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Abstract

This paper considers the prediction estimator as an
efficient estimator for the population mean. The study
may be viewed as an earlier study that proved that the
prediction estimator based on the iteratively weighted
least squares estimator outperforms the sample mean.
The analysis finds that a certain moment condition must
hold in general for the prediction estimator based on

a Generalized-Method-of-Moment estimator to be at

least as efficient as the sample mean. In an application

to cost-effective double sampling, the authors show

how prediction estimators may be adopted to maximize
statistical precision (minimize financial costs) under a
budget constraint (statistical precision constraint). This
approach is particularly useful when the outcome variable
of interest is expensive to observe relative to observing its
covariates.
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1 Introduction

In economics, health sciences, and other disciplines, it is common to have a situation where the
outcome variable of interest is costly to observe while its covariates are relatively inexpensive
to observe. For example, measurement of consumption poverty is expensive because it involves
a long questionnaire often administered over an extended period of time. However, its covari-
ates, such as asset holdings, water and lighting sources, and housing materials, are relatively
inexpensive to observe. In health sciences, simple oral questions and anthropometric data taken
by a non-invasive device often serve as a predictor of the outcome that is expensive to measure.
In industries, certain non-destructive testing may serve as a cheaper but less accurate alternative
of destructive testing.

In these cases, prediction estimators offer a useful alternative. Prediction estimators es-
timate the mean outcome for the population by evaluating the mean of predicted outcomes,
which exploits the information contained in the available covariates. The data on covariates is
not utilized when estimating the population mean by the mean of observed outcomes. For appli-
cations of this type of estimator to poverty measurement see e.g. Elbers et al. (2003), Stifel and
Christiaensen (2007), Christiaensen et al. (2012), and Douidich et al. (2013), where poverty rate
estimates are derived from predicted household consumption data. In an application to health
measurement, Fujii (2010) estimates the prevalence of stunting and underweight of children
using predicted data.

As is shown by Matloff (1981), prediction estimators may be useful even when the outcome
variable is in fact observed for all subjects, simply because the mean of predicted outcomes can
be a more efficient estimator of the population mean than the sample mean of the observed out-
come variable. By extension, this suggests that prediction estimators might also be incorporated
into the design of surveys where the outcome variable is collected for a sub-sample of subjects
only.

This study can be viewed as a generalization of Matloff (1981), who uses a weighted-least
square estimator for prediction, in several directions. First, we establish the properties of the
prediction estimator when prediction is based on a general class of consistent and asymptoti-

cally normal estimators. Second, we derive the condition under which the prediction estimator



based on Generalized-Method-of-Moment (GMM) estimation is no less efficient than the sam-
ple mean and any linear combination of the sample mean and the prediction estimator itself. In
the special cases where the estimator is a least-squares (LS) estimator or maximum likelihood
(ML) estimator, this condition is guaranteed to hold under suitable regularity conditions.

Third, we further specialize in a case where the outcome variable of interest is binary. This
is an interesting case as it is often encountered in empirical applications. It also offers an op-
portunity to compare a number of different prediction strategies that are motivated by different
assumptions. We consider two ML estimators; one where the continuous state variable that
generates the outcome variable serves as the dependent variable (MLC) and the other where the
binary outcome variable serves as the dependent variable (MLB). The OLS estimator is included
as a third candidate, which coincides with MLC when the errors are normally distributed. For
general errors, OLS may be viewed as pseudo-ML. As expected, prediction based on MLC is
most efficient.

Finally, we apply the prediction estimator to cost-effective double-sampling, where the out-
come variable is collected only for a subset of subjects, while the covariates are observed for
all subjects. This allows us to maximize statistical precision [minimize financial costs] under
a budget constraint [statistical precision constraint]. Such a sampling scheme is particularly
useful when it is expensive to collect data on the outcome variable while the budget for data
collection is limited.

Therefore, besides generalizing Matloff (1981), this study also contributes to the literature
on double sampling (also called two-phase sampling), which dates back to Neyman (1938) and
Bose (1943). By considering a prediction estimator in the context of GMM estimation, we
extend earlier studies of double sampling based on a linear model such as Cochran (1977),
Tamhane (1978), Palmgren (1987), Davidov and Haitovsky (2000), and Sirndal et al. (2003).!
Among these studies, this study is particularly closely related to Sérndal et al. (2003), who
applies double sampling to stratification to economize on the cost of estimation. However,
our study is different because we allow for non-linear models and only use predictions for
estimation.

With notable exceptions of Cochran (1977) and Sédrndal et al. (2003), the discussion of cost-

For an empirical application of double sampling, see Hansen and Tepping (1990).
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effectiveness is only implicit in most double-sampling studies. By bringing the prediction esti-
mator to a general GMM context and explicitly discussing optimal cost-effective estimation of
the population mean, we hope to expand the scope of possible applications of double-sampling.
A recent example where double-sampling (without optimization) is explored as an option to

reduce the costs of poverty measurement in Bangladesh can be found in Ahmed et al. (2013).

2 Prediction estimator

Suppose that the potentially limited outcome variable Y; for subject ¢ is related to the continuous
state variable y; by Y; = h(y;), where h is a function of y;. Further, the state variable y; is related
to a vector of covariates x; and a disturbance term u; by y; = ¢(x;, u;; ©), where © is a vector
of parameters. We assume for now that the state variable y; is unobservable. We define the
expected value of Y; given z; by g(x;,0) = E,[Y;|z;], where 0 is a K-vector of identifiable
model parameters with K < dim(©) and ¢ is assumed differentiable with respect to §. We also

define ¢; = Y; — g(z;, 0) and make the following assumptions about z; and w;:
Assumption 1 The pair (x;,u;) is independently and identically distributed across i.

This assumption is relaxed in Section 6.
Assumption 2 The variables x; and u; are independent for all i.

Notice that the parameter of interest in this study is u = E[Y;] = E.[g(x;,#)] and not ©
or f. The standard way to estimate y is to take the sample mean Y = N1 >, Yi, where N
denotes the sample size. However, Y is not the most efficient estimator in general. Using a
weighted least-square (WLS) estimator 8"~ for ¢, Matloff (1981) has shown that the sample
mean V55 = N=UY0 g(x;, 0W15) of predicted values is asymptotically no less efficient than
Y.

It is not obvious whether the results of Matloff (1981) extend to other estimators. Therefore,
we first extend Matloff (1981) to a general case where predictions are made using a consistent

and asymptotically normal estimator for . To this end, we make the following assumption:



Assumption 3 The estimator 0 of the model parameters 0 satisfies the following properties:
0260 and VN@O—-0)SN0,Q7) as N — oo,

where () is a symmetric positive-definite K x K matrix.

