the SP scheme. 

7.2 Effectiveness of SCEMon Techniques 
In this section, we closely investigate where the significant 
performance gain comes from. Figure 9 shows the breakdowns on 
the unit processing times of the SP scheme and SCEMon in 
default setting, i.e., 1K queries and 1K sources. The figure shows 
that almost a half of the processing time in the SP scheme is spent 
to search for a proper data structure corresponding to a source of 
an incoming instance (labeled “Source(SP)”) due to the overhead 
of managing many event sources. The time for deleting obsolete 
event instances in separate data structures (“Clean”) takes the 
second place. Yet, the time for evaluating state transitions for 
individual instances (“Evaluate”) is shown to be relatively small. 

In SCEMon with the instance sharing, the times for storing 
incoming event instances and deleting obsolete instances (“Insert” 
and “Clean”) are reduced significantly, compared to those of the 
SP scheme. The performance improvement conforms to our 
expectations and analysis we performed while designing the 
shared storage of ECQs. However, the times for probing other 
ECQs and evaluating the extension of partial matching 
(“Probe(SCEMon)” and “Evaluate”) are not reduced sufficiently. 

For SCEMon with additional sub-pattern sharing, the time for 
probing other ECQs (“Probe(SCEMon)”) is reduced. This shows 
that the probing operation is optimized by using the R-CLT and 
happens only once for each target ECQ. Moreover, we simplify 
the probing operation by omitting the step for checking up the 
initial matching time in the PMB and defer it to the evaluation 
step. Thus, the time for evaluating the extension of partial 
matching (“Evaluate”) increases slightly. This result also 
conforms to the analysis in Section 6. 

Finally, for SCEMon with full sharing techniques, the time for 
evaluating the extension of partial matching (“Evaluate”) is 

reduced, since the PMB reduction technique is designed to reduce 
the PMB access time during the evaluation. In addition, event 
instances stored in ECQs are associated with smaller PMBs, 
resulting in the time for deleting obsolete event instances 
(“Clean”) is reduced accordingly. 

7.3 Storage Scalability 
We also evaluate the storage performance of SCEMon compared 
with the SP scheme. Figure 10-(a) shows the average number of 
event instances stored in the data structure as the number of 
queries (Nq) increases. The SP scheme stores event instances in 
each NFA separately and does not share them at all. This leads to 
the redundant storage consumption proportional to the number of 
queries. For SCEMon, however, the numbers of stored instances 
are saturated for larger Nq’s. This is the result of instance sharing 
by which only a single copy of individual incoming instances is 
stored regardless of a multitude of simultaneous queries. 

Figure 10-(b) demonstrates the remarkable storage efficiency of 
SCEMon over the SP scheme for large numbers of sources. In fact, 
the storage costs of SCEMon also increase linearly with the 
number of sources (Ns) due to the higher rates of incoming event 
instances for larger Ns’s. However, SCEMon keeps the storage 
costs much lower, almost 10% in the setting, compared to the SP 
scheme by virtue of instance sharing. 

7.4 Performance Characteristics of SCEMon 
with Other Attributes 
We have also performed the performance evaluation of SCEMon 
and the SP scheme with varying numbers of primitive event 
classes and sequence steps in the template sequence query.  

Performance with the number of primitive event classes (Npc). 
We investigate how the performance of SCEMon varies due to the 
degree of event class sharing. We change the number of primitive 
event classes from 10 to 200 so that an identical number of 
simultaneous queries share them in different levels of sharing. 
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(See Figure 11-(a).) When Npc is 10, i.e., we only use 10 
primitive event classes in the setting, an event class should be 
shared by large numbers of simultaneous queries. On the other 
hand, when Npc is 200, the degree of sharing decreases. Due to 
the proposed event-centric sharing approach, the performance of 
SCEMon becomes much better than that of the SP scheme with 
smaller Npc’s. As expected, with larger Npc’s, the performance 
gap between the SP scheme and SCEMon gets smaller, but 
SCEMon still performs better than the SP scheme. 

Performance with the number of sequence steps (Nstep). The 
number of sequence steps also influences the degree of event-class 
sharing, since each query can contain more numbers of primitive 
event classes with larger Nstep’s. Figure 11-(b) demonstrates that 
the unit processing times of the SP scheme and SCEMon increase 
as Nstep increases, similar to the impact of increasing Nq. 
However, the impact is not as significant as that of increasing Nq, 
since a large portion of incoming event instances fails to extend 
partial matching and is discarded without any further evaluation. 

