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h i g h l i g h t s

• A model of myopia is developed in this study.
• The model is analytically and numerically convenient.
• The model is applied to a non-renewable extraction problem.
• Extraction permits may be a useful policy option.
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a b s t r a c t

Wedevelop a parsimoniousmodel ofmyopiawith an infinitesimal period of commitment as an extension
to a standard dynamic optimization in a continuous-time environment. We clearly distinguish the
processes of planning future controls and choosing the current control, which makes the model both
analytically and numerically convenient. In its application to a simple non-renewable resource extraction
problem, we show that whether the terminal time is free or fixed determines the appropriateness of the
approximation to myopic agents by constant discounting. We also show that the expiry of extraction
permits may be useful in the presence of myopia.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Like other animals, human beings have been observed to
make impulsive choices. That is, they exhibit a preference for
smaller–sooner rewards over larger–later rewards, but the pref-
erence ordering may change when the reward is delayed (Ainslie,
1975). For example, we may prefer $100 today to $120 next year
while preferring $120 in 21 years to $100 in 20 years at the same
time, even though the latter choice is equivalent to the former
choice with a 20 year delay. However, such preference changes are
not consistent with constant discounting. In fact, behaviors that
cannot be explained by constant discounting have been found con-
sistently in various laboratory experiments and field studies (see,
for example, Ainslie, 1991, Frederick et al., 2002, Kirby and Herrn-
stein, 1995, Loewenstein and Thaler, 1989, DellaVigna, 2009 and
the studies cited therein).

To explain this type of behavior, we can consider an agent
who ‘‘overemphasizes’’ short-run gratification relative to long-run
gains. A conventional way to model it is to introduce a parameter

✩ This research was supported by the SMU Research Grant (C208/MSS6E010). I
thank Ken-Ichi Akao, Takashi Kamihigashi, and Larry Karp for useful comments.
Usual caveats apply.
∗ Tel.: +65 6828 0279; fax: +65 6828 0833.

E-mail address: tfujii@smu.edu.sg.

for ‘‘present-biasedness’’. For example, the quasi-hyperbolic dis-
counting, which was proposed by Phelps and Pollak (1968) and
popularized by Laibson (1997, 1998), uses a sequence of discount
factors βδ, βδ2, βδ3, . . . , where β and δ respectively reflect the
agent’s present-biasedness and time preference. This model has
become a standard model of non-constant discounting and been
applied to a number of issues, including job search (Paserman,
2008), retirement (Diamond and Kőszegi, 2003), and addiction
(Gruber and Kőszegi, 2001).

In this model, the agent at each point in time is modeled as
a separate self (agent), who cares about her present and future
selves. Each agent can choose her current control (action). While
she cannot directly choose future controls, she can influence them
by changing the state variable through her current control. The ac-
tual control chosen by each agent depends not only on her present-
biasedness but also on to what degree the agent is aware of her
present-biasedness. For example, a (completely) naïve agent, who
is unaware of her present-biasedness, would choose her current
control assuming she can make a full commitment over the en-
tire planning time horizon. On the other hand, a (completely) so-
phisticated agent, who is fully aware of her present-biasedness,
would correctly predict her future behavior and choose her cur-
rent control taking the strategies of her future agents as given. As
O’Donoghue and Rabin (2001) have shown, it is also possible to
consider a more general type of agent, who is partially aware of
her present-biasedness.

0165-4896/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
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The quasi-hyperbolic discounting model is characterized by
two important features. First, each agent can commit to her current
control for one period, which affects the state variable in an non-
negligible manner. Second, (partially) sophisticated agents take
futuremaximization problems as given. In a discrete-time environ-
ment with a predetermined finite time horizon, this can be solved
by backward induction. However, this method is often analytically
inconvenient. Further, as elaborated later, the numerical solution
may also be difficult to obtain, particularly when the time horizon
is free or infinite.

In this study, we propose amodel of myopia, which also aims to
explain the behaviors that cannot be explained within the frame-
work of constant discounting. However, instead of taking the fu-
ture maximization problem as given, we take the future control
rule as given and distinguish between the decision discount rate
ρ (the discount rate used for deciding the current control) and the
planning discount rate ρ̂(≤ρ) (the discount rate used for deter-
mining the future control rule). The former reflects the agent’s be-
lief about how she will behave in the future, whereas the latter
reflects how she actually weighs the future utilities.

These two discount rates may also differ from the rational dis-
count rate γ (≤ρ̂), which reflects the agent’s true (or ‘‘moral’’) time
preference and affects the agent’s long-run utility.1 This distinction
may arise, for example, when the incentives that the agents (e.g.,
politicians) face are not aligned to the maximization of the objec-
tive functions (e.g., social welfare) that they are expected to solve.
Hence, agents in our model generally choose their actions sub-
optimally. Because the planning, decision and rational discount
rates are the same in the standard dynamic programming equation,
our model can considered its generalization. As elaborated later,
our model is analytically and numerically convenient, because we
can use the standard dynamic optimization technique for both pre-
dicting future controls and determining the current control.

Unlikemost othermodels of non-constant discounting, we con-
struct our model in a continuous-time environment. We assume
that each agent can commit to her action for only an infinitesimal
period of time. Therefore, unlike the quasi-hyperbolic discounting
model, the current agent’s action gives only a negligible impact
on the stock (state) variable in our model.2 Therefore, relaxing the
constraint that the agent’s current action affects the stock variable
in a non-negligible manner is one important contribution of this
study.

The situation considered in this study is particularly relevant in
environmental and resource management problems, in which the
relevant time horizon is much longer than the commitment pe-
riod of the current agent. Hence, this paper is closely related to the
body of literature on non-constant discounting applied to environ-
mental and resource management problems, such as Duncan et al.
(2011), Fujii and Karp (2008), Hepburn et al. (2010), Groom et al.
(2005), Karp (2005) and Weitzman (2001).

We apply our model to a simple non-renewable resource ex-
traction problem. We show that both the agent’s myopia and her
awareness ofmyopia affect her control rule and lifetime utility.We
also show that their effects are crucially dependent on whether
the planning time horizon is fixed or free. A second important
contribution of this study is the finding that constant discounting
provides a reasonably good approximation for non-constant dis-
counting when the time horizon is fixed but this is not the case
when the time horizon is free in our application.

1 Formal definition of these discount rates are presented in the next section.
2 We mostly use the term ‘‘stock variable’’ instead of ‘‘state variables’’ in this

study because the primary example of the state variable in this study is stock of
a non-renewable resource.

This paper is organized as follows: in the next section, we for-
mally introduce our model. In Section 3, we apply our model to a
simple non-renewable extractionproblemandderive someanalyt-
ical results for both free and fixed terminal time. In Section 4, we
provide some numerical examples of the non-renewable extrac-
tion problem to illustrate the behavior of myopic agents. Section 5
provides some discussion and conclusions.

2. Model setup

Let us now formally introduce our model of myopia. Let the
calendar time start at τ = 0. The terminal time T may be fixed
or free, but we fix T for the time being. The planning time horizon
is T ≡ [0, T ] and the stock variable (e.g., oil reserve) and control
variables (e.g., oil extracted from the field) at time τ ∈ T are
S(τ ) ∈ S and x(τ ) ∈ X, where S(⊂ R) and X(⊂ R) are the
state space and the control space, respectively. The initial stock is
S0(∈ S).

