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Scalable Activity-Travel Pattern Monitoring
Framework for Large-Scale City Environment

Youngki Lee, SangJeong Lee, Byoungjip Kim, Jungwoo Kim,

Yunseok Rhee, and Junehwa Song, Member, IEEE

Abstract—In this paper, we introduce Activity Travel Pattern (ATP) monitoring in a large-scale city environment. ATP represents

where city residents and vehicles stay and how they travel around in a complex megacity. Monitoring ATP will incubate new types of

value-added services such as predictive mobile advertisement, demand forecasting for urban stores, and adaptive transportation

scheduling. To enable ATP monitoring, we develop ActraMon, a high-performanceATP monitoring framework. As a first step,

ActraMon provides a simple but effective computational model of ATP and a declarative query language facilitating effective

specification of various ATP monitoring queries. More important, ActraMon employs the shared staging architecture and highly efficient

processing techniques, which address the scalability challenges caused by massive location updates, a number of ATP monitoring

queries and processing complexity of ATP monitoring. Finally, we demonstrate the extensive performance study of ActraMon using

realistic city-wide ATP workloads.

Index Terms—Activity-travel pattern (ATP), monitoring, location data processing, scalable architecture, large-scale, city.

Ç

1 INTRODUCTION

UNDERSTANDING diverse aspects of complicated modern
cities has long been a pivotal issue. Activity-Travel

Pattern (ATP) has been used as one of the most useful tools
to define and understand city residents’ everyday lives in
domains such as urban planning, geography, and transpor-
tation [1], [2], [4], [32]. ATP represents where people and
vehicles are located, how they move in urban areas, and
which activities they do at the places in certain patterns. As
a city encompasses more people, vehicles, spaces and
services, understanding ATP becomes more useful yet
challenging. Because of its practical importance, govern-
mental organizations have periodically observed and
studied ATPs in terms of space-time use of citizens over
major cities [22], [24], [25]. These observations have been
performed through manual questionnaires and annotations,
requiring huge amounts of time, labor, and expense.

Advances in mobile and ubiquitous computing tech-
nologies open up the opportunity for real-time monitoring
of ATP. Real-time monitoring will significantly enhance
the scale and timeliness of the ATP observation compared
to conventional methods. More importantly, it will in-
cubate a number of new advanced ATP-based urban
services. For instance, mobile advertisement services will
become far more intelligent and effective in targeting and
appealing to potential customers by observing their ATPs.
Also, there are many other applications such as adaptive

and fine-granule scheduling of public transportations,
demand forecasting of urban retail stores, and dynamic
planning and management of urban districts. To effec-
tively support diverse ATP-based services, an efficient
ATP monitoring framework is compelling.

In this paper, we propose ActraMon, a high-performance
ATP monitoring framework for large-scale city environ-
ments. ActraMon aims at providing an infrastructural
support for a number of ATP-based services. (See Fig. 1)
It helps service providers easily launch new services
without building their own monitoring facilities. ActraMon
monitors location data continuously updated from city-
wide moving objects and evaluates ATP monitoring queries
submitted by the service providers. Then, it detects ATP
instances matching to the queries in a scalable manner. The
services use the matching results to provide personalized
situation-aware services (e.g., ATP-based mobile advertise-
ment) or further aggregate them for collective observation
of city dynamics (e.g., for dynamic scheduling of public
transportations).

Developing an ATP monitoring framework is an im-
portant but challenging problem. The major challenge lies
in developing efficient and scalable processing technologies
to address the complexity in ATP monitoring semantics
and the massive scale of location updates and ATP
monitoring queries. First, ATP monitoring demands highly
complicated processing, since it observes long-term beha-
vior of the whole moving objects collectively spanning
multiple geographic regions. Its time duration often
becomes several hours or days, and the regions of interest
are possibly distributed over the whole city domain.
Second, an ATP monitoring framework is confronted with
large-scale workloads. The framework should handle high-
rate location updates from millions of people and vehicles.
It should also concurrently evaluate more than thousands
of city-wide ATP monitoring queries. Furthermore, the
queries are mostly required to respond in real-time; for
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instance, late-delivered coupons are usually worthless in
ATP-based mobile advertisements.

To the best of our knowledge, our work is the first
attempt to introduce the ATP monitoring in a large-scale
city environment. Previous research on ATP in geography
and transportation have mainly focused on developing
logical models of ATP [1], [2], [4] and analyzing survey data
statistically [24]. Our work tries to computationally model
and automatically monitor city-wide ATPs, addressing an
interdisciplinary research problem.

In terms of processing technologies, ATP monitoring is
broadly related to location monitoring systems, trajectory-
based systems, data stream management systems, and
event processing systems. Recently, several systems such
as SINA [7], MobiEyes [8], and MQM [9] have been
proposed to enable real-time monitoring of moving objects.
Also, data stream management systems [11], [12], [13] are
proposed for general purpose data monitoring. However,
their query semantics are mostly limited to range queries, k-
Nearest Neighbor queries, and other relational queries.
Thus, ATPs such as sequencing of multiple primitive
activities can hardly be specified and processed efficiently
by such monitoring systems. Event processing systems [18],
[20] support various compositions; however, they do not
efficiently handle massive location updates and a large
number of monitoring queries. Several trajectory-based
systems [5], [6] support queries over long-term behavior
of an individual object. However, they aim at processing
snapshot queries over stored trajectories but do not support
real-time monitoring efficiently.

To support a city-wide ATP monitoring, we abstract ATP
in two levels, i.e., primitive and composite activities (details in
Section 3) and provide ATP monitoring query language
based on the abstraction. This layered abstraction facilitates
to capture diverse ATPs of interest and attain global under-
standing of the dynamics of a large-scale city, involving a
huge number of residents, urban spaces, and facilities.

We design and develop a shared staging architecture to
process ATP monitoring queries in a highly efficient and
scalable manner. The architecture achieves the high
performance in two aspects. (See Fig. 2)

First, it separates ATP monitoring into the detection of
primitive activities and the composition of the detected
activities. The separation of two processing stages allows

ActraMon to effectively deal with the compound technical
challenges of ATP monitoring, i.e., massive data processing
and complex pattern composition. More important, the
architecture performs efficient filtering of massive location
updates at the early stage of the processing. The early
filtering of insignificant updates eliminates a number of
complex, unnecessary activity compositions. For this, ATP
monitoring queries are fragmented into activity detection
and composition operators and dispatched to proper
stages, respectively.

Second, we develop novel shared processing techniques
for each processing stage. Especially, we develop a shared
activity detector to handle a number of activity detection
operators and a shared activity composer to handle all types
of activity composition operators. Each shared processor is
equipped with shared data structures (Activity Border Index
(ABI) and Activity-centric Composable Queue (ACQ)) and a
localized processing method to efficiently process all
registered operators with a single operation onto a small
and critical part of the data structures. In addition, the
processing is performed in an incremental manner for
efficiency; the shared processors store the previous state of
the computation and start the computation from the stored
state. In this way, the shared processors significantly reduce
processing overhead as well as memory consumption. The
performance gain is studied in detail through the extensive
experiments in Section 5.

The contribution of this paper is as follows: We first
introduce ATP monitoring in a large-scale city environment.
Then, we propose ActraMon, a high-performance ATP
monitoring framework, which includes the computational
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Fig. 1. ActraMon framework and environment.

Fig. 2. Shared staging architecture of ActraMon.



model of ATPs and the novel shared staging architecture.
Most important, we develop highly efficient and scalable
processing techniques for city-scale ATP monitoring as a
major contribution. They effectively address the scalability
challenges caused by massive workloads and processing
complexity. Finally, we conduct extensive performance
studies to show the scalability and robustness of the
techniques. The experimental results show that the techni-
ques are highly scalable in terms of the number of ATP
queries and moving objects, compared to existing state-of-
the-art processing techniques [18], [27].

The rest of this paper is organized as follows: We first
present related work in Section 2. In Section 3, we describe
the computational model and language for ATP monitoring.
Section 4 presents the shared staging architecture, and
activity detection and composition techniques. We report
the performance study in Section 5 and conclude the paper
in Section 6.

2 RELATED WORK

Understanding ATP with the intention of planning urban
services and infrastructures has long been a pivotal issue in
domains like geography, urban planning, and transporta-
tion [1], [2], [3], [4], [32]. It has been applied to many
practical applications such as travel demand estimation and
transportation planning [24]. This section reviews various
computational technologies related to the proposed ATP
monitoring framework. More comprehensive review of the
related work can be found in [29, Section 2].

Several location-based systems have been proposed for
real-time processing of continuous location updates of
moving objects [7], [10], [14]. They provide continuous
query semantics for effective monitoring and efficient
processing techniques to deal with massive location
updates and a number of queries. SINA [7] proposes a
spatial join-based approach, and MAI [14] adopts motion-
sensitive bounding box approach. Although they provide
useful techniques to optimize location data processing, it is
difficult to directly apply them to ATP monitoring; they do
not deal with semantics and techniques for long-term
transition behavior.

Recently in mobile computing domain, MobiEyes [8] and
MQM [9] propose techniques for scalable computation of
continuous range queries over location updates from
mobile clients. They divide the whole monitoring domain
into multiple cells [8] or regions [9] and offload partial
processing to mobile clients. Although the techniques
support simple range query semantics only, the idea may
be applied to ATP monitoring. However, the detailed
techniques should be redesigned for ATP monitoring since
an ATP monitoring query is associated with multiple
regions at the same time and requires to maintain long
term states to generate final results.

Trajectory processing technologies [5], [6] can be con-
sidered for ATP monitoring, in the sense that both deal with
the successive behaviors of moving objects. For efficient
access of trajectories, they proposed trajectory indices,
which are designed to effectively preserve the spatial
proximity of trajectory data. Trajectory processing and
ATP monitoring have several major differences. First,
trajectory queries and indices are mainly designed to find
the offline trajectory of a single object. Inherently, they can

hardly support continuous real-time monitoring. For con-
tinuous monitoring, the indices built on the huge trajectory
data need to be updated frequently by each location update,
resulting in serious performance overhead.

