
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

5-2010

A Scalable and Energy-Efficient Context
Monitoring Framework for Mobile Personal Sensor
Networks
Seungwoo KANG

Jinwon LEE

Hyukjae JANG

Youngki LEE
Singapore Management University, YOUNGKILEE@smu.edu.sg

Souneil PARK

See next page for additional authors

DOI: https://doi.org/10.1109/TMC.2009.154

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Software Engineering Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
KANG, Seungwoo; LEE, Jinwon; JANG, Hyukjae; LEE, Youngki; PARK, Souneil; and SONG, Junehwa. A Scalable and Energy-
Efficient Context Monitoring Framework for Mobile Personal Sensor Networks. (2010). IEEE Transactions on Mobile Computing. 9,
(5), 686-702. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/2071

https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2071&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2071&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2071&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/TMC.2009.154
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2071&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2071&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Author
Seungwoo KANG, Jinwon LEE, Hyukjae JANG, Youngki LEE, Souneil PARK, and Junehwa SONG

This journal article is available at Institutional Knowledge at Singapore Management University: https://ink.library.smu.edu.sg/
sis_research/2071

https://ink.library.smu.edu.sg/sis_research/2071?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2071&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research/2071?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2071&utm_medium=PDF&utm_campaign=PDFCoverPages

A Scalable and Energy-Efficient Context
Monitoring Framework for Mobile

Personal Sensor Networks
Seungwoo Kang, Jinwon Lee, Hyukjae Jang, Youngki Lee,

Souneil Park, and Junehwa Song, Member, IEEE

Abstract—The key feature of many emerging pervasive computing applications is to proactively provide services to mobile individuals.
One major challenge in providing users with proactive services lies in continuously monitoring users’ context based on numerous
sensors in their PAN/BAN environments. The context monitoring in such environments imposes heavy workloads on mobile devices
and sensor nodes with limited computing and battery power. We present SeeMon, a scalable and energy-efficient context monitoring
framework for sensor-rich, resource-limited mobile environments. Running on a personal mobile device, SeeMon effectively performs
context monitoring involving numerous sensors and applications. On top of SeeMon, multiple applications on the mobile device can
proactively understand users’ contexts and react appropriately. This paper proposes a novel context monitoring approach that provides
efficient processing and sensor control mechanisms. We implement and test a prototype system on two mobile devices: a UMPC and a
wearable device with a diverse set of sensors. Example applications are also developed based on the implemented system.
Experimental results show that SeeMon achieves a high level of scalability and energy efficiency.

Index Terms—Context monitoring, shared and incremental processing, sensor control, energy efficiency, personal computing,

portable devices, ubiquitous computing, wireless sensor network, pervasive computing.

Ç

1 INTRODUCTION

PROACTIVELY providing services to mobile users is
essential for many emerging pervasive computing

applications. Provision of situation-specific services without
user intervention requires an involved process for acquiring
users’ contexts. Such services require different types of
contexts with different degrees of context awareness.
Individual users have different service requirements and
preferences, personalized to their own needs. Increasingly,
a number of wearable and wireless sensors with diverse
capabilities are being densely deployed on users’ bodies or
in their personal areas. To provide much broader coverage
and higher accuracy in recognized contexts, personal sensor
networks will grow much in scale, diversity, and complex-
ity. In such environments, the mobile device plays a key
role as a full-fledged, integrated personal service agent,
incorporating personal sensor networks and running multi-
ple applications simultaneously. An effective personal
mobile system must continuously process a large volume
of sensor data while supporting a number of applications.

In this paper, we propose SeeMon, a scalable and energy-
efficient context monitoring framework for personal con-
text-aware applications. To provide proactive services to
mobile users, these applications should continuously moni-
tor users’ contexts and capture their changes over time. A
major challenge results from the key characteristics of

sensor-rich and resource-limited mobile environments. In
these environments, users carry a personal mobile device
with a number of wireless sensor nodes in the BAN/PAN.
Context monitoring in such environments imposes heavy
workloads on a mobile device and sensor nodes. First, a high
rate of data streams from numerous sensors should be
collected and processed in the device. Data processing often
involves complex operations such as feature extraction and
context recognition. Second, a number of monitoring
requests from many applications should be handled; the
requests will be long-running, which requires continuous
processing on the device. Finally and most importantly, with
such workloads, the resource limitations of the device and
sensors should be carefully considered, especially their
battery power and processing capacity.

The proposed framework addresses these challenges in
two main ways. First, context monitoring in SeeMon focuses
on continuous detection of context changes. Note that this
semantics is different from conventional context recogni-
tion, which identifies the current context only. Once a
change is identified, it is not necessary to redundantly
recognize the same context and send notification updates as
long as the context remains unchanged.

Second, while conventional context processing occurs in a
unidirectional fashion, SeeMon approaches the context
monitoring problem in a bidirectional way. In the unidirec-
tional approach described in Fig. 1, the processing flow
proceeds in one direction through a pipeline, which consists
of several stages, i.e., preprocessing, feature extraction,
context recognition, and change detection. Change detection
is performed at the last stage of the pipeline. To detect context
changes, data should be collected from sensors and pro-
cessed for recognition continuously. Moreover, the results of
monitoring queries must be reevaluated based on the
recognized context. This continuous process results in heavy

686 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 9, NO. 5, MAY 2010

. The authors are with the Department of Computer Science, KAIST, 373-1,
Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea.
E-mail: {swkang, jcircle, hjjang, youngki, spark,
junesong}@nclab.kaist.ac.kr.

Manuscript received 18 Dec. 2008; revised 5 June 2009; accepted 4 Aug. 2009;
published online 13 Aug. 2009.
For information on obtaining reprints of this article, please send e-mail to:
tmc@computer.org, and reference IEEECS Log Number TMC-2008-12-0502.
Digital Object Identifier no. 10.1109/TMC.2009.154.

1536-1233/10/$26.00 � 2010 IEEE Published by the IEEE CS, CASS, ComSoc, IES, & SPS

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on March 29,2010 at 21:28:52 EDT from IEEE Xplore. Restrictions apply.

processing and high energy costs. However, the bidirectional
approach in Fig. 2 forms a feedback path from the
applications to sensors. This approach gives the opportunity
to achieve a high degree of efficiency in computation and
energy consumption. Such an advantage results from careful
reflection of the high-level application requirements such as
monitoring queries and the low-level status of sensor
resources. This makes it possible to elaborate on the
computational stages in the processing pipeline, and hence,
to make a monitoring decision at an earlier stage, signifi-
cantly saving computational overhead. As shown in Fig. 2, in
our approach, a context change is detected directly from the
feature data without going through the expensive context
recognition stage as in Fig. 1. This is enabled by query
translation that transforms a context-level query into a feature
data-level query. The translation is performed only once
whereas the savings in computational or energy cost are
constantly achieved throughout successive monitoring op-
erations. In addition, the low-level status of sensor resources
can be dynamically analyzed considering the requirements
of the monitoring queries. Thus, sensors necessary for
context monitoring can be intelligently identified and
controlled to save energy or increase utilization.

There has been much research on middleware for context-
aware applications [9], [10], [11], [12], [13], [14], [15], [16].
Middleware provides basic functionalities required for
context awareness, i.e., sensor data collection, data prepro-
cessing, feature extraction, and context recognition. Different
works study different aspects (e.g., different ways of
modeling context, different ways of reasoning or inference
to attain higher level context, and additional functionalities
such as security or privacy). The research accumulates
important results to realize context-aware services. However,
the focus of previous research was mainly on providing
context awareness; they are limited in terms of monitoring,
especially issues concerning monitoring in sensor-rich,
resource-limited environments. Most importantly, they
approach the problem in a unidirectional way, resulting in
heavy processing and high energy costs.

To the best of our knowledge, our work is the first
attempt to present a scalable and energy-efficient context
monitoring framework for mobile devices. Running on
mobile devices, SeeMon effectively performs context mon-
itoring involving numerous sensors and applications. On
top of SeeMon, multiple applications simultaneously oper-
ating on the devices can understand the context of users
and serve them appropriately.

1.1 Bidirectional Approach to Context Monitoring
Problem

Our approach is to effectively remove unnecessary expen-
sive computation and communication in the context
monitoring process. We look into the context monitoring
process shown in Fig. 1 and develop the proposed frame-
work based on three observations.

First, we observe that it is computationally efficient if
change of context can be identified at an early stage of the
processing pipeline. The conventional way to detect a
change of context is to compare contexts after inferring them
via an algorithm like decision tree logic. However, we can
avoid such costly operation when we translate a high-level
application query into a lower level query. For example, we
can skip the costly decision tree logic if we detect the change
of activity using feature value changes from accelerometers.
As far as we know, our work is the first attempt to exploit this
novel observation for context change detection.

Second, we observe and exploit context continuity. This
is possible because we continuously capture context to
notice its changes. It is not just a single recognition task.
Rather, it is a sequence of successive tasks, which should be
performed continuously. From this perspective, we note
that the context of an individual remains the same for a
certain amount of time. This continuity of context can be
understood in two levels: the context level as well as the
source or feature data level. Consecutive readings from a
data source change gradually and these small changes
rarely lead to changes in context.

Based on the locality of the feature data, we greatly
reduce the processing cost of the change detection process.
Among numerous data updates, we effectively sort out the
updates that are expected to result in context changes. Then,
only a small number of registered queries relevant to the
updates are quickly searched for and evaluated. Combined
with the mechanism for feature data-level change detection
described above, we achieve a high level of performance.

Third, a small subset of sensors is often sufficient to
answer queries. For example, consider a query for the context
“studying in the library.” When the user is not in the library,
her activity information is not useful; the query can be
answered using only location information. However, even
for such a simple query, finding the most efficient subset of
sensors to activate is complex since it may involve numerous
queries and many possible sensors. We develop a novel
method for computing a reduced set of sensors that is
sufficient for context monitoring and then only activate this
subset. These techniques reduce the amount of wireless
communication between sensors and a mobile device,
leading to energy savings.

Based on these observations, we develop three methods
for context monitoring: Context Monitoring Query (CMQ)
translation, shared and incremental CMQ evaluation, and
Essential Sensor Set (ESS) selection. Our framework auto-
matically translates CMQs issued by applications into
queries with feature data-level monitoring conditions. While
the translation is performed only once for each query, the
performance benefit is achieved constantly throughout the
entire query lifetime. The shared and incremental CMQ
evaluation method maximally utilizes the context continuity.
By exploiting the locality of feature data, the method

KANG ET AL.: A SCALABLE AND ENERGY-EFFICIENT CONTEXT MONITORING FRAMEWORK FOR MOBILE PERSONAL SENSOR... 687

Fig. 1. Unidirectional approach in conventional context monitoring.

Fig. 2. Bidirectional approach to context monitoring problem.

