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The Challenge of Continuous Mobile Context
Sensing

Rajesh Krishna Balan, Youngki Lee, Tan Kiat Wee, and Archan Misra
School of Information Systems, Singapore Management University

{rajesh,youngkilee,williamtan,archanm}@smu.edu.sg

Abstract—In this paper, we highlight the challenge of continu-
ously sensing context data from mobile phones. In particular, we
show that the energy cost of this type of continuous sensing is ex-
tremely high if a) accuracy is desired, and b) power optimisations
do not work well if multiple tasks are sensing concurrently. Our
results are derived from our experience in building the LiveLabs
context sensing platform. We present results for different types of
sensing tasks; ranging from simple sensing using just one sensor
all the way to multi-sensor sensing performed by concurrent
high-level tasks. We end with a discussion of the challenges of
supporting multi-task sensing across heterogeneous devices and
operating systems.

I. INTRODUCTION

Today, it has become exceedingly common to use
smartphone-embedded sensors for various context-aware ap-
plications and services. For example, Jigsaw [12] is developed
for real-time monitoring of location, activity, and sound-driven
events, while CoMon [9] enables sharing of phone sensors
among nearby users to extend sensing capability and to lower
the overall phone energy consumption. ACE [14] proposed
techniques to further reduce energy consumption by leveraging
patterns of contexts occurring in users’ real life. Interesting
systems are also emerging that monitor complex contexts such
as a human’s stress and emotional state [17] and conversational
patterns [10].

To achieve good accuracy with low energy consumption,
prior work in this area has used many techniques, such as duty
cycling, multimodal fidelities, and location-based triggers, etc.
However, these types of optimisations are only possible when
the task that requires the sensing support is well understood
and defined.

Our research team has been building, for the past two
years, the LiveLabs platform which allows real-time mobile
experiments to be run in-situ on the real phones of opt-in
participants located in real environments. Currently, LiveLabs
is deployed at the Singapore Management University campus
and has (as off Nov 2013) more than 380 active participants.
LiveLabs is slated to be deployed at a public airport, a mall,
and a resort island from early 2014 onwards.

For LiveLabs to be successful, we need to collect sensor
data from our participants’ cellphones in real time and use
that sensor data to provide the context triggers for various
experiments that hope to run on the LiveLabs infrastructure.
For example, an experiment could be specified as “Send a
coupon for $20 to all participants who are interested in coffee,
are no engaged in any important task, and walk by the coffee

store on level two, between the hours of 8 a.m. to 9 a.m.,
and do not stop to buy coffee. To support this experiment,
the system might need to use a number of sensors such
as Wi-Fi, accelerometer, social data, etc. to figure out the
location, activity, and interests of the user in order to figure out
the subset of participants who might satisfy the experiments’
context triggers. If this was the only experiment that needed to
be executed, optimising the context collection mechanisms for
this particular experiment is quite possible and should result
in a fairly optimal tradeoff between power consumption and
accuracy of sensing.

However, our experience with designing the LiveLabs con-
text sensing systems to support multiple concurrent experi-
ments has convinced us that when the number of experiments
that are running concurrently is more than a small handful,
it becomes much harder to determine an optimal tradeoff
between accuracy and energy consumption that will satisfy all
the experiments. In particular, we found that it becomes neces-
sary to either optimise for power consumption (at the expense
of accuracy) or sensing accuracy (at the expense of power
consumption) as other alternatives result in unfair experiment
partitions where some experiments get high accuracy sensing
while other experiments get low accuracy sensing. These sub-
optimal partitions still consume about as much power as just
providing all experiments with high fidelity sensing. Note: in
this paper, we do not consider the latency of the sensing results
beyond quantifying the costs of storing the sensing data to
internal memory and the cost of transferring the data over a
Wi-Fi interface. In practice, this is a third dimension, that we
discuss further at the end of the paper, that also needs to be
factored into any optimisation decision.