Regarding the monitoring of continuous location updates,
it would be possible to consider using data stream manage-
ment systems such as Aurora [11], TelegraphCQ [12], and
STREAM [13] and other related techniques [42]. Designed for
generic data streams, these systems provide relational query
models and a set of query processing techniques such as
query planning, operator scheduling, and load shedding.
The unique semantics of ATP such as activity detection and
composition, however, is difficult to be efficiently specified
and processed with the relational model and the proposed
techniques.

Various indexing techniques have been proposed to
handle various types of spatial and spatio-temporal queries
[5], [6], [15], [23], [27]. Such techniques could be employed
for the activity detection of ActraMon. However, the direct
application of such indices is highly likely to cause
inefficiency due to unique processing requirements of the
activity detection; it requires continuous monitoring of
spatio-temporal behavior of numerous moving objects with
respect to a large number of activity regions and time
conditions. More specific, diverse spatial query indexing
techniques [15], [23], [27] have been proposed for efficient
processing of multiple continuous range queries. Based on
R-tree and grid structures, for instance, they quickly evaluate
a number of range conditions in a shared manner. However,
such spatial indices entail heavy postprocessing to trace
long-term temporal behaviors over a set of regions. Also,
several spatio-temporal indexing techniques [5], [6] have
been proposed to facilitate trajectory query processing which
retrieves offline trajectories for individual moving objects.
However, as discussed above, they can hardly be applied
to continuous activity detection processing over massive
location updates from numerous moving objects. Hardly
supported by existing indices, ActraMon develops a novel
index structure, Activity Border Index, which addresses the
unique requirements of the activity detection processing.

There has been some recent work on spatial alarms and
location reminders in database, spatial data mining, dis-
tributed systems, and HCI domains [34], [35], [36]. They
propose techniques to alarm users if they go into regions of
interests by monitoring their location data. The techniques
might be related to the activity detection of ActraMon,
which also evaluate spatio-temporal conditions over loca-
tion updates. Liu and colleagues recently propose a
technique to reduce location updates utilizing safe region
concept [35]; it helps servers to take less amount of data as
input thereby achieving processing efficiency. Also, it
distributes the intensive safe-region calculation to clients
and imposes a little overhead to the server. Additionally,
there has been work to further optimize location sensing cost
in a mobile client using safe-distance concept [36]. The
client-side techniques can be a complement to the location
processing of ActraMon and help it achieve even higher
level of scalability. Also, a server-side technique has been
proposed to improve processing efficiency to handle multi-
ple spatial alarms [36]. The technique utilizes Voronoi
regions overlaid on top of grid cells to efficiently handle
sparse and nonoverlapping spatial regions. However,
activity regions are likely to be dense and overlapped with
each other especially in downtown areas. Also, the
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technique requires heavy postprocessing as like conven-
tional query-indexing techniques to evaluate temporal
conditions for activity detection.

For the detection of complex patterns from primitive
events, several event-based systems and techniques [18],
[19], [20], [33] have been proposed in diverse application
domains such as logistics and surveillance. SASE [18] and
Cayuga [19] develop an efficient event composition
technique extending Nondeterministic Finite Automata
(NFA). Such event systems have rarely considered massive
location data continuously updated from a number of
moving objects. Also, it is highly challenging to detect
composite ATP instances directly from raw location data,
not from primitive events. To address the challenge,
ActraMon employs the staging architecture; it performs
activity detection and composition separately.

Regarding activity instances as primitive events, it may
be possible to employ existing event processing systems for
the activity composition. However, they also have rarely
considered a large number of composition queries, which
cause major performance challenges in large-scale ATP
monitoring [16]. The processing time would increase
significantly with the number of registered queries. More-
over, they consume considerable storage spaces to hold
intermediary states separately for every single query, which
makes in-memory processing for real-time ATP monitoring
difficult. ActraMon, on the other hand, takes a shared
processing approach based on Activity-centric Composable
Queue that enables simultaneous evaluation of multiple
ATP queries in a shared manner.

3 ACTIVITY-TRAVEL PATTERN MONITORING

ATP monitoring is useful to collectively observe popula-
tion’s city-wide behavior for diverse purposes. Consider a
mobile advertising service. Issuing advertisements or
coupons based on the current location of target customers
is intended to be timely but in reality, not that useful. For
instance, not every pedestrian walking close by a restaurant
wants to have a meal there, nor cares about its lunch menu.
Such conventional location-based advertisements would be
ineffective and may rather give a bad impression, even
recognized as annoying and unpleasant spam.

Observing the activity and travel patterns of city
residents enables us to better identify and target the
potential customers who would indeed benefit from timely
and proactive advertisements [41]. For example, a franchise
wine bar, leveraging the observation of activity-travel
patterns, can target people who have stayed in nearby
theaters for about two hours and visited Italian or French
restaurants for about an hour. The wine bar then assumes
that they are highly likely having a date at the moment and
would be interested in a good wine bar.

ATP monitoring also enables developing more futuristic
applications such as an adaptive public transportation
planning. It captures occasional events such as festivals,
sales, and demonstrations which would change population
flows, and helps bus companies rearrange routes and
schedules on-the-fly. For those purposes, we can install
ATP queries on movements of interest over a city, and
observe the occurrences in real time. We expect that a city
planner or administrator will usually advise on the queries
based on her interests and domain knowledge. The queries

can be also crafted with the help of offline data mining
systems running over a city. Meanwhile, we also expect that
real-time ATP monitoring can facilitate complementarily
the offline mining process on a tremendous amount of
macroscopic city data.

3.1 Computational Model

Most work on ATP in the areas of geography, urban
planning, and transportation has modeled activities at
diverse urban spaces in terms of the space-time use of
residents [24], [25], [32]. Based on the space-time-based
models, they attempt to understand which activities the
residents conduct, where, when, for how long, with whom,
and which transportation mode they use between activities
[1], [2] in a city. The idea behind the abstraction is that an
urban space is usually designated by its unique service or
an activity associated with it, e.g., a theatre for watching
movie, a restaurant for dining-out, a hospital for health-
care, a school for education. People mostly stay in a space
for a certain amount of time to perform a certain activity or
to attain a certain service. Thus, an urban space and the
duration of a stay have usually been taken as the basic units
of observing urban activities, while concealing the details of
the activities occurring within the space.

The computational model of ATPs is developed with a
two-level approach; it first specifies primitive activities over
location data streams from moving objects, and ATPs as the
compositions of the primitive activities. The model provides
necessary semantics for ATP monitoring. In addition, it
provides an opportunity to develop a scalable and efficient
processing technique by dividing complex ATP monitoring
into two separate levels.

Primitive activities are modeled with the space-time
abstraction. From massive location updates, we abstract the
stay of a moving object within a specific urban space,R, for
a certain time duration, t, where Tmin < t < Tmax, as a
primitive activity. For the abstraction model, we assume
that a location is uniquely defined in a given n-dimensional
coordinate system, e.g., (x,y,z) in 3D, and a space is also
specified as a range for each dimension. Thus, the model
distinguishes multiple spaces in different levels of a
building as well as movements between them.

Recent research demonstrates that location data are one
of the most useful classifier features in macroscopic activity
inference [22], [31]. The authors of [22] investigate the
inference accuracy with respect to the activity taxonomy
provided by American Time-Use Survey. When a location is
combined with time-of-day, the accuracy rises up to
70 percent for coarse-granule (Tier 1) activities.

The composition of primitive activities enables the
expression and monitoring of diverse, complex ATPs
effectively. For the effective composition, the model
provides several operations such as sequencing, grouping,
selection, and negation of primitive activities. For example,
a dating pattern can be presumed as the sequence of two
primitive activities, i.e., “staying at a theater for two hours”
and “visiting a restaurant for an hour.” The activities may
be grouped when the sequential order does not matter, e.g.,
visiting nearby stores in a shopping mall. Also, negation can
be used to exclude people who have already visited another
wine bar in the previous wine bar scenario.

There are many possible ways to model ATPs depending
on their own purposes. The main purpose of the two-level
approach is to provide a simple, practical means to attain
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macroscopic understanding of the collective behaviors of
residents in a large-scale city.

3.2 ATP Query Language

ActraMon provides ATP query language based on the
computational model. Table 1 shows the language con-
structs to specify ATP monitoring queries.

First, a primitive activity with space and time can be
specified using ACTðR; Tmin; TmaxÞ operator. It collectively
observes all moving objects and detects the ones satisfying
its spatio-temporal conditions. Activity instances are gener-
ated as its output when an object ends the activity by going
out of the region. The following queries, i.e., A1 and A2, are
examples queries of the ACT operators.

A1. ACTðRtheater A; 1:5h; 2:5hÞ
A2. ACTðRGUCCI; 10min; 60minÞ
A1 specifies a query to detect people who have been

“staying at a theater_A for about two hours.” Similarly, A2
expresses a query to detect customers who “have shopped
at a GUCCI shop.” In practice, R is specified by a query
issuer, e.g., using a map interface which enables her to
designate a space of interest on a city map.

The composition operators are used to specify diverse
ATP monitoring queries. First, the SEQ operator specifies a
time-ordered sequence of multiple activities. For example,
a query C1 as below, specifies a probable dating patterns,
i.e., visiting a theater_A, a GUCCI shop and a restaurant_B
in a sequence. Also, an example query on population flows
for public transportation planning can be specified as C2.