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on March 29,2010 at 21:28:52 EDT from IEEE Xplore. Restrictions apply.

significantly accelerates successive evaluation of numerous
CMQs. Further, it only maintains compact lightweight data
structures carefully designed. The method thereby achieves
a high level of scalability even in a resource-limited
environment. The framework is also successful in energy
saving by computing the ESS and dynamically controlling
sensors based on it. We show the complexity of ESS selection
by proving that the problem is NP-complete. A practical
heuristic algorithm with acceptable approximation ratio is
developed to handle the ESS selection problem. Also, we
develop ESS calculation policies, which can be alternatively
used to cope with various environments and operational
situations. Finally, we devise and examine two sensor
control modes to evaluate the effectiveness of sensor control
in terms of energy consumption.

1.2 Implementation and Evaluation

We have implemented a SeeMon prototype with core
components for scalable and energy-efficient context mon-
itoring. We have also built two pervasive computing app-
lications that use the SeeMon prototype for context monitor-
ing. In order to examine heterogeneous mobile environments,
we have deployed and tested the prototype system on various
types of mobile devices along with diverse sensors.

Experimental results show that SeeMon can achieve a
high level of scalability and energy efficiency in sensor-rich
and resource-limited mobile environments. SeeMon pro-
vides 4.6 times better throughput than an alternative context
monitoring method under a workload of about 2,100 data
samples per second. Also, SeeMon reduces a large number of
wireless data transmissions, e.g., between about 50 and
90 percent, on average, while evaluating 4,000 CMQs under
different conditions.

The rest of the paper is organized as follows: Section 2
discusses related work. Section 3 presents the overview of
SeeMon framework. We describe the proposed processing-
efficient CMQ evaluation method in Section 4 and the
energy-efficient sensor control method in Section 5. Section 6
presents our prototype implementation and experiences on
example applications. Section 7 shows experimental results.
Finally, Section 8 presents discussion and future work and
Section 9 concludes the paper.

2 RELATED WORK

Context-aware applications and application-specific systems
have been proposed in several application domains including
healthcare and medical applications [4], [5], reminder
applications [6], and activity recognition [7], [8]. Each system
mainly utilizes an application-specific context such as
location, activity, or biomedical information. However, the
proposed framework is designed to support multiple
applications, which utilize diverse contexts generated from
numerous sensors in the BAN/PAN. Thus, the framework
provides intuitive query interface to specify contexts of
interest and corresponding processing mechanisms.

Some existing projects have proposed middleware to
support context-aware applications. Their aim is to hide the
complicated issues related to context awareness. Most
middlewares are designed to run in a centralized server
environment [9], [10], [11] or a distributed environment [12],
[13]. This approach requires infrastructural support to deal
with sensor data collection and context processing. More-
over, privacy issues can arise since context information of

individual users is exposed to the server. Some context-aware
middlewares target mobile devices [14], [15], [16], but do not
consider tens/hundreds of BAN/PAN sensors and the
processing and power limitations of mobile devices and
sensors. Moreover, they do not focus on continuously
detecting the changes of context.

Limited battery power has been a critical problem in the
field of mobile computing. Many techniques have been
proposed to improve the energy efficiency of mobile devices
by reducing the wireless communication cost. They include a
technique to delay the communication based on GPS-based
movement prediction [20] and techniques to reduce the Wi-Fi
connection establishment and maintenance cost based on a
low-power radio interface [17], a Wi-Fi detector [18], or Wi-Fi
network condition estimation [19]. SeeMon also enhances
energy efficiency by reducing wireless communication.
However,our approach utilizes the characteristics of personal
contextandapplications’ requirement forcontext monitoring.

Energy saving in wireless sensor networks is well
studied, including MIMO systems at the physical layer
[21], MAC protocols [22], routing mechanisms [23], and
integrated solutions optimizing the energy consumption of
all radio states [26]. SeeMon operates at the application
layer and is complementary to these approaches.

A wearable activity recognition system considering the
energy consumption of sensors has been proposed [43]. It
utilizes the fact that required accuracy and granularity of
recognition are different according to applications. They
show that a subset of sensors suffices the coarse-grained
recognition with desirable accuracy. SeeMon identifies and
uses a reduced set of sensors, considering the type of context
(e.g., location or activity). More importantly, unlike SeeMon,
the system does not cover diverse context types or provide a
general platform for multiple applications. However, it is
complementary to utilize the trade-off between the accuracy
of context and the energy consumption.

Our work on processing-efficient CMQ evaluation is
broadly related to continuous query processing in Data
Stream Management Systems [38], [39], [40]. These systems
support monitoring query semantics over continuously
streaming data and efficient processing mechanisms for
continuous queries [40], [27]. However, such methods are not
directly applicable to the context monitoring problem
because they are not designed for efficient detection of
changes in data values. Instead, they support continuous
query evaluation to retrieve all matching data values. SeeMon
adopts an efficient solution to detect context changes in terms
of computation cost and memory consumption, which are
especially critical in resource-limited mobile environments.

MyExperience [41] has been proposed to collect quanti-
tative and qualitative usage data on personal mobile
devices for studies of mobile technology usage and
evaluation. For efficient data collection, it employs an
efficient event-driven architecture of Sensors, Triggers, and
Actions. Although the event-driven architecture is similar
to SeeMon, SeeMon focuses on real-time context monitoring
rather than the collection of usage data. In particular,
SeeMon addresses the problem of sensor data processing in
sensor-rich and resource-limited environments.

3 CONTEXT MONITORING FRAMEWORK OVERVIEW

3.1 Motivating Environment

The rapid advance of mobile device and service technolo-
gies will lead to a new mobile environment in which

688 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 9, NO. 5, MAY 2010

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on March 29,2010 at 21:28:52 EDT from IEEE Xplore. Restrictions apply.

personal sensor networks as well as personal context-aware
applications will grow in scale, diversity, and complexity.

Diverse sensors and sensor networks are increasingly
being deployed in personal areas and on human bodies. For
example, acceleration sensors, biomedical sensors (e.g., ECG,
BVP, GSR, and EMG sensors), and environment sensors (e.g.,
temperature, humidity, light sensors, RFIDs, and GPS) are
widely deployed across many domains. Even for a single
sensor type, tens of sensors are sometimes used for accurate
context recognition [1]. In practice, it is a key trend that a
variety of sensors such as accelerometer and gyroscope is
equipped inside the recent smart phones. At the current rate
of advancement, future personal sensor networks will likely
incorporate up to hundreds of sensors of various types.

At the same time, many new personal context-aware
applications are being developed and deployed based on
personal sensor networks. Emerging sensor types will lead
to even more applications for mobile users. These applica-
tions will be deployed in domains such as healthcare [48],
personal assistance, dietary monitoring [2], interactive art
[3], gaming, and education.

An important characteristic of these applications is that
they monitor individuals’ context and surroundings. In the
future, these applications will require even finer grained
monitoring. For example, a current personal assistant service
requires understanding the user’s activity such as running,
walking, or sitting, which is recognized using several
accelerometers. However, in the near future, applications
may need to understand and reflect finer movements such as
delicate hand motions and even individual fingers’ move-
ments. This will require crafted placement of an increasing
number of sensors and processing of much more monitoring
requests. Most important, while personal applications ex-
pand in quantity and quality, users will not use separate
hardware devices for each application. They will use a single
mobile device as a full-fledged, integrated personal service
agent and simultaneously run multiple applications on the
device. In addition, the context monitoring requests from the
applications will be long-standing, resulting in continuous
operation of the mobile device, possibly for 24 hours per day
7 days per week. As a result, as an integrated personal service
agent, personal mobile devices continuously process a high
number of context monitoring requests as well as volumi-
nous data from numerous sensor devices. This introduces
new technical obstacles for future pervasive services, which
will be compounded by the resource limitations and
heterogeneity of the sensors and mobile devices.

3.2 Context Monitoring Query

SeeMon provides CMQ, an intuitive monitoring query
language that supports rich semantics for monitoring a
wide range of contexts. It is important for applications to
catch the changes in users’ context proactively. Applications
do not necessarily know what the current context is, but
must detect when the changes occur. CMQ is devised to
support such monitoring semantics. The CMQ template has
the following format:

Context <context element>

(AND <context element>)*

ALARM <type>

DURATION <duration>.

A CMQ specifies three conditions: context, alarm, and
duration conditions. First, the context condition describes the
context of interest. It is presented as a Conjunctive Normal
Form (CNF) of multiple context elements. Each context
element is described by a specific context type, an operator,
and a context value. SeeMon supports two types of operators:
equality (¼¼; ! ¼) and inequality (<;�; >;�) operators.
The state of the context condition becomes true if and only if
all context elements are true. Context conditions containing
negation (:) and OR operations can easily be supported in
SeeMon. By using Boolean algebra, such context conditions
are transformed into CNF containing only AND operation.

Second, the alarm condition determines when SeeMon
delivers an alarm event to applications. Currently, SeeMon
supports two types of alarm conditions: an instant transition
alarm and a timed transition alarm. First, the instant
transition alarm specifies SeeMon to give an alarm event
right after the state of the context condition changes from
false to true (F! T) or from true to false (T! F). Second,
the timed transition alarm specifies SeeMon to deliver an
alarm event when the state of the context condition
continues to be true for a period of time and changes to
false (T ðperiodÞ ! F) or it does false for a period of time
and changes to true (F ðperiodÞ ! T). The period can be
specified with a single value or a range of values. If a single
value is given for the period, the alarm condition is satisfied
when state continuation time is larger than the value. On
the other hand, if a value range is given, the alarm condition
is satisfied when state continuation time is within the range.

Finally, the duration condition specifies how long a
registered CMQ should run. SeeMon maintains a CMQ for
the specified duration as long as an application does not
deregister the query.

The following is an example CMQ. As shown in the
example, the context monitoring semantics required for
applications can be easily expressed by a simple CMQ:

Context (location == Library)

AND (activity == Sleeping)

AND (time == Evening)

ALARM! T

DURATION 120 DAYS.

3.3 Architecture

SeeMon is a middle-tier framework between personal
context-aware applications and a personal sensor network
(see Fig. 3). SeeMon provides programming APIs and a
runtime environment for applications. Multiple applica-
tions that require context monitoring can be developed
through the APIs and can run on top of SeeMon
concurrently. Meanwhile, SeeMon receives and processes
sensor data and controls the sensors in the personal sensor
network. For the wireless communication between them,
protocols such as Bluetooth and ZigBee can be used. In
addition to wireless personal sensor network, device-
attached sensors such as accelerometer and gyroscope
deployed on smart phones can be easily incorporated in
the SeeMon framework without architectural change.

SeeMon consists of four components: the CMQ Processor,
the Sensor Manager, the Application Broker, and the Sensor
Broker. Based on these components, the operation of SeeMon
is performed in three phases: query registration, query
processing, and sensor control. First, applications initiate
context monitoring by registering CMQs to the CMQ

KANG ET AL.: A SCALABLE AND ENERGY-EFFICIENT CONTEXT MONITORING FRAMEWORK FOR MOBILE PERSONAL SENSOR... 689

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on March 29,2010 at 21:28:52 EDT from IEEE Xplore. Restrictions apply.

