
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

QoS based workflow scheduling on
heterogeneous resources

Hamid Arabnejad

MAP-i Doctoral Program in Computer Science

Supervisor: Jorge Manuel Gomes Barbosa

May 22, 2016



c© Hamid Arabnejad, 2015



QoS based workflow scheduling on heterogeneous
resources

Hamid Arabnejad

MAP-i Doctoral Program in Computer Science

May 22, 2016





Resumo

Os sistemas computacionais heterogéneos permitiram à comunidade científica um maior acesso ao
processamento e análise de dados das aplicações científicas, representadas em muitas aplicações
como workflows. Para obter um bom desempenho dos sistemas computacionais na execução destes
problemas, o mapeamento de tarefas a recursos e o seu agendamento, são operações essenciais e
cada vez mais exigentes. A execução eficiente de aplicações científicas pode ser obtida por um
mapeamento e agendamento ótimo das tarefas aos elementos de processamento. O problema
de mapeamento e agendamento é ainda mais complexo quando são considerados parâmetros de
Qualidade de Serviço (QoS) definidos pelo utilizador. Esta classe de problemas é conhecida como
sendo NP-Completo. Assim, uma parte substancial da investigação nesta área propõe algoritmos
meta-heurísticos e de pesquisa de domínio que permitem controlar a qualidade das soluções ger-
adas. Contudo, estas abordagens necessitam de tempos de processamento mais elevados de modo
a obterem bons resultados, muitas vezes próximo do ótimo, tornando-os de utilização limitada em
sistemas onde a decisão tem de ser tomada num intervalo restrito de tempo.

Esta tese investiga estratégias de gestão de recursos em sistemas de computação heterogéneos,
são apresentados várias heurísticas para mapeamento e agendamento de aplicações representadas
em workflow baseadas em parâmetros de qualidade de serviço. Genericamente, as estratégias
de mapeamento e agendamento podem ser classificadas em duas categorias principais: execução
individual e concorrente. Nesta tese ambas as classes são consideradas e são propostas novas
estratégias para cada uma dessas classes. A principal característica das estratégias propostas é a
baixa complexidade computacional, tornando viável a sua utilização na gestão de sistemas het-
erogéneos de elevado desempenho. Um outro factor chave considerado nesta tese consiste na
simulação baseada em dados reais de uma plataforma computacional. Foi utilizado o simulador
SIMGRID que implementa um modelo de rede de comunicações correspondente ao modelo teórico
bounded multi-port. Neste modelo, um processador pode comunicar com vários outros proces-
sadores em simultâneo, mas cada comunicação está limitada pela largura de banda e para qualquer
comunicação que ocorra em troços partilhados, a largura de banda é considerada partilhada. Este
esquema corresponde ao funcionamento das ligações TCP numa LAN. Para validação, as estraté-
gias propostas são comparadas com outros algoritmos do estado-da-arte, com os mesmos objetivos
e alguns de maior complexidade computacional de modo a demonstrar a relevância dos resultados
obtidos. Em termos dos objetivos do problema de mapeamento e agendamento, são considerados
dois parâmetros de QoS antagónicos, que são o tempo de execução e o custo da solução.

Resumidamente, as principais contribuições desta tese são: a) proposta de vários algoritmos de
baixo custo computacional, baseados em parâmetros de QoS, para o mapeamento e agendamento
de workflows em sistemas heterogéneos; b) utilização de um modelo real de sistema heterogéneo
na simulação; e c) apresentação de resultados para aplicações geradas aleatoriamente bem como
para aplicações do mundo real.
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Abstract

Heterogeneous computing systems have given the scientific community access to greater resources
for the execution and data analysis of scientific applications. To maximize performance in the
execution of these applications, often described as workflows, task scheduling has become an
essential, but highly demanding, tool. Efficient execution of scientific applications can be achieved
by optimal job assignment to the platform’s resources. The scheduling problem becomes even
more challenging when the user’s Quality of Service (QoS) requirements are considered objectives
of the scheduling problem. The scheduling problem is well known as NP-complete. Therefore,
most researchers in this field try to obtain a good solution by using meta-heuristic or search-based
approaches that allow the user to control the quality of the produced solutions. However, these
approaches usually impose significantly higher planning costs in terms of the time consumed to
produce good results, making them less useful in real platforms that need to obtain map decisions
quickly.

This thesis investigates strategies of resource management on heterogeneous computing sys-
tems and presents several heuristic approaches for the task scheduling of scientific workflow ap-
plications based on several Quality of Service (QoS) parameters. Generally, scheduling strategies
can be classified into two main categories: single and concurrent workflow scheduling. In this
thesis, both classes are considered, and new strategies are proposed for each class. The main
advantage of the proposed strategies that they feature low time complexities, making them more
useful in real platforms that need to obtain map decisions on the fly. Another key factor considered
in this thesis is simulation based on real platform parameters. We use the SIMGRID toolkit as the
basis for our simulation. SIMGRID provides a network model that corresponds to the theoretical
bounded multi-port model. In this model, a processor can communicate with several other pro-
cessors simultaneously, but each communication flow is limited by the bandwidth of the traversed
route, and communications using a common network link have to share bandwidth. This scheme
corresponds well to the behavior of TCP connections on a LAN. For validation purposes, each
proposed strategy is compared with other state-of-the-art algorithms, having the same objectives,
and some of them having higher time complexity, to highlight the relevance of the presented re-
sults. In terms of objectives of the scheduling problem, we consider two relevant and conflicting
QoS parameters, namely, time and cost.

Briefly, the main achievements of this thesis are the proposal of low-time complexity workflow
QoS-based scheduling algorithms on heterogeneous computing systems; the usage of a realistic
model of the computing platform with shared links, as occurs in a common heterogeneous comput-
ing infrastructure; and the presentation of results for randomly generated graphs and for real-world
applications.
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Chapter 1

Thesis Overview

1.1 Introduction

Heterogeneous computing can be defined as a range of different system resources that can be

locally or geographically distributed and that are utilized to execute computationally intensive ap-

plications. In recent years, heterogeneous computing environments have been utilized by scientific

communities to execute their scientific workflow applications. The growth of scientific workflows

has also spurred significant research in the areas of generating, planning and executing such work-

flows in heterogeneous computing environments. Recently, utility computing has been rapidly

moving towards a pay-as-you-go model, in which computational resources or services have dif-

ferent prices with different performance and Quality of Service (QoS) levels. In this computing

model, users consume services and resources when they need them and pay only for what they use.

Cost and time have become the two most important user concerns. Thus, the cost/time trade-off

problem for scheduling workflow applications has become challenging. Scheduling consists of

defining an assignment and mapping the workflow tasks onto available resources.

Scientific workflows are often large, consisting of thousands of individual tasks. Many such

applications contain a set of jobs and files as input or output requirement for job execution. To

achieve high performance for heterogeneous computing systems, it is essential to use a proper

scheduling algorithm for the allocation and assignment of a workflow application task to available

processors. Many complex applications in e-science and e-business can be modeled as workflows

[DBG+03]. A popular representation of a workflow application is the Directed Acyclic Graph

(DAG), in which nodes represent individual application tasks, and the directed edges represent

inter-task data dependencies. A fundamental issue is how the workflow application should be

executed on available resources in the platform in order to satisfy its objective requirements.

Task Scheduling is defined as a strategy to decide which (task selection) and where (processor

selection) each application task should be executed, and it determines how the input/output data

files are exchanged among them.

1



2 Thesis Overview

1.1.1 Motivation

The efficiency of executing parallel applications on heterogeneous computing systems critically

depends on the methods used to schedule the tasks of a parallel application. Therefore, the task

scheduling problem has been extensively explored by researchers in the past few decades.

The task scheduling problem is broadly classified into two major categories: Static Scheduling

and Dynamic Scheduling. In Static scheduling, all information about tasks—such as execution and

communication costs for each task and the relationship with other tasks—is known beforehand. In

dynamic scheduling, such information is unavailable, and decisions are made at runtime. More-

over, Static scheduling is an example of compile-time scheduling, whereas Dynamic scheduling

is representative of run-time scheduling. Static scheduling algorithms are universally classified

into two major groups, namely Heuristic-based and Guided Random Search-based algorithms.

Heuristic-based algorithms allow approximate solutions, often good solutions, with polynomial

time complexity. Guided Random Search-based algorithms also give approximate solutions, but

the solution quality can be improved by including more iterations, which therefore makes them

more expensive than the Heuristic-based approach. The Heuristic-based group is composed of

three subcategories: clustering, duplication and list-based scheduling [THW02]. In the case where

the scheduling objective is the minimization of the makespan, i.e., the total execution time of the

workflow application, clustering approaches try to reduce the communication time between tasks

by assigning them to the same processor. To achieve this goal, tasks are grouped in different clus-

ters, and all tasks in the same cluster must be executed in the same processor. Generally, clustering

scheduling algorithms are mainly proposed for homogeneous systems to form clusters of tasks that

are then assigned to processors. For heterogeneous systems, CHP algorithms [BR+04] and Triplet

[CJ01] have been proposed, but they have limitations in higher-heterogeneity systems. In duplica-

tion, approaches are suggested to reduce the total execution time by assigning a task to more than

one processor in order to reduce its communication time with its parents and, consequently, min-

imize the makespan of the application. The duplication approaches produce shorter makespans,

but they have two disadvantages: a higher time complexity, i.e., cubic, in relation to the number of

tasks, and the duplication of the execution of tasks, which results in more processor power used.

This is an important characteristic not only because of the associated energy cost but also because,

in a shared resource, fewer processors are available to run other concurrent applications. The

list-based scheduling algorithms, on the other hand, produce the most-efficient schedules, without

compromising the makespan and with a complexity that is generally quadratic in relation to the

number of tasks.

Considering the number of involved workflow applications in the scheduling problem, the

scheduling approach can be divided into two main classes: Single and Multiple. Makespan min-

imization is the most popular objective of scheduling problems. However, additional objectives

can be considered when scheduling workflows onto a heterogeneous computing system, based on

the user’s QoS requirements. If we consider multiple QoS parameters, then the problem becomes

more challenging. Many algorithms have been proposed for multi-objective scheduling, but in
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most of them, meta-heuristic methods or search-based strategies have been used to achieve good

solutions. However, these methods based on meta-heuristics or search-based strategies usually

impose significantly higher planning costs in terms of the time consumed to produce good results,

which makes them less useful in real platforms that need to obtain map decisions on the fly.

The quality of the scheduling approach is calculated by two main metrics: (a) producing good

results and (b) having low time complexity when employed by the scheduler in a realistic scenario.

Thus, it is a challenge to develop an efficient scheduling approach to produce good results with low

time complexity. These metrics have motivated us to develop QoS-based scheduling approaches

to produce good solutions with low time complexity.

1.1.2 Contributions

The efficient utilization of heterogeneous computing systems is mainly dependent on how applica-

tions are managed to execute on resources. This management largely entails scheduling (task-to-

processor) decisions that are made based on the incorporation of the execution platform resources

and application characteristics. The objective functions of a scheduling algorithm are defined

by the user, and the goal of the scheduling approach is to satisfy user-defined QoS parameters.

Our extensive investigation into scheduling problems produced several innovative approaches for

heterogeneous computing systems and are listed briefly below:

• In addition to the common QoS objective of minimizing the total execution time, time and

cost are considered here has the two main and conflicting objectives.

• For both single and multiple workflow application scheduling, new algorithms are proposed

as follows.

– For a single workflow scheduling subjected to minimizing the total execution time, a

new list-based and heuristic scheduling algorithm called Predict Earliest Finish Time

(PEFT) is proposed (chapter 3).

– For multiple workflow scheduling subjected to optimizing the turnaround time of each

application, a new heuristic scheduling algorithm called Fairness Dynamic Workflow

Scheduling (FDWS) for scheduling dynamical workflow applications is proposed. The

FDWS algorithm aims to reduce the individual turnaround time for each application,

as its objective to reflect the QoS experienced by the users (chapters 4 and 5).

– For a single workflow application subjected to minimizing execution time while con-

strained to a user-defined budget, a new heuristic algorithm named Heterogeneous

Budget Constrained Scheduling (HBCS) is proposed (chapter 6).

– For multiple workflow scheduling subjected to meeting budget constraints defined by

users and for each application optimizing the turnaround time, two generic strategies

for both task and processor selection phases for on-line scheduling of concurrent work-

flow applications are proposed (chapter 7).
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– For a single workflow application with time and cost constraint QoS parameters as the

scheduling objectives, a new and heuristic approach named Deadline–Budget Con-

strained Scheduling (DBCS) is proposed. The objective of the proposed DBCS al-

gorithm is to find a feasible schedule map that satisfies the user-defined deadline and

budget constraint values (chapter 8).

– A Multi-Workflow Deadline-Budget scheduling algorithm (MW-DBS) is proposed to

schedule multiple and concurrent workflow applications that may be submitted at dif-

ferent moments in time and with the individual user’s budget and deadline constraints.

The MW-DBS is able to increase the number of successful applications that met their

time and cost constraint values; however, from the service provider’s viewpoint, the

major issue is how much revenue is made. Thus, as an additional objective, the MW-

DBS is also designed to obtain higher revenue for the provider through a higher rate

of completed applications (chapter 9).

• The main issue considered in proposed strategies is time complexity, which determines the

ability to use these strategies in real systems. Most scheduling algorithms use search-based

or meta-heuristic strategies to achieve good solutions. However, these methods based on

meta-heuristics or search-based strategies usually impose significantly high planning costs

in terms of the time consumed to produce good results, which makes them less useful in real

platforms that need to obtain map decisions on the fly. In this thesis, all proposed strategies

are heuristic approaches that have low time complexity and yet obtain comparable results to

search-based or meta-heuristic approaches.

• To achieve greater accuracy in the results comparison, we used the SIMGRID toolkit1

[CLQ08] to afford a realistic simulation considering a bounded multi-port model in which

bandwidth is shared by concurrent communications.

1.1.3 Structure of the thesis

This thesis is organized in two main parts. In the first part, chapter 1 presents an overview of

the workflow scheduling problem. First, the application model, system model and QoS workflow

scheduling problem are described briefly. Then, the experimental environment used in this thesis

is explained. Next, a brief survey of the scheduling algorithm is presented. Finally, the main

contribution reached with this thesis is presented, and the last section of this chapter presents

future work.

In the second part, the set of articles produced under the scope of this thesis are presented

between chapters 2 and 9. This part contains eight articles that describe the work conducted in

detail, including the methodologies used, the results obtained and their discussion.

1http://simgrid.gforge.inria.fr
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1.2 Problem Statement

In this section, we present a brief description of the application model, the system model and the

QoS workflow scheduling problem.

1.2.1 Application Model

A typical workflow application can be represented by a Directed Acyclic Graph (DAG), a directed

graph with no cycles. A DAG can be modeled by a three-tuple G =< T,E,Data >. Let n be the

number of tasks in the workflow. The set of nodes T = {t1, t2, · · · , tn} corresponds to the tasks

of the workflow. The set of edges E represent their data dependencies. A dependency ensures

that a child node cannot be executed before all its parent tasks finish successfully and transfer

the required child input data. Data is a n× n matrix of communication data, where datai, j is the

amount of data that must be transferred from task ti to task t j. The average communication time

between the tasks ti and t j is defined as:

C(ti→t j) = L+
datai, j

B
(1)

where B is the average bandwidth among all processor pairs and L is the average latency. This

simplification is commonly considered to label the edges of the graph to allow for the computation

of a priority rank before assigning tasks to processors [THW02].

Due to heterogeneity, each task may have a different execution time on each processor. Then,

ET (ti, p j) represents the Execution Time to complete task ti on processor p j in available processors

set P. The average execution time of task ti is defined as:

ET (ti) =
∑p j∈P ET (ti, p j)

|P| (2)

where |P| denotes the number of resources in processors set P.