C1. SEQðACTðRtheater A; 1:5h; 2:5hÞ,
ACTðRGUCCI; 10min; 60minÞ,
ACTðRrestaurant B; 0:5h; 1:5hÞ; 6hÞ

C2. SEQðACTðRoffice area A; 4h; 8hÞ,
ACTðRshopping district B; 1h; 3hÞ; 12hÞ

The ALL operator expresses an unordered occurrence of
multiple activities within a given time duration. For
example, the marketing manager of a luxury shop may
seek to identify brand shoppers who have visited all the
neighbor GUCCI, PRADA, and CHANEL shops as below.

C3. ALLðACTðRGUCCI; 10min; 60minÞ,
ACTðRPRADA; 10min; 60minÞ,
ACTðRCHANEL; 10min; 60minÞ; 2hÞ

Finally, the ANY operator provides a way to express the
occurrence of an activity among multiple candidate activ-
ities. Note that the WITHOUT clause is optionally used to
exclude certain activities for SEQ and ALL operators.

To help understand clear semantics of language con-
structs, we present the formal definition of each operator in
Table 1. For the definition, we first define input and output
of ActraMon and the operator definition is presented based
on the input and output.

First, ActraMon takes a set of location streams from
moving objects as input. A location stream of a single
object, a series of location data generated from the object, is
defined as follows:

Definition 1. Location data and location stream.

. loc is an location data, formally defined as a tuple of
(oid, coord, t), where

- oid is an identifier of a moving object,
- coord is a location coordinate in d-dimensional

space (coord 2 Rd), and
- t is a timestamp.
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. loc_strm is a location stream generated from a
moving object, formally defined as an infinite series of
location data<loc1; loc2; loc3; . . .>, where ðlock�1:oid¼
lock:oidÞ and ðlock�1:t < lock:tÞ, for all k > 1.

Over the input location streams, ActraMon then detects
activity instances of moving objects and generates activity
instance streams, which are used as internal input for ATP
composition.

Definition 2. Activity instance and Activity instance

stream.

. act is an activity instance of a moving object detected
by space-time abstraction, formally defined as a tuple
of ðoid; aid; ts; teÞ, where

- oid is an identifier of a moving object,
- aid is an identifier of a primitive activity,

internally given by ActraMon, and
- ts and te are the timestamps of starting and

ending the activity.
. act_strm is an activity instance stream of a moving

object, formally defined as an infinite series of activity
instances <act1; act2; act3; . . .>, where ðactk�1:oid ¼
actk:oidÞ and ðactk�1:te < actk:teÞ, for all k > 1.

ActraMon detects ATP instances of moving objects over
activity instance streams, and generates resulting ATP
instances as final output.

Definition 3. ATP instance.

. atp is an ATP instance of a moving object, defined as a
tuple of (oid; cid; ts; te; ðactM1; . . . ; actMn)), where

- oid is an identifier of a moving object,
- cid is an identifier of a composite ATP, internally

given by ActraMon,
- ts and te are the timestamps of starting and

ending the atp instance, and
. actMi’s for 1 � i � n are the matching activity

instances that compose the atp instance.

ATP monitoring queries specified with the constructs have
several common features as follows:

. ActraMon is designed mainly for collective monitor-
ing of citizens and vehicles across a whole city. For
the purpose, ATP monitoring queries are supposed
to observe all moving objects.

. ATP monitoring starts to be effective with subsequent
input data after the corresponding query has been
registered into the system. ActraMon does not keep
past location data and activity instances that might be
used for immediate response to upcoming queries.

. Upon an input data of an object, each ATP query
generates at most one ATP instance, which repre-
sents the most recent ATP behavior of the object.
This can be considered as a recent selection mode in
active database among several different composition
modes to compose events [37].

The ActraMon language constructs can be used in
combination with SQL-like continuous query languages
[13]. The postprocessing such as aggregation, provided by
the languages, can be used to further group and summarize

ATP instances. It is useful for city-scale monitoring
applications such as public transportation planning.

3.3 City-Wide ATP Monitoring

The primary purpose of city-wide ATP monitoring is to
support and improve the planning, operation, and main-
tenance of various urban services in a complex modern city.
Thus, the focus is on attaining global understanding of the
dynamics of a large-scale city, which involves a huge
number of residents, urban spaces, and facilities. Resul-
tantly, it is important to capture and observe collective
behaviors of city residents beyond personal behaviors of
individuals. Also, the ATP monitoring focuses more on the
macroscopic observation of residents’ behaviors with regard
to the usage of urban services and city facilities. Thus, it
abstracts the urban activities in a high level with regard to
the spatio-temporal occupancy of urban resources by the
residents and its pattern. Then, it provides a basis for rich
composition of diverse ATPs of interest to support various
urban services. This high-level abstraction is advantageous
for the observation and understanding of the dynamics of a
modern city, especially a large-scale complex one.

Providing a framework to attain the integrated, complete
understanding of a city is a challenging problem. Under-
standing the detailed personal behaviors of individual
residents is not the objective of this city-wide ATP
monitoring nor the scope of this paper. There are a number
of researches for such microscopic understanding of
personal behaviors, which mainly utilizes various sensor
technologies such as accelerometers, gyroscopes, and
physiological sensors. The design of the proposed model
can be extended to attain a more complete understanding of
city lives by incorporating such detailed observation.

4 SCALABLE PROCESSING ARCHITECTURE

4.1 Shared Staging Architecture

For a large-scale ATP monitoring framework, we devise a
novel shared staging processing architecture. (Fig. 2) It is
designed to be highly efficient and scalable in dealing with
many diverse, complicated ATP queries as well as massive
location updates from a large number of moving objects.
Conventional systems [11], [18], [20] that support contin-
uous processing of complicated monitoring queries mostly
take a query plan-based approach; each query is planned as
a chain of operators and processed separately from other
queries. Although processing each query plan can be
optimized, the separated query processing inherently limits
scalability. Frequent location updates are repeatedly dis-
patched to all query plans, and they could cause unneces-
sary and redundant processing overhead.

The proposed architecture is advantageous as follows:

. The challenges are compound for efficient ATP
processing, i.e., complex long-running ATP queries
and huge-scale location updates. It is difficult to
resolve both concerns at the same time. Regarding the
ATP model, the architecture divides the processing
into two stages: activity detection and composition.
The staging of processing steps enables separation of
the concerns and opens chances to develop efficient
techniques properly optimized for each stage. The
activity detection stage focuses on efficient space-time
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abstraction from massive and continuous location
updates, while the activity composition stage sup-
ports flexible and complex composition.

. For each stage, we design and implement novel
shared processors which collectively handle all
operators of the stage: a shared activity detector for
ACT operators and a shared activity composer for
composition operators, i.e., SEQ, ALL, and ANY. To
efficiently build the shared processors, we develop
shared data structures and localized processing
methods adequate to each stage. It enables to process
all the registered operators with a single operation.
The data structures are specialized to maximize the
effect of shared processing by collectively organizing
individual operators into a single data structure. The
localized processing methods are designed to process
input data over all the operators by accessing only a
small part of the data structures. In this way,
the shared processors significantly reduce processing
overhead as well as memory consumption.

. Staging also facilitates efficient filtering of massive
location updates at the early stage of processing. The
early filtering is important for the overall processing
performance; it passes only a small number of
meaningful activity instances as it filters out insig-
nificant and unnecessary location updates. As a
result, it avoids a number of complex, unnecessary
compositions which would otherwise frequently be
triggered by continuous location updates.

To enable the shared staging, ActraMon parses and
decomposes ATP monitoring queries into individual opera-
tors. Then, it groups all ACT operators and dispatches them
to the shared activity detector to be processed collectively.
Similarly, all composition operators are grouped and
processed within the shared activity composer.

4.2 Activity Detection Stage

The challenges in the activity detection stage lie in efficiently
processing a large number of ACT operators over massive
location updates. Each ACT operator should evaluate if a
sequence of location updates within a time window satisfies
its spatial and temporal conditions. A large time window
often demands huge memory consumption. It also incurs
huge processing overhead to evaluate the conditions
repeatedly upon each location update from plenty of moving
objects. Moreover, a number of ACT operators extremely
aggravate such processing and memory overhead.

To address these challenges, we develop an efficient
shared and incremental processing mechanism for the
activity detector. We observe the moments of topological
changes between moving objects and activity regions as the
significant reference to effectively detect activity instances.
To enable the efficient detection in a massive scale based on
the observation, we build a novel index, Activity Border
Index, over a large number of the operators and objects. ABI
captures and encodes the topological changes. It localizes
detection processing effectively to a small part of the whole
index, and further quickly identifies all potentially relevant
operators at a single step, achieving a high level of the
scalability. ABI is based on our precedent work [39], [29],
but it is further elaborated to efficiently support both spatial
and temporal indices.

4.2.1 Activity Detection

The activity detector takes a set of ACT operators and a set
of location streams as input. As stated prior, the location
and space are assumed to be defined in any n-dimensional
space. For the simplicity of illustration, however, those are
hereafter confined in 2-dimension. Thus, an ACT operator is
defined formally as follows:

Definition 4. ACT operator.

. ACT is formally defined as a tuple of ðaid; R;
tmin; tmaxÞ, where

- aid represents the identifier of an ACT operator,
- R is an activity region represented as ðxl; yl;

xu; yuÞ, and
- tmin, and tmax are the temporal conditions.

The input, a set of location streams, is {loc strm} defined in
Definition 1. As output, the activity detector generates
activity instances, act defined in Definition 2.

4.2.2 Activity Border Index

The ABI is a shared data structure for all moving objects
which incorporates the specification of all ACT operators.
The idea behind ABI are to concentrate on the changes in
object-activity containment relations; an object has a
containment relation with an activity when the location of
the object is contained in the region of the activity. Location
updates from a moving object may cause changes in its
containment relations with some activities, i.e., “moving-in”
to or “moving-out” of the regions of the activities, ACTs.
However, most of the updates hardly cause any changes in
the relations. For efficiency, we capture only the changes in
the containment relationships and conceptualize the mo-
ments of the changes as the temporal borders of activities. ABI
keeps the temporal borders dynamically occurring with
regard to plenty of ACT operators and moving objects.
Based on such temporal borders, the evaluation can be done
progressively without repetitively tracing back the past
location updates.