Processor through the Application Broker. Then, the CMQ
Processor performs scalable context monitoring by effi-
ciently evaluating numerous CMQs over data delivered by
the Sensor Broker; monitoring results are then forwarded to
applications. Finally, the Sensor Manager finds a minimal set
of sensors that is necessary to evaluate all registered CMQs.
Then, the Sensor Manager forces unnecessary sensors to stop
transmitting data to SeeMon, thereby saving energy.

The Application Broker consists of the Application Inter-
face, the Access Controller, and the Context Translator. First,
the Application Interface provides an interface to applica-
tions. Table 1 summarizes the APIs provided by SeeMon.
The Access Controller manages privacy and security
parameters in SeeMon. Since remote applications can
request context monitoring, it is important to provide an
appropriate access control mechanism. Currently, the
Access Controller checks whether a requesting application
is registered in an access control list [37]. The Context
Translator translates a CMQ issued by a permitted applica-
tion into a feature data-level CMQ. The translated data-level
CMQ is registered with the CMQ Processor.

The CMQ Processor consists of the CMQ-Table and the
CMQ-Index. The CMQ-Table stores registered CMQs and
their evaluation results. Through the CMQ-Index, context
elements for each feature data can be quickly evaluated. The
evaluation of a CMQ is triggered by state changes in context
elements of the CMQ. When the CMQ Processor detects
that a certain CMQ is satisfied, an alarm event is promptly
forwarded to corresponding applications.

The Sensor Broker consists of the Input Handler, the
Preprocessor, and the Feature Generator. The Input Handler
manages communication with sensors and receives sensor
data. The Preprocessor removes noise and error from input
data and performs simple computation such as data format
conversion. The Feature Generator performs complex
computation on data from the Preprocessor, such as Fast
Fourier Transform, to derive feature data. It then inputs
derived feature data into the CMQ Processor.

The Sensor Manager consists of the ESS Calculator and the
Sensor Controller. The ESS Calculator computes an ESS
necessary to evaluate CMQs and identifies unnecessary
sensors based on the evaluation results of the CMQ
Processor. Based on the calculated ESS, the Sensor Controller

sends selected sensors control messages to reconfigure the
sensors to stop transmitting data.

4 PROCESSING-EFFICIENT CMQ EVALUATION

Multiple applications running on SeeMon will be interested
in different contexts. Thus, the CMQ Processor should handle
a large number of CMQs issued by applications. To notify the
changes of context immediately, CMQs must be continuously
evaluated over data streams from the sensors. It is costly to
evaluate all CMQs upon every data arrival. Furthermore,
dealing with such voluminous data streams must be done in a
resource-limited environment. SeeMon employs novel meth-
ods to significantly improve the evaluation performance
under such query and data workloads.

SeeMon avoids the expensive context recognition process
such as decision tree traversal by translating CMQs into
feature data-level queries. The CMQ translation provides a
chance to reduce the processing overhead by pruning out
unnecessary context recognition at an early stage of the
processing. SeeMon develops a shared and incremental
processing method to efficiently process the translated
feature data-level queries in the CMQ Processor.

The shared processing method efficiently processes a large
number of data-level CMQs using a query index called the
CMQ-Index. Once the index is built for all registered CMQs,
upon a data arrival, only relevant queries will be searched for.
This method provides significant performance benefit
compared to CMQ evaluation without shared processing.

The key idea behind our incremental processing method
is to utilize the locality of feature data streams and develop
a stateful query index for incremental evaluation. Con-
secutive updates from a data stream usually show gradual
changes. Thus, in many cases, consecutive updates from
each sensor do not change the states of registered queries.
For example, consider a query to monitor an energy feature
value stream from an accelerometer with a range [70 <
energy < 75]. If the energy feature values are [72, 71, 73, 74],
the state of this query is true and it remains unchanged.
Even if data updates incur state changes, it is highly
possible that the changes will be restricted to a small
number of queries that are interested in nearby ranges. The
CMQ-Index exploits such locality and consequent overlaps
between previous and current state evaluation results by
remembering the previous states of all queries. Further-
more, it precomputes the queries whose states change at
each value range. The CMQ-Index also partitions the

690 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 9, NO. 5, MAY 2010

Fig. 3. Architecture of SeeMon.

TABLE 1
SeeMon API

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on March 29,2010 at 21:28:52 EDT from IEEE Xplore. Restrictions apply.

domain space of a feature into consecutive range segments,
and computes the difference of sets of queries whose state
changes across consecutive segments. This structure is also
memory efficient since it only stores the differences
between queries over successive ranges without replication.

The structure often requires no further evaluation since a
data update may fall into the same segment as before. Even
if it does not, it is most likely that the update will fall into a
nearby segment. In this case, a new evaluation can be
performed by computing the union of the precomputed
differences. No complex computations are involved in this
process other than the union of differences. The union is
taken over just a small number of consecutive segments
starting from the previous segment. This approach outper-
forms the state-of-the-art query indexing mechanisms [27],
[28] by orders of magnitude.

The CMQ evaluation approach, the shared and incre-
mental processing, is based on our previous work [29]. In
this paper, we extend the work for efficient CMQ evaluation.

4.1 CMQ Translation

CMQ translation is the first step to enable scalable CMQ
evaluation. This process converts CMQs specified in
context-level semantics into range predicates over contin-
uous feature data. Through this translation, SeeMon avoids
the overhead of continuous context recognition. The CMQ
translation requires two major steps. First, SeeMon maps a
context type to one or more features. A feature represents
data values generated via preprocessing and feature extrac-
tion from sensor data. One or more features can be derived
from a sensor. For example, DC and energy features are
derived from an accelerometer [7]. Second, SeeMon trans-
forms a context value into numerical data value ranges for
corresponding features.1 For example, ðnoise ¼ ¼ QuietÞ can
be mapped to (20 dB � sound pressure level � 30 dB). Note
that the query translation cost is negligible since the
translation is a simple one-time operation performed during
query registration.

SeeMon maintains a context translation map to support the
CMQ translation effectively. Fig. 4 shows an example map.
The map manages mappings between context-level seman-
tics and data-level semantics for a context type and its
possible value. By using it, SeeMon easily translates context
elements in a CMQ into a set of corresponding features and
data value ranges. The context translation map can be built
through a machine learning process such as building a C4.5
decision tree [7], [24]. The decision tree can be easily
transformed into the map.

SeeMon supports two types of maps: generic and
customized maps. The generic map maintains mapping
information generally usable to many applications. It is
provided by the SeeMon framework and cannot be
modified. For the customization of mappings between
context-level semantics and data-level semantics, applica-
tion developers can create customized maps. It is very
useful to satisfy the different needs of a specific application.

4.2 CMQ-Index and CMQ-Table

For efficient CMQ evaluation, the CMQ Processor maintains
two important data structures: the CMQ-Table and the CMQ-
Index (see Fig. 5). First, the CMQ-Table stores CMQs using a
hash structure, providing O(1) lookup time. It contains four
basic attributes: query id, state (evaluation result), context
element list, and time stamp (evaluation time). For CMQs with
a timed transition alarm condition, an auxiliary attribute,
period is included. In the context element list, a context
element is specified with three attributes: feature id, range
condition, and state. A feature id indicates a feature associated
with the context element. A range condition presents a data
value range for the feature as described in Section 4.1. Note
that the state of the context element is one of three states: true,
false, and undecided. In particular, undecided states occur
when feature data are unavailable due to the dynamic sensor
control. After the states of a set of context elements are
decided, the state of the query is decided according to the
following rules (see Fig. 5):

1. The state of CMQ is false if the number of false
context elements >¼ 1.

2. The state of CMQ is undecided if there is no false
context element and the number of undecided
context elements >¼ 1.

3. The state of CMQ is true if all context elements
are true.

KANG ET AL.: A SCALABLE AND ENERGY-EFFICIENT CONTEXT MONITORING FRAMEWORK FOR MOBILE PERSONAL SENSOR... 691

1. This kind of mapping between a context and feature values is based on
crisp limits, one of quantization methods used for context recognition [14].

Fig. 4. Example of context translation map.

Fig. 5. CMQ-Table and CMQ-Index. The CMQ-Table shows four CMQs,
Q1-Q4, and their states as well as the lists of included context elements.
Amongthem,Q2 hasanauxiliaryattribute,periodfor timedtransitionalarm.
The CMQ-Index shows two RS lists, one for feature F1 and the other for
featureF2. The RS list for featureF1 currently has eight RS nodes,N1-N8.

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on March 29,2010 at 21:28:52 EDT from IEEE Xplore. Restrictions apply.

Second, the CMQ-Index is a query index to quickly access
context elements relevant to incoming data. Using the index,
context elements within range of where the data value falls
can be easily identified. The index consists of multiple
Region Segment (RS) lists and a feature table. An RS list is
assigned to each feature and is built to maintain the value
ranges of the context elements associated with the corre-
sponding feature. Each entry of the feature table maintains a
pointer to the value range, where the last data value fell.

The RS list is composed of a set of RS nodes, partitioning
the domain space of feature values. Each RS node includes a
set of context elements covered by its range (see Fig. 5). For
each context element, a query id of the element is stored
into only two RS nodes, where the range starts and ends.
Compared to other indexes [27], [28], the CMQ-Index is
more storage-efficient.

The RS list is formally defined as follows: LetCE ¼ fCEig
be a set of context elements associated with a feature, where
CEi has the range (li, ui). Let B denote the set of lower and
upper bounds of the range of each CEi and minimum and
maximum values of domain space, bmin and bmax, i.e., B ¼
fb j b is either li or ui of a CEi 2 CEg [fbmin; bmaxg. We
denote the elements of the set B with a subscript in the
increasing order of their values. That is, b0 < b1 < � � � < bm.
An RS list is a list of RS nodes, <N1; N2; . . . ; Nm>. Each RS
node Ni is a tuple (Ri;þDQSeti;�DQSeti), where

. Ri is the range of region segment (bi�1; bi), bi 2 B;

. þDQSeti is the set of CMQs, where the CMQs
contain a context element CEk such that lk ¼ bi�1 for
the range (lk; uk) of CEk;

. �DQSeti is the set of CMQs, where the CMQs
contain a context element CEk such that uk ¼ bi�1 for
the range (lk; uk) of CEk.

In Fig. 5, two RS lists are shown as an example. The upper
RS list is built for six context elements, CE ðQ1Þ; . . . ;CE ðQ5Þ;
and CE(Q8). Eight RS nodes are created and each of them has
a range and �DQSet.