In a given DAG, a task with no predecessors is called an entry task and a task with no succes-

sors is called an exit task. We assume that the DAG has exactly one entry task tentry and one exit

task texit . If a DAG has multiple entry or exit tasks, a dummy entry or exit task with zero weight

and zero communication edges is added to the graph.

In addition to these definitions, next we present some of the common attributes used in task

scheduling, which will be used in the following sections.

• pred(ti) and succ(ti) denote the set of immediate predecessors and immediate successors of

task ti, respectively. FT (ti) is defined as the Finish Time of task ti on the processor assigned

by the scheduling algorithm.

• Schedule length or makespan denotes the finish time of the last task of the workflow and is

defined as makespan = FT (texit).
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• EST (ti, p j) and EFT (ti, p j): denotes Earliest Start Time (EST) and the Earliest Finish Time

(EFT) of a task ti on processor p j, respectively, and are defined as:

EST (ti, p j) = max
{

TAvailable(p j),

max
tparent∈pred(ti)

{AFT (tparent)+C(tparent→ti)}
}

(3)

EFT (ti, p j) = EST (ti, p j)+ET (ti, p j) (4)

where TAvailable(p j) is the earliest time at which processor p j is ready. The inner max block

in the EST equation is the time at which all data needed by ti arrives at the processor p j.

The communication time C(tparent→ti) is zero if the predecessor node tparent is assigned to

processor p j. For the entry task, EST (tentry, p j) = 0. Then, to calculate EFT , the execution

time of task ti on processor p j (ET ) is added to its Earliest Start Time.

The financial cost Cost(ti, p j) of executing task ti on specific processor p j, during the time

span of ET (ti, p j) is the sum of three cost components:

Cost(ti, p j) = EC(ti, p j)+TC(ti)+SC(ti) (5)

where EC(ti, p j) denotes the cost of running task ti on processor p j and is defined as EC(ti, p j) =

ET (ti, p j)×Price(p j) where Price(p j) denotes the processor price per time unit. TC(ti) denotes

the cost of transferring data required for task ti. In addition, SC(ti) denotes the data storage cost of

task ti. These cost components are determined by the target platform infrastructure.

TotalCost is the overall cost for executing an application and is defined as:

TotalCost = ∑
ti∈T

AC(ti) (6)

where AC(ti) is defined as Assigned Cost of task ti. After assigning a selected processor psel

to execute task ti, the assigned cost value is equal to AC(ti) = Cost(ti, psel). In the case of intra-

cluster data transfer, zero monetary costs for communications between tasks are considered, i.e

TC(ti) = 0. And also we considered zero cost for task storage usage, SC(ti) = 0, as this factor is

common to all algorithms and does not influence the comparison of results.

1.2.2 System Model

Basically, in the service-oriented architecture for the Heterogeneous Computing System, as shown

in Figure 1, applications can be submitted to the system by any user. The typical aim of this struc-

ture is to schedule tasks of each user workflow application to available resources based on the

user’s QoS (quality of service) demands. Submitted applications are collected by the Application
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Data Base (DB) with their specifications and QoS requirements. In this architecture, a Grid Sched-

uler (GS) receives applications from Application DB and generates a tasks-to-resource map for

each application based on their certain QoS objective requirements. To make a proper decision in

the resource selection strategy for each application’s task, GS needs information about the status

of the available resources. The Resource Service Information is responsible for observing and

collecting information about the current situation of resources, such as resource capacities, mem-

ory size, network bandwidth, availability, functionality and, especially, the available time slots for

processing tasks. The Globus Monitoring and Discovery System (MDS) [CFFK01] is an exam-

ple of Resource Service Information. In addition to resource information, application information

such as lists of ready-to-execute tasks and the user’s QoS requirements for each application are

also necessary for making a feasible schedule. The Ready Task pool module collects tasks that

are ready to execute among accepted workflow applications in application DB. A task is ready

when all required information is prepared, i.e., its parents are executed. Also, the QoS Parameter

module contains the users’ QoS requests for their workflow applications. These two modules are

used to select the task and related application at each step of the scheduling process. The Service

Executor module implements task assignment by submitting a task to the selected resource and by

monitoring task execution on resources; it then receives a notification of success or failure. The

Globus GRAM (Grid Resource Allocation and Management) [CFK+98] is a good example of a

service executor module.

SchedulerUsers

P
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r
a
m
e
t
e
r
s

Application DB

workflows 

specification

&

QoS requirements

Submit Applications

Task 

Scheduler

Available Time Slot

QoS

Parameter

Ready Tasks 

Pool

Resource

Service

Information

Resource Service Providers

Service

Executor

Figure 1: A General View of workflow Scheduler System

Finally, the main element of GS is the Task scheduler, which finds the suitable task-to-

processor map to execute each ready task based on its QoS attributes and detailed information

of each service.

1.2.3 QoS workflow scheduling

Workflow scheduling is the main issue in the management of workflow application execution on

heterogeneous computing systems. Given the workflow application model from section 1.2.1 and

the system model from section 1.2.2, workflow scheduling is defined as the process of ordering



8 Thesis Overview

tasks and mapping each task to a suitable processor to be executed, while satisfying the user’s

QoS objectives. An efficient scheduling algorithm can have a significant impact on the perfor-

mance of the platform system. In general, the scheduling problem belongs to a class of problems

known as NP-complete [CB76]. For this class of problems, finding the optimal solution is not

attainable, even with a meta-heuristic approach with polynomial time complexity. The problem

becomes even more challenging if we consider more than one QoS parameter to be optimized as

an objective function in the scheduling problem, as instead of a single schedule map, there will be

several solutions, such as a pareto-front with dominating solutions. Many scheduling algorithms

using a variety of approaches have been proposed. Usually, the algorithms using search-based or

meta-heuristic approaches try to find better or near-optimal solutions by increasing the number of

iterations or the searching domain, which results in a higher time complexity, making them less

useful in a real platform in which a quick answer is needed. On the other hand, heuristic strategies

give us an acceptable solution with low time complexity. However, designing heuristic approaches

to achieve acceptable solutions with low time complexity is a challenging problem.

To design a scheduling algorithm, the key factors are the QoS parameters. The meaning of

QoS is defined by each user individually and could be different based on the application type and

hardware capacity of the platform. The involvement of QoS as an objective in the scheduling strat-

egy may change the processor selection phase in the algorithm. For instance, the common QoS

objective of minimizing the total execution time makes selecting the processor with the earliest fin-

ish time for assigning a task a suitable strategy. But if the cost constraint is added to the problem,

this strategy needs to be improved to consider the cost consumption in each step of the processor

selection phase in order to meet the total cost constraint on the final solution. The final objec-

tive could be the optimization or constraint of QoS parameters in the scheduling problem. QoS

requirements such as time limits (deadline) or cost constraints (budget) for application execution

should be managed by workflow scheduling approaches. In [CSM+04], three QoS parameters,

namely, time, cost and reliability, were presented. Time is defined as the total time required to

complete the execution of a workflow application. Cost represents the charge of usage resources

for processing and executing the workflow application. Reliability is related to the number of

failures in the execution of workflow applications. In addition to these QoS parameters, which

are referred to as General QoS parameters in [PSL03], the authors introduced other types of QoS

parameters, namely, Internet-Service-Specific QoS parameters, such as availability, security and

accessibility.

In this thesis, we consider mainly time and cost as two conflicting QoS objectives.

1.3 Experimental Environment

In this section, we describe in detail the environment used in our research. Generally, the simula-

tion environment can be divided into two main parts: workflow structure and simulator.
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1.3.1 Workflow Structure

To evaluate the relative performance of the scheduling algorithms, in addition to workflow struc-

ture, which defines the task dependency, we need a model of task execution time on the processors.

This model should also be related to the type of available resources. Generally, it can be divided

into two main categories: consistent and inconsistent.

In the consistent model of resources, if a processor has the lowest execution time for one task,

then the same is true for any other task, but in the inconsistent model, the relationship among the

task’s computational requirements and machine capabilities are such that no structure such as that

in the consistent case is enforced. In a real grid infrastructure, both models can be seen. For a

complete evaluation on different data sets, in this thesis, we generated and used both types in our

published papers, as described next.

Inconsistent Model : Ali et al. [ASMH00] presented the expected time to compute (ETC) estima-

tion model, which has been widely used by researchers to evaluate scheduling algorithms.

The ETC matrix provides an estimation for the execution time of each task in a heteroge-

neous computing system, taking into account two key properties: Machine Heterogeneity

(MH) and Task Heterogeneity (TH). Machine heterogeneity evaluates the variation of exe-

cution times for a given task across the heterogeneous computing resources. Low machine

heterogeneity indicates a system with similar computing resources, while high machine

heterogeneity represents a system with different power capabilities. Task heterogeneity rep-

resents the variation in the task execution times for a given machine.

Consistent Model : In the consistent model, to evaluate the relative performance of the algo-

rithms, the synthetic DAG generation program2 is used for randomly generated workflows.

The computational complexity of a task is modeled as one of the three following forms,

which are representative of many common applications: a.d (e.g., image processing of a√
d×
√

d image), a.dlogd (e.g., sorting an array of d elements), d3/2 (e.g., multiplication of√
d×
√

d matrices), where a is selected randomly between 26 and 29. As a result, different

tasks exhibit different communication/computation ratios. The DAG generator program de-

fines the DAG shape based on four parameters: width, regularity, density, and jumps. The

width determines the maximum number of tasks that can be executed concurrently. A small

value will lead to a thin DAG, similar to a chain, with low task parallelism. A large value

will induce a fat DAG, similar to a fork-join, with a high degree of parallelism. The regular-

ity indicates the uniformity of the number of tasks in each level. A low value means that the

levels contain very dissimilar numbers of tasks, whereas a high value means that all levels

contain similar numbers of tasks. The density denotes the number of edges between two

levels of the DAG, where a low value indicates few edges and a large value indicates many

edges. A jump indicates that an edge can go from level l to level l + jump. A jump of one

is an ordinary connection between two consecutive levels.

2https://github.com/frs69wq/daggen
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1.3.2 Simulator

We resorted to simulation to evaluate the proposed algorithms in this thesis. Simulation allows

us to perform a statistically significant number of experiments for a wide range of application

configurations (in a reasonable amount of time).

We use the SIMGRID toolkit3 [CGL+14] as the basis for our simulation. SIMGRID is a simu-

lation framework for studying the behavior of large-scale distributed systems such as Grids, HPC

and P2P systems. SIMGRID provides the required fundamental abstractions for the discrete-event

simulation of parallel applications in distributed environments. It was specifically designed for the

evaluation of scheduling algorithms. SIMGRID is carefully designed to be scalable and extensible.

It is possible to run a simulation composed of 2,000,000 processors on a computer with 16GB of

memory [HLP15]. Relying on a well-established simulation toolkit allows us to leverage sound

models of a heterogeneous computing system, such as that described in Fig. 1. In many research

papers on scheduling, the authors assume a contention-free network model in which processors

can simultaneously send data to or receive data from as many processors as possible without

experiencing any performance degradation. Unfortunately, that model, the multi-port model, is

not representative of actual network infrastructures. Conversely, the network model provided by

SIMGRID corresponds to a theoretical bounded multi-port model. In this model, a processor can

communicate with several other processors simultaneously, but each communication flow is lim-

ited by the bandwidth of the traversed route, and communications using a common network link

have to share bandwidth. This scheme corresponds well to the behavior of TCP connections on a

LAN. The validity of this network model has been demonstrated in [VL09].

1.3.3 Heterogeneous Computing Systems

To execute complex workflows, a high-performance cluster or grid platform is typically used. As

defined in [BB99], a cluster is a type of parallel or distributed processing system that consists of a

collection of interconnected stand-alone computing nodes working together as a single, integrated

computing resource. A compute node can be a single or multiprocessor system with memory,

input/output (I/O) facilities, accelerator devices such as graphics processing units (GPUs), and an

operating system. A cluster generally refers to two or more computing nodes that are connected.

The nodes can exist in a single cabinet or be physically separated and connected via a local area

network (LAN). Figure 2 illustrates a conceptual cluster architecture.

The target heterogeneous computing system can be as simple as a set of devices (e.g., central

processing units (CPUs) and GPUs) connected by a switched network that guarantees parallel

communication between different pairs of devices. The machine is heterogeneous because CPUs

can be from different generations, and other very different devices, such as GPUs, can be included.

Another common machine is one that results from selecting processors from several clusters at the

same site. Although a cluster is homogeneous, the set of processors selected form a heterogeneous

machine. The processor latency can differ in a heterogeneous machine, but such differences are

3http://simgrid.gforge.inria.fr
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Figure 2: Conceptual cluster architecture.

negligible. For low communication-to-computation ratios (CCRs), the communication costs are

negligible; for higher CCRs, the predominant factor is the network bandwidth, and, as mentioned

above, we assume that the bandwidth is the same throughout the entire network. Additionally, the

execution of any task is considered nonpreemptive.

To make our simulations even more realistic, we consider platforms derived from clusters

in the Grid5000 platform deployed in France4 [CCD+05]. Grid5000 is an experimental testbed

distributed across 10 sites and aggregating a total of approximately 8,000 individual cores. Table

1 gives the name of each cluster along with its number of processors, processing speed expressed

in GFlop/s and heterogeneity. Each cluster uses an internal Gigabit-switched interconnect. The

heterogeneity factor (h f ) of a site is determined by the ratio between the speeds of the fastest and

slowest processors.

This approach allows us to have heterogeneous configurations that correspond to a set of re-

sources a user can reasonably acquire by submitting a job to the local resource management system

at each site.

1.4 Scheduling Algorithm Taxonomy

Workflow scheduling has been extensively investigated. Considering the number of workflow

applications in the scheduling problem, the scheduling strategies can be classified into two main

classes: Single and Multiple workflow scheduling. In terms of time complexity, workflow schedul-

ing strategies have been proposed under two main categories: heuristic and search-based or meta-

heuristic approaches. The heuristic-based algorithms allow approximate solutions—often good

solutions, but not necessarily the best ones—with low time complexity. On the other hand, search-

based or meta-heuristic algorithms may achieve better solutions by performing more iterations,

which results in higher running time than heuristic methods. In this section, we present a brief

survey of task scheduling algorithms.

4http://www.grid5000.fr
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Site Name Cluster Name Number of CPUs Power in GFlop/s Site Heterogeneity

grenoble

adonis 12 23.681

h f = 1.12edel 72 23.492

genepi 34 21.175

rennes

paradent 64 21.496

h f = 2.34
paramount 33 12.910

parapluie 40 27.391

parapide 25 30.130

lille

chicon 26 8.9618

h f = 2.73
chimint 20 23.531

chinqchint 46 22.270

chirloute 8 24.473

nancy
graphene 144 16.673

h f = 1.24
griffon 20 20.678

sophia

helios 56 7.732

h f = 3.04sol 50 8.939

suno 45 23.530

lyon
capricorne 56 4.723

h f = 1.20
sagittaire 79 5.669

bordeaux

bordeplage 51 5.229

h f = 2.55bordereau 93 8.892

borderline 10 13.357

Table 1: Description of the Grid5000 clusters

1.4.1 Single workflow scheduling

Single workflow scheduling algorithms are designed to schedule only a single workflow at a time.

If all information about tasks such as execution and communication costs for each task and the

relationship with other tasks are known beforehand, the scheduling method is categorized as a

Static scheduling strategy; if such information is not available and decisions are made at runtime,

it is categorized as a Dynamic scheduling strategy. Dynamic scheduling is adequate for situations

where the system and task parameters are not known at compile time, which requires decisions

to be made at runtime but with additional overhead. A sample environment is a system where

users submit works, at any time, to a shared computing resource [MAS+99]. In this situation,

a dynamic algorithm is required because the workload is only known at runtime, as is the status

of each processor when new tasks arrive and, consequently, cannot optimize any QoS parameters

based on the entire workflow. By contrast, a static approach can optimize or be constrained to QoS

parameters, which are defined as schedule objectives or constraints, by considering all tasks inde-

pendently of execution order or time because the schedule is generated before execution begins.