Hereafter, we assume that suitable regularity conditions always hold. In particular, we as-
sume the almost-sure existence and non-singularity of relevant moments, which typically poses
no problem in empirical applications.

Using 6, we can now construct the prediction estimator i(f) = N~'Y", g(z;,6), which

satisfies the following properties:>

Theorem 4 Let M, = E[0g(x;,0)/00](# Ok) and V, = var(g(z;,0)], where Ok is a column

K -vector of zeros. Then, under Assumptions 1, 2, and 3, we have:
a2 and VN((@) — p) SN,V + MIQTIM,) as N — oo, (1)

Theorem 4 is a direct extension of Matloff (1981) to a very general case where the estimator
for the model parameter vector ¢ used for prediction is consistent and asymptotically normally
distributed. Note that the asymptotic variance of ﬂ(é) can be consistently estimated by replacing
Vg, My and €2 with their consistent estimators. For ease of presentation, we drop the argument
0 and simply write /i until Section 4.

We now specialize in a case where the estimator for prediction is the optimal GMM estima-
tor. This is still fairly general and relevant to empirical applications since many of the estimators
widely used in practice, including the least-squares (L.S) and ML estimators, can be viewed as
an optimal GMM estimator, even though the concept of “optimality” is irrelevant when 6 is
exactly identified.

Henceforward, we maintain the following assumptions:

Assumption 5 An L-vector of moment functions m(0, x;, Y;) satisfies E,[m(0, x;, Y;)|x;] = Op,

where m is differentiable with respect to 0, L > K, and V,, = varim/(0, z;, Y;)].

2We avoid using the term “regression estimator” in this study because it typically refers to the prediction
estimator under the assumption of linearity (and often a single covariate). All proofs are provided in Appendix B.

5



Assumption 6 The estimator 0 of the model parameters is given by:

; )

= argmln [ Zm 0,2;,Y;

1

]

where Wy is a positive-definite symmetric weighting L x L-matrix satisfying Wy & V-las

N — oo.

It is convenient to define M,, = E[0m(0, z;,Y;)/007], which is the expected gradient of the
moment functions. The following results are well-known (Hansen, 1982; Cameron and Trivedi,

2005):
Theorem 7 Assumptions 1, 2, 5, and 6 imply Assumption 3 with Q@ = MLV 1M,

Remark 8 A conventional choice of Wy is [N"2 3" m(8, x5, Yi)mT (0, z;, Y;)| L, where 0 is a

consistent estimator for 0.

In what follows, we verify whether the following condition holds:
acov[Y, 1] = avar|j). 3)

To see the significance of eq. (3), the following lemma is useful:

Lemma 9 Suppose that Assumptions 1, 2, and 3 hold. Then, if eq. (3) holds, the asymptotic
variance of the linear combination ji = oY + (1 — a) i of the sample average Y and prediction
estimator [i for o € R is minimized when o« = 0 (i.e., when i = [i). Furthermore, eq. (3)
implies:

avar[ji] < avar[Y], 4)

where the equality holds if and only if fi =Y almost surely.

Lemma 9 shows that the prediction estimator /i is asymptotically at least as efficient as the
sample average Y and any linear combination of 2 and Y, provided that eq. (3) is satisfied. It
thus follows that eq. (3) is crucial for establishing the efficiency of /i. Note that eq. (3) is exactly
what Matloff (1981) has shown to hold for the prediction estimator (based on WLS estimation

of the model parameters) to establish its efficiency relative to Y.
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The question now is whether eq. (3) holds in general. It turns out that a moment condition

has to be satisfied for eq. (3) to hold:

Theorem 10 Let m; = m(0,x;,Y;). Then, under Assumptions 1, 2, 5, and 6, eq. (3) holds

regardless of the distribution of x if and only if the following equation holds:

M, = —MLV 1 E[m;Y;). 5)
When 0 is exactly identified, eq. (5) is equivalent to:

E[m;Y;] = =M, "V, M,. (6)

Theorem 10 shows that the moment condition eq. (5) must be satisfied for the prediction es-
timator to be at least as efficient as the sample mean. One important special case of Theorem 10

is when 6 is an LS estimator, in which case eq. (5) is automatically satisfied.

Assumption 11 The estimator 0 of 0 is an LS estimator such that it satisfies:
) — in N 'Y (Vi — g(z;,0))°
0 =argmin N™!} (Vi = g(x;,0))
(3

Further, for m; = (Y; — ¢;)0g;/ 00, Assumption 5 is satisfied.
Under Assumption 11, Theorem 10 leads to the following corollary:

Corollary 12 Suppose Assumptions 1, 2, and 11 are satisfied. Then, Assumption 6 and eq. (3)
hold.

Note that the results above do not change even when the expectations are taken with weights.
Therefore, Corollary 12 is simply a restatement of the results proven by Matloff (1981). It
should also be apparent from Theorem 10 and Corollary 12 that the main finding of Matloff
(1981) that the WLS-based prediction estimator is at least as efficient as the sample mean does
not hold for GMM-based prediction estimators unless the moment condition given in eq. (5)
holds.

Another important special case is where 0 is an ML estimator.
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Assumption 13 Suppose that the estimator 0 of 0 is an ML estimator such that it satisfies the

following first-order condition:
0l;
) =0,
i 90 0=0

where 1;(0, x;,Y;) is the individual log-likelihood function. Further, for m; = 0l; /00, Assump-

tion 5 is satisfied.

Assumption 14 Suppose that €; has a once-differentiable conditional probability density func-
tion f.(€;|x;). Further, letl; = In f.(Y; — g(x;,0)|x;). Then, the standard ML regularity condi-

tions are satisfied for the ML estimator in Assumption 13.
With these assumptions, we have the following corollary:
Corollary 15 Suppose that Assumptions 1, 2, 13, and 14 are satisfied. Then, eq. (3) holds.

So far, we have not specified the functional form of ¢(x;, u;; ©). Hereafter, we make the

following linearity assumption, which is commonly used:

Assumption 16 The variables y; and x; are related by the following equation:

yi = q(x5,u;;0) = x] B+ u, (7)

where © = {f3,0,}, the disturbance term u; has a twice-differentiable cumulative distribution

unction 0 anda a proobaotli ensi unction o= wit Ui | 5| = ana o, = var|u;|.
function Fy and a probability density function fo(= Fy) with Elu|z;] = 0 and o2 = var[u;]

It is useful to define the normalized disturbance term: @ = wu/o,, where its probability
density function f and cumulative distribution function F’ satisfy f (@) = o, fo(u) and F(@1) =
Fy(u) for all 4 € R, respectively.