Temporal borders are illustrated in Fig. 3. The figure
demonstrates an example with two ACT operators, A1 and
A2, for a moving object o1. o1 generates 14 location updates
from loc1 at the lower left corner to loc14 at the upper right.
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Fig. 3. Temporal borders for activity detection: for simple and clear
explanation, we project 2D spatial region in 1D axis (R-axis).



The spatial dimension, i.e., R-axis, designates the activity
regions R1 and R2, of A1 and A2, respectively. The temporal
dimension, i.e., t-axis, shows the time points of the location
updates. Note that from 14 location updates, only three
temporal borders, ta, tb, and tc, have been created between
the pairs of time points ðloc4:t; loc5:tÞ, ðloc9:t; loc10:tÞ, and
ðloc12:t; loc13:tÞ, when some changes occur in the contain-
ment relationship.

A core part in the development of the temporal borders
is the computation of containment relations. It can be
facilitated by using a shared region index such as R-tree or
Containment Encoded Square (CES) [27]. Given a location
data, the index enables the efficient computation of a set of
containing regions. However, activity detection process
should eventually obtain the changes in the containment
relations, not the relations themselves. Utilizing such
existing indices, therefore, the change detection inherently
involves expensive set-difference operations, causing severe
processing and memory overhead over successive and
frequent location updates. For instance, SINA [7] incremen-
tally reports the changes occurring to a region similar to our
case. It performs the costly set-difference operation after
retrieving all contained objects through a grid-based index.
Yet, ABI employs a novel data structure and processing
mechanism carefully designed to obtain the changes
directly without computing containment relations.

Given a location stream <loc1; . . . ; lock�1; lock; . . .> and a
set of ACT operators fACTig, the containing ACT set and
the changes in the containing ACT sets (CAs) are defined in
Definitions 1 and 2. Sðoj; lockÞ denotes the set of the ACT
operators whose activities are started by the location update
lock. Eðoj; lockÞ similarly specifies the set of the ending ACT
operators. As described in Fig. 3, nonempty Sðoj; lockÞ or
Eðoj; lockÞ indicate the occurrence of temporal borders at the
time of the location update lock.

Definition 5. Containing ACT set (CA) for an update lock of
object oj

. CAðoj; lockÞ ¼ fACTijlock:ðx; yÞ 2 ACTi:R, where
lock:oid ¼ ojg

Definition 6. Sðoj; lockÞ and Eðoj; lockÞ over a set of activity
fACTig

. Sðoj; lockÞ ¼ CAðoj; lockÞ � CAðoj; lock�1Þ

. Eðoj; lockÞ ¼ CAðoj; lock�1Þ � CAðoj; lockÞ
For direct computation of Sðoj; lockÞ and Eðoj; lockÞ, ABI

works on the borders of activity regions rather than the
activity regions themselves since it is the crossing over of a
border that changes the containing ACT set. It divides the
domain of location data into a number of segments with the
borders. (See Fig. 4.) The differences in the containing ACT
sets between adjacent segments are evaluated in advance
and encoded in corresponding borders.

Designed as a stateful index, ABI holds the states of the
most recent evaluations, such as the segments where moving
objects are located. It further supports efficient incremental
processing; Sðoj; lockÞ and Eðoj; lockÞ are computed incre-
mentally starting from the previous states of moving objects
toward new states. Effectively utilizing the stored states, the
processing avoids the repetitive computation to start from
scratch and reduces the processing cost significantly.

With the incremental processing, ABI best utilizes the
locality of location streams. Location data mostly show
gradual changes. This helps narrow the scope of the data
structure to be accessed upon a location update. Thus,
Sðoj; lockÞ and Eðoj; lockÞ are generated by accessing a small
or no part of the index.

4.2.3 Data Structure

Fig. 4 depicts the data structures of Activity Border Index,
which consists of three data structures: Temporal Border
Index (TBI), Spatial Border Index (SBI), and Moving Object
Table (MOT). TBI efficiently indexes dynamic temporal
borders which are created by spatial border crossings. SBI
indexes a large number of the spatial borders of ACT
operators fACTig to enable efficient detection of temporal
borders. MOT holds the state reflecting the last location
update of each moving object and supports the incremental
evaluations of TBI and SBI.

Temporal Border Index is a set of hash tables HTjs, one
for each object oj, with entries <aid; tin>, such that
HTjðaidÞ ¼ tin: HTj keeps the temporal borders which a
moving object oj has created. An entry <aid; tin> in HTj

represents that the object oj has moved into the region of
activity aid at time tin.

Spatial Border Index consists of two linked lists, BLX

and BLY defined as below. The two lists arrange the
spatial borders of ACT operators in X- and Y-dimension,
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respectively. To effectively define the lists, we establish a
set of the spatial borders in each dimension.

Border sets, BX and BY, contain the spatial borders on
X- and Y-axes, respectively:

. BX¼fbXjbX¼ACTi:R:xl or bX¼ACTi:R:xu for some ig
[ fxmin; xmaxg,

. BY¼fbY jbY ¼ACTi:R:yl or bY ¼ACTi:R:yu for some ig
[ fymin; ymaxg,

where xmin and xmax are the minimum and maximum
values of X-dimension, and ymin and ymax are likewise for
Y-dimension. For each border in BX or BY, we define a
border node BNX or BNY, respectively.

Border Node BNX is represented as <bX;Al; Au>, where

bX is a spatial border of certain ACT operators on X-axis,

i.e., a member of BX. Al is the set of ACT operators whose

regions are lower bounded by bX in X-dimension, i.e.,

Al ¼ fACTijACTi ¼ ðaid; R; tmin; tmaxÞ, such that R:xl ¼ bXg.
Similarly, Au is the set of ACT operators whose regions

are upper bounded by bX in X-domain, i.e., Au ¼
fACTijACTi ¼ ðaid; R; tmin; tmaxÞ, such that R:xu ¼ bXg. Al

and Au indicate the activities which would be started or

ended by crossing the border of the node BNX. Border Node

on Y-axis, BNY, is defined similarly.
Border List of X-axis, BLX, is a sorted list of BNXs, i.e.,

<BNX1;BNX2; . . . ;BNXn; . . .>, where BNXi:bX < BNXðiþ1Þ:bX
for all i. Border List of Y -axis, BLY is similarly defined as
<BNY1; . . . ;BNYn; . . .> over BNYis.

Moving Object Table is a table that maintains the last
states of moving objects. The table is a list of tuples
<oid; x; y; ptrðBNXÞ; ptrðBNYÞ; ptrðHToidÞ>, where oid is the
identifier of moving objects, and ðx; yÞ is the coordinate of
the previous location update. ptrðBNXÞ points to a border
node, BNXk, where the previous location update is
between BNXk:bX and BNXkþ1:bX. ptrðBNYÞ does likewise
for Y-dimension. ptrðHToidÞ points to the hash table, HToid,
in TBI which stores the temporal borders of the object oid.

4.2.4 Processing Algorithm

The activity detection algorithm consists of three steps.
Step 1. Detecting spatial border crossings
The algorithm computes SXðoj; lockÞ and EXðoj; lockÞ that

denote the sets of ACT operators whose X-dimensional
borders are crossed by a location update lock. Upon arrival
of lock, SBI looks up the previous state of the object oj, i.e.,
ðxprev; yprev; ptrðBNXprevÞ; ptrðBNYprevÞÞ in the Moving Object
Table, and takes following procedures.

Border-crossing-test ððBNXprev; lock:xÞ tests if the update

does not cross any borders in X-dimension, i.e., lock:x is

between BNXprev:bX and BNXprevþ1:bX. If not, the resulting

SXðoj; lockÞ and EXðoj; lockÞ get empty. I f lock:x �
BNXðprevþ1Þ:bX, the procedure Forward-traverse is conducted.

If lock:x < BNXprev:bX, the procedure Backward-traverse is

conducted. Note that SXðoj; lockÞ and EXðoj; lockÞ would be

empty for many of the location updates due to the locality

of location data which mostly moves within a region.
Forward-traverse ðBNXprev; lock:xÞðBNXprev; lock:xÞ traverses border

nodes in BLX from the BNXprev in the increasing order of
X-coordinate. The traversal stops at the border node
corresponding to the current location lock:x, i.e., BNXnew

such that BNXnew:bX � lock:x < BNXðnewþ1Þ:bX. By then, the
traversal simply aggregates the activities in Al and Au of
each traversed border node in order to compute SXðoj; lockÞ
and EXðoj; lockÞ. Precisely,

. EXðoj; lockÞ ¼ [newp¼prevþ1BNXpAu; and

. SXðoj; lockÞ ¼ [newp¼prevþ1BNXpAl

Backward-traverse ðBNXprev; lock:xÞðBNXprev; lock:xÞ is similar except;

. EXðoj; lockÞ ¼ [prevp¼newþ1BNXpAl; and

. SXðoj; lockÞ ¼ [prevp¼newþ1BNXpAu

Note that Al and Au are interchanged in the SXðoj; lockÞ and
EXðoj; lockÞ unlike Forward-traverse. The directions of the
traversals are reverse in the two cases.

Lastly, the new state of the moving object oj, i.e.,
lock:x; lock:y, ptrðBNXnewÞ, and ptrðBNYnewÞ, is stored into
the MOT. The procedures for Y-dimension are similarly
defined to compute SY ðoj; lockÞand EY ðoj; lockÞ.