In the rest of this paper, we will briefly describe how Live-
Labs works, and then describe, with more details, the challenge
of providing real-time high accuracy low power continuous
sensing in an environment with multiple experiments. We then
provide measurements that show the power consumption of
various phone sensors when used individually and when used
together for some common tasks. Finally, we end with some
discussion of other issues and provide our current thoughts on
how to resolve this conundrum.

II. BACKGROUND & RELATED WORK

In this section, we describe the LiveLabs experimentation
environment and the key related work.



Fig. 1. The LiveLabs Sensing Loop

A. What is LiveLabs?

The LiveLabs Urban Lifestyle Innovation Platform (or Live-
Labs in short) went live in September 2013 at the Singapore
Management University (SMU) and has, as of November
2013, more than 380 registered participants. The goals of
LiveLabs are to provide a testbed where mobile experiments
(of all forms) can be tested in-real time on actual devices
carried by real participants in real environments.

Figure 1 shows the three main components of LiveLabs.
It starts with real-time mobile sensing on the participants’
cellphones. Note: all participants opt-in to LiveLabs and we
have an explicit and comprehensive data collection and privacy
policy. The data collected is then fed into our contextual
analytics engine where we identify the real-time contextual
triggers needed by the intervention execution engine. This
engine collects the experiments specified by various exper-
imenters (using our experiment specification system) and
determines the contextual triggers needed for each experiment.
When the triggers are satisfied (as determined by the con-
textual analytics engine using data collected by the mobile
sensing components), the engine sends the experiment to the
appropriates participant’s phone where their reaction to the
experiment is monitored and the results of the experiment
are then returned to the experimenter for their analysis and
use. This cycle of sensing, analytics, and interventions is
repeated many times over as new participants, analytics, and
interventions/experiments enter LiveLabs.

Currently, LiveLabs is deployed only at SMU. However,
in the near future (by the end of 2014), we aim to deploy
LiveLabs at a public airport, a public mall, and a public resort
island where members of the public will become part of the
LiveLabs participant pool. These environments will also allow
us to test many more types of experiments (such as logistics,
purchasing, leisure, and travel related experiments) that cannot
currently be tested on our university testbed comprising of
mostly undergraduate student participants.

B. Related Work

Researchers have long recognised that the energy-overheads
of continuous mobile sensing pose a major challenge to the

realisation of many forms of context-aware pervasive com-
puting. Jigsaw [12] attempts to reduce such energy overheads
for multiple sensing applications simultaneously. It employed
(a) an adaptive processing pipeline, where subsequent stages
of the context extraction progress would be short-circuited
or aborted if specific features of interest (e.g., usage arte-
facts or background ambient noise) were detected in the
earlier pipeline, and (b) correlation across sensing pipelines,
effectively using cheaper sensors to trigger the activation of
more energy-intensive sensors. In contrast, the Orchestrator
framework [7] focuses on resource-sharing among multiple
context-aware applications running concurrently, by looking
for opportunities where a common set of sensors can be
used to compute multiple different contexts. Researchers have
also investigated the accuracy vs. energy tradeoffs for specific
applications associated with specific sensors–e.g., the A3R
framework [20] dynamically adjusts the accelerometer sam-
pling frequency and processing logic to preserve the accuracy
of locomotive activity detection.

More recently, various forms of cloud-based processing
have also been explored to reduce the energy overheads
of either the actual data sensing or processing phases. The
SociableSense framework [18] has investigated the use of
reinforcement learning mechanisms to adapt both the sensor
sampling frequency (specifically for accelerometer, micro-
phone and Bluetooth sensors) and the processing location (i.e.,
on the device or in the cloud), for a specific application focused
on capturing interactions among colleagues in the workplace.
Similarly, the Co-GPS approach utilises the cloud to signif-
icantly reduce the power of GPS-based location sensing by
effectively modifying the functions of the embedded GPS
receiver, such that the actual computation of the position is
no longer instantaneous but deferred to the cloud, thereby
allowing the GPS radio to duty-cycle extremely aggressively.
This approach also illustrates a trade off between the energy
overhead and the latency of context determination–in general,
even if the sensor data is sensed continuously, energy can be
saved if the resulting context is not needed instantaneously
but can instead be computed in a deferred fashion. However,
a general purpose framework for multi-context optimisation of
cloud-assisted mobile sensing is still an open problem.