One model that satisfies Assumption 16 is the Tobit model. This is an important model as it
is widely used and provides a concrete example where the prediction estimator is in general not

efficient.

Example 17 Assume that Assumptions 1, 2, 13, and 16 hold. Further, u has a standard normal

distribution and Y; = h(y;) = max(0,y;). Then, it can be shown that eq. (3) does not hold in



general. Therefore, there exists a linear combination of i and Y such that it is different from

and more efficiency than [i.

3

3 Binary outcome variable

In this section we further specialize in a case where the outcome variable is binary. This is
an important case for two reasons. First, binary outcomes are often encountered in empirical
applications which makes the binary model empirically relevant. Second, eq.(3) is seen to hold
regardless of the underlying distribution of u in this case, provided that the ML estimator is

used for 6. To be more specific, we make the following assumption.

Assumption 18 The variables Y; and y; are related by Y; = Ind(y; > z), where z is an un-

known constant. Further, the first component of x; is a constant and (3 is a column K -vector.

Note that under Assumption 18, we cannot identify o,, 5, and z separately. We can only

identify 0 = 5 = (81 — 2)/0u, B2/ 0w, B3/0u, -+ , B /ou). With this notation, we have the

following result:
Theorem 19 Under Assumptions 1, 2, 13, 16, and 18, eq. (3) holds.

Matloff (1981) found that i = Y holds almost surely for logistic regressions. It turns out
that this is the only case where i = Y holds regardless of the distribution of z; when the

outcome variable is binary.

Theorem 20 Suppose that Assumptions 1, 2, 13, 16, and 18 hold. Then, i = Y and hence

avar[i| = avar[Y'| almost surely for any distribution of x; if and only if u has the following

cumulative distribution function F':

F(@) = . (8)

3It can be shown i = N~ 1Y, f(—=2L'B) + 2X B/[1 — F(—z¥ B)], where {3 is an ML estimate of 3. See also
Appendix C for further discussion on Example 17.



4 Comparison of prediction estimators

Now, suppose that z is known and both the continuous state variable y; and the binary outcome
variable Y; are observable. In this case, we can still opt to estimate # by ML taking Y; as the
(binary) dependent variable (MLB). Alternatively, we can also work with y; as the (continuous)
dependent variable and estimate f either by ML estimation (MLC) or ordinary least squares
(OLS) estimation. To clearly distinguish the prediction estimators based on these different

estimators of 6 , we introduce the following notations:*

QOLS
éOLS p

~OLS
u

OMLE = argmax Nt Z Yiln[l — F(zXB)] + (1 = Y;) In F(zLB)
B N

pMLC = argmaxN Zln (y; — x) B)/on)] — Inoy,

Byou

1/2

BOLS = arg mﬁin N—l Z(yl . sz )2 and AOLS =N~ Z TBOLS

Because the estimation of ¢, is not relevant for L8, we have KMLB = J = dim(z;) and
KOLS = KMLC — J 4+ 1, where K® for a € {OLS, MLB, MLC}(= £) represents the
dimension of §°. Using g for a € & defined above, we can obtain the estimate 5’“ of 5’“ > In
the case where the outcome variable is binary, we have: (%) = N~13. F(— TB“)( at)
fora € £.

In this section, we make the following assumption:
Assumption 21 [ is twice differentiable and satisfies f(u) = f(—u) forallu € R

With this assumption, we derive the following results:

“To keep the mathematical expressions and proofs simple, we ignore the degree-of-freedom adjustment for
~OLS
Gy 7.

SThatis, 3% = (3% — 2) /6, B8 /6w, B2 /6as -, 3% /6) fora € {OLS, MLCY} and fMLB = §MLB,

10



Theorem 22 Suppose that Assumptions 1, 2, 13, 16, 18, and 21 hold. Then, the asymptotic

variances and covariances of i* for a € £ are as follows:

(Vu — Uﬁ)E?B

avar[i°"%] =V, + X}, X S, + 1o

avar[pMEP] = Vy +Ef$Ex [f(BZ))\(BZ)xeZT] PP

avarf M) =V, + B, [(F(@)/F(@)?] 5,505
— acov[ﬂOLS, [LMLC] — aCOV[/ALMLB, [LMLC]

where v, = E[u*], B; = —z1 8, V, = var[F(B,)], 0 = E.[f(Bi)xi), 18 = E.[f(B;)Bil,

00 = Elwial], and N(Bi) = [(B)/[F(Bi)(1 — F(By))].
The following corollary immediately follows:

Corollary 23 Under Assumptions 1, 2, 13, 16, 18, and 21, we have the following relationships

concerning the asymptotic variances of ji.

MLC] OLS] MLC] MLB]

avar(fi < avar[p”™”], avar[i < avarlji

MLC] OLS]

Remark 24 avar[j < avar[j can also be proved by directly comparing them. By
Assumption 21, E,[f'(@)/f(@)] = 0. Further, by the definition of G, var[a] = 1. Hence, we

have:

E(f@/f@)*] = var[f'(@)/f(@)]+ E}[f'(@)/f(@)] = var,[f'(@)/ f (@)]var,[d]

Theorem 22 implies that if y; is observed and the model is correctly specified, the MLC
prediction estimator is most preferable. Also, even though the MLB prediction estimator only
uses the information on whether y; is above z, it is not necessarily less accurate than the OLS

prediction estimator. Moreover, the MLLB prediction estimator is robust to a misspecification

11



that does not affect the sign of y; unlike the OLS and MLC prediction estimators.°

Another important point to note is that the MLB prediction estimator can be a useful al-
ternative to the MLC prediction estimator in practice, if Y; is more cheaply observed than ;.
To highlight this point, suppose that the budget for data collection is fixed and we are only
interested in estimating p. Further, the cost of collecting Ny observations of (z;, Y;) is equal
to the cost of collecting N, observations of (z;,y;). Then, if we have avar[gMLP] /Ny p <

MLC]

avar(fi /Nure, collecting Ny observations of (z;,Y;) and using fiy.p leads to a more

accurate estimate of y than collecting NV, observations of (z;, ;) and using fip ¢

S Application to cost-effective double sampling

In this section, we apply the prediction estimator to cost-effective sampling. If collecting data
on z is cheaper than Y, double sampling—where z; is observed for all subjects but Y; is ob-
served only for a subset of the sample—may be preferred to the standard single sampling—
where both z; and Y; are observed for all subjects in the sample. To highlight the benefits of
double sampling, we consider the problem of maximizing statistical precision under a given
budget constraint and its dual problem of minimizing financial costs given a statistical precision

constraint. Formally, we make the following assumption in this section:

Assumption 25 The covariates x; are observed for all subjects i € {1,2,...,N} = S, while
Y; is observed only for subjects i € {1,2,...,|rN|} = S, where || is the floor operator
that gives the maximum integer that does not exceed the argument and r € (0, 1] denotes the

proportion of subjects for which Y; is observed as N — o<.