In this thesis, in the case of single workflow scheduling, we consider that the information about

the system and the workflow are known at compile time. Generally, the scheduling algorithms for

a single workflow contain three main phases: the prioritizing phase, to give a priority to each task;

the task selection phase, which selects a task for scheduling; and the processor selection phase,

for selecting a suitable processor in order to meet the schedule objective functions. The last two
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phases are repeated until all tasks are scheduled to suitable processors. The scheduling problem is

further characterized as single- or multi-objective, as one or two QoS parameters are considered

objectives.

1.4.1.1 Time-Optimization

In general, the primary goal of the scheduling algorithms for single workflow applications on het-

erogeneous computing systems is reducing the execution time, also called makespan. One of the

most well-known heuristics, proposed in [THW02], named HEFT (Heterogeneous Earliest Fin-

ish Time), generates a schedule length comparable to those of other scheduling algorithms for a

bounded number of heterogeneous processors, with a lower time complexity. HEFT uses an up-

ward rank that represents the length of the longest path from each task to the exit node, including

the computational cost of the task, to assign a rank value to each task in the workflow. Then,

the task list is ordered by decreasing value of upward rank, and, in each step of the processor

selection phase, the task on top of the task list is assigned to the processor that allows for the

Earliest Finish Time. In [LSZ09], an adaptive dual-objective scheduling (ADOS) algorithm was

proposed as a new semi-dynamic scheduling heuristic that takes into account both the makespan

and resource usage. ADOS generates a random schedule as an initial solution, and by changing

the initial assignment, tries to improve the makespan and/or resource usage. Additionally, during

the workflow execution, if a task finishes later than expected, it uses a rescheduling strategy for

the remaining jobs that are not yet running, so that the practicality of ADOS is increased. The

AHEFT [YS07] algorithm is an HEFT-based adaptive rescheduling algorithm that consists of two

major parts. First, AHEFT generates a schedule map based on the original HEFT scheduling algo-

rithm. In the second part, AHEFT monitors the execution of the tasks. In this monitoring part, if

significant events, such as joining and disjoining of resources to the grid resource pool, happened

in the execution phase, the rescheduling phase tries to adapt to these new conditions in order to re-

duce the total makespan. The authors in [Kha12] proposed the CEFT (Constrained Earliest Finish

Time) algorithm, which is based on the concept of constrained critical paths (CCPs). CEFT finds

the CCPs in a given workflow, and by assigning and scheduling all tasks in each CCP on the same

processor, it tries to reduce the communication costs between tasks in the workflow application. In

[CJW+08, CJW+10], the authors proposed a scheduling algorithm called DAGMap, which con-

sists of three phases: prioritizing, grouping and independent task scheduling. In the priority phase,

DAGMap calculates the upward and downward rank for each task and, based on these rank values,

determines the set of critical tasks. In the grouping phase, tasks are grouped by the upward priority

and dependency relationship, while tasks in the same group are kept independent. Finally, in the

task scheduling phase, it first calculates the Heterogeneity Factor (HF) to indicate the execution

time deviation among independent tasks and then, based on the HF value for each task, DAGMap

adopts the Max-Min or the Min-Min strategy to determine the target processor for the task. The

authors in [HJ03] proposed the Heterogeneous Critical Parent Trees (HCPT) algorithm, which

contains two main phases: listing tasks and processor assignment. In the first phase, the algorithm

starts with an empty queue L and an auxiliary stack S that contains the critical path node pushed
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in decreasing order of their Average Latest Start Time (ALST ) value, i.e., the entry node is on top

of S. Consequently, top(S) is examined. If top(S) has an unlisted parent (i.e., has a parent not

in L), then this parent is pushed on the stack S. Otherwise, top(S) is popped and enqueued into

L. In the processor assignment phase, the algorithm tries to assign each task ti ∈ L to a processor

p j that allows the task to finish its execution as early as possible. The HPS algorithm proposed

in [ITM05] has three phases, namely, level sorting, task prioritization and processor selection. In

the level sorting phase, the given workflow is traversed in a top-down fashion to sort tasks at each

level in order to group the tasks that are independent of each other. As a result, tasks in the same

level can be executed in parallel. In the task prioritization phase, priority is computed and assigned

to each task using the attributes Down Link Cost (DLC), Up Link Cost (ULC) and Link Cost (LC)

of the task. The DLC of a task is the maximum communication cost among all the immediate

predecessors of the task. The DLC for all tasks at level 0 is 0. The ULC of a task is the maximum

communication cost among all the immediate successors of the task. The ULC for an exit task is

0. The LC of a task is the sum of DLC, ULC and maximum LC for all its immediate predeces-

sor tasks. At each level, based on the LC values, the task with the highest LC value receives the

highest priority, followed by the task with the next highest LC value and so on in the same level.

In the processor selection phase, the processor that gives the minimum earliest finish time for a

task is selected to execute that task. In [SZ04], the authors proposed a hybrid version of the HEFT

scheduling algorithm. First, all tasks are sorted by their upward rank value in descending order.

Then, tasks are divided into independent task groups. Then, by using the Balanced Minimum

Completion Time (BMCT) strategy, the independent groups are scheduled. The BMCT strategy

has two phases: in the first phase, it assigns all tasks to the processor that gives the earliest finish

time; in the second phase, by changing the initial assignment, it tries to reduce the total execution

time for a given workflow application. The Lookahead scheduling algorithm [BSM10] is based on

the HEFT algorithm, and its main feature is its processor selection policy. To select a processor

for the current task t, it iterates over all available processors and computes the earliest finish time

for the child tasks on all processors. The processor selected for task t is the one that minimizes the

maximum earliest finish time from all children of task t on all resources where task t is tried. This

procedure can be repeated for each child of task t by increasing the number of levels analyzed. In

addition to these heuristic approaches for workflow scheduling with makespan optimization as an

objective function, there are other proposed approaches that are used in different strategies, such as

duplication methods to decrease communication costs or using high time complexity approaches

such as search-based or meta-heuristic to achieve the best or near-optimal solutions. However,

their higher time complexity makes them less useful in a realistic platform, where a quick decision

is needed.

The scheduling problem becomes more challenging when two or more QoS parameters are

considered. In this case, the scheduling algorithm tries to find a suitable schedule map between

the workflow’s tasks and available resources in order to meet its objective function, which could

be to optimize or to constrain the problem to a single or multiple QoS parameters. Time, cost,

energy and reliability are commonly considered QoS parameters in recent research work in this
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area. In this thesis and in the proposed algorithms, time and cost are two QoS parameters we

considered as objective functions or constraints on the scheduling algorithms. Therefore, in the

following paragraphs, the related work is classified based on these two QoS parameters.

1.4.1.2 Cost-Optimization, Deadline-Constraint

In [YLW07], Yuan et al. proposed a time-cost tradeoff dynamic heuristic scheduling strategy to

optimize the cost and time of the whole workflow. During the scheduling, all ready tasks are par-

titioned into n ready lists that contain independent tasks and that can be executed in parallel. The

algorithm identifies time-critical and cost-critical tasks in each ready list. The appropriate proces-

sor is selected as follows: the time-critical tasks can be completed by the processor with the lowest

finish time, and the cost-critical tasks can be executed on the cheapest processor that has a lower

finish time compared to the assigned deadline for its ready list. The same authors, in [YLWZ09],

presented a heuristic scheduling algorithm called DET (Deadline Early Tree), which minimizes

cost with a deadline constraint. The algorithm partitions all tasks into different paths based on the

Early Tree. The whole deadline is divided into time windows of critical tasks, which can be applied

to all feasible deadlines. For critical tasks, a dynamic programming method is used to obtain the

optimal cost solution. For non-critical tasks, an iterative search finds suitable time windows while

keeping the precedence constraints among tasks, and a local cost optimization is applied within

these time windows. The communication time between tasks is not considered in their model,

i.e, the tasks in their model have dependency with zero transfer time. Yao et al., in [YLM10],

propose an integer programming (IP) approach to minimize the execution time of the workflow

under a time constraint (deadline) parameter. They used the IP strategy to distribute the deadline

into time windows for all tasks and applied local optimization to find the most suitable processor

for each task that satisfies these local time window constraints. Yu et al. [YBT+05b] proposed a

QoS-based workflow scheduling algorithm utilizing a Markov Decision Process approach for the

service Grid. It minimizes the total cost of the application, while meeting the deadline constraints

imposed by the user. Their algorithm first categorizes tasks into two classes: synchronization tasks

(nodes that have more than one parent or child) and simple tasks. Then, the original workflow is

partitioned into sub-workflows, and, based on the two classes of tasks, sub-deadlines are assigned

to each partition. Finally, the cost-optimized mapping for each partition is obtained, guarantee-

ing the application deadline. Chen et al. [CZ09] proposed an ant colony optimization (ACO) to

schedule large-scale workflows with various QoS parameters such as reliability, time, and cost in

computational grids. In their proposed algorithm, time and cost could be defined as constraint or

optimizing parameters. In [CZ12], a discrete version of the comprehensive learning PSO (CLPSO)

algorithm based on the set-based PSO (S-PSO) method for the cloud workflow scheduling problem

is proposed. For an IaaS cloud model, in [ANE13], two scheduling algorithms named IaaS Cloud

Partial Critical Paths (IC-PCP) and the IaaS Cloud Partial Critical Paths with Deadline Distribu-

tion (ICPCPD2) were proposed for cost minimization constrained to a deadline, extending their

previous PCP algorithm in [ANE12]. Due to on-demand resource provisioning, the time constraint

can always be met as long as the cloud provides an unlimited number of computational resources.
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This model corresponds to an unbounded set of resources, which differs from our context that con-

siders a bounded set of processors. In [STZN13], the authors proposed the Multiterminal Cut for

Privacy in Hybrid Clouds (MPHC) algorithm as an extended version of the IC-PCP algorithm with

privacy constraints. In [CLCG13], a Bi-Direction Adjust Heuristic (BDA) scheduling algorithm is

proposed to minimize the resource renting cost over unbounded dynamic resources in the Cloud

platform for executing a given workflow within a deadline. BDA has two major steps: in the first

step, it generates an initial schedule map by ignoring the hourly charging strategy; in the second

step, a bi-direction adjust process, composed of forward and backward scheduling procedures, is

applied to allocate each task to the appropriate VM instance. The authors in [CB14] proposed

Enhanced IC-PCP with the Replication (EIPR) algorithm, which replicates tasks in idle time slots

to reduce the schedule length. The advantage of using idle time slots for task duplication is that

it increases the resource utilization rate without any extra cost. Mao et al. [MH11] proposed an

auto-scaling mechanism that automatically scales computing instances based on workload infor-

mation to minimize the cost of the scheduling map while meeting application deadlines on cloud

environments. With the same objective function, in [BM11b], a Hybrid Cloud Optimized Cost

(HCOC) algorithm combines the usage of private and public clouds. HCOC decides which re-

sources should be leased from the public cloud to increase the processing power of the private

cloud to execute a workflow within its deadline. Fundamentally, HCOC is an iterative algorithm

with a high time complexity.

1.4.1.3 Time-Optimization, Budget-Constraint

Fard et al. [FFP13] proposed a cost-constraint time optimization scheduling algorithm in public

commercial clouds based on a set of rescheduling operations. First, a new Cost Efficient Fast

Makespan (CEFM) algorithm is proposed to optimize both the makespan and cost of a workflow

execution. The CEFM algorithm starts by assigning each task to a VM instance, which exe-

cutes the task with the lowest finishing time. Then, based on this initial mapping, CEFM tries

to reduce the total cost of the workflow execution without increasing the makespan. By using

an output schedule map obtained by the CEFM approach, a Budget-Constrained Scheduling in

Clouds (BCSC) algorithm is proposed to schedule a given workflow application with a nearly

optimal makespan while meeting a specified budget constraint. The main idea behind BCSC

is to use a tradeoff between a decremental cost obtained by rescheduling tasks to cheaper VM

instances and the incremental workflow makespan. Zeng et al. [ZVL12] proposed ScaleStar, a

budget-conscious scheduling algorithm to minimize the execution time of large-scale many-task

workflows in Clouds with monetary costs. They proposed a metric named Comparative Advantage

(CA), which effectively balances the execution time and monetary cost goals, and the resources

are selected based on the CA metric. Wu et at. [WLY+15] proposed the Critical-Greedy algo-

rithm scheduling to minimize the workflow makespan under a user-specified financial constraint

for a single datacenter cloud. In the first step, the proposed Critical-Greedy algorithm generates

an initial schedule where the cloud meets a given budget for the workflow application. Then,

in the next step, by iterative searching, it tries to reschedule critical tasks in order to reduce the
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total execution time. Sakellariou et al. [SZTD07] developed two scheduling approaches, LOSS

and GAIN, to construct a schedule optimizing time and constraining cost. Both algorithms use

initial assignments made by other heuristic algorithms to meet the time optimization objective. A

reassignment strategy is then implemented to reduce the cost and meet the second objective, the

user’s budget. In the reassignment step, LOSS attempts to reduce the cost, and GAIN attempts

to achieve a lower makespan while attending to the user’s budget limitations. In the initial as-

signment, LOSS has lower makespans with higher costs, and GAIN has higher makespans with

lower costs. The authors proposed three versions of LOSS and GAIN that differ in the calculation

of the tasks weights. The LOSS algorithms obtained better performance than the GAIN algo-

rithms, and among the three different types of LOSS strategy, we used LOSS1 to compare to our

proposed algorithm. All of the versions of the LOSS and GAIN algorithms use a search-based

strategy for reassignments; to obtain their goals, the number of iterations needed tends to be high

for lower budgets in LOSS strategies and for higher budgets in GAIN strategies. Zheng et al.,

in [ZS12, ZS13], proposed the Budget-constrained Heterogeneous Earliest Finish Time (BHEFT)

algorithm, which optimizes the execution time of a workflow application constrained to a budget.

BHEFT uses upward rank to assign priority to each task in a given workflow and then selects tasks

in the order of their priority value. In the service selection phase, BHEFT filters all available pro-

cessors based on the Spare Application Budget (SAB). SAB is defined as the difference between

the remaining unused budget and the total average cost for the unscheduled task. Based on SAB,

BHEFT defines a maximum threshold value, namely, the Current Task Budget (CT B), and filters

all processors for the current task. The filtered set is called affordable services for the current task.

If the affordable services is not empty, then the current task will be assigned to the processor with

the lowest earliest finishing time. Otherwise, based on the SAB parameter, the cheapest service or

the one with the lowest finishing time will be selected. The aim of BHEFT is to cover the user’s

budget by the cheapest assignment option in the service selection phase. It also tries to minimize

the makespan by selecting the lowest finishing time in the case of budget availability, i.e., SAB≥ 0.

A budget-constrained scheduling heuristic called greedy time-cost distribution (GreedyTimeCD)

was proposed in [YRB09]. The algorithm distributes the overall user-defined budget to the tasks

based on the tasks’ estimated average execution costs. The actual costs of allocated tasks and their

planned costs are also computed successively at runtime. This is a different approach, which op-

timizes task scheduling individually. First, a maximum allowed budget is specified for each task.

Then, a processor is selected that minimizes time within the task budget.

In [ZVL15], the Security-Aware and Budget-Aware (SABA) workflow scheduling strategy is

proposed to schedule a workflow under a budget constraint within the user’s security requirements.