An alternative approach towards reducing the energy over-
heads involves exploiting the statistical correlation across dif-
ferent forms of context, arising from patterns of daily living, as
a means for short-circuiting the processing of As embodiments
of this approach, ACE [14] applies rule mining techniques to
discover individual-specific exclusionary correlations among
different contexts of an individual (e.g., a user detected to
be “driving” cannot be at home), whereas ACQUA [11]
utilises probabilistic query processing to evaluate contextual
predicates that have a higher probability of short-circuiting a
more complex set of query predicates. These approaches are
usually quite effective in reducing energy for context that is
repetitive, but is not applicable for detecting more spontaneous
context (e.g., is user A moving about in the mall alone or in
a group?).

Finally, another approach towards lower-energy continuous
context sensing involves cooperative load-sharing across a



group of devices, usually located near one another. Embod-
iments of this approach include CoMon [9] where proximate
devices negotiate sensing tasks so as to amortise their overall
energy consumption, and ErdOS [19] where devices look
to effectively perform round-robin activation of commonly
available sensors between nearby smartphones. This approach
is applicable only to ambient context–i.e., context that is
effectively common to multiple neighbouring phones (e.g.,
noise levels, or movement speeds).

As opposed to these software-based approaches, hardware-
based approaches promise significantly larger drops in the
sensing energy overhead–these approaches much of the power
spent in background mobile sensing is consumed not by the
sensor itself, but by the general purpose computing hardware
(CPU, memory) that remain in a power-hungry active mode at
all times. The LittleRock approach [16] demonstrated how a
separate low-energy co-processor could achieve a two order-
of-magnitude decrease in the computational energy of mobile
sensing, by effectively letting the main processor be awakened
only when specific higher-layer context events were detected.
Apple’s recent iPhone 5S adopts this principle, using a sepa-
rate M7 co-processor for processing motion events (computed
from the accelerometer, gyroscope and compass sensors).
Similarly, the latest Moto-X smartphone uses a separate audio
co-processor to look for audio context efficiently, while the
main processor remains in low-power mode. While such
approaches are likely to make extraction of certain popular
varieties of context significantly more energy-efficient, we
believe that additional system overheads (e.g., storage and
wireless communication) will continue to present challenges
for the design and operation of a general-purpose context
collection engine on commodity mobile devices.

It is important to realise that innovative approaches for such
continuous mobile sensing seek to trade off energy against
two distinct metrics: accuracy, indicating the fidelity of the
inferred context and latency, indicating the delay with which
the context is recognised after its actual occurrence. Very
recently, researchers have proposed the LAB programming ab-
straction [8] to allow programmers to explicitly indicate such
tradeoffs. However, quantitatively expressing such tradeoffs
at application design time in the context of LiveLabs is not
trivial, as the requirements and trade off sensitivity itself will
vary with the sensed context (e.g., an individual’s fine-grained
locomotive activity may only be needed if he is in a place
with a sufficiently long queue).

III. WHY IS CONTINUOUS SENSING HARD?

The key takeaway of this paper is that supporting multiple
sensing applications while providing high accuracy and low
power consumption is not easy as the accuracy requirements
of one application will override the power gains possible by
optimising another application. As a result, the overall power
consumption is still high even with all the effort spent in
optimising specific applications.

To provide more insight into this phenomena, the rest of this
section will do the following: 1) provide quantitative numbers
for the energy consumption of various phone sensors, 2) show

that the energy consumption is not a simple linear function
when multiple sensors are used together, and 3) show that the
energy consumption when running multiple sensing tasks is
driven by the most demanding (accuracy-wise) sensing task.
We then end with our current proposed solution.