Step 2. Detecting temporal borders
The algorithm computes the temporal borders, Sðoj; lockÞ

and Eðoj; lockÞ. This is done by validating the border
crossings in each dimension, i.e., SXðoj; lockÞ, SY ðoj; lockÞ,
EXðoj; lockÞ, and EY ðoj; lockÞ, detected, respectively, in
step 1. This validation checks if a crossing in either
dimension causes an actual crossing of a two-dimensional
border. Details on the validation can be found in [29], [39].
As a result, the activities validated in both dimensions are
collected as temporal borders, i.e., Sðoj; lockÞ and Eðoj; lockÞ.

Step 3. Temporal condition evaluation
To generate activity instances from Sðoj; lockÞ and

Eðoj; lockÞ, the temporal conditions are tested using TBI.
The start times of the activities in Sðoj; lockÞ are stored into
TBI for later matching. The activities in Eðoj; lockÞ are
matched to previously started activities stored in TBI. For
each operator ACTi in Eðoj; lockÞ, HTj is looked up with
ACTi:aid to get the start time of ACTi, i.e., tin ¼
HTjðACTi:aidÞ. If the time difference between tin and lock:t
satisfies the time condition of ACTi, i.e., ACTi:tmin �
ðlock:t� tinÞ � ACTi:tmax, an activity instance ðlock:oid;
ACTi:aid; tin; lock:tÞ is created. The matched entries are
removed from TBI.

4.2.5 ABI Update

ABI supports dynamic registration and deregistration of
ACT operators. Upon registration and deregistration of an
ACT operator, updating SBI with the spatial borders of the
operator is essential. For the update, the X-dimension and
Y-dimension borders are handled separately. Consider
an ACT operator, ACTi, whose activity region R is
ðxl; yl; xu; yuÞ. When registering ACTi to the ABI, an
X-dimension range, ðxl; xuÞ, is registered to the border list
of x-axis, BLx, and an Y-dimension range, ðyl; yuÞ, is
registered to the BLy. Without loss of generality, we
illustrate the procedure with respect to X-dimension.

In detail, for the update of BLx, activity detector locates
the border node, BNXm which contains xl, i .e.,
bm � xl < bmþ1. If xl is equal to bm, i.e., BNXm:bx, then
BNXm becomes responsible for xl so that ACTi is inserted
into the Al of BNXm. Otherwise, a new border node, BNXnew

is inserted between BNXm and BNXmþ1 in BLX, where

652 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 11, NO. 4, APRIL 2012



BNXnew is set to <xl; fACTig; fg>. The border node for xu is
also symmetrically updated.

When an ACT operator, ACTi, is deregistered, the
activity detector first locates the border node, BNXm whose
lower bound is equal to xl or xu, and removes the ACTi
from Al or Au of the BNXm, respectively. If both Al and Au

are empty, BNXm is merged with BNXm�1. The rest of the
ABI structure, i.e., MOT and TBI, is updated accordingly
with respect to the change of SBI.

4.3 Activity Composition Stage

The activity composer evaluates a set of composition
operators over a number of activity instance streams,
fact strmg, and generates a set of resulting ATP instances,
fatpg. In this stage, we use a single definition of composi-
tion operators, which uniformly represents SEQ, ALL, and
ANY operators defined in Section 3.2, as follows:

Definition 7. Composition operator.

. CMP is a composition operator, formally defined as a
tuple of ðcid; type; PASet; FASet; tcÞ, where

- cid is an identifier of a composite operator,
internally given by ActraMon,

- type is either SEQ, ALL, or ANY,
- PASet is a set of participating activities, formally

defined as fACTP1; . . . ; ACTPng,
- FASet is a set of forbidden activities specified in

the optional WITHOUT clause, formally defined
as fACTF1; . . . ; ACTFmg, and

- tc indicates the length of the composition time
window.

The main challenge in this stage is that we should deal
with a large number of diverse activity composition
operators in large-scale ATP monitoring. As a key idea,
we develop a shared and incremental processing method
based on a novel data structure, called Activity-centric
Composable Queue. ACQ is a shared queue that stores
activity instances of a specific primitive activity. It serves as
the basic building block of the activity composer. The
composer constructs a single shared network of multiple
ACQs, as many as the primitive activities specified in
{CMP}, and evaluates all the composition operators in
conjunction with the constructed network.

To effectively support the shared and incremental
processing, ACQ has the following unique features:

1. For each primitive activity, only a single ACQ is
allocated in the network and shared by multiple
composition operators. Due to the sharing, proces-
sing an activity instance in a single ACQ evaluates
all the composition operators which are interested in
the instance.

2. Each ACQ is also shared by all moving objects. This
design substantially reduces processing and storage
overhead necessary for separately manipulating
intermediate composition results of each moving
object.

3. On top of the common ACQ structures, we design
a unified processing method which is applicable to
evaluating not only SEQ operators but also ALL
and ANY.

4. ACQ supports incremental composition for indivi-
dual composition operators. Upon arrival of an
activity instance, it incrementally extends partial
compositions of composition operators and progres-
sively completes the compositions to the end.

The proposed ACQ-based processing is further advanta-
geous especially in city-wide ATP processing. First, cities
have many hot spots such as shopping complexes and
stations. The activity composer efficiently handles multiple
composition operators by sharing the common primitive
activities over those popular spaces. Second, the activity
compositions in city-wide ATP monitoring often involve
long-term processing, e.g., for several hours or even days.
Such long-term processing tends to rapidly increase
intermediate composition results. The ACQ sharing, how-
ever, substantially reduces the amount of the intermediate
results, and makes the long-term processing more effective
in terms of storage consumption.

4.3.1 Activity-Centric Composable Queue

ACQ maintains three data structures of Composition Link
Table, Activity Instance Queue, and Partial Composition Block.
(See Fig. 5.) A single ACQ, ACQi, is designated to store the
information to process all the activity instances delivered
from ACTi.

Composition Link Tables enable the construction of the
ACQ network that supports the shared processing of
composition operators. For an ACQi, its Composition Link
Table contains a set of composition links, one for each
composition operator that the ACQi participates in. Each
link, denoted as CLinkðACQi; CMPjÞ, represents the asso-
ciation of ACQi with the other ACQs specified in CMPj.

Definition 8. Composition link (CLink) in ACQi w.r.t. CMPj

. CLinkðACQi;CMPjÞ ¼
<cid; type; tcond; fptr ACQg; flag>;

- cid, type, and tcond are the identifier, type and time
condition of CMPj, respectively,

- {ptr_ACQ} presents the pointers to other ACQs
which should be connected for CMPj, and

- flag marks the position of ACQi in CMPj; FIRST
indicates the first ACQ starting the composition,
FINAL indicates the last ACQ ending the composi-
tion, and WITHOUT indicates that it is forbidden.

{ptr_ACQ} and flag play a critical role for the network
construction. Fig. 6 shows the examples of ACQ composi-
tions using CLink’s with two sample CMP’s. Here, CMP1
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represents the query C1 given in Section 3.2, which
monitors a probable dating pattern. ACT1, ACT4, and
ACT5, respectively, indicate the activities of visiting a
theater_A, a GUCCI shop and a restaurant_B. CMP2

represents the query C3 that identifies brand shoppers.
ACT2, ACT3, and ACT4 indicate the activities of shopping
at PRADA, CHANEL, and GUCCI, respectively. Note that
ACT4, shopping at GUCCI, is shared by the two CMP’s.

Activity Instance Queue manages the recent activity
instances of all moving objects with regard to ACTi. It stores
the activity instances, actk’s, from ACTi in the order of their
arrivals. The single queue in ACQi is shared by a number of
moving objects. It also uses a hash table that facilitates the
access to the recent activity instance actk and its partial
composition states. The hash table uses oid as its key, i.e.,
HTðoidÞ ¼ actk for oid ¼ actk:oid.

Partial Composition Block is the main data structure for
the incremental evaluation. A block is allocated to each
activity instance actk as shown in Fig. 5. It stores the current
states of the partial compositions in which the instance actk
participates. The block has a set of partial composition
entries, PComp’s, one for each composition operator.
PCompðactk; CMPjÞ, if it exists, represents that a partial
composition of CMPj has been successfully extended by the
instance actk at ACQi. The block allows the incremental
extension of the partial compositions until the compositions
become completed.

Definition 9. Partial composition (PComp) of actk w.r.t.
CMPj

. PCompðactk; CMPjÞ ¼< cid; tstart; fptr prevActg>,

- cid is the identifier of CMPj,
- tstart is the start time of the partial composition,

and
- fptr prevActg is a set of pointers to the precedent

activity instances, stored in other ACQs, leading
to the current partial composition of CMPj.
When the composition is complete, the pointers
are followed iteratively to obtain all the partici-
pating activity instances.

Fig. 7 illustrates the example sequence of input activity
instances and the correspondingly generated PComp and atp
instances with CMP1 and CMP2. For simplicity, the activity
instances of a single moving object, i.e., object o, are
considered here. When the first instance, act1ð1Þ, comes in, it

is delivered to ACQ1 and creates the initial partial comp-

osition of CMP1, PCompðact1ð1Þ; CMP1Þ. Upon act2ð4Þ’s

arrival, it extends the partial composition of CMP1 and

initiates the new composition of CMP2, resulting in

PCompðact2ð4Þ; CMP1Þ and PCompðact2ð4Þ; CMP2Þ, respec-

tively. For act3ð5Þ, ACQ5 finally completes the partial

composition of CMP1 and generates a resulting atp instance

since CLinkðACQ5; CMP1Þ is flagged as FINAL. Later, act4ð2Þ
generates its own PComp entry for CMP2 within ACQ2,

and act5ð3Þ finally completes CMP2 within ACQ3.