The instantaneous utility function is f : X × S → R, whereas
the transition function is g : X × S → R, which gives the time-
derivative of the stock variable. There may be I (<∞) inequality
constraints on the control and stock variables such that we must
have hi(x(t), S(t)) ≥ 0 for ∀i ∈ I (≡ {1, . . . , I}) and ∀t ∈ T ,
where hi

: X × S → R. We use the subscript to denote par-
tial derivatives (e.g., fS(x, S) ≡ ∂ f (x, S)/∂S). To simplify the pre-
sentation, we denote the set of all constraints from t1 to t2 (i.e.,
hi(x(t), S(t)) ≥ 0, ∀t ∈ [t1, t2], ∀i ∈ I) by H

t2
t1 and the transition

equation from t1 to t2 (i.e., Ṡ(t) = g(x(t), S(t)), ∀t ∈ [t1, t2)) by
G
t2
t1 .
At time τ ∈ T , the agent takes as given the value of the stock

variable Sτ . The agent does not have a commitment technology,
and thus her decision is binding only for the current control. The
agent’s utility has two components, one coming from the stream
of utility until the terminal time T and the other from leaving the
stock S(T ) at time T .Wewrite her utilityU : XT

×T ×S×R++ →

R in the following way:

U(x, τ , Sτ , γ )

≡

 T

τ

f (x(t), S(t))e−γ (t−τ)dt + φ(S(T ))e−γ (T−τ)


, (1)

whereφ : S → R is the salvage value function and γ is the rational
discount rate, which a rational agent would use for predicting
future controls and choosing the current control. Hereafter, when
the last argument of U is γ ,U reflects the hedonic utility that
the agent actually experiences. We shall call the hedonic utility
evaluated at τ = 0 the lifetime utility. We shall use this measure
only to compare the hedonic utility across different types at a given
point in time.3

To keep the analysis straightforward, we assume three regular-
ity conditions throughout this study. First, we assume that f , g, h,
and φ are twice continuously differentiable in all the arguments.
Note that we do not exclude the possibility that the control is not
continuous. Second, we assume gx(x, S) ≠ 0 for any (x, S). That
is, the control always affects the changes in the stock variable.
Finally, we assume that the set of permissible controls C(S) ≡

{ξ |hi(ξ , S) ≥ 0, ∀i ∈ I} is compact for any S ∈ S.
Now, let us consider the behavior of the rational agent at cal-

endar time τ . She maximizes her hedonic utility subject to rel-
evant constraints. Therefore, a rational agent plans her control
xR(t; τ , Sτ , γ ) for t ∈ [τ , T ] by maximizing Eq. (1) subject to

3 Note that we can always ‘‘reset’’ the calendar time to make τ = 0 and to
compare the hedonic utility across different types.
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the initial condition S(τ ) = Sτ , the transition equation GT
τ , and

other constraints HT
τ . Because this is just a standard dynamic op-

timization problem, we can define the present-value Hamiltonian
H : T × X × S × R → R as follows:

H(t, x(t), S(t), λ(t)) ≡ f (x(t), S(t))e−γ t
+ λ(t)g(x(t), S(t)),

where λ(t) ∈ R is a costate variable. Letting µi : T → R+ for
∀i ∈ I be the Lagrange multiplier and Ind(·) be the indicator func-
tion, the Lagrangian L : T × X × S × R × RI

+
→ R can be defined

as follows:

L(t, x(t), S(t), λ(t), {µi(t)}i∈I)

≡ H(t, x(t), S(t), λ(t)) +

I
i=1

µi(t)hi(x(t), S(t))

+ Ind(t = T )φ(S(T )).

Let x∗(t) for t ∈ [τ , T ] be the argument that maximizes U
and its associated trajectory of the stock be S∗(t). Then, there
exist λ and {µi(t)}i∈I that satisfy the set of conditions C1–C7 in
Appendix A, which is just a variant of standard results (Kamien
and Schwartz, 1991; Seierstad and Sydsaeter, 1987). To avoid
unnecessary complications, we assume A1–A2 in Appendix A.
Under these assumptions, both the control rule for a rational agent
xR(t; τ , Sτ , γ ) = x∗(t) and the set J of junction times in A1 are
unique, and the differentiability condition C8 in Appendix A is
satisfied. Because the control for a rational agent for time t planned
at time τ is exactly the same as the control actually chosen at time
t (i.e., xR(t; t, St , γ ) = xR(t; τ , Sτ , γ ) for ∀t ≥ τ ), we hereafter
simply write xR(t, St , γ ) to mean the actual control at time t .

Now, we turn to the behavior of a myopic agent. We assume
that a myopic agent uses the decision discount rate ρ to choose the
current control. That is, her control at time τ is based on the max-
imization of her decision utility U(x, τ , Sτ , ρ) instead of the maxi-
mization of the hedonic utility U(x, τ , Sτ , γ ).

Let us begin with a completely naïve agent. She predicts her fu-
ture controls based on the assumption that she will behave as a ra-
tional agent in the future. A naïve agent knowshowa rational agent
behaves. However, she makes a sub-optimal decision because she
is not solving the right problem; she evaluates the stream of fu-
ture instantaneous utility using ρ instead of γ over the planning
horizon when choosing her current control.

To describe the behavior of a completely naïve agent, let us sup-
pose for now that τ is not a junction time. Then, there existsω > 0
such that the set of binding constraints do not change between
t = τ and t = τ + ω. Now, consider a very short period of time
(0 <)∆τ (≤ ω) during which time she can commit her control. We
shall later let ∆τ ↓ 0, so that her commitment is instantaneous.

We define the value function V (τ , Sτ , ρ, γ ) ≡ U(xR(·; τ ,
Sτ , γ ), τ , Sτ , ρ), which is the decision utility that evaluates the
stream of instantaneous utility using the decision discount rate
ρ. Then, she will choose her current control xτ by solving the
following maximization problem:

W (τ , Sτ , ρ, γ , ∆τ ) ≡ max
xτ

 T

τ

f (x(t), S(t))e−ρ(t−τ)dt

+ φ(S(T ))e−ρ(T−τ)


s.t. S(τ ) = Sτ , GT

τ , HT
τ , x(t)

=


xτ for t ∈ [τ , τ + ∆τ ]

xR(t, S(t), γ ) for t ∈ (τ + ∆τ , T ]

= max
xτ

 τ+1τ

τ

f (xτ , S(t))e−ρ(t−τ)dt

+ e−ρ∆τ V (τ + ∆τ , S(τ + ∆τ ), ρ, γ )


s.t. S(τ )

= Sτ , Gτ+∆τ
τ , H τ+∆τ

τ

= V (τ , Sτ , ρ, γ ) + ∆τ ·


max
xτ


f (xτ , Sτ )

+ VS(τ , Sτ , ρ, γ ) · g(xτ , Sτ ) + O(∆τ )

− ρV (τ , Sτ , ρ, γ )

+ Vτ (τ , Sτ , ρ, γ )


s.t. S(τ ) = Sτ , Gτ+∆τ
τ , H τ+∆τ

τ . (2)

There are seven points worth noting here. First, we can inter-
pret the discount rate γ as a ‘‘moral’’ discount rate that reflects the
behavior of the naïve agent’s ideal self. However, the agent per-
mits herself to behave as she likes and evaluates the expected fu-
ture outcomes with her ‘‘actual’’ discount rate ρ, even though she
knowswhat the ideal self would do.While the termnaïve is used in
this paper to be consistent with the literature, one might call our
version of naïve agents ultra-optimistic agents in the sense that
they presume that the future selves will behave exactly like their
ideal selves. Alternatively, the naïve agents may be considered
paranoiac, because the naïve agents believe that their future be-
havior will be restricted to prevent them from optimizing their de-
cision utility even though there is no such restriction whatsoever.