CMQs can be dynamically registered and deregistered. A
CMQ Qin is registered as follows: First, an entry for Qin is
added to the CMQ-Table. Since the states of Qin and its
context elements are not determined yet, the CMQ
Processor evaluates the states of Qin and context elements
through current data values. Then, the CMQ-Index is
updated. That is, the CMQ Processor updates the RS lists
associated with features of context elements of Qin.
Consider a context element of Qin, CEi, whose range
condition is (li, ui). First, the CMQ Processor locates the RS
node Ni, which contains li, i.e., bi�1 � li < bi. If li is equal to
bi�1; Qin is inserted into the þDQSeti of Ni. Otherwise, Ni is
split into two RS nodes: the left node with the range of
(bi�1; li) and the right node with the range of (li; bi). The left
node has the �DQSet of Ni and the right node contains Qin

in its þDQSet. Second, the CMQ Processor locates and
processes the RS node, Nj containing ui in a similar way.
CMQs can be deregistered similarly.

4.3 CMQ Evaluation Mechanism

CMQ evaluation is performed in three steps. First, using the
CMQ-Index, the CMQ Processor searches for the context
elements whose state changes based on the arrival of
feature data. Second, the CMQ Processor updates the
CMQ-Table for the state-changed context elements. Then,
it checks whether the state of corresponding CMQs should

change or not. If they should, the CMQ Processor updates
the CMQ-Table with the new state. To evaluate both CMQs
with an instant transition alarm condition and CMQs with a
timed transition alarm condition, such a state change
detection is essential. Finally, the CMQ Processor checks
an alarm condition of state-changed CMQs and notifies
relevant applications through the Application Broker. For
CMQs with an instant transition alarm condition, just the
state change suffices for the notification. However, for
CMQs with a timed transition alarm condition, difference
between the current evaluation time and the time stamp
should be compared with the specified period. If necessary,
the time stamp is updated with the current evaluation time.

Searching the CMQ-Index is done as follows: Upon
feature data arrival, the CMQ-Index locates an RS list
associated with the feature and searches for an RS node that
contains the value, i.e., a matching RS node. Queries with
state-changed context elements are simply retrieved by
traversing from the previous matching node to the current
matching node. Due to the data locality, an updated data
value will probably be available in a nearby node. Thus, the
linear traversal is normally fast.

The CMQ-Index search results in two sets of queries
containing state-changed context elements. 1) QSetþ, a set
of queries containing context elements whose state changes
from false to true. 2) QSet�, a set of queries containing
context elements whose state changes from true to false.

Given values of two consecutive updates, vt�1 and vt, let
vt�1 fall in the range of an RS node Nj and vt fall in that of
Nh, i.e., bj�1 � vt�1 < bj and bh�1 � vt < bh. While traversing
from Nj to Nh;QSet

þ and QSet� are computed as follows:

If j ¼ h;QSetþ ¼ QSet� ¼ �;
If j < h;QSetþ ¼

�
[hi¼jþ1 þDQSeti

�
�
�
[hi¼jþ1 �DQSeti

�
;

QSet� ¼
�
[hi¼jþ1 �DQSeti

�
�
�
[hi¼jþ1 þDQSeti

�
;

If j > h;QSetþ ¼
�
[hþ1
i¼j �DQSeti

�
�
�
[hþ1
i¼j þDQSeti

�
;

QSet� ¼
�
[hþ1
i¼j þDQSeti

�
�
�
[hþ1
i¼j �DQSeti

�
:

In Fig. 5, we assume that the previous value vt�1 of
feature F2 was located in N4 of RS list (F2). If the current
value vt is located in N2;�DQSet is retrieved while visiting
from N4 to N2. Thus, QSetþ ¼ fQ9g and QSet� ¼
fQ3; Q6; Q8g are obtained. Then, entries for queries in
QSetþ and QSet� are updated in the CMQ-Table. For
instance, the context element of Q3; ½F2; ðb2; b4Þ; true� is
updated to [F2; ðb2; b4Þ; false] since Q3 is included in
QSet�. The state of Q3 is also updated to false.

4.4 Analysis of Processing and Storage Costs

The processing cost of the CMQ Processor can be repre-
sented as the total number of retrieved context elements for
each feature. The average number of retrieved context
elements U is determined by two factors. First, U is
proportional to the average distance between two consecu-
tive data values. As the distance increases, more RS node
visits are required to locate a new matching node, thereby
increasing the number of retrieved context elements whose
state changes. We define Fluctuation Level (FL) as the average
distance normalized with respect to the domain size:

FL ¼ Average distance

Domain size
¼
PM

i¼1 jvi � vi�1j
M � 1

� 1

Domain size
;

692 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 9, NO. 5, MAY 2010

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on March 29,2010 at 21:28:52 EDT from IEEE Xplore. Restrictions apply.

where vi is ith data value and M is the total number of
data values.

Second, U is proportional to the average density of
context elements in an RS list. As the density increases,
more context elements are retrieved with the same FL. The
average density of context elements in an RS list can be
approximated as (2�Nq=Domain size), where Nq is the
number of CMQs, because each query id is inserted into
only two nodes of an RS list. Thus, the average processing
cost of the CMQ Processor for each feature can be
formulated as �ð2�Nq � FLÞ.

The storage cost of the CMQ Processor is decided by the
size of the CMQ-Table and the CMQ-Index. First, the size of
the CMQ-Table is proportional to the number of CMQs, i.e.,
�ðNqÞ. Second, the size of the CMQ-Index is a function of
the size of the feature table and the RS lists. The size of the
feature table is proportional to the number of input data
sources Nd, i.e., �ðNdÞ. The size of an RS list is �ð2NqÞ since
each context element is inserted once into þDQSet and
�DQSet, respectively. The number of RS lists is the same as
the number of entries in the feature table. Thus, the storage
cost of CMQ-Index is �ðNd þ 2NqNdÞ.

5 ENERGY-EFFICIENT SENSOR CONTROL

SeeMon employs a novel sensor control method to enhance
the energy efficiency of sensors and mobile devices. The key
idea for efficient sensor control is that only a small number
of sensors are necessary to determine the states of all
registered CMQs. It is true that an increasing number of
sensors will be required for various applications, especially
for fine-grained monitoring and quality service. However,
in a specific context, evaluation of the registered CMQs can
be accomplished by monitoring a subset of sensors. We call
a set of such sensors as the ESS. The ESS dynamically
changes depending on the current context and registered
CMQs. However, once a context is set to a situation, it tends
to stay. Likewise, the ESS does not abruptly change. Once
we know the ESS, sensors not in the ESS do not have to
transmit data. In this section, we present the problem of ESS
calculation and our sensor control methods in detail.

5.1 ESS Problem

Calculating the ESS is a complicated problem. The ESS should
include as few sensors as possible to save energy without
compromising correct CMQ evaluation. It is also important to
consider data transmission rates of sensors as well as the
number of sensors in the ESS. To effectively identify the ESS,
the Sensor Manager utilizes the characteristics of a CMQ’s
structure. A CMQ is specified in a CNF of multiple context
elements. A false state of a context element in a CMQ leads to
a false state of the CMQ itself. The other context elements
included in the CMQ are not necessary to determine the state
of the CMQ. On the other hand, a CMQ in a true state requires
all context elements included in the CMQ to be monitored.

As described before, the core of CMQ evaluation is to
detect whether the states of CMQs change or not. For a true-
state CMQ, if the state of a single context element changes to
false, the state of the CMQ changes to false as well. Thus, we
should monitor all the context elements in the CMQ to see if
the CMQ state changes. All sensors related to the context
elements should be included in the ESS. A CMQ in an
undecided state should be handled similarly. To decide a

CMQ’s state, the states of all context elements must be
checked and sensors related to the context elements should
be included in the ESS. However, for false-state CMQs,
monitoring only a single context element in a false state is
sufficient as long as its state remains the same. Only when its
state changes, do the states of the other elements need to be
monitored. Thus, the opportunity to save energy comes
from exploiting false-state CMQs. We select a single context
element in a false state; sensors unrelated to the element can
be put into an inactive state. It is also important to choose a
false-state context element associated with the most energy-
efficient sensor. For simplicity of discussion, we use data
transmission rate as a stand-in for energy consumption.

The ESS problem consists of two subproblems: to find
essential sensors for true-state and undecided-state CMQs
and to find the essential sensors for false-state CMQs. Fig. 6
shows an example of ESS problem for a set of sensors and
CMQs. Only query A is true. Thus, features F0 and F5 have
to be monitored since they are related to the context
elements of A. Accordingly, sensors S0 and S4 should be in
the ESS and update data. On the other hand, query B is false
and its state can be determined either by feature F0 or F1.
Thus, we can put either S0 or S1 into an inactive state.
Similarly, other CMQs can be evaluated using a small
number of sensors. Sensors S0, S1, and S4 suffice to evaluate
all the registered CMQs.

As described above, it is simple to calculate ESS for the
true-state CMQs and undecided-state CMQs. However, it is

KANG ET AL.: A SCALABLE AND ENERGY-EFFICIENT CONTEXT MONITORING FRAMEWORK FOR MOBILE PERSONAL SENSOR... 693

Fig. 6. Example of ESS problem. (a) Sensor set S, S ¼ fS0; S1;S2;
S3;S4; S5g. (b) Query set. (c) False-state query set, F-QSet ¼ fB;C;D;
E;F;G;H; I; Jg. (d) True-state query set. T-QSet ¼ fAg.

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on March 29,2010 at 21:28:52 EDT from IEEE Xplore. Restrictions apply.

complicated to compute the set of essential sensors with
minimum cost for the false-state CMQs. We call this
problem minimum cost false-query covering sensor selection
(MCFSS). We formally define MCFSS problem as follows:

Given a finite set of false-state CMQs F-QSet and a set S of
sensors, each of which covers a subset of F-QSet, find a
subset S0 ¼fS01; . . .S0kg of S such that [ki¼1F -QSet0ðS0iÞ covers
F-QSet and

Pk
i¼1 COST ðS0iÞ is minimal, where F -QSet0ðSiÞ

is the set of false-state CMQs, which becomes false by a
sensor S0i and COST ðS0iÞ is the data transmission rate of S0i.

Theorem 1. MCFSS is NP-complete.

Proof. We prove that MCFSS is NP-complete by reducing a
well-known NP-complete problem, Minimum Cost Set
Cover (MCSC) to MCFSS. MCSC consists of a finite set of
elements U and a collection L of subsets of U. Each subset Li
has a cost Ci. The objective is to choose a minimum cost
subset S0 from S that covers all elements of U.

Define F-QSet to be the set of all false-state CMQs that
are false by the sensors of S, and define each sensor Si 2 S
to be the set of false-state CMQs that become false by Si.
Now, MCSC is easily transformed into MCFSS in
polynomial time by considering U as F-QSet and L as Si.