Let us refer to S’ as Sample 1 and to S’/ = S\ S’ as Sample 2, respectively. Because the
indexing of the observations may be changed arbitrarily under Assumption 1, we assume that
the first N/(= |rN|) observations are those that contain Y;. We further make the following

assumption:

®For example, consider the case where the true relationship between y; and z; is given by y; = (z1'8 + u;)?
but we use the following misspecified model: y; = x7 8 + u;. This does not affect 428 but it affects g £¢,

12



Assumption 26 The distribution of (z;,u;) is independent of the sample selection. That is:
Pr(w;, ui|i € S1) = Pr(w;, usli € S™) = Pr(wy, uy). )

This requires that the selection into either sample carries no information about x; or u;. This is
a reasonable assumption when the researcher can decide whether to observe Y;.
In this setup, we use S7 to compute the estimator § of § and predict g(x;, 07) for all obser-

vations in S. Therefore, the prediction estimator for p under Assumption 25 is given by:
pP% =Nt Zg(a)i, 0").
ies
It is straightforward to derive the following results:

Theorem 27 Suppose that Assumptions 1, 2, 25,and 26 holds and 6! satisfies Assumption 3.

Then, iP° satisfies the following properties:
aP5 Ly and VN(i—p) SN,V +r ' MIQ M) as N = oo, (10)

Theorem 27 is particularly useful for estimating the population mean x in a cost effective
manner, which can be done by choosing 7 appropriately. To show this, we make the following

assumption:

Assumption 28 The ratio of the cost of observing only x; to that of observing both x; and Y;

for a given subject i is k(< 1).

Hereafter, we normalize the cost of observing both z; and Y; to be unity and ignore the
fact that N and N are integers. The following theorem is relevant if there is a binding budget

constraint C' (i.e., the budget is just enough to collect C' observations of both x; and Y;):

Theorem 29 Given the binding budget constraint C, the variance of i°® is minimized when N

and r satisfy:

(N,r) = arg I(IIII)I[V;] + pflMgTQ&Mg]/u st. [p+r(l—plrv=C (11)
v,p
= (C/ [p* + ’f(l o P*)] ;P*);

13



where p* = min (1, \/K(l — H)*lMEQ*MgV;l) and the minimized variance is given by:

V, + MTQ10,)/C it pt=1

12
[ Vg + \/MQTQ—lMg(l - ff)J /C'  otherwise.

In other cases, we may want to minimize the cost of data collection for a given accuracy. In

this case, the dual version of Theorem 29 is relevant.

Corollary 30 Suppose that the maximum acceptable variance of (i°P is given by A. Then, the

cost of achieving this accuracy is minimized when N and r satisfy the following equation:

(N,r) = argnylipn[pﬂLff(l—p)]V st [Vo+ M, Q "My /pl/v=A

= (Vg +M;Q 7 M,/p]/ A, p"),

where p* = min (1, \/5(1 - n)—lMgTQ—lMng—l) and the minimized cost is given by

[V, + MTQ 1M,/ A if pr=1

P
[ Vg/f—l-\/MgTQ*Mg(l—fc)J /A otherwise.

Note that when & — 0, we have: N — oo, r — 0, and N/ = rN — C. In other words, in
the limit where the covariates x; can be collected at no cost (k — 0), it is cost-effective to collect
x; for an infinite number of subjects (or the entire population) without spending any resources
(i.e., N — o0) and spend all budget on collecting the outcome variable Y; (i.e., N — O).
Under this scenario, the variance will be entirely driven by the model error; with N — oo, the
sample variance component will tend to zero.

Note also that under these simplifying assumptions concerning the cost function, the ratio of
the minimized variance under double-sampling relative to the variance under single-sampling
coincides with the ratio of the minimized budget under double-sampling relative to the budget

under single-sampling:

(o) = (Var+ VI- )T —n) . (12)
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where o =V, /(V, + M, gT Q' M,), which is the proportion of the variance due to sampling error

to the total variance of the double-sampling of the single sample estimator.

-=-0=0.8

0 | : : | | K
0 0.2 04 0.6 0.8 1

Figure 1: ((k, «v) as a function of x for: & = 0.5 and o = 0.8.

Figure 1 plots the variance ratio (or budget ratio) as a function of x for « = 0.5 and o =
0.8. The figure shows that the benefits of double-sampling are larger when the model error
component is small relative to the original sampling error component. The figure also confirms
that there is a threshold value for £ above which there will be no gains in using double-sampling

relative to single-sampling.

6 Extensions

In the discussion so far, we maintained Assumption 1 to keep the presentation simple. However,
this assumption can be relaxed in at least two important ways.

First, we will consider cluster sampling which is a common feature of surveys. This can be
easily accommodated in Theorem 4. Since we essentially only rely on Assumptions 2 and 3 for
the proof of Theorem 4, all we need to do is to compute the estimates of 6, €2, V,, and M, in a

clustering-consistent manner.’

"See Appendix A for further discussion on this.
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Second, Assumption 26 implies that Y; is missing completely at random. Because we are
concerned about cost-effectively estimating the population average by choosing not to observe
Y; for some subjects, this is a reasonable assumption for our main purpose. However, As-
sumption 26 may be too strong in other cases for which our prediction estimator is potentially

applicable. One example is the case of a censored outcome variable.

Example 31 Consider Example 17 again. This time, assume that Y; is missing when the (un-
observable) state variable y; satisfies y; < 0. If 0 is estimated only with Sample 1 (i.e., subjects

for which both x; and Y; are observed), 0 will be biased and thus i1 will also be biased.