Second, the control x(t) may be discontinuous at t = τ + ∆τ .
This discontinuity does not pose a problem because the future
control is just a plan, whereas the current control is the action
taken by the agent. Thus, the control x(t) for time t (>τ)planned at
time τ is generally different from the control actually chosenwhen
time t comes.

Third, the process of planning future controls (i.e., maximizing
the hedonic utility) is clearly distinguished from that of choosing
the current control (i.e., maximizing the decision utility). The naïve
agent is influenced by myopia only in the latter because her future
planned controls are identical to those of the rational agents. Note
that the naïve agent essentially solves two maximization prob-
lems; she first maximizes the hedonic utility to find the planned
future controls. Using them, she maximizes the decision utility to
determine the current control. This approach is analytically conve-
nient because we can use the standard optimization techniques in
each step. As we shall show in the next section, we can obtain an
analytical result for the control variable. In contrast, the standard
quasi-hyperbolic discounting requires us to solve only one max-
imization but the standard techniques of dynamic programming
are not directly applicable.

Fourth, the constraintsGT
τ+∆τ

andHT
τ+∆τ

are automatically sat-
isfied by the construction of xR. Thus, we do not need to explicitly
include them in Eq. (2). Fifth, in the maximand of Eq. (2), V and Vτ

are independent of xτ , and thus can be removed from the maxi-
mization operator. Sixth, V is differentiable with respect to Sτ (i.e.,
VS exists) on [τ , τ + ∆τ ] for small enough ∆τ (< ω) and that VS
is continuous because of condition C8 in Appendix A. Seventh, xτ

implicitly depends on ∆τ , but we are ultimately only interested in
the limit as ∆τ ↓ 0. Therefore, we do not explicitly include ∆τ in
its argument.

To find the limit, we can use an argument similar to the
derivation of the dynamic programming equation. Notice first that
W (τ , Sτ , ρ, γ , 0) = V (τ , Sτ , ρ, γ ) holds. Hence, subtracting
V (τ , Sτ , ρ, γ ) from both sides of equality in Eq. (2), dividing by ∆τ

and letting ∆τ ↓ 0, we have the following:

W+

∆τ
(τ , Sτ , ρ, γ , 0) + ρV (τ , Sτ , ρ, γ ) − Vτ (τ , Sτ , ρ, γ )

= max
xτ

[f (xτ , Sτ ) + VS(τ , Sτ , ρ, γ ) · g(xτ , Sτ )]

s.t. S(τ ) = Sτ , hi(xτ , Sτ ) ≥ 0 for ∀i ∈ I, (3)

where W+

∆τ
is the right-derivative ofW with respect to ∆τ .
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The maximization problem on the right-hand side is a standard
problem and therefore can be solved with the standard method
using the Lagrangian. Letting the maximizing argument be x∗∗

τ , the
(planned) control schedule of a naïve agent is as follows:

x̃N(t; τ , Sτ , γ , ρ) =


x∗∗

τ for t = τ

xR(t, S(t), γ , T ) for t ∈ (τ , T ].

Note that x̃N(t; τ , Sτ , γ , ρ) for t > τ is simply a planned future
control. We distinguish this from the actual control of the naïve
agent at time τ , which we denote by xN(τ , Sτ , γ , ρ). In general,
we have xN(τ , Sτ , γ , ρ) = x̃N(t; τ , Sτ , γ , ρ) at t = τ , but
xN(τ , Sτ , γ , ρ) ≠ x̃N(t; τ , Sτ , γ , ρ) for t > τ .

In a special case where there is no binding constraint (i.e.,µN
i =

0 for i ∈ I), the first order condition for themaximization problem
in Eq. (3) is as follows:

fx(xτ , Sτ ) + VS(τ , Sτ , ρ, γ )gx(xτ , Sτ ) = 0. (4)

Eq. (4) permits the usual interpretation. That is, marginal gains
from increasing one unit of control are equal to the marginal cost
(as measured by the marginal decrease in the decision utility) via
marginal changes in the stock variable.

The difference between Eq. (4) and the first order conditions in
the standard dynamic programming model is the presence of the
decision discount rate ρ. As with the standard setting, the myopic
agent plans her future controls with the rational discount rate γ
because she believes she will behave like a rational agent. How-
ever, the stream of utility generated from her control schedule is
discounted with ρ when choosing her current control.

Several observations and cautions are in order. First, one should
note that the hedonic utility for the naïve agent is given by
U(xN(t, St , γ , ρ), τ , Sτ , γ ), and it is different from the decision
utility. Because the hedonic utility of the naïve agent is maximized
by the rational agent, the myopic agent generally takes a sub-
optimal control.

Second, note that the agent canmake a binding decision only for
the current controlwhen∆τ ↓ 0. Hence, the current control has no
first-order effect on S or U . This contrasts with other discrete-time
models of non-constant discounting, in which the current control
has a first-order impact on these variables and thus the present-
value of the stream of future instantaneous utility is directly al-
tered by the current control.

Third, the future plans for the rational and completely naïve
agents are identical. However, the control xR for the rational agent
is different from the control xN for the naïve agent because the
discount rates in their decision utility are different. Of course,
they coincide when ρ = γ and thus we have xR(τ , Sτ , γ ) =

xN(τ , Sτ , γ , γ ).
Fourth, the above discussion holds for autonomous problems

without any major modifications. One notable difference is that
the arguments τ in x,W andU will be unnecessary and the salvage
value function disappears from the equations.

Thus far, we have assumed that the completely naïve agent
is completely unaware of the myopia. This assumption may be
too strong, because the agent may be aware her myopia. Let us
therefore consider another extreme case inwhich the agent knows
exactly how she will behave in the future. Such a completely
sophisticated agent would, in principle, take her future behavior
as given, realizing that the future agent will choose the action so as
to maximize the decision utility instead of the hedonic utility.

Hence, the completely sophisticated agent would use ρ both to
plan her future controls and to choose the current control. In effect,
her behavioral pattern is the same as that of a rational agent, except
the relevant discount rate for choosing her behavior is ρ instead of
γ . In other words, a completely sophisticated agent with ρS

= r
(and γ S

≠ r) is observationally equivalent to a rational agent with
a rational discount γ R

= r in our model, unless we can directly

measure their hedonic utility. Thus, the control xS of a completely
sophisticated agent is given by xR(τ , Sτ , ρ), which does not have γ
in its argument.