By taking into account the data security requirement, they define two dataset concepts, namely,

movable data and immovable data, to impose security restrictions on data. Every task with de-

pendencies on the immoveable data should be executed on the same data center. For the processor

selection phase, a Comparative Factor (CF), defined as the time-to-cost ratio, is proposed and the

VM instance with the maximum CF value is selected.
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1.4.1.4 Time-Optimization, Cost-Optimization

In [DPAM02], the Nondominated Sorting Genetic Algorithm II (NSGA-II) was proposed. NSGA-

II evaluates each generated solution and gives a rank value to each of them. The algorithm not only

finds a wide range of solutions over the true Pareto-optimal region but also finds a set point with

a good spread of solutions in a reasonable computational time. Yu et al., in [YKB07], proposed

a bi-criteria workflow execution planning approach that makes use of a multi-objective evolu-

tionary algorithm (MOEAs). The authors analyzed several state-of-the-art multi-objective genetic

approaches. The results show that, like most meta-heuristic algorithms, these approaches could

achieve near-optimal solutions, but with a higher time complexity. Their proposed algorithm fo-

cuses on two conflicting QoS parameters, namely, time and cost, while meeting the deadline and

budget constraint values for a given application. The algorithm generates a set of alternative

solutions from which users can choose their most appropriate schedule map according to their

consumed cost and total execution time.

In [TKB09], the authors proposed a workflow execution planning approach using Multi-

objective Differential Evolution (MODE) to obtain a diverse distribution of solutions in the so-

lution space. The algorithm generates a set of trade-off solutions according to two QoS metrics,

namely, time and cost. The output set, composed of widespread alternative solutions, gives more

flexibility to users to estimate their preferences and choose a desired workflow schedule based on

their QoS requirements.

In [SKD07], a bi-objective genetic algorithm formulation was proposed that tries to achieve

a trade-off between resource costs and application performance. A Multi-Objective Genetic Al-

gorithm (MOGA) is used to find the best schedules that correspond to the pareto-optimal set. In

[DFP12], the Multi-Objective Heterogeneous Earliest Finish Time (MOHEFT) algorithm was pro-

posed. MOHEFT is based on the well-known HEFT algorithm for optimizing workflow schedul-

ing problems. MOHEFT is a heuristic-based approach that generates several workflow schedule

maps as a set of trade-off solutions in each processor selection step. Based on a newly proposed

crowding distance measure, solutions with higher crowding distance are selected and passed on to

the next processor selection step for the next ready task. The same authors, in [DNP14], proposed

a modified version of MOHEFT in order to optimize execution time and energy consumption.

Unlike these methods, other algorithms return a single solution as output, trying to find an

optimal schedule map as the solution. A scheduling strategy based on GA and PSO algorithms

was proposed in [TULA13] to optimize workflow execution time and cost. A market-oriented

hierarchical scheduling strategy for multi-objective in cloud workflow systems was proposed

in [WLN+13]. They analyzed meta-heuristic-based workflow scheduling algorithms, such as GA,

ACO and PSO, in cloud environments aiming to satisfy the QoS requirements.

However, due to the time-consuming nature of these search-based and meta-heuristic ap-

proaches, these algorithms are not the most suitable for online mapping.
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1.4.1.5 Time-Constraint, Cost-Constraint

Poola et. al [PGB+14] proposed a robust scheduling algorithm based on partial critical paths with

deadline and budget constraints in clouds. The partial critical path (PCP) of a task is created by

finding the unassigned critical parent of the node and repeating the same procedure for the crit-

ical parent recursively until there are no further unassigned parents. Then, the algorithm tries to

find the best suitable VM type based on the allocation policy. They proposed three allocation

policies for PCP tasks: (a) Robustness-Cost-Time (RCT) to maximize robustness and minimize

cost and makespan; (b) Robustness-Time-Cost (RTC), similar to RCT, giving higher priority to

robustness but followed by time and, finally, cost; and (c) Weighted policy, which allows users

to define their own objective function using the three parameters (robustness, time and cost) by

assigning weights to each of them. In each of these policies, solutions are first sorted by the first

parameter, followed by the second and third parameters. The best solution from this sorted list

is selected for all tasks in PCP, which are assigned to the corresponding VM type. In [GS13], a

particle swarm optimization scheduling algorithm was proposed to minimize workflow time and

cost simultaneously under the user’s deadline and budget constraints. Prodan et al. [PW10] pro-

posed a general bi-criteria scheduling heuristic called the Dynamic Constraint Algorithm (DCA),

which is based on dynamic programming to optimize two independent generic criteria for work-

flows, e.g., execution time and cost. The DCA scheduling algorithm has two main phases: the

first selects one criterion as the primary one and optimizes it; in the second phase, it optimizes

the secondary criteria while keeping the primary criteria within a defined sliding constraint. In

particular, DCA performs a full domain search in the second phase of the algorithm. Garg et

al. [GS11] proposed a multi-objective non-dominated sort particle swarm optimization (NSPSO)

approach to find schedule maps that minimize the makespan and total cost under the specified

deadline and budget constraints. In [YB06b], Yu et al. proposed a genetic algorithm (GA) ap-

proach for scheduling workflow applications constrained to budget and deadline on heterogeneous

environments. Two fitness functions are used to encourage the formation of individuals that satisfy

the deadline and budget constraints.

1.4.2 Concurrent Workflow Scheduling

In contrast to single workflow scheduling, concurrent, or multiple, workflow scheduling has not

received much attention. As single workflow strategies, multiple workflow scheduling algorithms

can be divided into two main categories: static and dynamic strategies. In static strategies, work-

flows are available before the execution starts, that is, at compile time. After a schedule is produced

and initiated, no other workflow is considered. This approach, although limited, is applicable in

many real-world applications, for example, when a user has a set of nodes to run a set of workflows.

This methodology is applied by most common resource management tools, where a user requests

a set of nodes to execute his/her jobs exclusively. On the other hand, dynamic strategies exhibit

online behavior, where users can submit the workflows at any time. When scheduling multiple in-

dependent workflows that represent user jobs and are thus submitted at different moments in time,
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the completion time (or turnaround time) includes both the waiting time and execution time of a

given workflow, extending the makespan definition for a single workflow scheduling. However, in

both cases, single or multiple QoS parameters can be defined as the scheduling objectives.

1.4.2.1 Static Concurrent workflow scheduling

Several algorithms have been proposed for static scheduling, where workflows compete for re-

sources and the goal is to ensure a fair distribution of those resources while minimizing the in-

dividual completion time of each workflow. Two approaches based on a fairness strategy for

concurrent workflow scheduling were presented in [ZS06]. Fairness is defined based on the slow-

down that each DAG would experience (the slowdown is the ratio of the expected execution time

for the same DAG when scheduled together with other workflows to the time when scheduled

alone). They proposed two algorithms: one fairness policy based on finishing time and another

fairness policy based on current time. Both algorithms first schedule each DAG on all processors

with static scheduling (like HEFT [THW02] or Hybrid.BMCT [SZ04]) as the pivot scheduling

algorithm, save their schedule assignment, and keep their makespan as the slowdown value of the

DAG. Next, all workflows are sorted in descending order of their slowdown. Then, until there

are unfinished workflows in the list, the algorithm selects the DAG with the highest slowdown

and then selects the first ready task that has not been scheduled in this DAG. The main point is to

evaluate the slowdown value of each DAG after scheduling a task and make a decision regarding

which DAG should be selected to schedule the next task. The difference between the two proposed

fairness-based algorithms is that the fairness policy based on finish time calculates the slowdown

value of the selected DAG only, whereas the slowdown value is recalculated for every DAG in the

fairness policy based on the current time. In [BM10b], a path clustering heuristic was proposed

that combines the clustering scheduling technique to generate groups (clusters) of tasks with the

list scheduling technique to select tasks and processors. Based on this methodology, the authors

propose and compare four algorithms: (i) sequential scheduling, where workflows are scheduled

one after another; (ii) a gap search algorithm, which is similar to the former but searches for spaces

between already-scheduled tasks; (iii) an interleave algorithm, where pieces of each workflow are

scheduled in turns; and (iv) group workflows, where the workflows are joined to form a single

workflow and are then scheduled. The evaluation was made in terms of schedule length and fair-

ness, and it was concluded that interleaving the workflows leads to a lower average makespan and

higher fairness when multiple workflows share the same set of resources. This result, although rel-

evant, considers the average makespan, which does not distinguish the impact of the delay on each

workflow, as compared to exclusive execution. In [CDS10], the algorithms for offline scheduling

of concurrent parallel task graphs on a single homogeneous cluster were evaluated extensively.

The graphs, or workflows, that have been submitted by different users share a set of resources

and are ready to start their execution at the same time. The goal is to optimize user-perceived

notions of performance and fairness. The authors proposed three metrics to quantify the quality

of a schedule related to performance and fairness among the parallel task graphs. In [HCTY+12],

two workflow scheduling algorithms were presented, namely, multiple workflow grid scheduling
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MWGS4 and MWGS2, with four and two stages, respectively. The four-stage version comprises

labeling, adaptive allocation, prioritization, and parallel machine scheduling. The two-stage ver-

sion applies only adaptive allocation and parallel machine scheduling. Both algorithms, MWGS4

and MWGS2, are classified as offline strategies, and both schedule a set of available and ready

jobs from a batch of jobs. All jobs that arrive during a time interval will be processed in a batch

and start to execute after the completion of the last batch of jobs. These strategies were shown to

outperform other strategies in terms of the mean critical path waiting time and critical path slow-

down. Recently, Malawski et. al [MJDN15] proposed three scheduling algorithms, two dynamic

and one static, for scientific workflow ensembles on clouds in order to complete workflows from

an ensemble under a total budget and deadline constraints.

1.4.2.2 Online Concurrent workflow scheduling

Some algorithms have been proposed for online workflow scheduling. A planner-guided strategy,

the RANK_HYBD algorithm, was proposed by Yu and Shi [YS08] to address dynamic scheduling

of workflow applications that are submitted by different users at different moments in time. The

RANK_HYBD algorithm ranks all tasks in each workflow application using rank upward priority

measure. In each step, the algorithm reads all ready tasks from all workflows and selects the next

task to schedule based on their rank. If the ready tasks belong to different workflows, the algorithm

selects the task with lowest rank; if they belong to the same workflow, the task with the highest

rank is selected. With this strategy, the RANK_HYBD algorithm allows the workflow with the

lowest rank (lower makespan) to be scheduled first to reduce the waiting time of the workflow in

the system. Hsu and Wang, in [HHW11], proposed Online Workflow Management (OWM) for

scheduling multiple online workflows. Unlike RANK_HYBD, which puts all ready tasks from

each workflow into the ready list, the OWM algorithm selects only a single ready task from each

workflow with the highest rank into the ready list. Then, until there are unfinished workflows

in the system, the OWM algorithm selects the task with the highest priority from the ready list.

The earliest finish time (EFT) is then calculated for the selected task on each processor, and the

processor with minimum earliest finish time is selected. If the processor is free at that time, the

OWM algorithm assigns the selected task to the selected processor; otherwise, it keeps the selected

task in the ready list to be scheduled later. In [LCJY09], the min–min average (MMA) algorithm

was proposed to efficiently schedule transaction-intensive grid workflows involving significant

communication overheads. The MMA algorithm is based on the popular min–min algorithm but

uses a different strategy for transaction-intensive grid workflows with the capability of automat-

ically adapting to changes in network transmission speed. Transaction-intensive workflows are

multiple instances of one workflow. In this case, the aim is to optimize the overall throughput

rather than the individual workflow performance. In [XCWB09], an algorithm was proposed for

scheduling multiple workflows with multiple QoS constraints on the cloud. The resulting multiple

QoS-constrained scheduling strategies of multiple workflows (MQMW) minimize the makespan

and the cost of the resources and increase the scheduling success rate. The algorithm considers



22 Thesis Overview

two objectives, time and cost, that can be adapted to the user requirements. In [BM11a], a dy-

namic algorithm was proposed to minimize the makespan of a batch of parallel task workflows

with different arrival times. The algorithm was proposed for online scheduling but with the goal

of minimizing a collective metric. This approach is different from the independent workflow

execution we consider in this thesis. Zhou et al.[ZH14] proposed ToF, a general transformation-

based optimization framework for optimizing the performance and cost of workflows in the cloud.

Bochenina, in [Boc14], introduced a strategy for mapping the tasks of multiple workflows with

different deadlines on the static set of resources. Jiang et al. in [JHC+11] proposed a method to

minimize the total execution time of a scheduling solution for concurrent workflows in the HPC

cloud. Their method tries to take advantage of any schedule gaps. First, a workflow is partitioned

into several tasks, grouped by using a clustering-based PCH approach [BM10b, BM07]. Then,

the proposed distributed gap search is applied to allocate these task groups to processors. The

difference between the original gap search algorithm and proposed distributed gap search method

is that by using the original gap search method, an entire task group is allocated to a single gap

on a specific resource, but the proposed distributed gap approach allows for allocating the tasks of

the same group to different gaps on different resources.

1.5 Main Contributions Achieved

In this section, I summarized the main contributions achieved in this thesis. This thesis focus

on scheduling algorithms for workflow applications on heterogeneous computing systems based

on user’s QoS requirements. Two major QoS parameters considered in this thesis are cost and

time. Therefore, the proposed algorithms are categorized attending to the number of simultaneous

workflows, i.e. single and concurrent, and based on the QoS parameters, namely time and cost.

In the following paragraphs, the proposed algorithms are briefly described and the full detail is

shown on each related chapter.

Single workflow application, Time optimization

In our first work, chapter 2, we evaluated the performance of list-based scheduling algo-

rithms. We compared their results with the solutions achieved by three meta-heuristic al-

gorithms, namely, Tabu Search, Simulated Annealing, and Ant Colony System. The meta-

heuristic algorithms, which feature a higher processing time, always achieved better solu-

tions than the list scheduling heuristics with quadratic complexity. We then compared the

best solutions for both types, step by step. We observed that the best meta-heuristic sched-

ules could not be achieved if we followed the common strategy of selecting processors based

only on current task execution time, because the best schedules consider not only the im-

mediate gain in processing time but also the gain in a sequence of tasks. Most list-based

scheduling heuristics with quadratic time complexity assign a task to a processor by evalu-

ating only the current task. This methodology, although inexpensive, does not evaluate what

is ahead of the current task, which leads to poor decisions in some cases. Algorithms that
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analyze the impact on children nodes, such as Lookahead [BSM10] exist, but they increase

the time complexity to the fourth order. The most powerful feature of the Lookahead algo-

rithm, as the best algorithm with the lowest makespan, is its ability to forecast the impact of

an assignment for all children of the current task. This feature permits better decisions to be

made in selecting processors, but it increases the complexity significantly.

Therefore, in order to keep the ability to forecast while maintaining quadratic time complex-

ity, In chapter 3, we propose the Predict Earliest Finish Time (PEFT) scheduling algorithm

for heterogeneous computing systems. PEFT scheduling algorithm, unlike other state-of-

the-art algorithms which are using the Earliest Finish Time (EFT) measure to select suitable

processors for each task, introduced a look-ahead feature without increasing the time com-

plexity associated with computation of an optimistic cost table (OCT). The OCT is a matrix

in which the rows indicate the number of tasks and the columns indicate the number of pro-

cessors, where each element OCT (ti, pk) indicates the maximum of the shortest paths of ti
children’s tasks to the exit node considering that processor pk is selected for task ti. The

OCT value of task ti on processor pk is recursively defined by 7 by traversing the workflow

from the exit task to the entry task:

OCT (ti, pk) = max
tchild∈succ(ti)

[
min
pw∈P

{
OCT (tchild , pw)+ET (tchild , pw)+C(ti→tchild)

}]
(7)

where C(ti→tchild) is the average communication cost, which is zero if tchild is being evalu-

ated for processor pk, and ET (tchild , pw) is the execution time of task tchild on processor pw.