We have shown a reduction from MCSC to MCFSS,
and therefore, MCFSS is NP-hard. Since solutions for the
decision problem (i.e.,

Pk
i¼1 COSTðS0iÞ < w, where w is a

positive constant) of MCFSS are verifiable in polynomial
time, it is in NP. Consequently, the MCFSS problem is
NP-complete. tu

5.2 ESS Calculation

Fig. 7 shows the ESS calculation process. The ESS is
computed through two stages: computing required sensors
for CMQs in a true or undecided state (Steps 2-4 in Fig. 7),
and then for CMQs in a false state (Step 8). We call the sensors
required for true-state CMQs and undecided-state CMQs the

TQCover and UQCover, respectively. Including TQCover
(Step 2) and UQCover (Step 3) in the ESS in advance can
reduce the overhead because there are false-state CMQs
whose state can be identified by sensors in TQCover and
UQCover. Since those sensors are already in the ESS, we can
remove the false-state CMQs from the problem space of
MCFSS, F-QSet. Steps 5-7 perform such a task. The reduced
F-QSet is stored in RF-QSet in the algorithm.

Since the MCFSS problem is NP-complete, we employ a
greedy heuristic algorithm, Greedy-MCFSS (see Fig. 8). The
objective in designing the algorithm is to reduce the energy
cost as much as possible while simplifying the computation.
For this purpose, the algorithm iteratively selects the most
cost-effective sensor until all false-state CMQs are covered
(Step 2 in Fig. 8). The cost effectiveness of a sensor Si is
defined as the average cost incurred by Si covering new
false-state CMQs, i.e.,

COST ðSiÞ
jF -QSet0ðSiÞ \ F -QSet� F -QSet0ðMÞj ;

where M is the set of sensors already selected at the
beginning of an iteration and F -QSet0ðMÞ is the set of false-
state CMQs that are falsified by sensors in M.

The Greedy-MCFSS yields an MCFQCover, achieving an
approximation ratio of logjF -QSetj. It is intuitive to see that
the time complexity of the algorithm is OðjSj2Þ in the worst
case, where jSj is the number of sensors. For the brevity of
presentation, we do not present the details of the algorithm
analysis in this paper. Interested readers can refer to [46],
[47] that analyze a greedy algorithm for the minimum set
cover problem.

5.3 ESS Calculation Policy

We design two ESS calculation policies considering the
trade-off between energy efficiency and ESS calculation
overhead. The ESS needs to be calculated whenever the
evaluation result of any CMQ changes. Frequent ESS
calculation may be burdensome even with a greedy heuristic
algorithm. To address this problem, an aggressive policy and
a conservative policy are presented. The aggressive one is the
default policy, which aims to maximize energy saving.
Under the aggressive policy, the ESS Calculator calculates a
new ESS to find the most cost-effective set of sensors
whenever the evaluation results of any CMQ change. In
contrast, the conservative policy is designed to reduce the

694 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 9, NO. 5, MAY 2010

Fig. 7. ESS calculation algorithm.

Fig. 8. Greedy-MCFSS algorithm.

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on March 29,2010 at 21:28:52 EDT from IEEE Xplore. Restrictions apply.

ESS calculation overhead rather than maximize energy
efficiency. The conservative policy is effective when the
processing overhead is high due to numerous CMQs and the
mobile device’s limited computing power.

The main idea of the conservative policy is to delay ESS
calculation in order to reduce the computational overhead.
It computes only TQCover and UQCover to identify the
necessary sensors for correct CMQ evaluation without
calculating a new ESS. While the ESS calculation is being
delayed, sensors can be added to the TQCover and
UQCover and become active. However, to achieve a certain
level of energy efficiency, an ESS should be updated before
too many sensors are activated. Thus, the conservative
policy should have criteria to decide the time when a new
ESS should be calculated.

Currently, the conservative policy defines the sensor
activation ratio (SAR) as the deciding criteria. The SAR
quantifies how many sensors become newly active after the
last ESS calculation. It is not practical to use the number of
currently active sensors as a criterion in deciding the ESS
calculation timing because the number of necessary active
sensors varies depending on the evaluation results of the
registered CMQs. Thus, we focus on the change in the
number of active sensors. To apply the SAR-based con-
servative policy, we provide the following metric:

SAR ¼ Ninactive!active=Ninactive;

where Ninactive is the number of sensors that became inactive
at the last ESS calculation and Ninactive!active is the number
of sensors that become newly active among the sensors that
were inactive at the time of the last ESS calculation.

Given a predefined threshold value for the metric, the
ESS Calculator updates the ESS if the metric value goes
beyond the threshold value.

5.4 Sensor Control

The Sensor Controller controls sensors based on the ESS
calculation result. Basically, it sends a control message to
the sensors that are not included in the calculated ESS. The
control message configures the sensors to be put into the
inactive state so that the sensors stop transmitting data.
Afterward, the ESS Calculator updates the state of context
elements related to the inactive sensors in the CMQ-Table.
Specifically, it changes the state of those context elements
to undecided.

We design two sensor control modes for inactive sensors:
a data transmission avoidance control and an idle mode
utilization control. As a simple and basic approach, the data
transmission avoidance control puts sensors into RX (re-
ceive) mode. A sensor in RX mode still can receive a message
to restart transmission and promptly send data again. In this
mode, the Sensor Controller can have full control over
sensors; it can control when sensors stop data transmission
and when sensors restart data transmission. However,
energy saving is limited. The energy consumption of wireless
sensors highly depends on the radio mode of the sensor’s
wireless transceiver. Generally, RX (receive) and TX (trans-
mit) modes consume much more energy than idle mode or
power down mode (e.g., for the CC2420 RF transceiver used
for the MicaZ mote, current consumption of RX and TX mode
is 18.8 and 17.4 mA, respectively, but that of idle and power
down mode is 426 and 20 �A, respectively [44]). Thus, it is
desirable to put sensors into idle mode or power down mode.

To address this problem, we devise the idle mode
utilization control. It puts sensors not included in the ESS
into idle mode. As a result, the sensors can save much more
energy than avoiding data transmission only. However, the
Sensor Controller cannot configure the sensors to restart
data transmission. In idle mode, sensors cannot perform
wireless communication. Thus, they cannot receive a control
message to restart data transmission once they are put into
the idle mode. In this case, the sensors should check
whether they need to transmit data again on their own.

Fig. 9 shows the operation of the two sensor control modes.
With the data transmission avoidance control (Fig. 9a), an
inactive sensor simply skips data transmission after receiving
a control message (Stop TX). The sensor continues in RX
mode. If the sensor is included in a new ESS result, the Sensor
Controller sends a control message (Restart TX) to the sensor
to restart data transmission. Energy saving depends on the
number of reduced data transmissions for a time interval Tc.
However, energy saving is restricted since the sensor remains
in RX mode.

Fig. 9b shows the idle mode utilization control. A sensor
is put into idle mode after receiving a control message (Stop
TX). After an idle mode time interval Ti, the sensor goes into
TX mode and transmits data to check whether it is included
in the ESS. If so, the Sensor Controller does not send any
message so that the sensor keeps transmitting data. If not,
the Sensor Controller sends a control message (Stop TX)
again. This may result in additional checking message
overhead and time delay for data reception (at most Ti). It is
important to determine Ti carefully since it affects both
energy saving and delay. In Section 7.5, we present an
empirical study on the effects of Ti selection and the trade-
off between energy saving and delay in detail.

6 IMPLEMENTATION

We have implemented the SeeMon system architecture as a
prototype system, carefully applying the scalable CMQ
evaluation and energy-efficient sensor control mechanisms.
We have also built two example applications on top of it,
where SeeMon plays a critical role as an underlying context
monitoring platform. The prototype is implemented in C++

KANG ET AL.: A SCALABLE AND ENERGY-EFFICIENT CONTEXT MONITORING FRAMEWORK FOR MOBILE PERSONAL SENSOR... 695

Fig. 9. Sensor control modes. (a) Data transmission avoidance. (b) Idle
mode utilization.

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on March 29,2010 at 21:28:52 EDT from IEEE Xplore. Restrictions apply.

on Linux. The total lines of prototype system code are
about 8,700.

6.1 Prototype Hardware

Deploying SeeMon requires two important hardware sets:
mobile devices and sensors. Currently, we have deployed
the SeeMon prototype and its applications on two different
mobile devices: 1) an Ultra Mobile PC (UMPC), SONY
VAIO UX27LN with Intel U1500 1.33 GHz CPU and 1 GB
RAM, and 2) a custom-designed wearable device with
Marvell PXA270 processor and 128 MB RAM. The former
represents powerful future mobile devices and the latter a
relatively resource-limited current mobile device.

The diversity and scale of sensors determine the coverage
and accuracy of the context monitoring of SeeMon. Cur-
rently, we have incorporated many sensors that are commer-
cially available and widely used for diverse context-aware
applications. Table 2 shows the sensors that we used in our
current prototype. Considering the wearability and controll-
ability of wireless sensors, we mainly use five of USS-2400
[31] sensor nodes, i.e., a light sensor, a temperature/
humidity sensor, and three 2-axial acceleration sensors. They
are equipped with Atmega 128L MCU, CC2420 RF module
supporting 2.4 GHz band ZigBee protocol, and TinyOS as an
operating system. To provide communication between the
mobile device and sensors, we attach one base sensor node to
the mobile device using serial or USB interfaces.

We incorporated several additional sensors to provide
important context types not supported by USS-2400 nodes.
First, we use a Bluetooth-enabled GPS sensor to position
outdoor location. We also incorporate two biomedical
sensors, a Blood Volume Pulse (BVP) sensor and a Galvanic
Skin Response (GSR) sensor, which are essential to
recognizing the user’s affective context [32] and medical
context. Finally, two software sensors are used for time and
indoor location. Indoor location is positioned by manual
input of predefined location. To automate this manual
process, we plan to couple SeeMon and indoor positioning
system deployed in our university [30].

6.2 SeeMon Implementation

Implementing a working prototype of the SeeMon archi-
tecture requires a careful choice of programming models.
First, we implemented SeeMon as a multithread system for
intuitive development and concurrency. Each system
component runs as a single thread while the Application
Broker is separated into two threads for query registration
and result forwarding. Note that the Sensor Broker handles
input data from multiple sources in a thread as well using
efficient event-driven I/O multiplexing. The intercompo-
nent communication is performed through message queues.
To support frequent data transfer from the Sensor Broker to
the CMQ Processor, we used double buffering.

The Sensor Broker extracts 15 features from data
delivered from the sensors, as shown in Table 2. We
implemented several simple techniques and utilized several
existing libraries to compute features from sensor data.
First, we used FFTW, a Fast Fourier Transform library [33],
to obtain DC and energy features from acceleration data.
Second, we implemented a NMEA data parser to extract the
longitude, latitude, speed, and direction features from GPS
data based on the NMEA 0183 protocol. Third, we utilized a
convolution filter to remove errors, smooth signals, and
detect peaks from BVP sensor data. The heart rate feature is
derived from the detected peaks and stress feature is
obtained through further frequency domain analysis.

The Application Broker uses the context translation map
for CMQ translation. Since the context translation map
influences the quality of monitoring, the learning process
had to be extensive. We obtained mappings for activity
contexts through user annotation-based learning [7]. The
learning was done with C4.5 decision tree provided by
Weka, a Java-based open source machine learning tool [34].
The learning for the level of strain, the level of stress, and
startle event were conducted based on IAPS experiment [42].