Note that the hedonic utility of the sophisticated agent is
U(xR(t; τ , Sτ , ρ

S), τ , Sτ , γ
S), which obviously depends on γ S . In

contrast, the hedonic utility for an observationally equivalent ra-
tional agent is U(xR(t; τ , Sτ , ρ

R), τ , Sτ , ρ
R). Because r = ρR

≠ γ S ,
the hedonic utility of the sophisticated agent is not the same as that
of the observationally-equivalent rational agent. For a given ratio-
nal discount rate, the rational agent always achieves the highest
utility.

Completely naïve and sophisticated agents both take future be-
havioral patterns as given. The difference is the discount rate used
in the decision utility to plan their future controls. The completely
naïve agent incorrectly assumes that shewould use γ to choose her
future controls, whereas the completely sophisticated agent cor-
rectly uses ρ for that purpose. It would be natural to consider a
generalized myopic agent who uses the decision discount rate ρ
to choose the current control but uses the planning discount rate
ρ̂ ∈ [γ , ρ] to plan her future controls. The rational, completely
naïve and completely sophisticated agents are subsumed into this
generalized agent; a rational agent is the generalized agent with
γ = ρ = ρ̂, because she correctly predicts the discount rate she
uses to plan her future controls, which corresponds to her rational
discount rate. Similarly, the completely naïve agent corresponds to
the onewith γ = ρ̂, and the completely sophisticated agent corre-
sponds to ρ = ρ̂. Note that the current control chosen by the gen-
eralized agent is based on the limit of W (τ , Sτ , ρ, ρ̂, ∆τ ) as ∆τ ↓

0. Thus, themaximization problem that the generalized agent uses
to find her control is obtained by replacing γ with ρ̂ in Eq. (3).

Now, let us drop the assumption that τ is not a junction time
and consider the problem for a generalized agent when τ is a
junction time. The set of binding constraints changes at time τ ,
so VS does not exist in general. When VS does not exist, τ will
not be a junction time once Sτ is perturbed by a small amount
(otherwise A1 in Appendix A would be violated). This in turn
means that the right-derivativeV+

S and the left-derivativeV−

S exist.
Therefore, Eq. (3) holds even when τ is a junction time once VS is
replaced by a one-sided derivative. That is, we can use V+

S [V−

S ]

when Sτ+1τ approaches Sτ from above [below] as ∆τ ↓ 0. Thus,
when g(xτ , Sτ ) is strictly positive [negative], we can replace VS in
Eq. (3) by V+

S [V−

S ]. When g(xτ , Sτ ) = 0, the term VS · g · ∆τ drops
out as ∆τ ↓ 0. We can now rewrite Eq. (3) for a generalized agent
allowing for the possibility of junction time as follows:

W+

∆τ
(τ , Sτ , ρ, ρ̂, 0) + ρV (τ , Sτ , ρ, ρ̂) − Vτ (τ , Sτ , ρ, ρ̂)

= max
xτ


f (xτ , Sτ ) + g(xτ , Sτ )

·

V+

S (τ , Sτ , ρ, ρ̂) · Ind(g(xτ , Sτ ) > 0)

+ V−

S (τ , Sτ , ρ, ρ̂) · Ind(g(xτ , Sτ ) < 0)


s.t. hi(xτ , Sτ ) ≥ 0 for ∀i ∈ I (5)

when there is no binding constraint and τ is not a junction time,
we have the following generalization of the first order condition in
Eq. (4), which is applicable to the case of a generalized agent:

0 = fx(xτ , Sτ ) + VS(τ , Sτ , ρ, ρ̂) · gx(xτ , Sτ ). (6)

By solving Eq. (5), we can again find the control xG(τ , Sτ , ρ, ρ̂)
for the generalized agent at time τ . Note here that the ratio-
nal discount rate γ does not enter into xG. Plugging xG into
the definition of hedonic utility, we have the hedonic utility
U(xG(t, St , ρ̂, ρ), τ , Sτ , γ ).

In principle, solving for xG is straightforward, especially when
there is no binding constraint. We can first find the control for
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the rational agent whose rational discount rate is ρ̂. We can then
calculate the value function V and solve the first order condition
Eq. (6). By plugging into the transition function the control ex-
pressed as a function of the stock and time, we obtain a differential
equation for the stock. Solving this, we find the time-evolution of
the stock, which in turn allows us to find the time-evolution of the
control. It is also straightforward to calculate the hedonic utility.

It is often the case, however, that an analytic solution does not
exist. In this case, we need to find the solution numerically. Our
model is convenient for numerical simulation as well because we
can simulate the time-evolution of state and control in a forward-
looking manner.

That is, we first identify (an approximant of) the control for
each state for the completely sophisticated agent whose planning
discount rate is ρ̂ using a standard numerical method. Second, we
numerically calculate the value function V for the myopic agent at
τ = 0. Third, we find the numerical derivative of V with respect to
the (initial) stock. Fourth, we solve for the control at time τ = 0 by
plugging VS in Eq. (6). Fifth, substituting the initial control in the
transition function, we calculate the new stock after a sufficiently
small period of time. Sixth, taking the new stock as the initial stock,
we advance the time by one time step. Repeating the same process
until T , we can find the time-evolution of the stock and control.

Notice that a solutionmethod like this is invalid in the standard
quasi-hyperbolic discounting model, because the control for each
time period must be calculated by backward induction and the
hedonic utility must be recalculated each time we go back in time
by one period. Further, there is no obvious method of computation
in the quasi-hyperbolic discounting model when the time horizon
is infinite. If the time horizon is finite but free, backward induction
may be computationally demanding, if not impossible, because
there may be multiple candidate terminal time periods, in which
case we need to conduct backward induction for each candidate.
In contrast, the time horizon can be free or arbitrarily long in our
model, though the computational errors tend to increase when the
time horizon is longer.

While we have taken T as fixed so far, our discussion holds only
with a minor modification even when T is free and there is a ter-
minal condition for the management problem. For example, the
agent’s resourcemanagement problemmay disappear once the re-
source is exhausted (i.e., S(T ) = 0). In this case, the terminal time
is a choice variable, and the Lagrangian would include a term for
the terminal condition. The agent plans (predicts) her controls and
the terminal time T at the same time. Rational and sophisticated
agents correctly predict their future controls and the terminal time.
However, the planned (predicted) terminal time T̂ is generally dif-
ferent from the actual terminal time T for (partially) naïve agents.
T̂ depends on ρ̂, τ and Sτ , whereas T depends on ρ̂, ρ and S0. Also
note that the decision utility at time τ is dependent on T̂ but not
on T . The argument we used to derive Eq. (5) is still valid because
the current control xτ has no first-order effect on V through the
changes in T̂ . In the next section, we demonstrate the application
of our model to a non-renewable resource extraction problem and
highlight the difference between free T and fixed T cases.

3. Application to non-renewable resource extraction

As an illustration, let us consider the simple non-renewable re-
source extraction problem first considered by Hotelling (1931).
We use this example because it is well known and analytically
tractable. Further, both fixed T and free T are plausible in this prob-
lem. In this section,we analytically derive various agents’ behavior.
We provide a numerical example in the next section.