A. Testing Methodology

For all the tests in this section, we used a Samsung Galaxy
S IV smartphone. We wrote separate test applications to de-
termine the power drain of various sensors. These applications
were all run as foreground applications with no additional
processing or storage (unless otherwise stated) so that the
true power consumption of the sensors could be determined.
This is important as Android background applications need to
use Wakelocks which are not very energy efficient (Wakelocks
appear to cause a large amount of CPU and memory power
consumption). Hence, to avoid having the power consumption
of the sensors be just a small almost negligible portion of
the total energy consumption (which would be true for a
background application), we measured all the sensors using a
foreground application. We ran the data collection and energy
measurement software for each sensor result for 20 minutes
per sensor result except for Figures 2 and 3 where each
sensor result was generated from a 10 minute experiment per
sensor. We report the average additional power consumption
value (over the base system), over the 10 or 20 minute time
period, for each sensor result in this paper. To accurately
compute the power drain caused by our various applications,
we used a Monsoon hardware power monitor and measured
the power drain with a clean phone system (phone on with
no applications running, screen off, sensors off, LTE enabled
with data enabled) and then with just the sensing application
running.

B. Energy Consumed By Individual Sensors

We start by showing the power consumption of individual
sensors as well as the cost of storing and transmitting the
sensor results. The results in this portion should be seen as
complementary to prior per-sensor energy measurements such
as the work done by Carroll and Heiser [2].

Inertial Sensors: Figure 2 shows the power consumption
of the inertial sensors, i.e., accelerometer, gyroscope and com-
pass. We observe that, similar to other measurement studies,
that the gyroscope and compass consume more energy than the
accelerometer and that the power consumption and accuracy of
the inertial sensors is greatly affected by the sampling modes
used (the actual sensing rate per mode is listed in Table I).
The main energy costs are not only the cost of the sensor itself
(sensing cost), but also the energy cost of the CPU to process
the data and the energy cost of storing the data in internal
flash memory. In particular, as we show later, the storing of
the data into the phone’s internal flash memory is the dominant
energy cost. In the LiveLabs infrastructure, this storage cost is
inevitable as our context collectors collect data regularly with
the collected data only periodically sent back to the LiveLabs
data server (sent at periodic intervals or whenever the phone
is connected to Wi-Fi; whichever comes first).



Pressure and Light Sensors: Figure 3 shows the power
consumption for the pressure sensor (Barometer) and light
sensor. We observe that the energy consumption of the pres-
sure sensor shows a similar pattern to the inertial sensors.
However, the absolute consumption values of the pressure
sensor are much higher. Thus, given that the sampling rates
for the pressure sensor are similar to the inertial sensors, we
conclude that the pressure sensing is an expensive sensor to
use — energy wise.

On the other hand, the light sensor is very energy efficient
and its power consumption does not increase even as we
change the sensing mode. However, it must be noted that the
sampling rate of the light sensor, unlike other sensors, does
not change when using different modes; it is always fixed at
5.5 Hz.

GPS Sensor: Figure 4 shows the power consumption of the
GPS sensor. The sensing rate of the GPS sensor is very low
compared to other sensors. Hence, most of its power drain
is actually from the sensing task itself (i.e., getting signals
from satellites and triangulating the location) and not from
repetition. We observe that the power consumption saturates
at around a 13 minute duty cycle.

Cost of Storing Sensor Data to the Internal Flash
Memory: Figure 5 shows the power consumption caused by
storing high-rate sensor data to the internal flash memory of
the phone. Note: this is the built-in additional storage memory
and not an external user-replaceable SD card. In particular, it
shows the costs for using the accelerometer and light sensors
— both with and without storing of data to the internal flash
memory. We observe that the energy cost of storing data to the
internal flash memory dominates the cost of using the sensor.

This is because, as shown by Carroll and Heiser [1],
storing to the internal flash memory requires powering up
the CPU and memory sub-systems and this dominates the
power consumption. Our results are using a foreground sensing
application with very little CPU usage (and the CPU is in a low
power state when it is used). Thus, saving to the internal flash
memory is extremely power hungry as the CPU transitions to
a more power-hungry state and the memory subsystem gets
activated as well. Hence, we need to be frugal at storing data
and either store as little as possible or combine the stores from
multiple sensors to amortise the energy overheads. Note: if the
sensing application was running as an Android background
application, the cost of saving to internal flash memory will be
much lower (≈ 20 to 40 mW extra) as a background process,
on Android at least, has to use Wakelocks which already wake
up the CPU and memory components. However, in this case,
the background sensing application will consume much more
power than the foreground application (≈ 3 times more) even
if it does not save to internal flash memory (as the CPU and
memory components are in full power mode and active).