The CMQ Processor and the Sensor Manager involve
many operations and result in relatively high processing cost
in SeeMon. We noticed that set operations such as union and
difference are dominant and reducing their number and cost
is essential to improve system performance. Thus, we
developed a fine-tuned module for set operations to reduce
their overhead. We observed that the CMQ Processor and the
Sensor Manager generated many intermediate results that
can be reused several times afterward. In particular, we
designed a bitmap-like data structure to store the detailed
information of false-state CMQs and effectively reuse it,
thereby reducing a number of set operations. It improves ESS
calculation performance significantly.

We implemented TinyOS applications for USS-2400
sensor nodes to apply the devised sensor control modes.
The applications have two main modules. The first one is a
data transmission module to transmit sensing data based
on transmission timer events. The second one is a control
module to receive control messages and control data
transmission based on the sensor control mode. For the
data transmission avoidance control, the control module
simply halts the transmission timer. Accordingly, the data
transmission module stops sending data. For the idle mode
utilization control, the control module uses strobe com-
mand registers, SRFOFF and SRXON [44]. Upon receiving a
control message, it halts the transmission timer and sets
SRFOFF to put CC2420 RF transceiver into idle mode. After
a specified time interval, it sets SRXON to enable RX mode

696 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 9, NO. 5, MAY 2010

TABLE 2
Sensor, Feature, and Context Profiles

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on March 29,2010 at 21:28:52 EDT from IEEE Xplore. Restrictions apply.

and restarts the transmission timer to check whether data
transmission should be performed again.

6.3 Application Development

Emerging areas such as pervasive gaming and affective
computing are domains in which many new applications will
be developed. For evaluation, we have prototyped two
applications for each of them: Running Bomber and
SympaThings. Application developers have used our proto-
type system and considered it effective, efficient, and stable.

Running Bomber is the first step toward applying the
SeeMon framework to pervasive games. Pervasive games
utilize users’ various contexts and reflect their physical
actions from their everyday activities. Running Bomber is a
pervasive game designed to make treadmill running less
boring. Fig. 10 shows a picture of Running Bomber demo.
For the Running Bomber game, a player holding a bomb
should pass the bomb to others within 3 seconds. Bomb
passing is signaled by shaking an arm wearing an
acceleration sensor. With SeeMon, developing pervasive
games is much simpler; game developers only need to
define the game rules and design user interfaces. In
Running Bomber’s case, complexities such as processing
acceleration data and recognizing the motion are comple-
tely handled by SeeMon while the game rules can be
reduced to a simple CMQ registration with SeeMon.

SympaThings, an application inspired by affective com-
puting, is a demonstration of SeeMon’s wide applicability.
SympaThings runs on a wearable device and controls nearby
smart objects to sympathize with a person’s affective context.
For example, a picture frame changes the picture inside and
a lighting fixture adjusts its color (e.g., red color for the high
degree of strain or yellow color for the low degree of strain).
Efficient processing is crucial in the operating environment
of SympaThings: high-rate data from BVP and GSR sensors,
and many queries for nearby smart objects. SeeMon’s shared
and incremental processing is essential to satisfy these
requirements. SympaThings is a collaborative project with
HCI Lab of ICU and Semiconductor System Lab of KAIST.
Fig. 11 shows the demonstration of SympaThings at
Nextcom Show 2007 [35], one of the biggest IT exhibitions
in Korea, held in Seoul in November 2007.

7 EXPERIMENTS

7.1 Experimental Setup

We have conducted extensive experiments to evaluate the
scalability and energy efficiency of SeeMon. We generated
sensor data and CMQ workloads based on our motivating
environment. First, we produced a data workload by
collecting raw sensor data from the daily activities of a
person. For data collection, a student in our laboratory carried
a UMPC with eight sensors in Table 2 except BVP and GSR for

12 hours in campus. The total data rate was 291.74 samples
per second. To replay and feed the collected data to SeeMon,
we implemented a simple data sender. Thus, we were able to
conduct our experiments multiple times under the same data
workload. Second, we synthetically generated CMQ work-
loads to simulate numerous CMQs registered by multiple
applications. They reflected various monitoring conditions
on different types of contexts. Table 3 summarizes the
parameters and default values used for CMQ generation
(refer to Table 2 for context details). All CMQs’ alarm
condition is instant transition alarm, specifically F! T.

For all experiments, we ran SeeMon on the UMPC. We
scaled down the CPU frequency to 200 MHz to validate our
system, considering widely used mobile devices such as
Nokia N95 (330 MHz CPU, 64 MB RAM) and Samsung
Blackjack (220 MHz CPU, 64 MB RAM). Memory constraints
were not seriously considered since SeeMon consumes less
than 5 MB even with 2,000 registered CMQs. This amount of
memory is reasonable for most smart phones. The default
ESS calculation policy was the aggressive policy.

7.2 Scalability

In this experiment, we compare the scalability of SeeMon
with that of an alternative approach called context recognition-
based monitoring method, which carefully models existing
context-aware systems [13], [14], [15], [16]. It receives and
preprocesses continuously arriving data from sensors,
processes the data to recognize contexts, and evaluates
monitoring queries to detect specified context changes as
shown in Fig. 1. We assume that the alternative processes each
query independently since existing work does not consider
the efficient shared processing of concurrent queries.

We measure the scalability in terms of throughput while
increasing input data scale from 1 to 7. Throughput is the
maximum number of queries that can be handled without
causing system overload.2 Data scale 1 is the data workload

KANG ET AL.: A SCALABLE AND ENERGY-EFFICIENT CONTEXT MONITORING FRAMEWORK FOR MOBILE PERSONAL SENSOR... 697

Fig. 10. Running Bomber. Fig. 11. SympaThings.

TABLE 3
Parameters for CMQ Workload

2. Currently, overload is determined by the size of the data queue, which
should be processed by the CMQ Processor. It is important to detect context
changes without long delay. We assume that a delay of a couple of seconds
is tolerable. Accordingly, acceptable maximum queue size is set to three
times of data rate.

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on March 29,2010 at 21:28:52 EDT from IEEE Xplore. Restrictions apply.

under our initial sensor settings described in Section 7.1. We
synthetically increase the size of data workload by replicating
data traces of data scale 1. At the data scale k, the number of
sensors and data rate becomes k times larger than the initial
sensor setting. We assume that the data scale 7, i.e., 56 sensors
and about 2,100 samples/second, is sufficient to represent a
large-scale personal sensor network. We use query work-
loads generated by our default setting.

Fig. 12 demonstrates the high level of scalability of
SeeMon. First, SeeMon scales well with data scale. Even
under data scale 7, SeeMon can process 1,400 queries, which is
a reasonably large number, given the device’s limited
computing resources (200 MHz CPU) and the high rate of
sensor data (about 2,100 samples/second). Note that such a
high level of scalability is critical since the number of sensors
and data rate will dramatically increase to deal with broader
and more accurate contexts. Second, SeeMon scales better
than a context recognition-based monitoring method. For all
data scales, the throughput of SeeMon is higher than that of
the alternative. Furthermore, the benefit of SeeMon becomes
relatively larger as data scale increases. At data scale 1,
SeeMon processes three times more queries than the context
recognition-based monitoring method. However, it processes
4.6 times more queries at data scale 7. Such benefits mainly
come from the shared and incremental processing of SeeMon.
In contrast, context recognition-based monitoring method
processes monitoring queries independently. Moreover, it
does not employ any incremental processing method that can
accelerate repeated CMQ evaluation. Consequently, as data
scale increases, the gap between SeeMon and the context
recognition-based method becomes relatively larger.

7.3 Energy Efficiency

In this experiment, we evaluate the energy efficiency of
SeeMon in terms of Transmission Reduction Ratio (TRR).
TRR quantifies the amount of reduction in wireless
transmission, which is the main factor of sensors’ energy
consumption [36], [25]. TRR is defined as follows: TRRi

denotes a TRR of a sensor i, and TRRS denotes an averaged
TRR of a sensor set S:

TRRi ¼
reducedNumberOfTransmissioni
totalNumberOfTransmissioni

¼ InactiveTimei � TransmissionRatei
SimulationTime� TransmissionRatei

;

TRRS ¼
P
reducedNumberOfTransmssioniP
totalNumberOfTransmissioni

; i 2 S:

To evaluate the energy efficiency under various query
workloads, we measured TRR as varying the number of
registered CMQs, the number of context elements in a
CMQ, and the context value distribution. To measure TRR,

we logged ESS calculation results generated by the ESS
Calculator and their time stamp. Unless specified, the
number of CMQs and context elements is fixed to 256 and 4,
respectively. Context values follow a uniform distribution.
We generated 10 different query sets for each parameter
setting. Each TRR value presented below was obtained by
averaging TRR values of 10 measurements for the 10 query
sets. Total elapsed time is 46,309 seconds.

Fig. 13 shows TRRS , where s is the whole sensor set used
for experiments, as we increase the number of CMQs. SeeMon
reduces more than 90 percent of data transmissions when the
number of CMQs is fewer than 256. Even with 4,096 queries,
more than 60 percent of data transmissions are eliminated.
Such an energy efficiency is achieved through the ESS
mechanism, which turns on only a small number of sensors
to evaluate all registered CMQs. The high level of energy
efficiency is critical in our target environments since high-rate
communication between a mobile device and a large number
of sensors will shorten the battery life of the mobile device
and the sensors. In addition, we observe that TRR decreases
as the number of CMQs increases. This is mainly due to the
increase in the number of true-state CMQs. More true-state
CMQs make more sensors active, which decreases TRR.

Table 4 describes the inactive time and TRRi of each
sensor when 16, 256, and 4,096 CMQs are registered.
Interestingly, acceleration sensors show much higher TRRs
than other sensors. Since the transmission rate of the
acceleration sensor is the highest, sensor control mechanism
of SeeMon frequently excludes the acceleration sensors
from the ESS, thereby increasing TRR. This confirms that
the transmission rate of sensors is correctly reflected in the
ESS calculation algorithm. The GPS sensor, timer, and
indoor location sensor are always included in the ESS. Note
that the GPS sensor is not programmable. The timer and the
indoor sensor are software sensors, and thus, there are no
wireless transmissions to eliminate.

In our second experiment, we measure TRRS as increas-
ing the number of context elements in a CMQ. Fig. 14

698 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 9, NO. 5, MAY 2010

Fig. 12. Throughput. Fig. 13. TRR for number of CMQs.

TABLE 4
TRR of Each Sensor

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on March 29,2010 at 21:28:52 EDT from IEEE Xplore. Restrictions apply.

demonstrates that TRR increases as the number of context
elements increases. There are two main reasons for this. First,
the number of active sensors for true-state CMQs decreases.
As the number of context elements increases, CMQs are
more likely to be false state due to their CNF structure. The
reduction in true-state CMQs results in fewer active sensors
for them. Second, the number of active sensors for false-state
CMQs decreases. As the number of context elements
increases, the number of context elements associated with
a sensor increases. Then, the number of false-state CMQs
associated with the sensor also increases. Therefore, all false-
state CMQs can be covered by fewer sensors.