Suppose that an agent in the public sector (a social planner) is
responsible for managing a non-renewable resource (e.g., oil). She

wants to extract the resource over time tomaximize the social sur-
plus. To simplify the problem, we assume the marginal cost of ex-
traction is constant at c(≥ 0) and that the agent observes the stock
(e.g., oil in the ground) at each point in time. She faces a linear de-
mand curve d0 − b · (p(t) + c), where p(t)(≥ 0) denotes the eco-
nomic rent on one unit of the resource at time t , and d0, b and c
are positive constants. The agent chooses a non-negative amount
of extraction x(t) at each point in time. We also assume that there
is no salvage value of the stock and thus φ(·) = 0.

The instantaneous utility of the agent, or the social surplus at
time t , is given by f (x(t)) = (2ax(t)−x2(t))/2b, where a ≡ d0−bc
is assumed to be positive. The stock is depleted by the amount
extracted so that g(x(t)) = −x(t), where the control must satisfy
0 ≤ x(t) ≤ a by the non-negativity assumptions for the control
and the price. Further, we require that the stock variable is always
non-negative (i.e., S(t) ≥ 0). In what follows, we only consider the
cases where these constraints are not binding except at the end of
the planning horizon. When these constraints are not binding, the
stock must be scarce so that S0 < aT . Further, the stock must be
depleted at the end of the planning horizon and thus the terminal
condition is S(T ) = 0. Note that f and g are independent of the
stock level in this problem.

As in the previous section,we beginwith a fixed T and a rational
agent. The rational agent’s problem is a standard non-renewable
resource extraction problem. That is, she wants to solve the fol-
lowing maximization problem.

V (τ , Sτ , γ , γ ) ≡ max
x(t)

 T

τ

2ax(t) − x2(t)
2b

e−γ (t−τ)dt

s.t. Ṡ = −x(t), S(τ ) = Sτ . (7)

Hence, we can use the standard technique of optimal control to
solve the problem. The solution to this problem is as follows:

xR(t; τ , Sτγ ) = a −
γ (a(T − τ) − Sτ )

eγ (T−τ) − 1
eγ (t−τ) and (8)

V (τ , Sτ , γ , γ ) =
1

2bγ


a2(1 − e−γ (T−τ))

−
γ 2(a(T − τ) − Sτ )

2

eγ (T−τ) − 1


. (9)

Now, let us consider the problem of the generalized agent with
the rational discount rate γ , decision discount rate ρ and planning
discount rate ρ̂. Her planned control at time t > τ is given by
xR(t; τ , Sτ , ρ̂). Hereafter, we assume that ρ ≠ 2ρ̂ to keep our
presentation simple.4 The decision of the generalized agent is
based on the following present-discounted value of the stream of
future instantaneous utility evaluated under the decision discount
rate:

V (τ , Sτ , ρ, ρ̂) =

 T

τ

f (xR(t; τ , Sτ , ρ̂))e−ρ(t−τ)dt

=
1
2b


a2(1 − e−ρ(T−τ))

ρ

+
ρ̂2(a(T − τ) − Sτ )

2(1 − e(2ρ̂−ρ)(T−τ))

(eρ̂(T−τ) − 1)2(2ρ̂ − ρ)


.

One can easily verify that this is an extension of Eq. (9) by setting
γ = ρ = ρ̂. The first order condition Eq. (6) gives us (a − x)/b =

VS(τ , Sτ , ρ, ρ̂). Therefore, taking the partial derivative of V with

4 Even when ρ ≠ 2ρ̂, our results hold as a limiting case when ρ − 2ρ̂ → 0.
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Table 1
The lifetime utility U(xG(0, S0, ρ̂, ρ), 0, S0, γ ) for various types of agents. In each cell, the label for
each agent is given in the top row, the lifetime utility for fixed T is given in the bottom left row and
the lifetime utility for free T is given in the bottom right row.

ρ̂ = 0.01 ρ̂ = 0.07 ρ̂ = 0.20 ρ̂ = 0.50

ρ = 0.01 R – – –
4.7106 6.7164

ρ = 0.07 N1 S1 – –
3.5948 3.1445 3.5613 3.9953

ρ = 0.20 N2 P1 S2 –
2.3247 1.5860 2.2267 2.0788 2.1460 2.1861

ρ = 0.50 N3 P2 P3 S3
1.3952 1.1120 1.2833 1.1450 1.1119 1.0470 0.9916 0.9918

respect to Sτ and plugging this in the first order condition,we have:

xG(τ , Sτ , ρ, ρ̂) = a +
ρ̂2(1 − e(2ρ̂−ρ)(T−τ))(a(T − τ) − Sτ )

(2ρ̂ − ρ)(eρ̂(T−τ) − 1)2
. (10)

By the transition equation,weknow that dS(τ )/dτ = −xG(τ , S(τ ),
ρ, ρ̂) holds. This differential equation can be solved analytically,
and we can express the time-evolution of the stock variable as
a function of t, S0, ρ̂ and ρ. The derivation of the analytic so-
lution is given in Appendix B. Plugging the stock variable back
in Eq. (10), we obtain the control as a function of time t, S0, ρ̂
and ρ, which in turn allows us to calculate the hedonic utility
U(xG(t, St , ρ, ρ̂), 0, S0, γ ). Thus, in the fixed T case, a closed-form
analytic solution can be obtained. As shown in Appendix C, xG is
increasing in ρ̂, a point which we get back to in the next section.

Now, let T be free and consider once again a rational agent.
In this case, T depends on her rational discount rate and the ini-
tial stock. Further, at each point in time, the remaining time until
the end of the planning horizon predicted by a rational agent de-
pends only on the rational discount rate and the remaining stock.
Hence, let the remaining time predicted by the rational agent be
r : S × R+ → R. r does not have τ in its argument because the
predicted remaining time does not depend on the calendar time at
which the prediction is made. For a rational agent, the predicted
remaining time is the same as the actual remaining time such that
the predicted terminal time T̂ satisfies T̂ ≡ r(Sτ , γ ) + τ = T for
∀τ ∈ T . Noting that the Hamiltonian evaluated at time T along the
optimal solution for Eq. (7) is zero, we have the following results:

xR(t; Sτ ,γ ) = a(1 − e−γ (r(Sτ ,γ )−t)) and

V (Sτ , γ ) =
a2

2bγ
(1 − e−γ r(Sτ ,γ ))2,

where r(Sτ , γ ) satisfies

Sτ = ar(Sτ , γ ) −
a
γ

(1 − e−γ r(Sτ ,γ )). (11)

Now, let us consider a generalized agent.We know that the control
plan for the general agent is given by xR(t; Sτ , ρ̂). Hence, we can
simply plug this in the definition of V to find the value function:

V (Sτ , ρ̂, ρ) =
a2

2b
·


1 − e−ρr(Sτ ,ρ̂)

ρ
+

e−2ρ̂r(Sτ ,ρ̂)
− e−ρr(Sτ ,ρ̂)

2ρ̂ − ρ


.

Hence, using the first order condition Eq. (6), we obtain

xG(Sτ , ρ, ρ̂) = a


1 −

ρ̂(e−ρr(Sτ ,ρ̂)
− e−2ρ̂r(Sτ ,ρ̂))

(2ρ̂ − ρ)(1 − e−ρ̂r(Sτ ,ρ̂))


. (12)

We do not have a closed-form solution for the time-evolution of x
or S because we do not have an analytic expression for r . However,
noting that dS(τ )/dτ = −xG(S(τ ), ρ, ρ̂), we have the differen-
tial equation of Sτ with respect to τ . This and the initial condition

S(0) = S0 allow us to follow the time-evolution of r in a forward-
looking manner.