4.3.2 Construction of ACQ Network

Given fCMPjg, the activity composer constructs a single

ACQ network, called N-ACQ. In order to represent

fCMPjg effectively, N-ACQ has all the comprising ACQs

of each composition operator as its nodes and connects them

using the composition links, CLink’s. With the links, an

ACQ is effectively shared by multiple composition opera-

tors in the network. Fig. 8 shows the example N-ACQ with

the two sample CMP’s (CMP1 and CMP2 given in Fig. 6)

using five primitive activities (from ACT1 to ACT5). In the

figure, ACQ4 is shared by both operators.
In brief, N-ACQ is constructed as follows: For each

composition operator CMPj¼<cid; type;fACTP1; . . . ;ACTPng;
fACTN1; . . . ; ACTNmg; tc>, a new ACQ is instantiated for
each activity, i.e., ACTPk or ACTNk. Some ACQs need not be
created if they have already been involved in other
composition operators. For the CMPj, the ACQs are
associated with each other by adding a CLink entry in their
Composition Link Tables. In the case of SEQ operator,
ACQPk’s are linked sequentially; each CLinkðACQPk;CMPjÞ
points to the ACQ of the precedent activity, and the first
and final ACQs are marked accordingly in the flag field.
Detailed algorithms for the N-ACQ construction and
maintenance can be found in [29], [40].
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Fig. 6. ACQ composition by CLinks: (a) for SEQ, the participating ACQs,
drawn as plain boxes, are linked sequentially and flagged accordingly as
FIRST or FINAL, (b) for ALL, the participating ACQs are linked to each
other and flagged as “FIRST&FINAL.”

Fig. 7. Example sequence of activity instances and generated
composition results: actkðiÞ denotes the kth activity instance of object o
generated by ACTi operator.

Fig. 8. N-ACQ with two CMP operators: each dashed line indicates the

equivalent query plan, respectively, for CMP1 and CMP2.



4.3.3 Activity Composition Algorithm

The composition process mainly consists of two major
functions: probe() and insert(). Upon arrival of an activity
instance actk, the function probe() evaluates whether actk
could lead to a partial or complete composition for some
composition operators, and only at the instant that a
composition happens, the function insert() updates the data
structures of ACQi reflecting the arrival of actk.

The process is illustrated in Fig. 9. First, actk is dispatched
to its corresponding ACQ, i.e., ACQi (step (1) in the figure).
It quickly identifies a set of the CMPj’s associated with
ACQi by looking up CLink entries in the Composition Link
Table. Then, it invokes the probe() (steps (2), (3), and (4)) for
each CMPj. The figure illustrates that ACQp is probed by
ACQi with respect to CMPj. If the probe() extends partial
compositions for any CMP, the insert() is performed to store
actk into the Activity Instance Queue of ACQi (step (5)). The
probe() differently handles each type of the composition
operators. We below sketch the probe() and insert() for the
case of SEQ operator. Details of the functions for other types
of operators are in [29, Section 4.3.4], [40].
Probe ðACQi; actk; CMPjÞProbe ðACQi; actk; CMPjÞ performs a key role of the

incremental processing for compositions. The pseudocode
of the probe() is presented in Fig. 10.

Lines 1-3 (in Fig. 10). The function deals with the case that
actk initiates new partial compositions for some associated
CMPj’s. For example, an activity instance from ACT1, i.e.,
act1ð1Þ in, is incoming to ACQ1 for CMP1. If ACQi ðACQ1Þ
is marked as FIRST with respect to CMPj ðCMP1Þ, the
function starts a new partial composition of the CMPj with
actk at ACQi; it creates PCompðactk; CMPjÞ and sets the
start time of the partial composition to the arrival time of
actk, i.e., actk:tout.

Lines 4-11. Otherwise, the function deals with the case that
actk extends existing partial compositions as like act2ð4Þ in
Fig. 7. It first visits its precedent ACQ referred by the pointer
in fptr ACQg (step (2) in Fig. 9). Let the ACQ be
ACQpðACQ1 in Fig. 8). The function then identifies the
existing partial composition ofCMPjðCMP1Þ for the moving
object with actk:oid. For the purpose, it looks up the recent
activity instance of the same moving object, i.e., actl, such
that actl:oid ¼ actk:oid, in the Activity Instance Queue of
ACQp (using actk:oid as the hash key). It then finds from the
Partial Composition Blocks of actl in ACQp the existing
partial composition entry, PCompðactl; CMPjÞ. With

PCompðactl; CMPjÞ, the function tests if actk can successfully
extend the existing partial composition of CMPj. If so, it
designates the extension by creating and adding a new entry
PCompðactk; CMPjÞ to the Partial Composition Block of
actk in ACQi. (step (4) in Fig. 9). If either actl or
PCompðactl; CMPjÞ does not exist, the function fails to
extend the composition.

Lines 12-14. The function handles the case that the
composition becomes complete, e.g., act3ð5Þ into ACQ5 for
CMP1. If ACQi is marked as FINAL (in Composition Link
Table) and PCompðactk; CMPjÞ has been already created,
the function completes the composition of CMPj with actk
and generates the corresponding ATP instance by following
the pointer in fptr prevActg of PComp entries.
Insert ðACQi; actkÞInsert ðACQi; actkÞ updates ACQi reflecting the dy-

namic composition status affected by the activity instance
actk. That is, actk as well as the PComp entries newly created
in the probe() should be stored into ACQi. First, the entries
are added into the Partial Composition Block of actk. Then,
the function inserts actk into the Activity Instance Queue
(step (5) in Fig. 9). Finally, the function updates the hash
entry HTðactk:oidÞ so that it points to the newly added actk
in the queue. Note that, for an instance actk, the function
takes place at most once even for the case that actk extends
multiple partial compositions.

4.4 Performance Analysis

The processing and storage cost of ActraMon can be
understood as a sum of activity detection and composition
costs. The details of the analyses are in [29, Section 4.4].

According to our analysis, the total processing cost upon
a location update is bounded by OðNaLMÞ, where Na

denotes the number of the ACT operators embedded in the
ATP queries and LM denotes the mobility level of the
objects, i.e., the distance to the current update from the last
location normalized with the domain size. The cost becomes
very small in practice since the LM value remains small
with real-world moving objects, which means ActraMon
achieves a high level of efficiency.
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Also, the total storage cost of ActraMon isOðNqþNo�DsÞ
where No and Nq are the numbers of moving objects and
composition queries, respectively, and Ds is the degree of
ACQ sharing. The analysis shows that ActraMon is highly
scalable in terms of memory consumption as well.

5 EXPERIMENT

In this section, we present the performance evaluation of
the ActraMon framework. We intend to extensively study
the performance behavior of separate modules under wide
parameter ranges while reporting the overall performance
over realistic workloads. First, we separately conduct
performance studies on the activity detector and the activity
composer using workloads of a wide range of input data
and queries, and report the detailed results in Sections 5.1
and 5.2, respectively. Then, in Section 5.3, we report the
result for overall ATP processing in combination with the
activity detector and composer, using potential realistic city
workloads generated on top of a carefully crafted city
model. For the performance metric, we use the processing
time and memory consumption which are commonly
adopted for the evaluation of in-memory processing
techniques [23], [27].

We implement ActraMon and alternative techniques
with C++ language on a Linux 2.6.18-6-amd64 kernel.
Experiments are conducted on a machine equipped with
Intel Core 2 Quad Q9550 CPU (2.83 GHz) and 8 GB RAM.
Due to the space limit, we are not able to fully report the
results of our performance study in this manuscript. For
more comprehensive report on the experiments and results,
we refer the readers to [29, Section 5].

5.1 Shared Activity Detector

5.1.1 Experimental Setup

The activity detector takes location updates and a set of
ACT operators as its input. Accordingly, we create location
and ACT operator workloads for the experiment.

Location data workload. For the data generation, we
assume a 20 km� 20 km city where objects are continuously
moving based on a random walk model [28]. Each object is
randomly set with a next position in the map and move
toward the position at a designated speed while reporting
location updates every 30 seconds. Once it arrives at the
position, a new position is set to a next destination. A
location update consists of object identifier, longitude,
latitude, and timestamp.

We consider two types of moving objects, i.e., vehicles
and pedestrians. Vehicles represent fast moving objects
whose locality in location data is low. They move at speeds
between 20 and 60 km/h. Pedestrians, slow moving objects,

move at 4 to 8 km/h. The number of moving objects, No,
varies between 10 and 70K. We simulate 4 hours of location
data, i.e., 480 updates per object, for the experiments.

ACT operator workload. We synthesize ACT operators
with various parameter based on the scenarios described in
Section 3. (See the ranges and default values in Table 2) In
the ATP-based advertisement scenario, we expect that the
number of activity regions such as restaurants and stores
could be up to tens of thousands in a metropolitan city [26].
Based on the fact, we vary the number of primitive
activities, Na, between 10 and 70K. We also perform
experiments by changing the size of activity regions in
terms of the region width, Rw.

Alternative technique (CES-based approach). As the
performance baseline for the server-side algorithm of
activity detection, we implement a region index-based
approach described in Section 4.2, for which we choose an
efficient region index, Containment Encoded Square [27]. CES
is a grid-based index that provides fast, i.e., constant, search
performance, Oðcþ kÞ, where c and k denotes the depth of
hierarchy and the result size, respectively. Adopting
hierarchical grids, it consumes less memory than other
grid-based indices exploiting huge memory space. Fig. 11
shows a brief and exact description of CES-based approach
to evaluate ACT operators. The notations can be referred to
in the definitions of Section 4.2.

5.1.2 Processing Performance

In this experiment, we measure the processing time as the
elapsed time taken for processing all the location workload.
The index update time for query registration is not included
for both ABI and CES from the total processing time. In
ATP processing, location updates occurs a lot more
frequently than query updates since ATP monitoring
queries are long-running, continuous queries. Accordingly,
the query updates rarely affect the overall processing time;
in a case of our experiment, it only takes 0.26 second to
update 70K queries, which is 1 percent of total processing
time with 4-hour amount of location updates from 10K slow
moving objects and 0.17 percent for the fast-moving objects.