Assumption 1 implies that Samples 1 and 2 discussed in Section 5 are generated from the
same underlying population. In some cases, the validity of this assumption is not clear, espe-
cially when the two samples are taken from two different data sources. In such cases, one can

test the validity of the prediction estimator using the following statistic:

Theorem 32 Suppose that the estimator 6! of 0 is estimated only with ST and satisfies Assump-
tion 3. Further, letY'! = Y icst Y;/N! be the sample average of the outcome variable for S'!
and i'" = 3", i g(wi, él) /NI be the prediction estimator for Sample 2, respectively. Then,
under the null hypothesis that Assumptions 1, 2, and 26 hold, the test statistic Z defined below

asymptotically follows a standard normal distribution:

Ve
L+ )V, + varle] + - MIQ-1M,) /N

A

Note that the rejection of the null hypothesis is consistent with various possibilities. For
example, the distribution of x; may be different between Sample 1 and Sample 2, which can
be tested separately. It is also possible that # is different in the underlying populations of
two samples because, for example, the timing of sampling is different. The test described in

Theorem 32 alone cannot distinguish these and other possibilities.
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7 Discussion

The primary motivation for the use of prediction in economics, health sciences, and other disci-
plines has been to deal with various forms of missing data problems. We make a case for using
a prediction estimator to obtain more efficient estimates of the population mean by extending
the results of Matloff (1981). In an application to cost-effective double sampling, we show
how prediction estimators may be adopted to maximize statistical precision [minimize financial
costs] under a budget constraint [statistical precision constraint]. The approach is particularly
useful when the outcome variable is relatively more expensive to observe than its covariates.

There have been a number of cases in which predictions are used ex post to estimate the
outcome variable of interest. For example, Elbers et al. (2003) have put forward an approach
where the prediction of household consumption per capita is made for each census record, which
in turn is used to compute poverty statistics for small areas. Their approach is useful because
household consumption is expensive to observe and thus typically observed only for a small
set of households in the population of interest. A similar approach can be used to estimate the
prevalence of stunting and underweight of children for small areas (Fujii, 2010). There are also
a number of recent case studies in which a consumption survey is combined with secondary
surveys (without a consumption component) to supplement existing poverty estimates (Stifel
and Christiaensen, 2007; Douidich et al., 2013).

Our study shows how prediction methods may be fruitfully adopted even ex ante by de-
signing surveys appropriately. A recent study by Ahmed et al. (2013) on Bangladesh shows
that poverty can be estimated with reasonable accuracy with a relatively small sample (e.g., 64
Primary Sampling Units (PSUs) with 10 households per PSU) of the outcome variable and its
covariates when combined with a larger sample of the covariates only (612 PSUs). Their cost
estimates suggest that, compared with a full scale consumption survey (complete observations
of both outcome variable and its covariates for 612 PSUs), the manpower cost for data collec-
tion could by cut by more than 90 percent without severely undermining the accuracy of the
national poverty estimate. If our approach is adopted, the trade-off between financial costs and
statistical precision can be explicitly optimized in a situation like theirs.

To what extent we can successfully bring down the costs while maintaining statistical pre-
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cision is intrinsically an empirical question. In general, our prediction estimator is most useful
when there are covariates that are both inexpensively observable (i.e., low value of k) and offer
a good model for prediction (i.e., low value of [MfolMg]ngl). It should be apparent that
prior estimates of these parameters are required to calculate the optimal sample sizes under
double sampling. When these are not available, data collection can be done in two stages. That
is, one can collect a small sample with both Y; and x; in the first stage, and use this sample to
compute the parameters needed to determine the optimal double sampling structure. In practice,
this exercise can be done at the time of a pilot survey, in which case there may be practically
no additional logistical costs. While the estimate of p obtained from the first-stage sample is
likely to be noisy, this does not bias the estimate of p. Moreover, the resulting estimates are
likely to be more accurate than the estimates created with only one sample under the same bud-
get constraint. Therefore, the cost-effective estimation approach proposed in Section 5 is likely
to be a helpful alternative that will benefit various institutions, including governments, hospi-
tals, laboratories, and factories, that are financially constrained or wish to minimize the cost of

estimation while achieving a given level of accuracy.
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A Random-effects model

It is not uncommon that errors between subjects are correlated , which calls for a relaxation
of Assumption 1. A popular model that accommodates correlated errors is the random-effects
model. To allow for random effects in each cluster, we replace the index for each subject 7 by
the combination of “cluster” ¢ and “household” h. The disturbance term u, therefore, has the

following structure:

Uch, = T + €ch,

where 7). and e, are, respectively, the cluster-specific and household-specific random-effects
terms that satisfy E[n.] = Elecs] = 0. We define o7 = var[r] and 07 = varfe.p] and denote the
size of cluster ¢ in the sample by k.(< oo) (i.e., there are k. households in cluster ¢). Therefore,
the total number of households is equal to N = ) _ k..

In what follows, we make the following assumption instead of Assumptions 1 and 2:

Assumption 33 The variables (x.p, e.,) are independently and identically distributed across
ch. Further, n. and k. are independently and identically distributed across c. The variables x .,

€chy Mo and k. are independent with each other.

Under Assumption 33, the variance of the household disturbance term w,, is var[u.,| = 0727 +

o2(= o2). Note that u,, is not independent across households because of the cluster-specific

e
random-effects term 7). The correlation of u,;, in a given cluster c is given by: 7, = 03 Jo2.
While the OLS estimator of 6 is still consistent under Assumption 33, it is in general inef-
ficient. Therefore, we consider the case when 6 is estimated by a (feasible) Generalized-Least-

Squares (GLS) estimator 6GLS . To facilitate the discussion, we further make two additional

assumptions:

Assumption 34 The number of clusters t tends to infinity as the total number of households N

tends to infinity.

We also assume that consistent estimators of the variance parameters are available.
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Assumption 35 For each t, we can compute &2 and 62 with the sample. Further, the following
asymptotic properties are satisfied as t — 00:

p 2
05_>05

P 2
o, — 0o,.

In the discussion below, it is convenient to introduce matrix notation. Plugging @ = u/o,

into eq. (7), and writing the result in matrix form, we obtain the following equation:
y =XB+0,U0 (13)

where y, X, and U are, respectively, the matrix version of y., T, and ., formed by stacking

all the households in the sample vertically. For example, y is defined as follows:

_ T
Yy = (ylla'" s Ylkys Y2150 5 Y2kes " 5 Y1 -0 Jytkt)

Now, define H = agE[fJfJT]. Due to the cluster-specific random effects, H is a block-diagonal
matrix with the number of blocks equal to ¢t. The c-th block solves: B, = ‘7211%1%; + Uz[ ko>
where 1, and [, are a column k-vector of ones and a £ x k-identity matrix, respectively. With

these notations, we obtain the following lemma.