To investigate the effect of query distribution, we generate
three different CMQ distributions and measure TRR with
them. To model three different realistic distributions of
context element values, we generate Stat, Inverse-Stat, and
Uniform distributions. The Stat distribution represents a
common querying pattern in which users are interested in
frequently occurring context values. The Inverse-Stat dis-
tribution represents the opposite case. By analyzing our real
data trace, we extract the probability density of each context
value, and then generate Stat and Inverse-Stat distributions.
The Uniform distribution is used for a primitive comparison.
The number of CMQs is varied from 4 to 4,096, and the
number of context elements is fixed to 4.

Fig. 15 shows TRR according to the CMQ distributions.
The key observation is that the Stat and Inverse-Stat
distributions show the lowest and the highest TRRs,
respectively. This holds regardless of the number of queries.
In the Stat distribution, most CMQs contain frequently
occurring context values. Thus, the state of the CMQs can
be true with a high probability. Corresponding sensors have
to be active, resulting in the lower TRR. In contrast, sensors in
the Inverse-Stat distribution are likely to be inactive,
resulting in the higher TRR.

7.4 Processing-Energy Efficiency Trade-Off

This experiment shows a trade-off between processing
efficiency and energy efficiency determined by the ESS
calculation policies described in Section 5.3. Such a trade-off
characteristic is very important to adapt SeeMon to various
computing- and battery-resource environments. We mea-
sure throughput as a processing efficiency metric and TRR

as an energy efficiency metric while varying SAR threshold
values. Note that threshold 0 represents the aggressive
policy. Data scale 7 is used as a sensor data workload and a
query workload is generated with the default setting.

Fig. 16 shows a trade-off between throughput and TRR.
As we expected, the aggressive policy (threshold 0) shows
the highest TRR, but shows the lowest throughput. As an
SAR threshold value increases, the TRR linearly decreases,
but the throughput increases accordingly. Compared to the
aggressive policy, the conservative policy with threshold 0.7
achieves 4.2 times greater throughput with 3.6 times less
TRR. Such results are mainly due to SeeMon performing
complex ESS calculations less frequently with a higher SAR
threshold value. Thus, the energy efficiency degrades while
processing efficiency is enhanced.

7.5 Effect of Sensor Control Modes

We examine the effect of sensor control modes presented in
Section 5.4. First, we compare the energy saving effect of
different control modes by measuring the energy consump-
tion of different modes. Second, we show a trade-off between
delay and energy saving under the idle mode utilization
control. For the measurement, we performed trace-based
emulation. We used the log file, which was obtained in the
TRR experiment. The Sensor Controller reads the file and
generates control messages for both modes. The base node
sends the generated messages to the sensor. The sensor then
operates according to the configured mode.

For this experiment, we built a power measurement
setup as illustrated in Fig. 17. The measurement setup
consists of a computer running a program to collect
measurement data, an Agilent 34410A digital multimeter,
a USS-2400 sensor node, a series resistor (Rs), a DC power
supply (Vdd), and a base node attached to a UMPC sending
control messages. The multimeter is connected to the data
collection computer via a LAN. It measures the voltage (Vs)
across the resistor, which is connected in series with the DC
power supply. Measured voltage values are transferred to
the data collection program using TCP/IP. The current
consumption of the sensor can be calculated by dividing the

KANG ET AL.: A SCALABLE AND ENERGY-EFFICIENT CONTEXT MONITORING FRAMEWORK FOR MOBILE PERSONAL SENSOR... 699

Fig. 14. TRR for number of CEs.

Fig. 15. TRR for distribution.

Fig. 16. Processing and energy efficiency trade-off.

Fig. 17. Power measurement setup.

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on March 29,2010 at 21:28:52 EDT from IEEE Xplore. Restrictions apply.

voltage drop across the resistor (Vs) by the resistance value.
The instantaneous power consumption of the sensor is then
calculated using the following equation:

PsðtÞ ¼ ðVdd � VsðtÞÞ �
VsðtÞ
Rs

:

We can obtain the energy consumption value using the
equation below:

EsðtÞ ¼
Xn�1

i¼0

PsðtiÞ � ðtiþ1 � tiÞ:

A control message log file used for measurement is one of
10 log files generated for light sensor TRR measurement
with 256 CMQs (corresponding to ID 0 in Table 4). The
obtained TRR value was 0.256716. Note that TRR values in
Table 4 are average values across 10 measurements. The
sampling rate of the multimeter is about 156 samples per
second. The resistance value of Rs is 20.43 � and the DC
voltage value of Vdd is 3.2 V. During the measurement, the
sensor’s LED was turned off so as to not include the power
consumption effects of the LED in the calculation. The idle
mode time interval Ti is the same as the data transmission
time interval Ts, 1.389 seconds. As mentioned, the total
elapsed time was 46,309 seconds.

Fig. 18 presents the power consumption of the light sensor
for about 52 seconds in the middle of the log file (about
6 seconds active, 0.936 seconds inactive, 4.91 seconds active,
7.95 seconds inactive, 0.984 seconds active, 1.46 seconds
inactive, 1.929 seconds active, 20.15 seconds inactive, and

8 seconds active). The power consumption of the data
transmission avoidance control (Fig. 18b) shows little
difference from that of the no control case (Fig. 18a). Only
some portion of the peaks was removed. Also, the short
inactive state is not clearly seen in the figure. In contrast, the
idle mode utilization control shows a noticeable reduction in
power consumption (Fig. 18c).

Table 5 shows the total energy consumption. The energy
consumption without any control was 3,331.97 J. As expected
from the previous result, skipping data transmission alone
hardly saves on energy consumption; the total energy
consumption was 3,313.47 J, a 0.6 percent reduction. The idle
mode utilization control presented 2,632.23 J of energy
consumption, i.e., a 21 percent reduction compared to the
no control case. The reduction ratio is relatively small
compared to the given TRR value. This is mainly due to the
energy consumption of probe data transmission to check
whether data transmission should be performed again.

Finally, we investigate the effect of Ti selection on the
trade-off between energy saving and delay. To demonstrate
the trade-off, we measured the delay and energy consump-
tion as a function of Ti. We varied Ti from Ts to 6Ts, where
Ts was the same as before, 1.389 seconds. To examine the
impact of the Ts value, we additionally performed a
measurement for a relatively small Ts, 0.104 seconds, in
consideration of sensors such as accelerometers. We used
average values from two measurements for each Ti. All
energy consumption was normalized by that of Ts.

Fig. 19a shows that a trade-off between delay and energy
saving is hardly seen for a large Ts. As expected, the
average delay increases as Ti increases. However, the
energy consumption remains almost the same (with at
most a 0.6 percent difference). In this case, Ti is much longer
than the duration of active mode for data transmission until
switching back to idle mode, i.e., Tp (about 0.025 seconds).
Thus, the energy overhead during Tp does not constitute a
significant portion of the energy consumption during Ti.
Increasing Ti does not result in noticeable energy saving. It
is reasonable to use a small Ti to avoid a long delay.

Fig. 19b presents the result for a small Ts. As opposed to
the previous result, it shows a trade-off between delay and
energy saving. As Ti increases, the average delay also
increases. However, the energy consumption decreases. For
a small Ts, the ratio of Tp to Ti becomes relatively larger and
the resulting energy overhead increases. Thus, it is possible
to reduce energy consumption by increasing Ti. In this case,
it is necessary to make a proper trade-off based on the delay
requirement of applications in selecting Ti. If the delay
requirement is not strict, selecting a larger Ti will achieve
more energy saving.

700 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 9, NO. 5, MAY 2010

Fig. 18. Power consumption of different control modes. (a) No control.
(b) Data transmission avoidance control. (c) Idle mode utilization control.

TABLE 5
Total Energy Consumption

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on March 29,2010 at 21:28:52 EDT from IEEE Xplore. Restrictions apply.

8 DISCUSSION AND FUTURE WORK

We have presented and demonstrated the advantages and
characteristics of SeeMon. We can summarize the experi-
mental results and impact in two main ways. First, SeeMon
achieves a high level of processing and energy efficiency, i.e.,
processing 3 to 4.6 times more queries andreducing more than
50 percent of sensor data transmission. The results are
promising in that SeeMon can play a critical role in
concurrently supporting multiple context monitoring appli-
cations based on a number of sensors in a highly efficient
manner. Second, the experiments show that two trade-offs
should be carefully considered to maximize the effectiveness
of SeeMon, i.e., a trade-off between processing and energy
efficiency inthe ESScalculation, andatrade-off betweendelay
and energy consumption in the idle mode control of sensors.

We will enrich context monitoring semantics in future
work. Currently, our context monitoring language supports
conjunctive composition in context monitoring. Other
composition operators such as disjunction and sequencing
could be supported along with efficient evaluation meth-
ods. We also plan to implement the framework more
concretely and gain more experience with it. In particular,
we will implement our SeeMon framework on top of off-
the-shelf smart phones such as Nokia N96 while fully
considering their resource limitations and using their on-
board sensors, e.g., GPS, camera, and accelerometers.

9 CONCLUSION

We have presented SeeMon, a scalable and energy-efficient
context monitoring framework for sensor-rich and resource-
limited mobile environments. The key idea behind SeeMon is
twofold. First, context monitoring in SeeMon focuses on the

continuous detection of context changes. Second, SeeMon
approaches the context monitoring problem in a bidirectional
way. Applying the bidirectional approach, SeeMon achieves
a high degree of efficiency in computation and energy
consumption. We implemented the prototype of SeeMon
system architecture, carefully applying scalable CMQ pro-
cessing and energy-efficient sensor control mechanisms. We
also developed several example applications on top of it in
which SeeMon plays a critical role as an underlying context
monitoring platform. Our evaluation shows that SeeMon
achieves a high level of scalability and energy efficiency.

ACKNOWLEDGMENTS

This research was supported in part by the Ministry of
Knowledge Economy, Korea, under the Information Tech-
nology Research Center support program supervised by the
Institute of Information Technology Advancement (grant
number IITA-2009-C1090-0902-0006). Also, this work was
supported in part by a Korea Research Foundation Grant
funded by the Korean Government (KRF-2008-220-D00113).
The authors thank Taiwoo Park and Chulhong Min for their
support for application development and demonstration as
well as experiments. They also thank the anonymous
reviewers for their valuable comments to improve the quality
of this paper. The early version of this paper was presented at
the Sixth International Conference on Mobile Systems,
Applications, and Services, Colorado, June 2008 [45].

REFERENCES

[1] K.V. Laerhoven, A. Schmidt, and H. Gellersen, “Multi-Sensor
Context Aware Clothing,” Proc. Int’l Symp. Wearable Computers, 2002.