Scalability with operators and moving objects. We
evaluate the scalability as increasing Na and No from 10 to
70K, respectively, as shown in Figs. 12a and 12b. In the
graphs, the activity detector appears highly scalable in terms
of the number of ACT operators and moving objects. It
processes ACT operators three to ten times faster than the
CES-based method. The scalability is mainly achieved by
taking advantage of the shared and incremental processing
on ABI. Location updates are highly likely to stay within
previous regions and do not cross any activity borders. Even
if they do not stay, ABI efficiently starts an index search
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from the last border node that an object stays on, and the
number of traversed border nodes is substantially reduced.

The processing time of the CES-based method, however,
drastically increases as Na and No increase. Even location
updates staying within an activity region require the
repetitive and unnecessary computation of the containing
ACT sets and the difference between two consecutive CAs.
Moreover, a large Na increases the size of CAs which also
increases the processing time to search the index and to
calculate the set difference. As No increases, location
updates become more frequent, and accordingly the
amount of unnecessary computation increases.

The result also shows that the ABI performance is robust
against the degree of the locality of location updates. The
processing time increases moderately not only with the
slow moving objects, but also with the fast moving objects.
This shows that the locality-aware search of ABI is still
efficient even with the fast moving objects in our experi-
mental model. Interestingly, even for the CES-based
method, the processing times of the fast moving objects
are higher than that of the slow moving objects. The fast
moving object creates temporal borders more frequently
due to its fast speed. Thus, the size of Sðoj; lockÞ and
Eðoj; lockÞ gets larger, which causes more processing.

As for the experiment with the varying sizes of the
activity regions, the result shows that ActraMon is highly
robust with the changes in Rw, showing a very slow
increase, while the CES-based method shows a steep
increase. Also, we experimented by varying the time
conditions of activities, Tmin and Tmax, and observed that
they rarely affect the processing time. This observation
confirms the performance analysis in Section 4.4; Tmin and
Tmax are not included as variables affecting the time
complexity.

5.1.3 Storage Cost

In this experiment, we log the memory consumption
whenever memory spaces are newly allocated and freed.
We take a representative value for each run, after the
memory consumption is stabilized. It is measured as
varying Na and Rw, which are the two influencing
parameters according to our analysis. Overall, our activity
detector consumes 2.7 to 21 times less memory space than
the CES-based method.

Fig. 13 shows the memory consumption with respect to
Na. For detailed analysis, we separately measure the shared
region index size only, i.e., the Spatial Border Index for
ActraMon and CES itself for the CES-based method. As
presented in Fig. 13a, the memory consumption of CES
drastically increases with Na while that of ActraMon
increases barely. It is mainly because an activity region is

repeatedly stored in multiple grids for fast searching,
although CES employs an optimized memory management
scheme based on hierarchical grids. Whereas a tree-base
index [15] can reduce the storage cost, it slows down the
processing by traversing the tree from the root. For
ActraMon, on the other hand, the Spatial Border Index
consumes much smaller storage, which amounts to less
than 0.5 percent of the index size in CES for 70K operators.
The concise index storing four borders only for each activity
region reduces storage consumption significantly.

Fig. 13b shows total storage sizes including the temporal
border information stored in the Temporal Border Index.
The information amounts up to 1,249 MB for both cases
equally. It covers 32 to 38 percent of the total memory
consumption. However, the size of the information is
expected to be saturated since an object would conduct a
limited number of simultaneous activities for a certain time.
While not reported, the results of experiments with varying
Rw also show the same patterns to those in Fig. 13.

5.2 Shared Activity Composer

5.2.1 Experimental Setup

The activity composer takes activity instances (generated by
the activity detector) and a set of composition operators as
its input. Accordingly, we create activity instance and
composition operator workloads for the experiment.

Composition operator workload. To evaluate the
performance of the activity composer, we consider the
SEQ operators, the main composition operator of ATP, as
the basis for performance comparison. We generate SEQ
operator workloads with the parameter ranges and default
values as presented in Table 3. Given a set of primitive
activities, we first control the number of SEQ operators, Ns,
and the length of sequencing steps, ns, to evaluate the
effect of ACQ sharing, while the time window, Tt, is
determined by ns.

Activity instance workload. We simulate moving objects
to generate activity instances following the sequences of the
synthesized SEQ operators. Each object selects a SEQ
operator randomly. The object generates a series of the
activity instances which completely satisfy the activity
sequence of the operator. If the generation is completed
for the SEQ operator, the same process is repeated with
another operator. In this experiment, each object is
supposed to generate 1K activity instances by default,
while we control the number of moving objects, No, to
evaluate the scalability.

Alternative technique (NFA-based method). For com-
parison, we implement an automata-based event composi-
tion method, which is commonly used for event sequencing
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[16], [18], [19]. The method creates a Nondeterministic
Finite Automata for each SEQ operator. In addition, activity
instance stacks are managed for each object to store the
activity instances and keep track of the state efficiently [18].
Upon arrival of an activity instance, the method first
identifies corresponding NFAs. Then, it tests state transi-
tions in each NFA to evaluate the sequencing. If the
transition is made, the instance is inserted into the stacks.
When the transition reaches the final states of the NFAs, the
stacks are reversely searched to construct the resulting
sequence information. To support a number of NFAs, we
employ a hash index on them, which enables activity
instances to be dispatched efficiently to the related NFAs
only. We call this method as the NFA-based method.

Memory cleaning period. Cleaning obsolete activity
instances is critical for in-memory processing of the
composite queries. It has significant impact on the proces-
sing as well as storage cost. We observe there exists a trade-
off between the cleaning time and memory usage. Too
frequent cleaning causes unnecessary scanning with rarely
effective deletions, resulting in the excessive cleaning time.
Also, it is hardly beneficial to defer cleaning beyond some
extent due to huge memory consumption. The details of the
experiment results can be found in [29, Section 5.2.1]. From
the results, we set the base cleaning period to 100K in
following experiments where the cleaning time starts to be
saturated while the memory consumption increases linearly.

5.2.2 Processing Performance

We measure the elapsed times to process the simulated
activity instance workloads, while varying Ns, No, and ns.

Scalability with operators and sharing effect. We first
demonstrate the scalability of the activity composer by
increasing the number of SEQ operators, Ns. It is likely for a
primitive activity to become shared more as more composi-
tion operators are employed in an urban area with a set of
designated activities. Hence, assuming 5,000 primitive
activities in an area, we study the scalability as increasing
Ns, which also increases Ds, the degree of ACQ sharing,
accordingly. Fig. 14a shows the results. We measure the
processing time taken for activity composition (denoted as
Comp) and memory cleaning (denoted as Clean) separately.
Fig. 14a shows that our activity composer is faster than the
NFA-based method with large Ns’s. The performance
benefit is mainly achieved by ACQ sharing and cleaning
efficiency. Even for large Ns’s, the processing is successfully
localized to a single ACQ and a limited number of its
adjacent ACQs. In specific, the cost of the insert() invoca-
tions is almost constant for each run, since an activity
instance is inserted once at most. The increasing cost factor
is the number of the probe() invocations, as an ACQ

participates in more compositions for large Ns’s. Mean-
while, the cleaning overhead of our composer appears
almost negligible in the figure.

For the NFA-based method, on the other hand, the
cleaning time increases substantially with Ns. It is an
inherent cost to scan more NFAs accordingly to larger Ns.
For composition, the NFA-based method also incurs
processing overhead separately for each NFA without
sharing. For large Ns’s, much more NFAs are likely to be
evaluated upon arrival of each activity instance.

We also evaluate the effect of the length of sequencing
steps, ns, on the processing time. With varying ns,
ActraMon consistently takes much less processing time
than the NFA-based method (See [29, Section 5.2.2]).

Scalability with moving objects. We demonstrate the
scalability with the number of moving objects, No. Note that
the workload size increases proportionally to No, since each
moving object is configured to generate 250 activity
instances in this experiment. Fig. 14b shows that the
processing time of ActraMon is linearly proportional to
No. According to our analysis, the processing cost of the
activity composer depends on the degree of ACQ sharing,
Ds, only. Since Ds is fixed, i.e., 40 by default in this
experiment, the unit processing time per incoming activity
instance remains constant. For the NFA-based method, by
contrast, the slope of the line is getting steeper, since the
increase in the cleaning time becomes more significant for
large No’s. As No increases, more per-object stacks are
created as well as scanned for cleaning. Consequently, this
result shows that our activity composer is much more
scalable with respect to the number of moving objects
owing to the shared queue management.

5.2.3 Storage Cost

We evaluate the storage cost of the activity composer by
measuring the average amount of memory consumption
under the same experimental setting in Section 5.2.2. We
periodically measure the memory consumption before and
after memory cleaning. We take the minimum, maximum,
and average values after they are stabilized.

Scalability with operators and sharing effect. We also
investigate the scalability in terms of memory consumption
with an increasing number of SEQ operators. Fig. 15a shows
that our activity composer uses much less memory (from 60
to 80 percent reduction) than the NFA-based method does.
The storage efficiency is mainly achieved by ACQ sharing.
As far as the number of primitive activities is fixed, the
same number of ACQs is created regardless of the number
of SEQ operators, Ns. Even for large Ns’s, the increase in
storage consumption is restricted to a small part of ACQ,

658 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 11, NO. 4, APRIL 2012

TABLE 3
Parameters (Activity Composer Experiment)

Fig. 14. Processing time of activity composer.



i.e., the Composition Link Table and the Partial Composi-
tion Blocks. Thus, the increase becomes moderate. On the
other hand, the NFA-based method creates an NFA and
multiple activity instance stacks for each SEQ operator and
does not share any data structures among them. Thus, the
storage size increases substantially proportional to Ns.

From a separate experiment, we observed that, in
ActraMon, the storage consumption hardly increases with
the length of sequencing steps, ns, while it does rapidly in
the NFA-based method (See [29, Section 5.2.3]).