Wi-Fi Transmission Cost: Finally, Figure 6 shows the
power consumption caused by using the Wi-Fi interface to
send sensor data to a back-end server. In this case, accelerom-
eter data collected using the slowest sensing mode (5.5 Hz) is
being sent to a local server over a 802.11g link. We observe
that if the Wi-Fi interface is already on and the reporting period
(i.e., when the stored accelerometer data is sent back to the
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as it only has one sensing rate.

Fig. 3. Power Consumption of the Light and Pressure Sensors

server) is greater than 3 minutes, storing the sensor data in
memory (at the cost of higher memory usage) and then sending
it, over Wi-Fi, to the server consumes less power than storing
the data into internal flash memory and sending it to the server
later (the cost of storing into internal flash memory is shown
in Figure 5).

C. Energy Consumed by a Group of Sensors

Next, we measure the cost of using a combination of sensors
to understand if the power consumption scales linearly with
the number of sensors used. Figure 7 shows the power con-
sumption when multiple sensors are used together. power. In
particular, when using the slow and slowest modes, the power
consumption is similar to a compass-only cost. However, when
using the fast and fastest modes, the power consumption of
the inertial sensors is more than any single sensor but still
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much less than a linear sum of the power costs of each
individual sensor used. We speculate that this non-linear power
behaviour is due to the phone-specific SoC design of the
sensing components. However, we will need more analysis
to determine the true reasons for these power measurements.
However, when we turn on the pressure and light sensors, we
see a sharp rise in the power consumption (almost equal to the
cost of the pressure sensor). We speculate that this is because,
on our test phone, the pressure and light sensors use separate
internal circuitry from the inertial sensors. Hence, while the
power cost of some sensors can be amortised together, this
does not apply across all sensors. Hence, if power is a key
constraint, we need to be careful when choosing which sensors
to enable together on specific devices.

D. Energy Consumption Across Sensing Tasks

Next, we analyse the power consumption when various
sensors are used to achieve a higher level task. Figure 8 shows
the power consumption to store diverse phone events that can
be used to infer the user’s context. We observe that the power
consumption for obtaining and storing these events is almost
zero. This is because the operating system is already tracking
these events and thus the cost of “sensing” them is the small
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Fig. 6. Power Consumption of the Wi-Fi Interface

Sensor type Sensing mode
Slowest Slow Fast Fastest

Accelerometer 5.5 16.7 50 100

Gyroscope 5.5 16.7 50 100

Compass 5.5 16.7 50 100

Pressure 5.5 5.5 5.5 5.5

Light 5.5 16.7 50 100

TABLE I
ACTUAL ANDROID SENSING RATES OF DIFFERENT SENSORS (IN HZ)

cost to read the events from the OS and then to store it
somewhere else. In addition, the events is generally low and
thus, this cost could increase for more active phone users who
might generate more events that need to be stored.

Figure 9 shows the power consumption to perform activity
recognition using data from the inertial sensors followed by
processing of the data to infer the user’s activity. We observe
that activity recognition is a lot cheaper than sensing and
storing raw accelerator data as the CPU cost for activity
recognition is low and, in particular, is much lower than the
storage cost of saving the entire raw accelerometer data to
the internal flash memory. We can reduce the cost of activity
recognition even more by duty cycling the recognition engine
as, generally, the activity performed by the user does not
change that frequently. Hence, we can use a 10 second or more
duty cycle which will reduce the energy cost even further.