Lemma 36 Let 3615 = (XTH 'X) 'XTH 'y denote the feasible GLS estimator for 3,

where H is a consistent estimator for H. Furthermore, for i = y — X BGLS, let 6615 =
[a¥a/(N —1)] 2 be the corresponding estimator for o,. Further, define 0915 = ((GLS —
2)[6OLS, BGES [6OLS | BGLS 5615), 5, = Blral], ve = ko) (keo? + 02), and 5, =
(1 = v.) (ke — 1)/k.. Then, under Assumptions 33, 34, and 35, 55 satisfies the following

properties as t — oo:

GLS &

6
VNS —6) S N (0,(1 =) [(1 = E[e]) e + Elyslvarfza]] )
where the expectations E|v.| and E|vs| are taken over k..
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Let 4925 denote the estimator for 1 that is based on #9~5. Because Lemma 36 shows that
LS satisfies Assumption 3, the asymptotic variance of 4~ has the same form as in the model
under Assumption 1. The only difference lies in the fact that the asymptotic variance matrix

Q~! must be adjusted to account for clustering.

B Proofs

Proof of Theorem 4 By an exact first-order Taylor expansion of f around 6, the Law of Large

Numbers, and Assumption 3, we have:

9y,
Zg v, 0 Z%(e—w = i, (14)

where §7 is between @ and 6.

By the Central Limit Theorem and Assumptions 2 and 3, we have:

VNGi=1 = =3 a0~ Zag;”g; VNG~ 6)

5 N0V, + My Q7' M,),
which completes the proof. U

Proof of Theorem 7 Because this theorem is well known, we only provide a sketch of proof
that is relevant to the rest of the paper. Taking the first order condition of the minimization

problem in eq. (2) and dividing by two, we have:

1 0m?(0, 2, y,
[N;—m 39”] [ zmm,%]_o

Taking an exact first-order Taylor expansion around = 0, there exist ** between 0 and 0

such that:

1 om?! (0 Ti, Yi) 1 1 om0, xi, yi) 4 _

)
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Solving for § and applying the Law of Large Numbers, we obtain:

—1
- 1 omT (0, z;, y;) 1 om0+, @y, y;)
) = H_HNZ:T W [NZ o0 .

1 amT(éa Ti,y yz) 1 1
ST i | o) -

[

This in turn implies 6 Loy, By this, Wy L V-1, and the Central Limit Theorem, we have:

- 1 om* (0, x;, y; 1 om0, x;, y; o
VN(O-0) = - [NZ%]WN[NZ (aeT y)” 8

)

_Z om”T 9 azz,yz ] WN [\/Lﬁzmw,xi,yi)] (16)

N N(o, [Mgv,;le]— ).

Proof of Lemma 9 By eq. (3), we obtain eq. (4) since:

avar(Y — ji] = avar[Y] + avar[ji] — 2acov|Y’, fi] = avar[Y'] — avar[] > 0.

The equation above is satisfied with equality if and only if avar[Y” — ] = 0, which in turn is
equivalent to i = Y almost surely because /i and Y are both consistent estimator of j. It is

clear that /2 is consistent and its asymptotic variance is:

avar[j1] = oavar[Y] + (1 — a)%avar[i] + 2a(1 — a)acov]Y, fi].

If i = Y holds almost surely, the asymptotic variance of /i is constant and therefore trivially
minimized when o = 0 (or any other value of «). Thus, we assume below that /i # Y almost
surely.

By taking the first-order condition with respect to «, it can be seen that avar|/:] is minimized
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when:
avar[ji] — acov|Y’, ji]

 avar[Y] 4 avar[ji] — 2acov[Y, ]’

Hence, if eq. (3) holds, avar|/i] is minimized when e = 0, in which case we have i = fi. UJ

Proof of Theorem 10 By Theorems 4 and 7, we have
avar([i] = Vg + M, [M, V' M ] ™' M, (17)

Let us define gi Eg(.TZ, 9)7 gj— Eg(.TZ, 9+)a msz- Em(9++7 T, }/;)7 and mz Em(9++7 T, }/;)

Then, using eqs. (14) and (15), we obtain:

N — p)(jp — )

= N(%Z(gi—u)ﬂ%i) ([%Z(gi—u)] - [% : %l X

7 )

-1
10l ] o |1 = 0mit 1 —oml] . |1
”NZ 90 ]WN [N _ 07 ” [NZ 90 ]WN lﬁzm]

13 13 13 13

B V= ML IMEV M7 MLV covlmy, €] (= acov[Y, f]). (18)
By the law of total covariance and E,[m;|x;] = 0, we have:

covimg, €] = covy[Ey[mi|x], Bule|z]] + Eglcovy[my, ;]x;]]
= Em[covu[mi, }/z|xz]]

= E[m;Y]]. (19)
Therefore, by egs. (17), (18), and (19), eq. (3) holds if and only if we have:
M MEV, M) My = — M) [MLV, M| MV, ElmgY).

For this to hold regardless of the distribution of z, it is necessary and sufficient to have

eq. (5). In the exactly-identified case, premultiplying eq. (5) by M, TV}, we obtain eq. (6). [
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Proof of Corollary 12 Notice that this is an exactly-identified case. Solving the first order

condition, we obtain N ! ZZ m; = 0. Hence, Assumption 6 holds. Further, we have:

d9;

E[m;Y;| = E, {Eu [Yi(yi — ) 5

xZH = var¢}] E, {%] = var[e;| M,. (20)

By the definitions of M,, and V;,,, we have:

dg; 0y; dyi dg; 0y;
M, = E,|E,|—— i — i) ———|| = —E, | = 21
m { { a9 o7+ i 9) ggaar 09 967 @D
agi agi 2
Vin = Eg[vary[m;]] = E, [% 89T] var[e”]. (22)
By these, we can verify that eq. (6) holds. Therefore, eq. (3) holds by Theorem 10. U

Proof of Corollary 15 Notice that this is also an exactly-identified case. Assumption 6 trivially
holds because N !>~ m; = 0 by Assumption 13. Further, under the standard ML regularity

conditions, we have:

ol; 0l
= - T = il L =
Vin = E[m;m; | E[@Q@HT}

6211 62m
-k {aeaeT} =k [W] = M.

Using this and noting A/, is a symmetric matrix, eq. (6) reduces to E[m;Y;| = M,. This holds

because:

s = o[ (8 )

THCEED
)~ B | e

o0

Joge

p [Hn)] [ ED a— f =0

::/ ﬂq@wm—mwmm—ﬂ@mmi;=4-
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By Theorem 10, eq. (3) holds. Il

Proof of Theorem 19 First, notice that this is also an exactly identified case. Note also that

the following relationship holds:
yi>z & zif—z+u >0 & ﬂ¢>—x?6~:—x~TQEBi.