Scalability with moving objects. Fig. 15b compares the
storage size as increasing No. For both ActraMon and the
NFA-based method, the storage size is linearly proportional
to No, since they are required to store more activity
instances within the time windows specified in SEQ
operators. The figure also shows that ActraMon reduces
the memory consumption by up to 78 percent, compared to
the NFA-based method. The NFA-based method maintains
separate stacks for moving objects whereas ActraMon
employs unified instance queues shared by the objects.

5.3 Overall ATP Query Processing

5.3.1 Experiment Setup with Activity-Based City Model

We report performance study on overall ATP query
processing in combination with the activity detection and
composition. For the experiment, we develop a well-crafted
city model and produce realistic location and query work-
loads based on the model.

The city model consists of an urban space map and an
ATP model of city residents. The urban space map
represents a city that includes diverse types of spaces such
as supermarkets and theaters. Fig. 16 shows an example of
the map. We first divide the whole map into a number of
square blocks and uniformly locate diverse types of 100K
urban spaces into the blocks. The portion of space types is
realistically determined by the statistics of Seoul city [26].
Also, we associate the degree of popularity with each

urban space, which indicates people’s level of interest on
each space.

The ATP model describes which activities individuals
perform, in which order, and which specific urban space
they utilize for each activity. It also models how individuals
travel from a space to a next space. We establish the ATP
model based on the space-time use data studied in [24], [25].
The data describe statistics about what types of activities
people do a day and how long and often they perform each
type of the activities. Additionally, the model matches
activity types to corresponding urban space types. The data
that we use in this experiment have been summarized in
[29, Table 5].

Specifically, the ATP model generates the activity travel
sequence of an individual following the three steps: 1) next
activity selection, 2) space selection, and 3) moving method
selection. First, the model probabilistically determines the
next activity of an individual based on the frequency of the
activity types. Second, the model determines a specific
urban space in the map for the selected activity. The space is
selected more likely as its popularity value is higher and the
distance to the previous space is smaller. Finally, the model
determines how individuals move to the next space. If the
distance between the two spaces is larger than 2 km, we
assume that they use a car at the average speed of 20 km/h.
If not, they walk at 4 km/h.

Location data generation. Based on the city model, we
generate location traces of 50K moving objects. Each object
follows one of the activity travel sequences generated by the
ATP model; it stays and travels the urban spaces matching
to the activity sequence. The location data are created every
30 seconds for each object, and 4-hour amount of location
data are generated.

Query generation. We generate ATP queries that
monitor the traces of the moving objects produced by the
city model. We create two types of SEQ queries with the
query template in Table 4 and use them in equal proportion.
Table 4 also summarizes the parameters for the ATP query
generation.

For the first type, SEQ queries are generated to detect
frequent activity travel sequences of the moving objects.
This type simulates the queries for mobile advertisement to
people following the frequent patterns. For the generation,
we first extract a number of frequent patterns in the
activity travel sequences of individuals; we extract 3,500
sequential patterns with 2 or 3 activity steps, using an
implementation of PrefixSpan algorithm [38]. Each activity
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in the patterns is instantiated as an ACT operator, ACTi;
the spatial condition, Ri, is designated as its corresponding
urban space, and the temporal conditions, Tmin i and Tmax i,
are determined based on its activity type. A SEQ operator
is created for each extracted pattern, including its ACT
operators; the time window, Tt, is set to include the
duration of the activities and travels in the pattern.

For the second type, we target the queries that monitor
larger regions for public transportation planning. For the
query generation, we first randomly designate 500 interest
regions with the sizes up to 4 km and create an ACT
operator for each region. Then, we create SEQ queries
combining 2 or 3 of the ACT operators in sequences. The
temporal conditions of the operators are designated
randomly less than 4 hours.

Alternative Technique. SEQðACT1; . . . ;ACTnÞ queries
are processed with the combination of CES-based activity
detection and NFA-based activity composition. We call this
method CESþNFA.

5.3.2 Processing Performance

First, we show the scalability of overall ATP query
processing as increasing the number of ATP queries, Nq,
from 1 to 7K. The number of objects, No, is set to 10K.
Fig. 17a clearly shows that ActraMon is highly scalable with
respect to Nq. The processing time of ActraMon slightly
increases for a larger Nq, whereas that of CESþNFA
increases significantly. The result conforms to our expecta-
tion derived from the previous experimental results
presented in Sections 5.1 and 5.2. When Nq reaches 7K,
CESþNFA takes about 14 times more time than ActraMon
to process the same amount of location updates.

The figure also shows the activity detection takes the
major portion of the processing time for both ActraMon and
CESþNFA. This result demonstrates that the staging
architecture facilitates filtering out a significant amount of
location data at the early stage. Especially for ActraMon,
the filtering is much more efficient by the incremental
evaluation through the stateful index. Compared to
CESþNFA, the high performance filtering technique
greatly improves the overall processing performance.

Next, we increase the number of moving object, No, from
10 to 50K, where Nq is fixed to 2K. Fig. 17b shows that
ActraMon is highly scalable with respect to No, whereas the
processing time of CESþNFA increases drastically. The
result also agrees with the previous experimental results of
the activity detector and the composer.

Interestingly, the both figures show that the performance
difference between ActraMon and CESþNFA is unexpect-
edly significant with the city model-based workload. The
difference stems mainly from the fact that such realistic
location streams feature relatively high locality; frequent
activities have relatively long duration, and the next spaces
to travel are often nearby in the city map. Such location
streams are best suited for the high-performance filtering in
the activity detection of ActraMon. As emphasized prior,
the large portion with the detection stage doubles up the
performance benefits of ActraMon.

5.3.3 Storage Cost

Fig. 18a shows the memory consumption as increasing the
number of ATP queries, Nq, from 1 to 7K. ActraMon
achieves a high level of memory efficiency since the activity
detector only maintains the temporal and spatial borders in
ABI and the activity composer shares ACQs for multiple

660 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 11, NO. 4, APRIL 2012

(a) over Nq

0

50

100

150

200

1 2 3 4 5 6 7

ActraMon - SEQ
ActraMon - ACT

Number of Queries(x1,000)

(sec)

NFA-based
CES-based

Processing �me

 
No

0

50

100

150

200

250

300

10 20 30 40 50

Processing �me

ActraMon - SEQ

ActraMon - ACT

(sec)

Number of Objects(x1,000)

NFA-based

CES-based

(b) over
Fig. 17. Processing performance of ActraMon.

         (a) over Nq

No

0

100

200

300

400

500

600

1 2 3 4 5 6 7

Storage size
ActraMon - SEQ
ActraMon - ACT

NFA-based
CES-based

(MB)

Number of Queries(x1,000)

0

100

200

300

400

500

600

10 20 30 40 50

ActraMon - SEQ
ActraMon - ACT

Number of Objects(x1,000)

NFA-based
CES-based

(MB) Storage size

(b) over
Fig. 18. Memory consumption of ActraMon.



composition queries and moving objects. Instead,
CESþNFA consume more memory space since CES stores
the query information in the grids repeatedly and NFAs
store activity instances multiple times. Interestingly for
ActraMon, the activity composer consumes more memory
space than the activity detector, which is opposite to the
result of processing time. The activity detector stores the
border crossing information only, whereas the activity
composer needs to maintain the activity instances and the
partial composition information for a large time window.

We also increase the number of moving objects, No, from
10 to 50K. Fig. 18b shows that ActraMon consumes less than
one third memory space that CESþNFA does. The increase
of the NFA-based method is noticeable compared to that for
a large Nq. The result indicates that the per-object stack
management of the NFA-based method [18] often results in
severe overhead in terms of storage cost with a large number
of objects. Note that ActraMon only uses about 120 MB to
deal with 50K objects, thanks to the shared data structures,
whereas CESþNFA consumes up to 500 MB.

5.3.4 Discussion on Scalability

From the experiments, we confirm that ActraMon shows
quite good scalability in terms of processing time and
storage cost. Meanwhile, for a large scale city, the numbers
of objects, activities, and composition operators could reach
up to nearly millions. Even our system could not efficiently
handle such a case with a single server. Fortunately,
however, the proposed architecture is inherently well
suited to a distributed processing since the processing can
be individually divided by each object. That is, location
stream data for each object are handled by one of processors
which identically evaluate a duplicate set of same queries.
In particular, we note that the number of objects strongly
affects the storage cost as well as the processing time. For
instance, although the size of ABI is quite small in the
detection stage, the total memory consumption significantly
increases with the number of objects. Thus, if we distribute
objects over multiple servers, object-related storages as well
as computation are naturally distributed to a server
responsible for each object. We can also adapt a computa-
tional load to the capability of each server.

We expect that a single server with giga-byte memory
could efficiently deal with a quite high number of objects
and operators up to hundreds of thousands. If the memory
cannot cope with total processing storage, some of that
should be spilled over into a disk. Then, the limited disk
bandwidth would impede the real-time processing signifi-
cantly. Thus, we need to redesign the in-memory data
structures well suited to such a disk-based system, and
further develop aggressive caching schemes which exploit
in-memory processing with disk-based indices.

6 CONCLUSION

This paper introduces ATP monitoring in large-scale city
environments. To enable ATP monitoring, we develop
ActraMon, a high-performance ATP monitoring framework.
ActraMon is an initial attempt to support real-time city-
scale services leveraging collective intellegence from mobile
devices of city residents. Based on the computational model
of ATPs, ActraMon provides a declarative query language
that facilitates effective specification of various ATPs. Most

important, it provides the shared staging architecture and
efficient processing techniques for activity detection and
composition. ActraMon effectively addresses the scalability
challenges caused by massive input workloads and proces-
sing complexity of ATP monitoring. Our experimental
results show that ActraMon is scalable to the number of
ATP queries as well as moving objects, compared to the
state-of-the art processing techniques.
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