OCT (ti, pk) represents the maximum optimistic processing time of the children of task ti
because it considers that children tasks are executed in the processor that minimizes pro-

cessing time (communications and execution) independently of processor availability, as

the OCT is computed before scheduling begins. Because it is defined recursively and the

children already have the optimistic cost to the exit node, only the first level of children is

considered. For the exit task, the OCT (teit , pk) = 0 for all processors pk ∈ P.

To select a processor for a task, we compute the Optimistic EFT (OEFT ) that sums to EFT

the computation time of the longest path to the exit node. In this way, we are looking

forward (forecasting) in the processor selection; perhaps we are not selecting the processor

that achieves the earliest finishing time for the current task but we expect to achieve a shorter

finishing time for the tasks in the next steps. The aim is to guarantee that the tasks ahead

will finish earlier which is the purpose of the OCT table. OEFT is defined by equation 8.

OEFT (ti, pk) = EFT (ti, pk)+OCT (ti, pk) (8)

The proposed PEFT algorithm is formalized in Algorithm 1.
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Algorithm 1 The PEFT algorithm
1: Compute OCT table and rankoct for all tasks in a given workflow application
2: Create Empty list ready-list and put tentry as initial task
3: while ready-list is NOT Empty do
4: ti← the task with highest rankoct from ready-list
5: for all processor pk in the processor-set P do
6: Compute EFT (ni, pk) value using insertion-based scheduling policy
7: OEFT (ti, pk) = EFT (ti, pk)+OCT (ti, pk)
8: end for
9: Assign task ti to the processor pk that minimize OEFT of task ni

10: Update ready-list
11: end while

In terms of time complexity the PEFT requires the computation of OCT table that is O(p(e+

v)) and to assign the tasks to processors it is of the order O(v2.p). The total time is O(p(e+

v) + v2.p). For dense DAGs e becomes v2 being the total algorithm complexity of the

order O(v2.p). That is, the time complexity of the PEFT is of the same order as the HEFT

algorithm.

The results show that the PEFT scheduling algorithm outperforms the state-of-the-art list-

based algorithms for heterogeneous systems in terms of schedule length ratio, efficiency,

and frequency of best results while maintaining quadratic time complexity. Please note

that, the PEFT scheduling algorithm is designed and proposed for the inconsistent model of

execution time and, as it is shown in the paper, for the consistent model it has similar results

to HEFT.

Multiple workflow applications, Time optimization

When we consider multiple and concurrent workflow application submitted at different mo-

ments in time, to achieve an efficient execution of a workflow, an effective scheduling strat-

egy that decides when and which resource must execute the tasks of the workflow is nec-

essary. In this case, the common definition of the makespan must be extended to account

for the waiting time and execution time of a given workflow. The metric to evaluate a dy-

namic scheduler of independent workflows must represent the individual execution time

instead of a global measure for the set of workflows to reflect the QoS experienced by the

users, which is related to the response time of each user application. Usually, dynamic

(on-line) strategies for scheduling multiple workflow applications needs to contain three

main policies: filling the ready tasks pool, task selection policy to select a task among all

available ready tasks to be executed and processor selection policy which finds the best

suitable processor for selected tasks by considering QoS objectives of the task’s workflow

application. In section 1.4.2, we presented some proposed strategies in this area. Two well-

known dynamic scheduling strategies for multiple workflows are RANK_HYBD [YS08]

and OWM [HHW11] algorithms. As explained before, because of the strategy for filling

ready tasks pool and task selection phases, RANK_HYBD does not achieve high fairness
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among the workflows because it always gives preference to shorter workflows to finish first,

postponing the longer ones. For instance, if a longer workflow is being executed and sev-

eral short workflows are submitted to the system, the scheduler postpones the execution of

the longer DAG to give priority to the shorter ones. Unlike the RANK_HYBD algorithm,

OWM selects only a single ready task from each workflow application so that it gives all

workflow applications the chance to be selected in the current time for scheduling. Also, for

selecting a task among all ready tasks, the OWM algorithm selects and schedules tasks from

the longer workflows first. Then, like RANK_HYBD, all processors (both free and busy

processors) are tested and the one that has the lowest FET is candidate for task assignment.

If candidate processor was not free at that time, it keeps the selected task in the ready list

in order to be scheduled later. Since the system is dynamic, it is possible that at any time

a new application may arrive and the postponed task may have lower priority than the new

ones and therefore it is postponed again. This may lead to an excessive completion time for

smaller workflows. Both algorithms, RANK_HYBD and OWM, present results in terms of

average makespan. This metric combines long and short workflows and does not allow to

infer the average waiting time spent by the workflows individually.

In chapter 4, we propose the Fairness Dynamic Workflow Scheduling (FDWS) for schedul-

ing dynamically workflow applications in a heterogeneous system. FDWS implements new

strategies for selecting the tasks from the ready list and for assigning the processors to re-

duce the individual completion time of the workflows, for example, the turnaround time,

including execution time and waiting time. To fill the ready tasks list, considering all ready

tasks from each workflow leads to an unbiased preference for longer workflows and the

consequent postponing of smaller ones resulting in higher turnaround time and unfair pro-

cessor sharing. Therefore, only a single ready task with highest priority from each work-

flow is added to the ready tasks pool. For selecting a task among all ready tasks, both

RANK_HYBD and OWM algorithms used upward rank to select a task from the pool of

ready tasks. In FDWS algorithm, we proposed rankr metric to assign a second priority to

each task in ready tasks pool.

rankr(ti, j) =
1

PRT (DAG j)
× 1
|CP(DAG j)|

(9)

where ti, j is the ith task belonging to workflow (DAG) j, PRT is defined as the Percentage

of Remaining Task number for workflow j and CP is Critical Path length of workflow j.

The rankr gives more priority to workflows that are almost completed and only have few

tasks to execute (lower PRT value). However, the PRT does not consider the width of the

workflow. A wider workflow has a shorter |CP| than other workflows with the same number

of tasks; it also has a lower expected finishing time. Therefore, in this case, FDWS would

give higher priority to workflows with smaller |CP| values. In both RANK_HYBD and

OWM, only the individual upward rank is used to select tasks into the workflow pool and

to select a task from the pool of ready tasks. This scheme leads to a scheduling decision
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that does not consider the DAG history in the workflow pool. For the processor selection

phase, only the free processors are considered in FDWS algorithm and the processor with

the lowest finishing time for the current task is selected for task assignment.

The proposed FDWS (Fairness Dynamic Workflow Scheduling) algorithm is formalized in

Algorithm 2.

Algorithm 2 The FDWS algorithm
1: while Workflow Pool is NOT Empty do
2: if new workflow has arrived then
3: calculate ranku for all tasks of the new Workflow
4: Insert the Workflow into Workflow Pool
5: end if
6: Ready_Pool← ready tasks (one task with highest ranku from each DAG)
7: calculate rankr(ti, j) for each task ti belonging to DAG j in Ready_Pool
8: while Ready_Pool 6= φ AND CPUs f ree 6= 0 do
9: Tsel ← the task with highest rankr from Ready_Pool

10: Psel← the processor with lowest EFT for task Tsel among all available and free
processors

11: Assign Task Tsel to processor Psel
12: remove Task Tsel from Ready_Pool
13: end while
14: end while

In order to have better demonstration of effectiveness of the proposed scheduling algorithm,

in Figure 3, we compare proposed FDWS algorithm with RANK_HYBD and OWM al-

gorithms for 4 workflow applications with entrance time to system equals to 0 (all DAGs

submitted at the same time).

As Figure3(c) shows, RANK_HYBD algorithm tries to finish workflows with lower rank

first and then schedules the higher ones. In RANK_HYBD algorithm, workflow A finished

at 97, followed by workflows B, C and D with finishing time 189, 151 and 266, respectively.

The OWM algorithm tries to finish workflows with higher ranks first. However, scheduling

the highest rank workflows seems to be good idea in order to decrease the turnaround time

for these type of workflows, but as a workflow has few tasks to be executed, the rank value

becomes lower, and those tasks remaining will be postponed due to tasks from other work-

flows with higher ranks. This situation causes all workflows to finish more and less at the

same time; in our sample, the finishing times are 189 , 189 , 200 and 205 for workflow A,

B, C and D, respectively. In the FDWS algorithm, the history execution of each workflow

application is taken into account by calculating the percentage of reminding tasks. With

this strategy, if we have a workflow with higher rank but lower remaining number of tasks,

the scheduler may selects this workflow to decrease its turnaround time instead of start to

schedule new workflows with lower rank. In our sample, the finish time for workflows A,

B, C and D with FDWS algorithm will be 77, 131, 212 and 209 respectively. As shown in
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(c) Task assignment with three scheduling algorithms

Figure 3: Scheduling of 4 sample sample DAGs

Figure3(c), the main advantage of FDWS is to consider the turnaround time for each indi-

vidual workflow application instead of decreasing the overall execution time of all submitted

workflows.

The results shown in chapter 4 are achieved for inconsistent model of execution time. In

chapter 5, we proposed an extended version of FDWS and we present results based on a

consistent model of execution time and using realistic parameters for simulation platform

such as bounded multi-port model. In bounded multi-port model, a processor can commu-

nicate with several other processors simultaneously, but each communication flow is limited

by the bandwidth of the traversed route, and communications using a common network link

have to share bandwidth. This scheme corresponds well to the behavior of TCP connections

on a LAN. The validity of this network model has been demonstrated in[VL09].
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Single workflow applications, Budget Constrained-Time optimization Utility computing

is a service provisioning model that provides computing resources and infrastructure man-

agement to customers as they need them, as well as a payment model that charges for usage

(pay-as-you-go model). Cost and time are two of the most important user concerns. Thus,

the cost/time trade-off problem for scheduling workflow applications has become challeng-

ing. In chapter 6, we propose the Heterogeneous Budget Constrained Scheduling (HBCS)

algorithm, which minimizes execution time while constrained to a user-defined budget. Like

most list-based algorithms, HBCS consists of two phases, namely a task selection phase and

a processor selection phase. For the task selection phase, HBCS uses the upward rank for

assigning a priority to each task in a given workflow. First, all tasks are ordered by their

upward rank value and, in each step and then among all ready tasks, the task with high-

est priority is selected as current task (tcurr). To find the best suitable processor (psel) for

tcurr in the processor selection phase, in addition to the time metric which leads to a lower

makespan for a given workflow, the cost metric should be considered in order to meet the

cost constraint value defined as a QoS parameter of the scheduling problem. The following

attributes are used in the processor selection phase of the HBCS scheduling algorithm:

• CheapestCost : denotes the total execution cost of a given workflow on the cheapest

processors.

• RCB: denotes the Remaining Cheapest Budget for unscheduled tasks in a given

workflow and calculated as sum of minimum cost for each unscheduled tasks ex-

cluding the current task. The initial value is RCB = CheapestCost and each step,

before executing the processor selection phase for the current task is updated by :

RCB = RCB−Costlowest(tcurr) where Costlowest is the lowest assignment cost for the

current task (tcurr) among all available processors.

• RB: denotes the actual Remaining Budget and represents the budget available for the

remaining unscheduled tasks. The initial value for the Remaining Budget is the user

budget, RB=BUDGETuser. and it is updated after the processor selection phase for the

current task (tcurr) by RB = RB−Cost(tcurr, psel) where psel is the selected processor

for the current task assignment.

The current task has a different value of execution cost and time on each processor and to

select a suitable processor, we need a trade-off between cost and time factors. Two relative

quantities, namely Time rate (Timer) and Cost rate (Costr) are defined for the current task

on each tested processor p j ∈ P by equations 10 and 11, respectively.

Timer(tcurr, p j) =

max
p̄∈P

{
EFT (tcurr, p̄)

}
−EFT (tcurr, p j)

max
p̄∈P

{
EFT (tcurr, p̄)

}
−min

p̄∈P

{
EFT (tcurr, p̄)

} (10)

Costr(tcurr, p j) =
Cost(tcurr, pbest)−Cost(tcurr, p j)

max
p̄∈P

{
Cost(tcurr, p̄)

}
−min

p̄∈P

{
Cost(tcurr, p̄)

} (11)
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where, pbest is the processor with lowest earliest finish time for the current task. Timer

measures how much the finishing time of the current task on processor p j is shorter than the

highest finish time. Similarly, Costr measures how much less the actual cost on p j is than the

cost on the processor that results in the earliest finish time. Both variables are normalized to

their highest ranges.

Finally, to select the processor for the current task tcurr, the worthiness value for each pro-

cessor p j ∈ P is computed as:

worthiness(tcurr, p j)=



−∞ if Cost(tcurr, p j)>Cost(tcurr, pbest)

−∞ if Cost(tcurr, p j)> RB−RCB

Costr(tcurr, p j)×CostCoe f f

+Timer(tcurr, p j) otherwise
(12)

where CostCoe f f is the quantity Cost Coefficient and defined as the ratio between remaining

cheapest budget (RCB) and the actual Remaining Budget (RB).

CostCoe f f =
RCB
RB

(13)

The quantity Cost Coefficient provides a measurement of the least expensive assignment

cost relative to the remaining budget available. If CostCoe f f is near one, it means that the

available budget allows for selecting only the cheapest processors.

In the worthiness value equation, the first two statements guarantee that if the cost of the

current task tcurr on processor p j is higher than the cost on the processor that gives the

minimum finishing time and if that cost is higher than the available budget for task tcurr,

then processor p j cannot be selected. With these statements, the resulting schedule does

not exceed the user budget and is guaranteed to be valid. In the third statement, the worthi-

ness value depends on the available budget and on the time during which a processor can

finish the task. If the remaining budget (RB) is high, then Timer has more influence, and a

processor with the greater difference in finishing time is compared to the worst processor,

will have higher worthiness. In contrast, if the remaining budget is smaller, then the cost

factor will increase the worthiness of the processors with lower cost to run task tcurr. After

testing all of the processors, the one with highest worthiness value is selected (psel), and the

remaining budget (RB) is updated.

The proposed HBCS (Heterogeneous Budget Constrained Scheduling) algorithm is formal-

ized in Algorithm 3.
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Algorithm 3 HBCS algorithm
Require: DAG and user defined BUDGET

1: Schedule DAG with HEFT and Cheapest algorithm
2: Set task priorities with ranku

3: if HEFTcost < BUDGET then
4: return Schedule Map assignment by HEFT
5: end if
6: RB = BUDGET and RCB =CheapestCost

7: while there is an unscheduled task do
8: ni = the next ready task with highest ranku value
9: Update the Remaining Cheapest Budget (RCB)

10: for all Processor pi ∈ P do
11: calculate FT (ni, p j) and Cost(ni, p j)
12: end for
13: Compute CostCoe f f as defined in Eq.13
14: for all Processor pi ∈ P do
15: calculate worthiness(ni, pi) as defined in Eq.12
16: end for
17: Psel = Processor pi with highest worthiness value
18: Assign Task ni to Processor Psel
19: Update the Remaining Budget (RB)
20: end while
21: return Schedule Map

In terms of time complexity, HBCS algorithm has a time complexity of the order O(v2.p).

The HBCS algorithm was compared with three well-known scheduling algorithms, namely

LOSS1 [SZTD07], GreedyTimeCD and BHEFT [ZS12, ZS13]. The LOSS scheduling al-

gorithm is a search-based strategy which has two main phases, the first makes an initial

assignment by using a heuristic algorithm, to meet the time optimization objective, and the

second phase is a reassignment strategy to reduce costs and meet the second objective, the

user’s budget. Our proposed scheduling algorithm differs from LOSS algorithm because

HBCS does not have any initial assignments and in contrast to these search-based strate-

gies, the HBCS is not iterative. So, the time to produce a schedule is constant for a given

workflow and not uncertain. Also, we have made some modifications in LOSS’s original

algorithm. The original implementation assumed that all of the processors had different

costs, and therefore, there was no conflict in selecting a processor based on the cost param-

eter. In our heterogeneous computing environment, each cluster is homogeneous (section

1.3.3), so there could be more than one processor candidate. In this case, we tested all

of the possible processors and select the one which achieves the smallest makespan. The

same procedure was applied to the least expensive scheduling strategy, which attempts to

schedule each task on the service with the lower execution cost. The BHEFT algorithm is a

heuristic strategy designed to minimize the makespan and cover user-defined budget value.