It is important to keep inmind that r is the predicted remaining
time horizon based on the planning discount rate ρ̂. The actual
terminal time T (S0, ρ̂, ρ) atwhich the agent finishes extracting the
resource can be found by solving for T in S(T , S0, ρ, ρ̂) = 0. In
the next section, we demonstrate this distinction with a numerical
example.

4. Numerical example

In this section, we provide a numerical example of the non-
renewable resource extraction problem discussed in the previous
section. The purpose of this section is to show that a surprising
behavioral pattern can emerge under our simple model. In
particular, we find the extraction path is very different between
the fixed T and free T cases, a finding that is unexpected from the
constant discounting (‘‘rational’’) case.

We can set a = b = 1without loss of generality by changing the
units for the price and the stock. The ratio S0/ameasures the length
of time for which the resource lasts under open access, where we
take the unit of time to be a decade. We set S0 = 9 in this example.
The rational discount rate is set at γ = 0.01. We take 0.01, 0.07,
0.20 and 0.50 as the values of the decision and planning discount
rates to demonstrate the effects of various degrees of myopia.5 For
the fixed T case, we let T be 10 decades.

To compute the lifetime utility of the agent, we first discretize
the time, and compute the stock and control at each point in time
starting from τ = 0. We compute the time-evolution of the stock
using the fourth-order Runge–Kuttamethod for each type of agent.
We then evaluate the stream of instantaneous utility in themiddle
of the time step and sum over the entire planning horizon. We
set the time step to be small enough so that we have sufficiently
accurate numbers.6

In Table 1, we report the lifetime utility for various agents. In
the upper row of each cell, we give the label for each agent. For
example, the agent with ρ = 0.20 and ρ̂ = 0.07 is referred to as
P1 agent. We use the prefix R, N, S and P for rational, completely
naïve, completely sophisticated and partially naïve (and partially
sophisticated) agents, respectively. In the lower row of each cell,
the lifetime utility for the fixed T (left) and free T (right) are
reported. For example, P1’s lifetime utility is 2.2267when T is fixed
and 2.0788 when T is free.

There are three points worth noting here. First, we are not
interested in the magnitude of the lifetime utility per se, but we

5 These values are 0.10, 0.68, 1.84, and 4.14% per annum, which are similar to the
discount rates used in various other studies.
6 The time step we use is at most 10−6 decades for all of the cases we considered.

We compare the calculated figures with the analytic solution whenever possible
and the comparison suggests that the reported figures are sufficiently accurate.
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can take it as a convenient summary statistic. We know that
the rational agent’s behavior maximizes the hedonic utility by
construction. Further, the control chosen by the rational agent is
Pareto-efficient in the sense that it is not possible to increase the
hedonic utility for any self without decreasing the hedonic utility
of at least one other self. Thus, the lifetime utility provides a useful
benchmark for welfare comparison.

Second, the agent’s lifetime utility depends on whether T is
fixed or free. The difference is particularly large for the rational
agent. R agent takes 45.651 decades to deplete the resource when
T is free, but she is forced to deplete the resource in 10 decades
when T is fixed. As a result, her lifetime utility is much lower when
T is fixed. However, it is not always the case that the free T gives
a higher lifetime utility. For N3 agent, fixed T is better because her
myopia is so strong that she would deplete resources too quickly
if T is free. Hence, she is better off when she is forced to deplete
the resource within a fixed amount of time because the fixed T
provides an implicit commitment device for myopic agents.

Third, given the level of myopia, it is not obvious whether the
sophisticated agents perform better than the naïve agents. In fact,
whether T is fixed or free also changes whether knowing thyself
(i.e., being sophisticated) is a good thing. When T is fixed, naïve
agents do better than sophisticated agents. For example, for agents
with ρ = 0.20, N2 has the highest lifetime utility followed by P1
and S2 under the fixed T . When T is free, however, the converse is
true. For agentswithρ = 0.50, the situation is not as simple.When
T is fixed, N3 does better than P2, P3 and S3. However, when T is
free, P2 has the highest utility followed by N3, P3 and S3.

To make sense of this result, let us first consider a sophisticated
agent in the fixed T environment. Her future controls are chosen
to maximize the stream of instantaneous utility evaluated at her
planning discount rate ρ̂ = ρ. Now, suppose that she suddenly
becomes a naïve agent (i.e. ρ̂ changes from ρ to γ (< ρ)). Then,
her future planned controls will no longer maximize the stream
of instantaneous utility discounted to the present-value by ρ. As a
result, the marginal decision utility VS of stock will become higher.
This in turn leads to a slower resource extraction by the (naïve)
agent in the current period as formally shown in Appendix C. This
helps the naïve agent to extract the resources more smoothly over
time than the sophisticated agent. As a result, the naïve agent
enjoys a higher lifetime utility than the sophisticated agent.

The above argumentmay still hold when T is free. However, we
also need to take the opposite effect into consideration. When the
agent is naïve, her predicted remaining time r is much longer than
for the sophisticated agent with the same ρ. Because the rational
agent extracts resources very slowly, the naïve agent also plans
to do so. This means that a marginal increase in the stock will
translate into a small increase in extraction averaged over a long
time horizon. Hence, the currentmarginal value of stock VS may be
smaller for a naïve agent than a sophisticated agent. Therefore, the
naïve agent may extract more in the current period and decrease
her lifetime utility as a result.

Let us now look at the time evolution of the control and stock
variables for both cases. As Fig. 1(a) shows, the differences in the
trajectory of S(τ ) across different types of agents are small when T
is fixed. This is not very surprising given that the planning period
is relatively short, even though the discount rate varies among
agents. Fig. 1(b) shows the time evolution of S(τ ) when T is free.
We restricted the time domain for this graph to clearly present the
differences in controls among the agents. Unlike the fixed T case,
the trajectories look very different across different types.Whenwe
look at the control x(τ ), the differences among agents are sharper.
For the fixed T case, when ρ is close to γ , S1 and N1 agents behave
in a similarmanner. However,whenρ gets larger, their controls are
strikingly different. N3 agents start with less resource extraction
because S(τ ) does not decline as fast as S3, as shown in Fig. 2(a).

Fig. 1. Graph of S(τ ) for selected types of agents (a) when T is fixed (top) and (b)
when T is free (bottom).

When T is free, the controls for the naïve and sophisticated
agents are quite different even when ρ is small as shown in
Fig. 2(b). The control for naïve agents declines much more rapidly
than for sophisticated agents. This is due to the time-inconsistency
of naïve agents. For example, N3’s control starts below S3’s control
because N3 thinks that she will extract the resources very slowly.
In reality, however, N3 keeps x(τ ) over 0.9 until just before the
stock is depleted. The degree ofmyopia is so high that the graphs of
x(τ ) for S3 and N3 cross each other twice. The time-inconsistency
of myopic agents can clearly be seen in Fig. 3. The horizontal
axis measures the actual time τ elapsed, whereas the vertical
axis measures the predicted terminal time T̂ (τ , Sτ , ρ̂) at time τ .
When the graph hits the diagonal 45° line, the extraction ends.
The rational and sophisticated agents are time-consistent and thus
have a horizontal graph of T̂ . In contrast, T̂ declines over time
for naïve agents because they extract resources faster than they
planned. Table 2 gives the predicted extraction time r(S0, ρ) at
time τ = 0 (left) and the actual duration of extraction (right). These
results indicate that themyopia considered in this study cannot be
simply assumed away, particularly when T is free.