Thus, we have ¢(z;,8) = E[Ind(@; > B;)] = 1— F(B;). The individual log-likelihood function
is: I; = Y;In[1 — F(B;)]+ (1 —Y;) In F(B;). Hence, solving the first order condition, we obtain:

Ol; -Y; 1-Y]0B;  FB)+Yi—1 -
o~ [\ rm) T Fwy) @ Fmya_rmy 0 @

m; =

Because Y; is binary, Y;> = Y;. Using this, we have:

E,Yi|lv] - ;

B, [Yimg|x] = f(Bi)xi = f(Bi)w;.

BVE(B) + Y2 —Vifoi] g Bullile]
F(B;)(1- F(By)) - FBy)

Taking expectations over x yields E[Y;m;] = M,. Furthermore, we have:

= E [((1 - ?(Bﬂ)? i ;—’2_(;)> P gﬁ}

B {(1 —_FY(iBi) N ;(_BY)> ~I(Bi)xi%}

Because V,,, is symmetric, eq. (6) holds. By Theorem 10, eq. (3) holds. Il

Proof of Theorem 20 By eq. (23) and Assumption 13, § satisfies:

f(==T0) o
1 Z ( —aT0) +Y; - 1) (F(—x{é)u - F(-ﬂé))) ;= 0. 24)

Because eq. (24) holds for each component of x;, it also holds for the first component, or the

constant term. Thus, letting B; = —xiTé, the following equation must hold to have i = YV
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almost surely:

T f(B) B
v o (Fal+vi-) (F(Bi)u _F(Bi))> v 2

For this to hold for any distribution of x;, the following equation must hold for all i:

=1. (26)

Rearranging terms, we have:

BZ.:/

where ¢ is a constant. Solving for F/(B;), we obtain:

Lo
F(B)  1-F(B)

dF =InF(B;) —In(1 — F(B,))) + ¢,

F(B)=[1+e B 9L 27)
The mean of #; in this case is:
00 N 1 5 _ B
Elu;| = / af(a)da = / (InF —1In(l = F) + ¢)dF =c. (28)
—00 0

Because E[u;] = 0, we must have ¢ = 0. Plugging this into eq. (27), we have eq. (8).

Conversely, if eq. (8) holds, eq. (26) holds. Hence, eq. (24) reduces to Y = ji. Il

Proof of Theorem 22 To distinguish the moments for different prediction estimators, we use

the superscripts OLS, M LB, and M LC. Letting C; = (y; — x] )04, and solving the first
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order conditions yields:

mOLS —(Y; — i B);
B (yz - :cTB)
m P = = I, + f(Bz)xz
F(B;)(1— F(BZ))
mMLC  _ @) | wifow | [ 01 }
Z f(C) Ci/ow 1/oy

To calculate the relevant moments below, the following formulae are useful:

P, [f (f){)” - [T fagaa - [ - [F@)] <o
E, f(f){)(“) - [P [Fau- @) <o
b |18 D | [ pragavan — [Pl - afia) +2p@]) -2
B | EON [ 2O fagan— [ pragea - [Fa]) -0
E, f(“)) = /Z ajada = [f@a - F@)] — =-1
e e ARG I R 0
B, ij(i;”) = [ i = [fai - @) = FB) - B(5) -1

28



Using these and u; =

C;, we have:

MOLS _ Eww 0
0 20,
VoLS _ g (vi — @ )2wiw] —(02 — (yi — =} B)*)(yi — ! B)xi
(o7 — (yi — x/ B)?) (yi — «] B)a] (07 — (yi — 2] B)?)?
O—ZEZ‘Z‘ 01><J
Oyxi  Vy— 02
MMLB — F(l_ﬁ)_N(F"‘YiN_l)(l_zF)fQjLF~+Yi—~1f/ vl
m F2(1 —F)2 F(1 —F) 2k}
= -k, |= fZ(BZ) $1$2T = —Vn]l/[LB
F(Bz)(l - F(Bz)) i
yMIC _ g Fr" = (f")? 2 o2 N " Osxs o Orxg Oyx1
"o f2 gl @ Fl o
| P\ ?] T
1 _Eu <f(12;) ) E:c [xzxz' ] 0J><1
] _ ) Fana |
7| 00s B [o- (fn) - 24 1]
| [ (Fan)?] T
1 ~H _(f(m)) ] B, [zi] ] O7x1 e
B 0—1%, 0 _E ( ~1(1141)"741')2 _ 1 N n ’
I 1xJ u f(’U«z)

Also, note the following:

g% 3wl 0) = g ], 0) = 1 = F(By) = g™ (a] ,0).

Therefore, we have:




Using these, we obtain:

vy — 0332
OLS] — V+Efa,‘2xz2f$ ( 401;) fB

F(B)(1 - F(B) "

avar(fi

avar[pM"P] =V, + X B

PO

IS

~ 2
avar i) =V, + B (’;(( ;) STy,

<

For the asymptotic covariance between 1% and fi° with a, b € £, the following follows from

eq. (16):

NG = p) (2 = ) BV, + POME (P! (= acov[ac, i) 29)

where P = M[[M!V, ' My] 'M,V,,* for each of the superscripts a and b, and MS%" =

poLs  _ 1 [E?Z 1 EfB]
Ou f A 20_2
PMLB — _E?I:Ex f (B’L)~ Zl‘ZT
B 1 FB))
~/
pMe = —o,51,E," f( > (S0 Ouxi] -

Further, we have:
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i e . . ;
MOLSMLC _ g f(@:) ou faow i) o
" —(o2—a)f(@)al _oi-a? _ (oR—aP)uif' ()
f(@:) Tu o2 f(u;)
B Exw 0J><1
01><J —4
MMLBMLC _  _p {(F(Bz) +Yi = D f(Bi) f'(%) [l’zl’zT ﬂz«’rzH
" F(B)(1—-F(By)) flw) [ ow o4
mMLB
) |:01><J7 - :|
UU
f(By)

—E; JE(BZ) |:0J><J —ﬁ]
F(B) T oy
= LE:E = fQ(BiZ [xlx;fr, xiBZ]
Oy B;)(1 - F(B)))

Plugging these moments in eq. (29), we obtain:

~ 2
, ~v
aCOV[[LMLB,/ALMLC] — aCOV[ﬂOLS,ﬂMLC] — ‘/;] + E;l <f~(ul)> ET Eil[l‘zl‘ZT]Efza