Our proposed HBCS algorithm differs from BHEFT in two important aspects: first, we al-

low more processors to be considered as affordable and, therefore, selected; and second, we
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do not necessarily select the processor that guarantees the earliest finishing time, as BHEFT

does. Instead, we compute a worthiness value, proposed in this paper, which combines the

time and cost factors to decide on the processor for the current task. The GreedyTimeCD

algorithm is also heuristic with the same objective, time optimization-cost constraint.

The HBCS algorithm was shown to achieve lower makespans for all of the budget factors;

that is, HBCS can produce shorter makespans for the same budget rather than state-of-the-

art algorithms. A reduction of up to 30% in execution time was achieved while maintaining

the same budget level. The results were obtained in a simulation with a realistic model of

the computing platform and with shared links, as occurs in a common grid infrastructure.

Multiple workflow applications, Budget Constrained-Time optimization This is an

extension of the Multiple workflow applications, a time optimization problem where budget

constraint is considered. Users submit jobs at any moment in time and therefore a dynamic

behavior is required. When scheduling multiple independent workflows that represent user

jobs and are thus submitted at different moments in time, a dynamic behaviour is required

to redistribute the workload. Most concurrent workflow scheduling algorithms proposed

are for the static case. However, there are some methods which address the problem of

scheduling on-line multiple workflows, namely OWM [HHW11], RANK_HYBD [YS08]

and FDWS, whose target is to minimize the average relative waiting time of the workflows.

In previous sections, all these three algorithms are described. But none of these approaches

consider cost as a QoS parameter in their scheduling strategies.

As we explained in the details of the FDWS scheduling algorithm, on-line scheduling strate-

gies contain three main policies: filling the ready tasks pool, task selection policy to select

a task among all available ready tasks to be executed, and processor selection policy, which

finds the best suitable processor for a selected task by considering QoS objectives of task’s

workflow application. In chapter 7, we proposed two generic strategies for both task and

processor selection phase for on-line scheduling of concurrent workflows with budget con-

straints defined by users for each workflow. In the following paragraphs, each proposed

strategy is described in detail.

Proposed priority strategy for ready tasks in ready tasks pool
There is a ready tasks pool which is filled by the ready tasks belonging to each sub-

mitted and unfinished workflow at each scheduling round. In general, two methods

are used to fill the ready tasks pool, first, like FDWS algorithm, gather only a sin-

gle ready task with highest priority (ranku) from each workflow, or insert all ready

tasks belonging to each unfinished workflow application into ready tasks pool such as

RANK_HYBD. But the important key is how to order these ready tasks, i.e., how to

assign a priority to each ready task based on our QoS parameters to have higher qual-

ity solutions and system performance. To select a task from the ready tasks pool to

be scheduled on the resources, we define a new strategy to assign a secondary priority
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to each task of the ready tasks pool. Because our goal is to execute applications in

the lowest turnaround time with its limited budget, the cost factor should be taken into

account.

To assign the secondary priority to each task in ready tasks pool, we propose rankB

for each task ti in the pool, that belongs to workflow j, defined by equation 14. The

task with the highest rankB is selected to be scheduled in the next phase, i.e processor

selection phase.

rankB(ti, j) =
1

T Pj
× 1

BPj
(14)

Here, T Pj defined as the Task Proportion of workflow j and it is calculated by the ratio

of the number of unscheduled tasks to the total number of tasks in the workflow j. BPj

is the Budget Proportion and equals to the ratio of the Remaining Cheapest Budget

(RCB j) to the Remain Budget (RB j).

BPj =
RCB j

RB j
(15)

Here, RCB is updated in each step after making the processor selection for the selected

task belonging to workflow j, unlike the RCB definition in HBCS scheduling algorithm

in the previous section which updated before executing the processor selection phase

for the current task.

The rankB value is the product of two factors: (a) the first one is the inverse of the

fraction of the workflow j that is remaining in the system; and (b) the ratio of the

budget value over the remaining cheapest budget. This priority factor gives higher

priority to the workflows that have a lower percentage of tasks unscheduled and to

workflows that have higher budgets when compared to the cheapest budget for the

workflow. The rational for the first factor is to give higher priority to workflows that

were submitted earlier, so that a longer workflow with several tasks already executed

may have priority over a short and recent workflow. And the rational of the budget

factor is that the scheduler will consider first tasks that can spend more budget and

therefore they will select more expensive and faster processors, resulting in a lower

turnaround time for the workflow.

Proposed Processor Selection strategy
The Task scheduler has responsibility for selecting affordable resources for the current

selected task. For each step of the processor selection phase, we select the task with

highest rankB from ready tasks pool as the current task (tcurr, j) for scheduling. The

processor to be selected to execute the current task is guided by the following strategy

related to time and cost. To achieve minimum execution time under limited budget, we

used two relative quantities defined previously in equations 10 and 11, namely Timer

and Costr. In addition to these variables that give time and cost relative processor

performance, there is a limitation on cost consumption. This constraint is represented
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by the spare budget, that is defined by the difference between the remaining budget

available (RB) and the remaining cheapest assignment (RCB). Once RCB includes the

minimum cost of the current task (tcurr), this quantity is added to the spare budget

available, as expressed by:

Costlim(tcurr, j) =Costlowest(tcurr, j)+(RB j−RCB j) (16)

To select an affordable processor, the Costlim value is used in order to cover the avail-

able budget for the current task. Additionally, selecting the processor with higher cost

than the processor that gives the minimum finish time (pbest) is not logic. Therefore,

Pv is defined as the set of reasonable and valid processors.

Pv = {pi ∈ P|Cost(tcurr, pi)≤Costlim(tcurr, j)} (17)

Finally, to select the processor for the current task tcurr, j belonging to workflow j, it is

computed the Quality value (Q) for each available and free processor pi ∈ Pv as:

Q(tcurr, j, pi) =


−∞ Cost(tcurr, j, pi)

>Cost(tcurr, pbest)

Timer(tcurr, j, pi)+Costr(tcurr, j, pi)×BPj otherwise
(18)

The Budget Proportion (BP) is the ratio between RCB and RB, and gives a measure

of how far the cheapest assignment is from the remaining budget available. If BP

is near to one, it means that the available budget only allows to select the cheapest

assignment. In addition, the Costlim controls the processor’s decision to avoid cost

consumption higher than the user-defined budget.

In the Quality value (Q) equation, the selection of a processor with higher cost than

the processor that gives the minimum finish time (pbest) is avoided by the first state-

ment that guaranties that these type of processors cannot be selected. Otherwise, the

processor is evaluated considering the time and cost quantities and the processor with

higher Quality value will be selected for current task assignment.

Algorithm 4 shows the general algorithm for on-line scheduling for multiple workflow

applications by optimizing execution time constrained to the user budget. We imple-

mented modified versions of RANK_HYBD and FDWS, called Budget RANK_HYBD

(B-RANK_HYBD) and Budget FDWS (B-FDWS) to consider budget limitation imposed

by users. In the processor selection phase of these two algorithms, cost is not taken into

account and there is a possibility to have higher cost than the limited budget defined by

the user. So, in the modified version, instead of considering all processors to compute the

finishing time of the current task, processors are filtered based on the cost limitation value
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defined by pv. To evaluate the influence of the new strategy proposed in this study, rankB

for selecting tasks and the quality measure Q for selecting processors, we consider sev-

eral versions of the scheduling algorithms as described in the table 2. For all algorithms,

only processors that are free on current time (no reservation policy) are selected. Table 2

shows the characteristics of the algorithms, i.e. the strategies to select ready tasks from each

workflow, the priority assigned to each ready task in the ready tasks pool and the processor

selection policy. These policies are parameters of the general algorithm.

Algorithm 4 The General Budget Constrained Scheduling Strategies for On-Line Work-
flow Applications

1: while Application DB 6= φ do
2: Fill Ready Tasks pool based on the input

�� ��filling strategy
3: for all ti ∈ Ready Tasks pool do
4: Assign a rank value for ti according to the input

�� ��priority strategy for ready
tasks

5: end for
6: while Ready Tasks 6= φ do
7: Select current task tcurr, j with highest priority from Ready Tasks pool
8: based on the input

�� ��processor selection strategy , Select best suitable processor
(psel)

9: Assign current task tcurr, j to selected Processor (psel)
10: Update the Remain Budget (RB) and the Remain Cheapest Budget (RCB)
11: Remove current task tcurr, j from Ready Tasks pool
12: end while
13: end while

Algorithm Strategies

Name Filling Ready Pool Selecting task to schedule Processor Selection

B-RANK_HYBD1 for each work f low
Insert all ready
tasks

if all ti ∈ ready pool belong to
same work f olow then select ti
with highest ranku, else select
ti with lowest ranku

Psel =
{

p j|EFT (tcurr, p j) = min
p′∈Pv
{EFT (tcurr, p′)}

}
B-RANK_HYBD2 Psel =

{
p j|Q(tcurr, p j) = max

p′∈Pv
{Q(tcurr, p′)}

}
B-FDWS1

for each work f low
Insert Single
ready task with
highest ranku

select ti ∈ ready pool with
highest rankr

Psel =
{

p j|EFT (tcurr, p j) = min
p′∈Pv
{EFT (tcurr, p′)}

}
B-FDWS2 Psel =

{
p j|Q(tcurr, p j) = max

p′∈Pv
{Q(tcurr, p′)}

}
B-FDWS3 select ti ∈ ready pool with

highest rankB

Psel =
{

p j|EFT (tcurr, p j) = min
p′∈Pv
{EFT (tcurr, p′)}

}
B-FDWS4 Psel =

{
p j|Q(tcurr, p j) = max

p′∈Pv
{Q(tcurr, p′)}

}
Table 2: Description of the modified algorithms for on-line budget constrained scheduling

To evaluate the algorithms we consider the relative improvement on Turnaround Time

achieved with our strategy, for a given workflow, when compared to the maximum

Turnaround Time achieved for that workflow among all strategies. The Turnaround

time is the difference between submission and final completion of an application.

The TurnaroundTimeimp is obtained by the ratio of the difference of turnaround time

for a given workflow obtained by an algorithm, and the maximum turnaround time
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Figure 4: Turnaround Time improvement values for 8 and 32 processors and, for low and high
machine heterogeneity

among all algorithms. Figure 4 shows the Turnaround Time percentage improvement

(TurnaroundTimeimp) achieved for the 6 algorithm’s versions.

For a low number of CPUs, as we can see in Fig 4(a) and Fig 4(b), the filling policy for

adding ready tasks from workflow applications into ready tasks pool, is the strategy that

differentiates the two algorithms RANK_HYBD and FDWS. The FDWS filling strategy,

which selects a single task from each workflow, leads to higher fairness in scheduling and

avoids the postponing of larger workflows as it happens with RANK_HYBD, contributing

to a better relative turnaround time. The improvements are more significant when we have

higher concurrency in the system, i.e. low arrival time, starting on 67% improvement for an

arrival time interval of 10%, and 30% improvement for an arrival time interval of 90%.

As we move to higher arrival time intervals, when comparing the algorithms versions that

use the quality measure Q, with the ones that do not use it, we conclude that Q improves

the algorithms performance. For instance, B-RANK_HYBD2 has 46% improvement over

B-RANK_HYBD1, as well as 27% improvement for B-FDWS2 over B-FDWS1 and 28%

for B-FDWS4 over B-FDWS3.

For higher arrival time intervals, which means lower concurrency, using the quality measure

Q achieves higher turnaround time percentage improvement on platforms with larger values

of machine heterogeneity. We obtained improvements of 58%, 36% and 39% of turnaround

time, with arrival time of 90% for B-RANK_HYBD2, B-FDWS2 and B-FDWS4 over B-

RANK_HYBD1, B-FDWS1 and B-FDWS3, respectively.



36 Thesis Overview

On the other hand, for a higher number of CPUs, in addition to filling ready task policy,

two other strategies, rankB and quality measure Q, proposed here, have higher influence

in the improvements obtained with both algorithms. Fig. 4(c) and Fig. 4(d) show that,

besides the filling ready task policy used by FDWS which improves algorithm performance

over RANK_HYBD, quality measure Q always improves the algorithm’s performance. The

improvements of B-RANK_HYBD2, B-FDWS2 and B-FDWS4 over B-RANK_HYBD1,

B-FDWS1 and B-FDWS3, respectively, start at 55% for an arrival time interval of 10% and

increase to 240% for an arrival time interval of 90%.

Comparing results of B-FDWS1 to B-FDWS3 or B-FDWS2 to B-FDWS4, we can conclude

that rankB, as the policy for selecting the task from ready tasks pool to be schedule, improves

the algorithm performances slightly, in comparison to rankr. The highest improvement

observed is 9%.

Single workflow applications, Budget-Deadline Constrained In chapter 8, a low-time com-

plexity heuristic, named Deadline–Budget Constrained Scheduling (DBCS), is proposed to

schedule workflow applications on computational heterogeneous infrastructures constrained

to two QoS parameters, namely time and cost. The objective of the proposed DBCS algo-

rithm is to find a feasible schedule map that satisfies the user defined deadline and budget

constraint values. To fulfil this objective, DBCS implements a mechanism to control the

time and cost consumption by each task when producing a schedule solution. To the best

of our knowledge, the algorithm proposed here is the first low-time complexity heuristic for

a bounded number of heterogeneous resources addressing two QoS parameters that obtains

similar performances to higher-time complexity scheduling algorithms in a small fraction

of the scheduling time.

The DBCS algorithm is a heuristic strategy that in a single step obtains a schedule that

always accomplishes the budget constraint and that may or may not accomplish the deadline

constraint. If the time constraint is met, we have a successful schedule; otherwise, we have

a failure, and no schedule is produced. The algorithm is evaluated based on the success rate.

As most heuristic scheduling algorithms, DBCS contains two main phases, task selection

and processor selection phases. For task selection phase, tasks are prioritized by upward

rank values and in each step of scheduling, the task with the highest priority is selected

as current task (tcurr) to be scheduled in the next phase. In processor selection phase, the

processor to be selected to execute the current task is guided by the following quantities

related to cost and time. To control the consumed cost and time, a limit value for each factor

is needed. We define two variables, CL and DL as limits for cost and time. To select the best

suitable processor, a trade-off between these two variables is evaluated. In the following

paragraphs, we describe these two variables in detail.

• CL(tcurr) is the maximum available budget for the current task tcurr that can be con-

sumed by its assignment, and it is defined as the minimum cost for tcurr plus the spare
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budget available:

CL(tcurr) =Costmin(tcurr)+∆Cost (19)

where ∆Cost represents the spare budget defined as the difference between uncon-

sumed budget and cheapest cost assignment for unscheduled tasks. The initial value

is ∆Cost = BUDGETuser−Costcheapest where BUDGETuser is the user defined budget

as maximum allowed cost and Costcheapest , defined as Costcheapest = ∑ti∈T Costmin(ti),

is the cost of the cheapest assignment and represents the cost lower bound for execut-

ing the application. ∆Cost is updated at each step after selecting the processor for the

current task tcurr:

∆Cost = ∆Cost −
[
AC(tcurr)−Costmin(tcurr)

]
(20)

• DL(tcurr) is defined as the sub-DeadLine that is assigned to each task based on the total

application deadline. There are some studies that proposed different strategies to dis-

tribute workflow deadlines among tasks. In [YBT05a], tasks are grouped in different

levels based on their depth in the graph, and then the final deadline is divided into lev-

els in such a way that all tasks belonging to the same level have the same sub-deadline.