7.5 Performance Evaluation with 
Conjunction and Disjunction 
We have also evaluated the performance of SCEMon with 
conjunction and disjunction queries. Figure 12 and 13 show that 
SCEMon outperforms the SP scheme significantly for conjunction 
for increasing Nq’s and Ns’s. This is because the SP scheme 
instantiates all the permutated sequences of the participating event 
classes in an NFA, which results in a huge number of NFA states 
loaded in the system. Our results show the sharp increase in the 
processing cost for the conjunction queries of three event classes, 
i.e., CNJ3. On the other hand, Figure 14 shows the results of 
disjunction. As a larger number of NFAs are instantiated (see 

disjunction of five events, i.e., DSJ5, compared to DSJ3), the 
processing time of the SP scheme gets longer due to the lack of 
sharing. In Figure 14-(b), note that the processing cost of 
disjunction queries remains almost constant with a fixed number 
of queries. This is because the incoming event instances are not 
stored and looked up for disjunction at all. 

7.6 Performance of Publically Available 
Implementations 
To understand the performance of conventional SP schemes with 
large numbers of queries and sources, we have conducted the 
performance evaluation using publically available 
implementations. First, we retrieved the Cayuga implementation 
from [14] and ran it on a 32-bit Windows XP machine of Intel 
Core 2 CPU (2.13GHz) and 3.50GB RAM. The Linux 
configuration of the Cayuga implementation is not correctly 
supported so that we use Windows instead. 

The evaluation shows that Cayuga is not efficient for large 
numbers of queries and sources. We measured the unit processing 
time in microsecond as we increase the number of queries (Nq) 
and the number of sources (Ns) from 10 to 1K respectively. (We 
used 10 as the default values of Nq and Ns in each experiment. It 
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could not support 1K queries and 1K sources at the same time.) 
The results shown in Figure 15 demonstrate that the unit 
processing time of Cayuga increases linear proportionally to Nq 
and Ns. We further challenged Cayuga with larger scales and 
observed that the implementation consumes too much memory to 
run in the experimental setting. 

Figure 16 presents the performance evaluation of another publically 
available CEM implementation, Esper. We retrieved the 
implementation from [15] and performed evaluation in the same 
setting as Cayuga. It shows better performance than Cayuga, yet the 
processing times are larger than those of our SP scheme 
implementation (See Figure 17 that presents the processing times of 
our implementation in the same setting). This is because ours is 
much specialized to the core processing of CEM while Cayuga and 
Esper are involved in additional processing such as dealing with 
XML input. Based on these results, we note that our implementation 
of conventional SP schemes is reasonable for fair comparison to 
SCEMon. 

8. CONCLUSION and DISCUSSIONS 
In this paper, we focused on the scalability issues when large 
numbers of CEM queries and event sources exist in upcoming CEM 
environments. To address these challenges effectively, we take an 
event-centric sharing approach rather than conventional 
query/source-separate processing approaches. ECQ is a novel data 
structure designed to facilitate efficient evaluations of multiple 
queries over very large volumes of event streams from numerous 
event sources. ECQs are composable to build a single shared 
network within which multiple queries are efficiently evaluated. We 
developed a set of the shared processing techniques on top of the 
ECQ network. Our evaluation showed that our approach 
outperforms the conventional approaches in large-scale CEM 
environments. 

While we did not discuss it in this paper, SCEMon can easily 
support negation and Kleene closure; these require slight 
modifications in the Probe function. For negation, the condition 
testing, i.e., if any event instance exists and satisfies the time 
constraints, should be inversed; for Kleene closure, the Probe 
function checks the number of the stored precedent instances 
satisfying the time and value constraints in the SIQ. In addition, the 
test phases for sequence and conjunction also need to be modified. 
All ECQs designated to generate outputs need to look up the ECQs 
participating for negation and Kleene closure, before it generates 
output results. Since these modifications are straightforward, we do 
not present the algorithms in this paper. 
Another aspect of CEM processing not discussed in this paper is 
nested query monitoring. A nested query consists of different 
patterns, e.g., a conjunction of sequences, a sequence of 
conjunctions and disjunctions, etc. Supporting such nested queries 
has been considered as an important issue in composite event 
processing research, yet rarely addressed. SCEMon can have virtual 
primitive event classes for individual composition patterns in nested 
queries. We register each pattern as a CEM query and define a 
virtual primitive event class (VPEC) for the results of the query. 
SCEMon feedbacks the results redefined as the instances of the 
VPEC as input. In other words, SCEMon constructs the shared 
network of ECQs that are responsible for real primitive event classes 

and VPEC’s. Treating nested patterns as primitive event classes, 
SCEMon can evaluate complicatedly nested queries effectively 
within the shared network of ECQs. 
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