To underscore this point, we also look at the problem from a
different angle. Assume that we can observe the control xOτ and
stock SOτ at time τ . Then,we can find the observationally equivalent
rational discount rate γ̃ (τ ) for time τ that is consistent with these
observations such that xOτ = xR(t, SOτ , γ̃ (τ )). One may expect that
γ̃ (τ ) should be somewhere between γ and ρ for ∀t ∈ T . This is
indeed the case when τ is fixed as shown in Fig. 4(a). Surprisingly,
however, this is not the case when τ is free as shown in Fig. 4(b).
γ̃ (τ ) can bemuch higher than ρ towards the end of the extraction,
which implies that the agent would show increasingly impulsive
behavior.
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Table 2
The predicted terminal time T̂ at time τ = 0 and the actual terminal time for all types of agents.

ρ̂ = 0.01 ρ̂ = 0.07 ρ̂ = 0.20 ρ̂ = 0.50

ρ = 0.01 R – – –
45.651 45.651

ρ = 0.07 N1 S1 – –
45.651 16.128 19.684 19.684

ρ = 0.20 N2 P1 S2 –
45.651 11.152 19.684 13.204 13.676 13.676

ρ = 0.50 N3 P2 P3 S3
45.651 9.744 19.684 10.497 13.676 10.870 10.992 10.992

Fig. 2. Graph of x(τ ) for selected types of agents (a) when T is fixed and (top) (b)
when T is free (bottom).

Fig. 4(b) shows that when T is free, γ̃ changes dramatically over
time and may far exceed ρ. In fact, γ̃ may become so high that an
implausible rate of time preference could be inferred from obser-
vations under the assumption that the agent is rational. Hence, we
cannot find a rational agent that appropriately approximates the
behavior of the generalized agent when T is free. This is true even
when the difference between the myopic discount rate and the ra-
tional discount rate is small.

This finding is strikingly different from Fujii and Karp (2008),
in which the behavior of non-constant discounter can be well
approximated by a constant discounter, even when the agent is
highly present-biased. This is because Fujii and Karp (2008) use a
model with an infinite time horizon and thus the agent does not
suffer from the wrong projection of the terminal time. In contrast,
our naïve agent consistently overestimates T̂ and heavily discounts
the distant future utility at the time of decision-making. This leads
to implausibly high observationally-equivalent discount rates.

Our numerical results offer some policy implications. Imagine
that a government wants to sell resource extraction permits to
agents who may be myopic. The government has an option to sell
the permit with or without expiration. The decision of which op-
tion is betterwould depend on the degree of the agents’myopia. By

Fig. 3. The graph of T̂ (τ , Sτ , ρ̂) against the time τ for all types of agents.

comparing the total lifetime utility reported in Table 1, we can see
which options are more desirable for which agents. It should be
obvious that the free T is always desirable for the rational agent.
Indeed, according to our model, this is the case for all the sophis-
ticated agents as well but not others. This suggests that, when it is
likely that the agents aremore or less ignorant of their ownmyopia,
the government should sell the extraction permits with expiry.

Why, then, are naïve agents better offwith the expiry? The basic
logic is similar to the theory of second best; the government may
be able to improve social welfare by imposing a regulation when
there is a pre-existing distortion,where the distortion in thismodel
ismyopia. The interpretation of the situation, however, depends on
how the nature of myopia is understood. If we interpret the naïve
agents as ultra-optimistic, the logic is as follows. When there is no
expiry, current action is not so important because they think there
is a long time to go, during which time they believe will behave
like their ideal self. When there is an expiry, they know they do not
have a lot of time to make up for the current excessive extraction.

If the naïve agents are considered paranoiac, on the other hand,
the period of sub-optimal extraction from the perspective of the
decision utility is long without an expiry. This in turn means that
the marginal decision utility from current consumption is higher
when there is no expiry. This leads to the rapid depletion of
resource.

If we adopt this second interpretation, the results are akin to
the Green Paradox, where the owner of the resource accelerates
her extraction activitywhen a decline in the value of the resource is
expected. The governmentmaywant to sell permitswithout expiry
in the expectation that the buyer maintain the resource for a long
period of time. However, this could have an effect opposite to the
expectation because the naïve (and paranoiac) agents extractmore
today to reduce the influence of restriction.

5. Discussion and conclusions

In this study, we developed a model of myopia with an
applications to non-renewable extraction. Our model is related
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Fig. 4. Graph of the observationally equivalent rational discount rate γ̃ (τ ) against the time τ for all types of agents (a) when T is fixed (left) and (b) when T is free (right).

to the standard quasi-hyperbolic discounting model. However, in
contrast to the standardmodel, the agent can commit to her control
only for an infinitesimal period of time in our model. Unlike the
standard model, the time-inconsistent behavior arises not from
ignorance of the present bias but from ignorance of the decision
discount rate. Our model is parsimonious, transparent, and both
analytically and numerically convenient. It allows us to describe a
variety of degrees of myopia. Although we applied our model to
a resource management problem because the commitment period
is typically very short relative to the time horizon of the problem,
the model is general and potentially applicable to many other
economic issues, including household saving and fiscal deficits.

Our results exhibit two features that do not appear in other
models. First, by explicitly modeling the process of planned future
controls, our model shows how the time-inconsistent agent ad-
justs her planning time horizon. For example, the model allows us
to present both the predicted and actual terminal time of extrac-
tion in Fig. 3. Such a feature does not appear in a typical standard
model, because T is typically fixed or infinite. Although the stan-
dard model can also incorporate such a feature, our model is more
convenient for application because we can simulate the trajectory
of the state and control in a forward-looking manner.

Second, our model does not suffer from the kind of multiplicity
of equilibria noted in Karp (2007), where there are multiple solu-
tions associated with a range of steady states. On the contrary, our
model can guarantee a unique solution with sufficient concavity in
f and g . This is an attractive feature for practical purposes because
the choice of solution is usually not obvious.

We applied our model to a simple non-renewable resource
extraction problem. This example offers some intriguing lessons.
First, knowing thyself – that is, the agent knows the decision
discount rate and use it for planning (i.e., ρ̂ = ρ) – does not always
constitute an advantage.We saw that when T is fixed, naïve agents
do better than the sophisticated ones. Naïve agents optimistically
think that they will behave like a rational agent, and this optimism
realizes itself. That is, optimism about the future leads the naïve
agents to conserve the resource and to smooth the extraction over
time. Hence, knowing thyself is harmful when T is fixed because a
bad future prospect will realize itself.

In contrast, knowing thyself can be helpful when T is free. The
agent may still benefit from optimism, but this is not always the
case. When the agent is naïve and thinks that she behaves like a
rational agent, her evaluation of the future stream of payoffs under
the myopic discount rate ρ is low because it involves the payoffs
in the distant future. Thus, the marginal gains from increasing
the current control relative to the marginal gains in the decision
utility from conserving the resource become higher when T is

free. As a result, naïve agents tend to extract resources faster than
sophisticated agents.