In [YBT+05b], first the original workflow is partitioned into sub-workflows, and then

the total deadline is divided among partitions. In this paper, we apply the common and

direct project planning sub-deadline distribution strategy. The sub-deadline value for

each task ti is computed recursively by traversing the task graph upwards, starting from

the exit task. Due to heterogeneity, sub-Deadline can be defined in several different

forms. Here, we consider the minimum execution time of the current task, defined as:

DL(tcurr) = min
tchild∈succ(tcurr)

[
DL(tchild)−C(tcurr→tchild)−ETmin(tchild)

]
(21)

where ETmin is defined as the minimum execution time of task tcurr among available

processors. For the exit task, the sub-deadline is equal to the user defined deadline,

DL(texit) = DEADLINEuser.

Unlike the cost limit, the sub-Deadline is a soft limit as in most deadline distribution

strategies on grid platforms with a fixed number of available resources [YRB09]; if the

scheduler cannot find a processor that satisfies the sub-deadline for the current task,

the processor that can finish the current task at the earliest time is selected.

All available processors are filtered by CL(tcurr) to guarantee that the application can be

executed without exceeding the budget constraint. We defined this filtered processor set as

admissible processors, Padmissible.

Padmissible =
{

p j ∈ P|Cost(tcurr, p j)≤CL(tcurr)
}

(22)
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In the most restricted case, only the cheapest processors are considered. Otherwise, no

feasible schedule exists under the user defined budget.

The processor selection phase is based on the combination of the two QoS factors, time

and cost, to obtain the best balance between time and cost minimum values. We define two

relative quantities, namely, Time Quality (TimeQ) and Cost Quality (CostQ), for current task

tcurr on each admissible processor p j ∈ Padmissible, shown in (23) and (24), respectively. Both

quantities are normalized by their maximum values.

TimeQ(tcurr, p j) =
Ω×DL(tcurr)−FT (tcurr, p j)

FTmax(tcurr)−FTmin(tcurr)
(23)

CostQ(tcurr, p j) =
Costbest(tcurr)−Cost(tcurr, p j)

Costmax(tcurr)−Costmin(tcurr)
×Ω (24)

where

Ω =


1 if FT (tcurr, p j)< DL(tcurr)

0 otherwise
(25)

TimeQ measures how much closer to the task sub-deadline (DL) the finish time of the current

task on processor p j is. Processors with higher TimeQ values have a greater possibility of

being selected. If the current task has a higher finish time on processor p j than its sub-

deadline, TimeQ assumes a negative value for p j, reducing the possibility of this processor

being selected. Similarly, CostQ measures how much less the actual cost on p j is than

the cost on the processor that results in the earliest finish time (Costbest). Although CL is

the maximum allowed cost for the current task, here, Costbest is used to avoid selecting a

processor that performs worse and costs more than the processor that guarantees the earliest

finish time.

In the case where none of the processors from Padmissible can guarantee tcurr sub-deadline,

CostQ is zero for all of them, and TimeQ for each processor p j is a negative value that

represents the relative finish time obtained with p j. The processor from Padmissible with

higher TimeQ, i.e., closer to zero, would be selected. Note that, in any case, cost will be

lower than CL, the maximum available budget for the current task.

Finally, to select the most suitable processor for the current task, the Quality measure (Q)

for each processor p j ∈ Padmissible is computed:

Q(tcurr, p j) = TimeQ(tcurr, p j) +CostQ(tcurr, p j)×
CostCheapest

BudgetUnconsumed
(26)

Here the cost quality factor is weighted by the ratio of the cheapest cost execution for un-

scheduled tasks over the unconsumed budget, so that the effectiveness of the cost quality
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factor can be controlled. A higher value of the fraction means that the unconsumed budget

is close to the cheapest cost execution for unscheduled tasks, so that the cost factor is more

predominant in the processor Quality measure. In the same way, a lower value means a

higher difference between unconsumed budget and cheapest cost execution for unscheduled

tasks, so that the cost factor is less influential, allowing the selection of more expensive

processors that guarantee a lower processing time for tcurr.

The DBCS algorithm is shown in Algorithm 5. First, the possibility of finding a schedule

map under a user defined budget is checked in lines 1-3. After some initializations in lines

4-5, the algorithm starts to map all tasks of the application (while looping in lines 6-14). At

each step, on line 7, among all ready tasks, the task with highest priority (ranku) is selected

as the current task (tcurr). Then, in lines 8-10, the Quality measure for assigning tcurr to pro-

cessor p j (Q(tcurr, p j)) is calculated. Note that, first, the finish time (FT ) and execution cost

of the current task is calculated and then the quality measure for all admissible processors

is calculated. Next, the processor with the highest quality measure among all processors

is selected (line 11-12). Finally, after assigning the processor to the current task, the ∆Cost

variable is updated using Eq.20 (line 13).

Algorithm 5 DBCS algorithm

Require: a DAG and user’s QoS Parameters values for time (DEADLINEuser) and cost
(BUDGETuser)

1: if BUDGETuser <Costcheapest then
2: return no possible schedule map
3: end if
4: Initialize ∆Cost = BUDGETuser−Costcheapest
5: Compute the upward rank (ranku) and sub-DeadLine value (DL) for each task
6: while there is an unscheduled task do
7: tcurr = the next ready task with highest ranku value
8: for all p j ∈ Padmissible do
9: calculate Quality measure Q(tcurr, p j) using Eq.26

10: end for
11: Psel = Processor p j with highest Quality measure (Q)
12: Assign current task tcurr to Processor Psel
13: Update ∆Cost using Eq.(20)
14: end while
15: return Schedule Map

In terms of time complexity, DBCS requires the computation of the upward rank (ranku)

and sub-DeadLines (DL) for each task that has complexity O(n.p), where p is the number

of available resources and n is the number of tasks in the workflow application. In the

processor selection phase, to find and assign a suitable processor for the current task, the

complexity is O(n.p) for calculating FT and Cost for the current task among all processors,

plus O(p) for calculating the Quality measure. The total time is O(n.p+n(n.p+ p)), where

the total algorithm complexity is of the order O(n2.p).
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For comparison of the DBCS algorithm, we select four scheduling algorithms with the same

objectives. Two algorithms, DCA[PW10] and GA[YB06b], are search-based strategies with

high time complexity. The DCA[PW10] algorithm is based on dynamic programming to

optimize two independent generic criteria for workflows, e.g., execution time and cost. The

DCA scheduling algorithm has two main phases: the first selects one criterion as primary

and optimizes it and, in the second phase, optimizes the secondary criteria while keeping

the primary criteria within a defined sliding constraint. In particular, DCA performs a full

domain search in the second phase of the algorithm. In GA[YB06b] scheduling algorithm,

by using a genetic algorithm approach, two fitness functions are used to encourage the

formation of individuals who satisfy the deadline and budget constraints. The other two

algorithms, BHEFT[ZS12, ZS13] and LOSS1[SZTD07] are heuristic based approaches with

low time complexity. The BHEFT algorithm optimizes the execution time of a workflow

application constrained to a constraint budget. The BHEFT algorithm is not designed to

cover the time constraint parameter as its objective, so in this case, if the makespan of the

solution does not meet the user deadline, there is a failure. In LOSS algorithm, after initial

assignment, the reassignment strategy is continued until the cost constraint is met, but at the

same time we check the makespan in order to not exceed the deadline value.

To evaluate and compare our algorithm with other approaches, we consider the Planning

Successful Rate (PSR) which is the percentage of successful schedules obtained in a given

experiment. The main result is that the DBCS algorithm obtains similar performance to

other state-of-the-art search-based algorithms with higher time complexity for the range of

budget and deadline values considered here. As a heuristic algorithm, the main advantage of

the DBCS consists in having an execution time in the range of the heuristic algorithms, such

as BHEFT, but a planning success rate similar to the higher-time complexity search-based

algorithms.

Concurrent workflow applications, Budget-Deadline Constrained

In chapter 9, a Multi-Workflow Deadline-Budget scheduling algorithm (MW-DBS) is pro-

posed, to schedule multiple and concurrent workflow applications that may be submitted at

different moments in time and with individual user’s budget and deadline constraints. Work-

flow applications described by directed acyclic graphs present intrinsic parallelism among

tasks so that their processing time can be optimized by a parallel task approach. However,

the optimization process has limitations due to task dependencies. As common resource

managers allocate a set of resources to execute a single workflow, in a user-centric approach,

those resources cannot be fully utilized by a single job, incurring higher costs to the user

without obtaining any improvement in the job processing time. In chapter 9, it is proposed a

framework that executes simultaneously several workflow applications, where resources are

shared among tasks. A user, when submitting a task, specifies a budget and a deadline for

the task, in a range of values specified by the framework, and that can be accomplish with
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the available infrastructure. The framework is dynamic (on-line), so that it can receive tasks

at any moment in time.

The MW-DBS algorithm is a heuristic strategy and like other online schedulers contains two

main steps: first, task selection phase that selects a task from each workflow and assigns a

priority to each task based on the remaining time to the application deadline; and second,

processor selection phase, where for the task with the highest priority, finds a suitable re-

source based on a quality measure computed to each resource. The common scheduling

objective of concurrent applications is to increase the number of successful applications,

but in addition to this objective, the proposed framework tries to increase the revenue of the

provider by giving higher priority to jobs with higher budgets.

Generally, in most on-line scheduling systems, without an advance reservation, the sched-

uler is called when an executing task finishes and there is at least one free available processor

to execute new tasks.

Task selection strategy
In general, for online concurrent workflow scheduling, in each scheduling step, there

are many ready tasks from different submitted and unfinished workflow applications.

So, the MW-DBS algorithm adds a single ready task from each unfinished workflow

into the ready tasks pool and then select a suitable task to be executed among all tasks

from this ready tasks pool. Another strategy to fill ready tasks pool is to insert all ready

tasks belonging to each unfinished workflow application. Adding all ready tasks from

each available workflow leads to an unfair strategy because the high number of ready

tasks may cause that some workflow applications may not participate in the current

scheduling round.

After filling the ready task pool, one is selected to schedule based on the QoS param-

eters defined to each application. The key point in the task selection phase is which

task should be selected for scheduling among all ready tasks. In MW-DBS algorithm

it is proposed a new strategy (rankD) to assign a secondary priority to each task ti be-

longing to workflow j in the ready tasks pool. Since we are dealing with both time

and cost factors as our QoS parameters, the new priority assignment strategy considers

both measures.

rankD(ti, j) =CostR
ti, j ×

1
TimeR

ti, j ×PRTj
(27)

where CostR
ti, j is the relative Cost Ratio of task ti from workflow j and it is calculated

as:

CostR
ti, j =

B j

CA j
(28)

where B j is the cost constraint value (user’s BUDGET) and CA j is defined as Cheapest

Assignment, i.e. all tasks from application j scheduled to cheapest processors.
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TimeR
ti, j is the relative Time Ratio of task ti from workflow j and it is calculated as:

TimeR
ti, j =

D j−SD(ti)
D j

(29)

where D j is the time constraint value (user’s DEADLINE) and SD(ti) is defined as

Sub-Deadline assigned to task ti. We applied the common and direct project planning

sub-deadline distribution strategy. SD(ti) is computed recursively by traversing the

task graph upwards, starting from the exit task. Due to heterogeneity, sub-Deadline

can be defined in several different forms. Here, we consider the average execution

time of the current task, as shown by Eq(30):

SD(ti) = min
tchild∈succ(ti)

[
SD(tchild)−T R(tchild)

]
(30)

where T R is defined as the average time reservation of task ti among available pro-

cessors. For the exit task, the sub-deadline is equal to the user defined deadline

(SD(texit) = D j). PRTj is the Percentage Remaining Tasks of workflow j and cal-

culated as:

PRTj =
Unscheduled tasks of workflow j

Total tasks of workflow j
(31)

The rankD priority value contains two major factors: a) the cost parameter which

gives higher priority to the submitted and unfinished workflow applications that have

higher budget ratio in order to maximize the provider profit; and b) the time parameter

which contains two time measures, TimeR and PRT . The first has the responsibility of

assigning higher priority to workflows which have lower sub-deadlines. The second

ensures that a workflow with few unscheduled tasks has higher priority. Finally, the

task with highest rankD in ready tasks pool is selected to be schedule in the next phase.

Processor selection strategy
The processor selection phase has the responsibility of selecting an affordable resource

for the current task (tcurr) and it is repeated until there is no more tasks left in ready

tasks pool. A new strategy for processor selection phase based on QoS requirements

is proposed. In order to control the consumed cost and time, a bound value for each

factor is needed. Next, it is described bound values for cost and time, and then it is

presented a new strategy for processor selection.

The Cost bound value (CostBound) is a limitation on budget consumption by each task

based on used budget, by previously scheduled tasks, and available budget for the

current task that can be consumed by its assignment:

CostBound(tcurr) =Costmin(tcurr)+∆
Cost
j (32)
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where Costmin denotes the minimum execution cost of the current task among all pro-

cessors and ∆Cost
j = RB j−RCA j represents the spare budget defined as the difference

between unconsumed budget and cheapest cost assignment for unscheduled tasks for

workflow j which task tcurr belongs to. The remaining unconsumed Budget of work-

flow j (RB j) has an initial value equal to the available user budget (B j) and is updated

at each step after selecting the processor for tcurr as shown in Eq(33), where AC(tcurr)

is the Assigned Cost. Similarly, RCA j is defined as Remaining Cheapest Assignment

of workflow j with initial value equal to Cheapest Assignment (CA j) and updated by

Eq(34).

RB j = RB j−AC(tcurr) (33)

RCA j = RCA j−Costmin(tcurr) (34)

All free available processors are filtered by CostBound(tcurr) in order to guarantee that

the application can be executed without exceeding the budget constraint. For the cur-

rent assignment, we defined this set of acceptable processors as Padmissible. In the most

restricted case, only the cheapest processors are considered. Otherwise, no feasible

schedule exists under the user defined budget.

For the Time bound value it is used the sub-Deadline (SD), introduced in task selection

phase, and it is a soft limitation as in most deadline distribution strategies for a fixed

number of available resources [YRB09]; if the scheduler cannot find a processor that

satisfies the sub-deadline for the current task, the processor that can finish the current

task at the earliest time is selected.

The processor selection phase is based on a quality measure assigned to each processor

that combines the QoS factors. Once there is no optimization step, each resource is

evaluated in terms of the processing time and cost for the current task tcurr. Two

quantities are defined, namely, Time Quality (TimeQ) and Cost Quality (CostQ), on

each admissible processor ṕ ∈ Padmissible, shown in (35) and (36), respectively. Both

quantities are normalized by their maximum values.

TimeQ(tcurr, ṕ) =


1− FT (tcurr, ṕ)

SD(tcurr)
if FT (tcurr, ṕ)< SD(tcurr)

1− FT (tcurr, ṕ)
FTmin(tcurr)

otherwise

(35)

CostQ(tcurr, ṕ) =


1− Cost(tcurr, ṕ)

Costmax(tcurr)
if FT (tcurr, ṕ)< SD(tcurr)

1 otherwise

(36)

Where FTmin(tcurr) and Costmax(tcurr) denote the minimum finishing time and the max-

imum execution cost of current task among all available processors.
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Finally, to select the most suitable processor for tcurr, the Quality measure (Q) for

each processor ṕ ∈ Padmissible is computed as shown in Eq(37) and the processor with

highest Q is selected.