E. Tension Between Power and Accuracy

We next analyse the tradeoff between accuracy and power
consumption when performing a sensing task. Figures 10
and 11 show the accuracy and power consumption for activ-
ity recognition, respectively. We observe that when we use
a higher sensing rate with more features, the recognition
accuracy goes up; but not very significantly. However, the
power consumption increases pretty significantly due to both
the increased sensing rate and the extra CPU cycles needed
to calculate the extra domain features. Hence, we observe
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that high accuracy results are possible, but at a significantly
increased power costs — at least for activity recognition. More
details about the activity recognition system used for this test
can be obtained from Yan et. al [20].

F. Solution? No Free Lunch

In this section, we observed that the costs of sensing
does not scale linearly with the number of sensors used. In
particular, the costs of adding additional sensors does not
scale linearly for most sensors (although the absolute cost
still increases). However, as shown in Figure 7, the cost of
sensing increases dramatically when higher accuracy sensing
modes and computation is used. Thus the cost of just one
high accuracy sensing task (that uses either the fast or fastest
sensing rates) can dwarf the costs of other low accuracy
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sensing tasks (that use the slowest or slow rates). Thus, a
practical sensing solution will need to be aware of the sensing
modes used by each task to ensure that the overall power
budget is maintained.

We thus use the slowest sampling rate for all sensors in
the LiveLabs context sensing software, coupled with storing
the sensor data in the internal flash memory with infrequent
uploads (at most every 10 minutes) using Wi-Fi to the back-
end server on both iOS and Android. This allows our sensing
software to use only a little bit of power (on both platforms,
we use at most 5% more power than not having our software
installed) while achieving some minimum level of sensing that
is still adequate for some applications (coarse grained indoor
location, detecting certain types of activities, etc.). In addition,
we can improve the power efficiency further by optimising the
way we write sensor data to the internal flash memory.

However, this exceptional energy performance does result
in a lack of high fidelity sensing data. To overcome this
limitation, our software can be triggered, by the LiveLabs
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server, to increase the sensing rate for short periods of time
in order to collect task-specific higher accuracy sensing data.

G. Limitations of Evaluation

While the results in this section do give a very good
overview of the challenges of continuous mobile sensing,
they do have their limitations. First, all the results were
measured on a single device, a Samsung Galaxy S IV. It is
quite likely that the absolute power consumption of various
sensors will be different on other phones due to differences
in internal circuitry and chip usage. Second, all the results
were generated using a foreground Android application. As
explained in Section III-B, a background Android application
will have a very different power profile. Even with these
limitations, however, we believe that the results in this paper
will help other researchers understand the kinds of issues that
they need to address when they develop sensing applications
on other devices.

IV. DISCUSSION

A. The Problem of Heterogeneity

In this section, we discuss a very real and important practical
challenge we faced when building the sensing components
of LiveLabs — namely, the heterogeneity inherent in the
smartphone market. In particular, there are two dominant OS
manufacturers (Apple’s iOS and Google’s Android) along with
other plausible alternatives (Microsoft’s Phone 8, Blackberry’s
OS 10, etc.). Even if we consider just iOS and Android, the
differences in their sensing capabilities are quite staggering.

First, since iOS is only available on iPhones, the possible
sensors are fixed to those available on the few iPhone devices
still commonly used (iPhone 3gs, 4, 4s, 5, 5s, and 5c in
Singapore), However, even within this small set of devices,
there are already key differences in the available sensors and
the accuracy of specific sensors. For example, a magnetometer
was added from the iPhone 3gs onwards, while a gyroscope
was introduced from the iPhone 4 onwards. Finally, the
iPhone 5s uses a new hardware chip for the accelerometer. In
particular, the iPhone 5s uses a Bosch accelerometer chip [4]

while all previous iPhones (such as the iPhone 5 [6]) use
STMicroelectronics developed accelerometer chips. Even this
small difference has already caused sensing issues with the
iPhone 5s [15].

The situation gets worse when you factor in the OS itself.
For example, in iOS 6, it was possible to obtain Wi-Fi MAC
address data programatically using software APIs. However,
in iOS 7, this capability has been removed. Thus sensing
applications that use specific APIs need to change every time
a new OS version is released. Fortunately, these OS releases
occur only once a year and thus the impact is limited to just
a few times a year.