Appendix A. Conditions and assumptions for the model of
myopia

C1 λ̇(t) = −LS(t, x∗(t), S∗(t), λ(t), {µi(t)}i∈I).
C2 λ(T ) =

I
i=1 µi(T )hi

S(x
∗(T ), S∗(T )) + φS(S∗(T )) for ∀i ∈ I.

C3 Lx(t, x∗(t), S∗(t), λ(t), {µi(t)}i∈I) = 0 for ∀t ∈ [τ , T ].
C4 H(t, x∗(t), S∗(t), λ(t)) ≥ H(t, x(t), S∗(t), λ(t)) at each t ∈

[τ , T ] satisfying hi(x(t), S∗(t)) ≥ 0 for ∀i ∈ {1, . . . , I}.
C5 S∗(τ ) = Sτ .
C6 Ṡ∗(t) = g(x∗(t), S∗(t)) for ∀t ∈ [τ , T ).
C7 h(x∗(t), S∗(t)) ≥ 0 for ∀i ∈ I and t ∈ [τ , T ].
C8 S(t), Ṡ(t)λ(t) and λ̇(t) are continuous on [τ , T ] and continu-

ously differentiable on [τ , T ] \ J.
A1 There is a set of (0 ≤)K(< ∞) distinct points J ≡ {j1, . . . ,

jK } ⊂ [τ , T ] in time such that for ∀l ∈ {1, . . . , K} and ∀ϵ > 0,
there exists δl,ϵ ∈ R such thatB(jl) ≠ B(jl+δl,ϵ) and |δl,ϵ | < ϵ,
where B(t) ≡ {i ∈ I : hi(x(t), S(t)) = 0} is the set of binding
constraints. The sets J and B(·) may be empty.

A2 There exists a unique quadruple {x∗(t), S∗(t), λ(t), (µi)
I
i=1}

that maximizes Eq. (1) and satisfy C1–C7.

C1 and C2 above are the costate and transversality equations,
respectively. C3 is the complementary-slackness condition for the
inequality constraints. C4 is the optimality condition. C5–C7 simply
require that the initial condition, the transition equationGT

τ and the
constraint HT

τ are satisfied, respectively.
We assume that assumptions A1 and A2 are satisfied. A1 states

that there are at most a finite number of junction times at which
the set of binding constraints just changes. Under A2, the rational
agent’s control rule xR and the set of junction times J in A1 can
be defined uniquely. Oniki (1973) showed that the differentiability
condition C8 is satisfied under A2.

Appendix B. Stock and control for fixed T in Section 4

Here, we consider the time-evolution of the stock and control
for the general agent using Eq. (10) when T is fixed. We denote the
time remaining for extraction at time τ by r ≡ T − τ . Further, let
us define M ≡ ar − S(τ ), which is a measure of the scarcity of
the stock. It is the difference between the amount of stock when
the resource is not scarce and the actual remaining stock at time τ .
Using the transition equation, we have dS(τ )/dr = −dS(τ )/dτ =

xG(τ , Sτ , ρ̂, T , ρ). Then, subtracting a from both sides and dividing
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by M , Eq. (10) can be written as follows:

dM
dr

·
1
M

=
ρ̂2(e(2ρ̂−ρ)r

− 1)
(2ρ̂ − ρ)(eρ̂r − 1)2

.

Integrating over r and noting that e−ρ̂r < 1 for r > 0, we have

lnM =
ρ̂2

(2ρ̂ − ρ)


(e(2ρ̂−ρ)r

− 1)
(eρ̂r − 1)2

dr

= −
e(2ρ̂−ρ)r

− 1
ρ̂(eρ̂r − 1)

− r − ln(eρ̂r
− 1)

+
(ρ̂ − ρ)

ρ̂


e(ρ̂−ρ)r

1 − e−ρ̂r
dr

= −
e(2ρ̂−ρ)r

− 1
ρ̂(eρ̂r − 1)

− r − ln(eρ̂r
− 1)

+
(ρ̂ − ρ)

ρ̂

∞
k=0

e((ρ̂−ρ)−kρ̂)r

(ρ̂ − ρ) − kρ̂
+ A

= −
e(ρ̂−ρ)r

− 1
ρ̂(eρ̂r − 1)

− r − ln(eρ̂r
− 1)

+
(ρ̂ − ρ)e(2ρ̂−ρ)

ρ̂
F

1,

ρ

ρ̂
− 2,

ρ

ρ̂
− 1; e−ρ̂r


+ A, (∗)

where A ∈ R is a constant and F(a1, a2, a3; z) is a hypergeometric
function defined as follows:

F(a1, a2, a3; z) ≡

∞
k=0

Π k−1
l=0 (a1 + l) · Π k−1

l=1 (a2 + l)

Π k−1
l=1 (a3 + l)

·
zk

k!
.

Hence, letting r = T (i.e., t = 0), we have:

A = ln(aT − S0) +
e(ρ̂−ρ)T

− 1
ρ̂(eρ̂r − 1)

+ T + ln(eρ̂T
− 1)

−
(ρ̂ − ρ)e(2ρ̂−ρ)

ρ̂
F

1,

ρ

ρ̂
− 2,

ρ

ρ̂
− 1; e−ρ̂T


.

Plugging this back in Eq. (*) and solving for S(τ ), we can write the
stock as a function of S0, τ , ρ and ρ̂, which, in turn, allows us to
write the control as a function of S0, τ , ρ and ρ̂ using Eq. (10). �

Appendix C. Proof of ∂xG/∂ρ > 0

Define B ≡ 1 − e(2ρ̂−ρ)T (< 1) and C ≡ eρ̂T
− 1(> 0). Taking

the derivative of xG with respect to ρ̂, we have:

∂xG
∂ρ̂

=
2 ln(1 + C)Z

(ln(1 − B))2C3
(aT − S0),

where Z ≡ B ln(1−B)(C − ln(1+C))−C ln(1+C)(B+ ln(1−B)).
We prove ∂xG/∂ρ̂ > 0 by showing Z > 0. Note here that
C − ln(1 + C) > 0 for all C > 0. Therefore, if B < 0, we have
B ln(1 − B) > 0 and B + ln(1 − B) < 0 and thus we have Z > 0.

Now, suppose that we have 0 < B(< 1). To prove Z > 0 in this
case, it is useful to Taylor-expand Z with respect to B around B = 0

in the following manner:

Z =
1
T

∞
k=0

Bk

k!
·

∂kZ
∂Bk


B=0

=
1
T

∞
k=2

Bk

k
·


C ln(1 + C) +

k
k − 1

(ln(1 + C) − C)


.

Weprove Z > 0by showingD0(C) ≡ C ln(1+C)+k/(k−1)·(ln(1+
C) − C) ≥ 0 for C > 0 and k ≥ 2. To this end, first note D0(0) = 0
and D′

0(C) = ln(1+C)−C/((k−1)(1+C)) ≥ ln(1+C)−C/(1+

C) ≡ D1(C). Because D1(0) = 0 and D′

1(C) = C/(1 + C)2 > 0 for
C > 0, we haveD0(C) > 0 andD1(C) > 0 for C > 0 and k ≥ 2. �
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