[2] O. Amft et al., “Analysis of Chewing Sounds for Dietary
Monitoring,” Proc. Conf. Ubiquitous Computing (UbiComp), 2005.

[3] C. Park et al., “A Wearable Wireless Sensor Platform for
Interactive Dance Performances,” Proc. Int’l Conf. Pervasive
Computing and Comm. (PerCom), 2006.

[4] M. Sung, C. Marci, and A. Pentland, “Wearable Feedback Systems
for Rehabilitation,” J. Neuro Eng. and Rehabilitation, vol. 2, no. 1,
2005.

[5] J.E. Bardram, “Applications of Context-Aware Computing in
Hospital Work—Examples and Design Principles,” Proc. ACM
Symp. Applied Computing (SAC), 2004.

[6] T. Sohn et al., “Place-Its: A Study of Location-Based Reminders on
Mobile Phones,” Proc. Conf. Ubiquitous Computing (UbiComp), 2005.

[7] L. Bao and S.S. Intille, “Activity Recognition from User-Annotated
Acceleration Data,” Proc. Pervasive, 2004.

[8] J. Lester et al., “A Practical Approach to Recognizing Physical
Activities,” Proc. Pervasive, 2006.

[9] P. Fahy and S. Clarke, “CASS—A Middleware for Mobile Context-
Aware Applications,” Proc. MobiSys, 2004.

[10] T. Gu et al., “A Middleware for Building Context-Aware Mobile
Services,” Proc. IEEE Vehicular Technology Conf. (VTC), 2004.

[11] H. Chen, T. Finin, and A. Joshi, “An Ontology for Context-Aware
Pervasive Computing Environments,” Proc. Workshop Ontologies in
Agent Systems (AAMAS), 2003.

[12] D. Salber, A.K. Dey, and G.D. Abowd, “The Context Toolkit:
Aiding the Development of Context-Enabled Applications,” Proc.
ACM CHI, 1999.

[13] A. Ranganathan and R.H. Campbell, “A Middleware for Context-
Aware Agents in Ubiquitous Computing Environments,” Proc.
Conf. Middleware, 2003.

[14] P. Korpipää et al., “Managing Context Information in Mobile
Devices,” IEEE Pervasive Computing, vol. 2, no. 3, pp. 42-51, 2003.

[15] T. Hofer et al., “Context-Awareness on Mobile Devices—The
Hydrogen Approach,” Proc. Hawaii Int’l Conf. System Sciences, 2003.

[16] O. Riva, “Contory: A Middleware for the Provisioning of Context
Information on Smart Phones,” Proc. Conf. Middleware, 2006.

[17] E. Shih et al., “Wake-on-Wireless: An Event Driven Energy Saving
Strategy for Battery Operated Devices,” Proc. ACM MobiCom, 2002.

KANG ET AL.: A SCALABLE AND ENERGY-EFFICIENT CONTEXT MONITORING FRAMEWORK FOR MOBILE PERSONAL SENSOR... 701

Fig. 19. Delay and energy saving trade-off. (a) Result for large Ts.

(b) Result for small Ts.

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on March 29,2010 at 21:28:52 EDT from IEEE Xplore. Restrictions apply.

[18] J. Sorber et al., “Turducken: Hierarchical Power Management for
Mobile Devices,” Proc. MobiSys, 2005.

[19] A. Rahmati and L. Zhong, “Context-for-Wireless: Context-Sensi-
tive Energy-Efficient Wireless Data Transfer,” Proc. MobiSys, 2007.

[20] S. Chakraborty et al., “On the Effectiveness of Movement
Prediction to Reduce Energy Consumption in Wireless Commu-
nication,” IEEE Trans. Mobile Computing, vol. 5, no. 2, pp. 157-169,
Feb. 2006.

[21] S. Cui et al., “Energy-Efficiency of MIMO and Cooperative MIMO
Techniques in Sensor Networks,” IEEE J. Selected Areas Comm.,
vol. 22, no. 6, pp. 1089-1098, 2004.

[22] W. Ye, J. Heidemann, and D. Estrin, “An Energy-Efficient MAC
Protocol for Wireless Sensor Networks,” Proc. IEEE INFOCOM,
2002.

[23] K. Seada et al., “Energy-Efficient Forwarding Strategies for
Geographic Routing in Lossy Wireless Sensor Networks,” Proc.
Int’l Conf. Embedded Networked Sensor Systems (SenSys), 2004.

[24] I.H. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques. Morgan Kaufmann, 2005.

[25] G. Anastasi et al., “Performance Measurements of Motes Sensor
Networks,” Proc. Int’l Symp. Modeling, Analysis and Simulation of
Wireless and Mobile Systems (MSWiM), 2004.

[26] G. Xing et al., “Minimum Power Configuration for Wireless
Communication in Sensor Networks,” ACM Trans. Sensor Net-
works (TOSN), vol. 3, no. 2, 2007.

[27] K.L. Wu and P.S. Yu, “Interval Query Indexing for Efficient
Stream Processing,” Proc. Int’l Conf. Information and Knowledge
Management (CIKM), 2004.

[28] E. Hanson and T. Johnson, “Selection Predicate Indexing for
Active Databases Using Interval Skip Lists,” Information Systems,
vol. 21, no. 3, pp. 269-298, 1996.

[29] J. Lee et al., “BMQ-Index: Shared and Incremental Processing of
Border Monitoring Queries over Data Streams,” Proc. Conf. Mobile
Data Management (MDM), 2006.

[30] KAIST UFC Project, http://ufc.kaist.ac.kr, 2008.
[31] HUINS, http://www.huins.com, 2009.
[32] MITAffective,http://affect.media.mit.edu/areas.php?id=sensing,

2009.
[33] FFTW, http://www.fftw.org, 2009.
[34] Weka 3: Data Mining Software in Java, http://www.cs.waikato.

ac.nz/~ml/weka/index.html, 2009.
[35] Next Generation Computing Show, http://www.nextcomshow.

com/en, 2007.
[36] V. Shnayder et al., “Simulating the Power Consumption of Large-

Scale Sensor Network Applications,” Proc. Int’l Conf. Embedded
Networked Sensor Systems (SenSys), 2004.

[37] R.S. Sandhu and P. Samarati, “Access Control: Principles and
Practice,” IEEE Comm. Magazine, 1994.

[38] D. Abadi et al., “Aurora: A New Model and Architecture for Data
Stream Management,” Very Large Data Bases J., vol. 12, no. 2, 2003.

[39] R. Motwani et al., “Query Processing, Resource Management, and
Approximation in a Data Stream Management System,” Proc.
Conf. Innovative Data Systems Research (CIDR), 2003.

[40] S.R. Madden et al., “Continuously Adaptive Continuous Queries
over Streams,” Proc. SIGMOD, 2002.

[41] J. Froehlich et al., “MyExperience: A System for In Situ Tracing
and Capturing of User Feedback on Mobile Phones,” Proc.
MobiSys, 2007.

[42] P.J. Lang et al., “International Affective Picture System (IAPS):
Instruction Manual and Affective Ratings,” Technical Report A-4,
Center for Research in Psychophysiology, Univ. of Florida, 1999.

[43] K. Murao et al., “A Context-Aware System that Changes Sensor
Combinations Considering Energy Consumption,” Proc. Pervasive,
2008.

[44] CC2420 Datasheet, http://focus.ti.com/docs/prod/folders/
print/cc2420.html, 2009.

[45] S. Kang et al., “SeeMon: Scalable and Energy-Efficient Context
Monitoring Framework for Sensor-Rich Mobile Environments,”
Proc. MobiSys, 2008.

[46] V. Chvatal, “A Greedy Heuristic for the Set-Covering Problem,”
Math. Operations Research, vol. 4, no. 3, pp. 233-235, 1979.

[47] P. Slavik, “A Tight Analysis of the Greedy Algorithm for Set
Cover,” Proc. Symp. Theory of Computing (STOC), 1997.

[48] M. Popescu and E. Florea, “Linking Clinical Events in Elderly to
In-Home Monitoring Sensor Data: A Brief Review and a Pilot
Study on Predicting Pulse Pressure,” J. Computing Science and
Engineering, vol. 2, no. 1, pp. 180-199, Mar. 2008.

Seungwoo Kang received the PhD degree in
computer science from the Korea Advanced
Institute of Science and Technology (KAIST),
Daejeon, South Korea, in 2010. He is a post-
doctoral researcher at KAIST. His research
interests include mobile and ubiquitous comput-
ing such as system support for mobile context
monitoring and high-performance systems for
city-scale ubiquitous services, and Internet ser-
vices and technologies.

Jinwon Lee received the PhD degree in
computer science from the Korea Advanced
Institute of Science and Technology (KAIST),
Daejeon, South Korea, in 2009. He is a
postdoctoral researcher at KAIST. His research
interests include mobile and ubiquitous comput-
ing, data stream processing system, peer-to-
peer overlay network, and high-performance
Internet cache system.

Hyukjae Jang received the BS degree in
computer science and electrical engineering
from Yonsei University, Seoul, South Korea, in
2003. He is currently working toward the PhD
degree in computer science at the Korea
Advanced Institute of Science and Technology
(KAIST), Daejeon, South Korea. His research
interests include mobile and ubiquitous comput-
ing such as mobile context monitoring frame-
work, context-aware service, and interaction

design for mobile system.

Youngki Lee received the BS degree in
computer science from the Korea Advanced
Institute of Science and Technology (KAIST),
Daejeon, South Korea, in 2004, where he is
currently working toward the PhD degree. His
research interests include mobile and ubiquitous
computing systems, system support for context
awareness, high-performance systems for city-
scale ubiquitous services, and large-scale dis-
tributed systems and networking.

Souneil Park received the BS and MS degrees
in computer science, respectively, from the
Soongsil University, Seoul, Korea, in 2004, and
the Korea Advanced Institute of Science and
Technology (KAIST). His research interests
include Internet service and technologies, ubi-
quitous computing systems.

Junehwa Song received the PhD degree in
computer science from the University of Mary-
land at College Park in 1997. He is an associate
professor in the Department of Computer
Science at the Korea Advanced Institute of
Science and Technology (KAIST), Daejeon,
Korea. Before joining KAIST, he worked at IBM
T.J. Watson Research Center, Yorktown
Heights, New York, as a research staff member
from 1997 to 2000. His research interests include

mobile and ubiquitous computing systems, Internet technologies such as
intermediary devices, high-performance Web serving, electronic com-
merce, and distributed multimedia systems. He is a member of the IEEE.

702 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 9, NO. 5, MAY 2010

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on March 29,2010 at 21:28:52 EDT from IEEE Xplore. Restrictions apply.

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	5-2010

	A Scalable and Energy-Efficient Context Monitoring Framework for Mobile Personal Sensor Networks
	Seungwoo KANG
	Jinwon LEE
	Hyukjae JANG
	Youngki LEE
	Souneil PARK
	See next page for additional authors
	Citation
	Author

	untitled