The situation, unfortunately, is much worse for Android.
Here, the sensors available on each phone are determined by
the phone manufacturer itself. Hence, phones from Samsung
will have different sensors from phones from HTC etc. For
example, the accelerometer on a Samsung S III is made by
STMicroelectronics [5] while the accelerometer on a compara-
ble HTC One phone is made by Bosch [3]. These differences,
as stated above and demonstrated by prior researchers [13],
can lead to very different sensing results.

To make matters even worse, even phones from the same
manufacturer can have very different sensing capabilities. For
example, Samsung’s top-of-the-line S III, S IV, and Note
2, and Note 3 devices have a barometer in them. However,
this sensor is absent in the other Samsung devices such as
the Ace 3, Light, Round, and Express 2. Finally, updates to
the underlying Android OS can and do require changes to
the sensing software to overcome new restrictions that have
been added to the OS. This is made worse by the custom
changes made by each device manufacturer to the underlying
OS. For example, on Samsung S IV devices, a Wi-Fi scan
only returns new results every 4.5 seconds (more frequent
scans will return cached data). This behaviour is not found
on other smart phones and appears to a specific patch added
by Samsung to the underlying OS (most probably as a power
saving technique).

All these heterogeneity factors make it very hard to build
a common sensing platform that can work across different
devices and OSs. As we are finding out in the process of
building LiveLabs, a key challenge is monitoring the release
of new OSs and devices and adjusting our sensing software
to match; otherwise our first realisation that something is not
right will be when either the participants complain or we find
that our data feed has stopped or become corrupted — both
situations should be avoided as much as possible.

B. Optimising For Latency
As mentioned at the end of the introduction, a third optimi-

sation criteria for sensing systems is latency. In particular, this
is the latency between when the sensing result was obtained
and when it is consumed. For example, in a low latency
system, the sensing results are consumed as soon as they are
obtained while in a high latency system, the sensing results
are stored for some period of time and then transmitted to the
results processing server for consumption.

Many sensing applications save the sensed data to internal
memory and only transmit it periodically to a backend server.



However, this is not suitable for real-time or near real-time
applications, no matter how accurate the sensed data is, as the
sensed data will be stale when used. For example, collecting
accelerometer data at the fastest rate for 5 minutes but only
processing it 1 hour later will result in a very accurate, yet
probably not very useful to a real-time application, activity
record of the user’s activities 65 minutes ago! For applications
that focus on data collection with offline data use (e.g.,
collecting test and training sets for research algorithms etc.),
this latency is not a factor. However, for applications that want
to provide real-time or even near real-time user interventions,
this latency can be a significant factor.

Thus, it is crucial that the latency at which the sensing data
is sent to the server matches the application requirements as
much as possible. In the LiveLabs environment, we plan to
run our data collection in low fidelity mode with periodic
uploads to the server throughout the data. This will allow
us to generate user profiles that can be used to generate
interesting experiments and test scenarios. In addition, we
have the ability to dynamically configure the sensing collection
software to both increase its sensing fidelity (at the expense
of increased power consumption) and to upload the sensing
data immediately to the back-end server. We plan to use these
dynamic features to test various real-time context-sensing and
context-aware applications and services.

V. CONCLUSION & FUTURE WORK

In this paper, we highlighted some of the issues with
continuous context sensing — in particular that the energy
required to sense continuously is high enough that the user
notices. This problem becomes particularly difficult when
multiple sensing tasks, such as activity recognition and indoor
location, need to run concurrently. In this situation, it becomes
hard to optimise the energy consumption of the sensing as the
benefits gained in one task could be overridden by the higher
rate sensing (for accuracy reasons) of another task. Our results
suggests that a user-agreeable solution will involve using low
fidelity low energy consuming sensing for most of the time
with short infrequent bursts of high accuracy high energy
sensing. However, we are currently testing various duty cycling
approaches to understand these accuracy and energy tradeoffs
when performing context sensing across multiple tasks.
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