~ fe
f(1;)
which completes the proof. U
Proof of Corollary 23 Because avar[i*L¢] = acov[a9L%, pMEC] = acov[pMLB | pMLC], the
same argument as Lemma 9 is applicable to the comparison between 9% and ¢ and
between M L8 and pMLC, O

Proof of Theorem 27 By an exact first-order Taylor expansion of §! around 6, the Law of

Large Numbers, and Assumption 3, we have:

X 1 i L 0g(xi, 07) 5
DS __ ) ) I p
= EZ g(z;, 0) + N E 0T 0" —0) = pu, (30)

)

where 07 is between # and 6.
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By the Central Limit Theorem and Assumption 3, we obtain:

~DS _ dg(w;, 07) T(Al
VNS — = \/_ngz, u+\/7N 547 v VNG — )

B N0, Vg +r "M M),

which completes the proof. U

Proof of Theorem 29 Plugging the constraint into the objective function from eq. (11), the

objective function is seen to solve:
[Vok + M, Q7' My(1— k) + Vo (1 — k)p+ M, Q" Mgk /p]/C

This function is convex with respect to p. The theorem follows from this and p € (0, 1]. U
Proof of Corollary 30 The proof is similar to the proof of Theorem 29. UJ

Proof of Theorem 32 It is straightforward to show that:
VNI(Y! = 1) 4 N0, V, + varle;]). 31)

Because Y/ and fi'! are independent under Assumption 26, Theorem 32 follows from eq. (31)

and Theorem 4. |

Proof of Lemma 36 Under Assumptions 33, 34, and 35, 595 is consistent and asymptotically

normal distributed as ¢ — oo:

BGLS &

s
VNS —5) & N (0, (XTHIX) Y

We are interested in 9945 = ((3GLS — 2)/6GLS pGLS [6GLS | BGLS 5GLS)  The consis-
tency of 09-5 immediately follows from the consistency of 3-S5 and §%~5. What remains to
be established is the asymptotic variance and normality of X5

Since the constant z merely introduces a deterministic shift in the intercept it does not affect
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the asymptotic variance and normality. This means that our interest is in asymptotic distribution

of BGLS /GGLS - An application of Slutsky’s theorem yields:
VNG —0) S N (0,90Lg) as ¢ — oo,
where ()} ¢ satisfies:
(XTH IX/N) Yol = (02XTH 'X/N) ' 5 Q b,

To obtain the analytic expression of )] ¢, let us first evaluate the matrix inverse of H. As
H is a block-diagonal matrix, its inverse too is a block-diagonal matrix with blocks B, '. The

inverse of B, is:

1 o2
Bl=—-|(1, ——1 1,17 ).
¢ o < e o? + kcag Fe ke

Substituting this into X7 H 1 X yields:
X'HT'X = Y X!BI'X,
T oy T
_ n
T g2 ZXc (Ikc - m%%) Xe
c e cn

= = [Z XI'x, - %kc:fcffl :

C

where X, = (¢}, -+, ], )T denotes the matrix of ., stacked for cluster cand z. = X1, /k.

is the cluster average of x.j,.

Therefore, Q¢ is given by:
QS = oX(XTH'X)/N
o, 1 _ T — =T
= U_EN ZXC Xe — ek T,
021 [ 1— ) (ke — 1
= U_;N Z Z(l — Vo) TenTl, + (1= 11( )svarc[xch]
€ L ¢ h ¢

= (L=m) '[(1 = E[e]) e + Ely]varlza]]
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by the independence between . and k. and Law of Large Numbers, which completes the proof.

O

C Further discussion on Example 17

To clearly show the violation of eq. (5), we explicitly compute each moment. Let § = (57, 0,)"
and denote the probability density function and the cumulative distribution function for the

standard normal distribution by ¢ and &, respectively. Then, we have:

g(z,0) = Elylnd(y; > 0)]z;]
= E[(z] B8+ oy,t;)Ind(@; > —a B/0,)|z:]
_ /Oo (278 + oui) 2% g

T B/o Oy

= A(Q(A) — 1) + ¢(4),

dg;/0p 5 (1—=®(A;))x/oy

For the Tobit model, the individual log-likelihood function /; can be written as:

l; = Ind(Y; = 0) In ®(4;) + Ind(Y; > 0) In <i¢ (ﬂ» .

Oy Oy

Then, the moment function is:

o ~Ind(Y; = 0) £ 449 4 tnd(Y; > 0) 2] o,
mz — = v u
o Ind(Y; = 0)Z2 24 1 1nd(Y; > 0) [—i " M]
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The following relationships are useful:

E[Y,>0] = E[a> A= ; s(i)da = 1 — B(A,)
B> 0] = [ "o = ol = o4
By >0 = [ "o = [00) - (] = 40(4) +1 - 2(4)
B> 0) = [ ato(an = —[ + 200 = (4 + o(4)

B> 0 = [ ato(adn = [30() - o(@)(@ + 0]

—B(1— B(A)) + (A (A +34)

Therefore, letting C; = (y; — z7 8)/o.(= @) and taking expectations, we have:

om
M, =F|—
]
10 T A 2 | wx; A
_ B |ndv; = 0) % IxJ B C;‘Q
u | 2l 24 Tu Azl A2
1 | —wial =20,
+E |Ind(Y; > 0)—
o 2
1 [1— (AiGi + ¢ + 1)@ (A |} —z;vip(A;))
i —uid(A)a! —viAib(4i) + 2(1 — B(4))
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where (; = ¢(A;)/P(A;) and v; = [(A; + §)A; + 1]. Also, we have:

Vin
= Elmim;]
2| wiw]  xiA
— B |md(y; = 0)= +
Tu | Ajal A2

1 Clxxl (—C; + C?)x;
E |md(y; > 0)

| carepad -y
_ B C2O(A;) | ] wid, N
| At a2
1 (Aip(A;) — ©(A) + L)aa] (AZ + 1)p(A)x;
Mk (A2 1)p(A)s? 21— B(AL) + (43 + A)p(A)
o (A:D(A;) + vy)a! 21— B(A)) + Ai(Cd(A) A + v3),

where v; = (A? 4+ 1)p(A;).

E[mY;] = E, |E

u

Ind(@ > A) - [~A; + @] [-1 + 2]

|

[1— (Aip(Ai) + ©(A;) — Aip(Ay))]s
—(p(As) + A7p(Ai) — (A7 +2)p(A))

(1 — ®(A))x:/o0 ] |

1
- —F,

Oy

P(A;) /o

Using the moments calculated above, we can verify that eq. (5) do not hold for the Tobit model.
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