Q(tcurr, ṕ) = TimeQ(tcurr, ṕ)×CostQ(tcurr, ṕ) (37)

Resources for which the finishing time is lower than the deadline (FT (tcurr, ṕ) <

SD(tcurr)), TimeQ measures how much the finishing time of the current task on a pro-

cessor is closer to the task sub-deadline. The processor with higher TimeQ has higher

possibility to be selected. Otherwise, TimeQ assumes a negative or zero value, reduc-

ing the processor quality value. Processors with a lower cost to execute tcurr have a

higher CostQ, increasing their quality measure. However, for the processors that do not

cover the sub-deadline, the processor with the lowest finishing time should be selected

regardless of what cost it has. In this case, CostQ is set to 1, being the processors

quality only influenced by TimeQ. It should be noted that in both cases, the tested

processors are selected from admissible processor list so that it can be guaranteed that

the application can be executed without exceeding its budget constraint.

The MW-DBS algorithm is shown in Algorithm 6. First, all ready tasks in the ready tasks

pool are ranked by rankD priority value (Eq.27). To fill the ready tasks pool, the framework

collects a single ready-to-execute task with the highest primary rank value ranku [THW02]

from each submitted and unfinished workflow application. Until there is at least one ready

and unscheduled task in the ready tasks pool and free available processors, the current task

tcurr is selected and its quality measure Q (Eq.37) is calculated among all admissible proces-

sors (Padmissible ⊂ Pf ree). Then, the current task tcurr is assigned to processor Psel that has the

highest quality measure. Then, the Remaining unconsumed Budget (RB) and Remaining

Cheapest Assignment (RCA) are updated for workflow j where task tcurr belongs to.
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Algorithm 6 MW-DBS algorithm

1: for all ti, j ∈ Ready Tasks pool do
2: Assign a priority rank rankD(ti, j)
3: end for
4: Pf ree← free processors ṕ ∈ P
5: while (Ready Tasks 6= φ & Pf ree 6= φ) do
6: tcurr← task with highest rankD

7: for all ṕ ∈ Padmissible do
8: calculate Quality measure Q(tcurr, ṕ)
9: end for

10: Psel ← Processor ṕ with highest Q
11: Assign current task tcurr to Processor Psel
12: Update RB j and RCAJ

13: Pf ree← Pf ree−Psel
14: Remove Task tcurr from Ready Tasks pool
15: end while

In terms of time complexity, MW-DBS requires the computation of the upward rank (ranku)

and Sub-DeadLines (SD) for each task that have complexity O(n.p), where p is the number

of available resources and n is the number of tasks in the workflow application. In the

processor selection phase, to find and assign a suitable processor for the current task, the

complexity is O(n.p) for calculating FT and Cost for current tasks among all processors,

plus O(p) for calculating the Quality measure. The total time is O(n.p+n(n.p+ p)), where

the total algorithm complexity is of the order O(n2.p).

For the comparison of the MW-DBS algorithm, we select three algorithms, FDWS2[AB14b]

and the modified versions of MIN-MIN and MAX-MIN, called MIN-MIN* and MAX-

MIN*. We consider a low number of processors compared to the number of DAGs to ana-

lyze the behavior of the algorithms in a higher concurrent environment. The maximum load

configuration is observed for 8 processors and 50 DAGs.

The results show that the MW-DBS algorithm obtains performances in terms of Planning

successful rate (PSR) among all compared algorithms. The main advantage of the MW-DBS

algorithm occurred for low time intervals that shows significant performance improvement

unlike the other algorithms. Increasing the time intervals, between the DAGs arrival times,

reduces the concurrency, and thus, the improvements are less significant.

From the service provider’s viewpoint, the major key is how much revenue is made. And we

compare results based on Profit metric which is defined as the ratio of the total cost achieved

by the algorithm and the maximum total cost among all algorithms. In this context, the MW-

DBS algorithm shows better profit value over other compared algorithms.
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1.6 Conclusion and Future Work Perspectives

Heterogeneous computing systems provide a global infrastructure for solving large-scale problems

in science and business. Heterogeneous computing systems enable the sharing of geographically

distributed heterogeneous resources. Resource management for executing workflow applications

has been recognized as an important component for heterogeneous computing systems. Resource

management is a way to execute and monitor workflow applications in grid infrastructures in order

to improve the performance of the system. However, the users’ requirements for their submitted

applications should be considered in the resource manager. Therefore, deploying a workflow

scheduling to meet users’ QoS requirements on heterogeneous resources is a challenging task.

The scheduling problem was identified as NP-complete, and there is no approach that could give

us the optimal solution in a bounded time period. Generally, for NP problems, to achieve a good

solution near the optimal one, the search-based or meta-heuristic approaches are used. However,

in these types of approaches, i.e., search-based and meta-heuristic algorithms, by increasing the

number of iterations or by increasing the searching domain, a better solution may be found. How-

ever, this usually results in a higher time complexity, making these methods less useful in real

infrastructures. On the other hand, using heuristic methods with low time complexity gives us an

affordable solution that may not be as good as those achieved by search-based approaches. The

main objective of this thesis is to develop and propose scheduling techniques with low time com-

plexity but that achieve good performances by obtaining schedule results comparable to those of

search-based and meta-heuristic algorithms.

This thesis began by introducing a generic workflow scheduling system model and charac-

terizing several components of the system such as a workflow application model, a platform and

system model and scheduling problems. We considered two major classes of scheduling prob-

lems, namely, single and multiple workflow resource management, and taxonomies for each of

these classes were provided. The quality of a workflow scheduling algorithm is measured by

two main aspects: a) the quality of solutions, which indicates the user’s QoS satisfaction and the

system performance, and b) the ability to use the proposed approaches in a real platform that is

dependent on its time complexity to produce a solution. Unlike most existing workflow scheduling

approaches, which only target one aspect of the scheduling problem in their development, in this

thesis, for all proposed approaches, both target aspects are considered by proposing scheduling

approaches that can achieve good solutions with low time complexity.

The main contribution of the proposed algorithms in this thesis is the development of ap-

proaches that achieve performances comparable to those of previous approaches in the state-of-

the-art with low time complexity. We mainly classified scheduling approaches in two main cate-

gories: Single and Multiple workflow application scheduling algorithms. Each category is classi-

fied into subcategories based on two conflicting QoS requirements: time and cost. Also, time and

cost can be optimized or considered as a problem constraint.

In the first step, in chapter 2, a comparison is made of scheduling algorithms. We com-

pared heuristic list-based scheduling approaches with search-based and meta-heuristic approaches,
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namely, Tabu Search, Simulated Annealing, and the Ant Colony System. The results showed that

the meta-heuristic scheduling algorithms, which feature a higher processing time, always achieved

better solutions than the list scheduling heuristics with quadratic complexity. After deep consider-

ation of their processes and comparing the results for schedule maps side by side with the results

achieved by heuristic methods, we determined that for the inconsistent model of task execution

time for workflow application, the processor selection phase should consider the forecasting of

the finishing time of children for the current task, such as the Lookahead approach, in order to

improve the total execution time of a given workflow application. However, this feature signif-

icantly increases the complexity. Therefore, to keep the ability to forecast while maintaining

quadratic time complexity, in chapter 3, we proposed the Predict Earliest Finish Time (PEFT)

scheduling algorithm for heterogeneous computing systems. The PEFT scheduling algorithm, un-

like other state-of-the-art algorithms that use the Earliest Finish Time (EFT) measure to select a

suitable processor for each task, introduced a look-ahead feature without increasing the time com-

plexity associated with the computation of an optimistic cost table (OCT). The results show that

the PEFT scheduling algorithm outperforms the state-of-the-art list-based algorithms for hetero-

geneous systems in terms of schedule length ratio, efficiency, and frequency of the best results

while maintaining quadratic time complexity. Please note that the PEFT scheduling algorithm

is designed and proposed for inconsistent models of execution time, as shown in the paper. To

consider multiple workflow application scheduling, in chapters 4 and 5, the Fairness Dynamic

Workflow Scheduling (FDWS) for scheduling multiple and concurrent workflow applications was

proposed. FDWS is an on-line scheduling approach that dynamically schedules workflow appli-

cations submitted at different moments in time in order to improve the turnaround time for each

individual application instead of decreasing the overall execution time of all submitted workflows.

To include more QoS parameters as objectives of the scheduling approach, in this thesis, two con-

flicting QoS objectives, time and cost, are considered. In chapter 6, the Heterogeneous Budget

Constrained Scheduling (HBCS) algorithm, which minimizes execution time while constrained to

a user-defined budget, is proposed. In the HBCS algorithm, for the processor selection phase, a

new strategy for selecting suitable resources to execute tasks is proposed. The HBCS algorithm

is a heuristic strategy and was shown to achieve lower makespans for all of the budget factors.

Moreover, a reduction of up to 30% in execution time was achieved while maintaining the same

budget level compared to other approaches. For multiple and concurrent workflow scheduling

with the same target, i.e., time-optimization and budget-constraint, in chapter 7, we proposed

two generic strategies for both the task and processor selection phases for on-line scheduling of

concurrent workflows with budget constraints defined by users for each workflow. In the next

step, we considered time as a QoS constraint parameter for scheduling objectives. In chapter 8,

a low-time complexity heuristic named Deadline–Budget Constrained Scheduling (DBCS) was

proposed to schedule workflow applications on computational heterogeneous infrastructures con-

strained to time and cost as two conflicting QoS parameters. To find a feasible schedule map that

satisfies the user-defined deadline and budget constraint values, DBCS implements a mechanism

to control the time and cost consumption by each task when producing a schedule solution. The



48 Thesis Overview

DBCS algorithm is a heuristic strategy, and compared with other state-of-the-art search-based al-

gorithms with higher time complexity, it obtains similar performance for the range of budget and

deadline values. As a heuristic algorithm, the main advantage of the DBCS consists in having an

execution time within the range of the heuristic algorithms but a planning success rate similar to

the higher time complexity search-based or meta-heuristic scheduling algorithms. In chapter 9,

a Multi-Workflow Deadline-Budget scheduling algorithm (MW-DBS) was proposed to schedule

multiple and concurrent workflow applications that may be submitted at different moments in time

and with individual user’s budget and deadline constraints. In the MW-DBS algorithm, in addition

to increasing the number of successful applications that meet users’ QoS parameter constraint val-

ues, it aims to increase the obtained revenue for providers. The MW-DBS consists of two steps:

first, it selects a task from each ready workflow and assigns a priority to each task based on the

remaining time for the application deadline and budget value; second, for the high priority task, it

selects a suitable resource based on a quality measure computed to each resource based on the job

QoS parameters and provider profit.

1.6.1 Future Directions

Resource management in heterogeneous computing systems has advanced significantly in recent

years. This thesis has contributed with substantial improvements in this field by proposing heuris-

tic strategies for QoS-based workflow application scheduling problems. All proposed strategies

in this thesis were designed with a low time complexity approach and show a similar or better

improvement in the quality of results compared with other approaches with the same objective.

Nevertheless, there are a number of open research challenges that need to be addressed and that

can serve as a starting point for future research:

• supporting multiple QoS objectives for scheduling: the proposed scheduling strategies in

this thesis mainly focus on time and cost as QoS parameters for workflow applications.

However, other parameters such as reliability, security, availability and accessibility may

also be required by many applications. For example, a service with high reliability may incur

higher execution costs but may reduce the risk of execution failure during the application

execution process, and therefore, it should be considered in the scheduling approach.

• return a set of solutions instead of a single one: increasing the number of QoS parameters

causes difficulty in finding a single solution. Usually, in this context, it would be better if the

workflow planner advises the user by recommending a set of solutions based on his/her QoS

requirements. In this scenario, there are several algorithms that provide a set of solutions

as pareto-front to give more options to the user to select his/her desirable solution for the

application. One challenge in this field is to design and propose strategies that could cover

more separated points in the solution space according to user QoS parameters.

• dynamic model of resources: this thesis has presented the scheduling approach on hetero-

geneous computing systems. The proposed approaches can produce promising optimized
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task-to-resources maps according to the user’s QoS demands. However, one of our assump-

tions for the platform was availability of resources without any failure during application

execution. Once this assumption has been violated, the scheduler needs to modify and

adopt the resource assignment for the remaining unexecuted tasks in order to meet the ap-

plication’s QoS requirements. This monitoring should be done during workflow execution.

When the execution of one task is jeopardized due to resource failure, it reschedules and

adopts resource assignment for the rest of the tasks in the workflow and finds an alternative

resource to execute the task.

• scheduling non-DAG workflow applications: in this thesis, the considered workflow appli-

cation model is Directed Acyclic Graphs (DAGs), which is based on advance information of

tasks and their dependencies. Also, in this model, the workflow application does not contain

any loop or conditional branch. This type of assumption is applied for many scientific appli-

cations [JCD+13]. However, many other applications contain loops and condition checking,

which is required for their run-time scheduling monitoring and decision-making.

• supporting cloud platforms with a different pricing model: the work of scheduling problems

in cloud computing environments is also of interest to us. The main difference between grid

and cloud infrastructures comes from the virtualization of computing and storage resources.

In a grid platform, all available resources have the same operating system, and similar soft-

ware environments are installed. However, this uniform configuration brings limitations

for both users and providers. The interesting feature of resource virtualization in cloud in-

frastructures is that each virtual machine can run different customized system images, i.e.,

operating system and software. Furthermore, cloud computing can create, pause and stop

VMs in dynamic ways to be adapted to the workload. The users will be charged for what

they use, but with a different billing model. One of the major concerns when moving to

clouds is related to the billing model, in which users are charged based on hourly usage

of requested VMs. Additionally, in cloud platforms, Service Level Agreements (SLAs),

which include QoS requirements, are set up between customers and cloud providers. SLA

describes the characteristics of cloud services and QoS requirements such as pricing model,

usage model, billing and monitoring that are agreed upon between the customers and the

cloud providers. When a service provider is unable to meet the terms stated in the SLA

or when a QoS parameter defined by a customer is not satisfied, the SLA is violated. In

this context, studying how to make scheduling decisions such that cloud service providers

can guarantee QoS satisfaction and prevent SLA violations could be an interesting subject.

Recently, federated clouds have brought new opportunities when using commercial clouds,

as different providers may offer resources with different performances and pricing mod-

els. In such situations, low-priority applications could be executed on the slow resources

offered by cheap providers, and high-priority applications could be executed on the fast

resources offered by expensive providers. Thus, scheduling on this type of infrastructure

become more challenging when additional limitations—such as the different geographical
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locations of providers, which affects data-intensive applications—posed by federated clouds

are considered.
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abstract
This paper addresses the of evaluating the schedule produced by list based scheduling al-

gorithms, with metaheuristic algorithms. Task scheduling in heterogeneous systems is a

NP-problem, therefore several heuristic approaches were proposed to solve it. These heuris-

tics are categorized into several classes, such as list based, clustering and task duplication

scheduling. Here we consider the list scheduling approach. The objective of this study is

to assess the solutions obtained by list based algorithms to verify the space of improvement

that new heuristics can have considering the solutions obtained with metaheuritcs that are

higher time complexity approaches. We concluded that for low Communication to compu-

tation rate (CCR) of 0.1, the schedules given by the list scheduling approach is in average

close to metaheuristic solutions. And for CCRs up to 1 the solutions are below 11% worse

than the metaheuristic solutions, showing that it may not be worth to use higher complexity

approaches and that the space to improve is narrow.
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2.1 Introduction

The problems of task matching and scheduling, in general, are to resolve a composite parallel

program into several tasks and assign these tasks to a set of processor elements (PEs) to execute.

These tasks have restriction of priority order to execute with each other due to its characteristic

of data dependencies. The relationship among the tasks can be represented by a weighted Direct

Acyclic Graph (DAG). Also, the processing elements are connected by a high speed communi-

cation network. Task matching is to assign a specific task to a suitable processing element to

execute; and scheduling is to determine execution priority of each task among the composite par-

allel program. The general form of the problem has already been proved to be NP− complete

[CB76, KS74, LP+97, PY79]. Although it is possible to formulate and search for the optimal

solution, the feasible solution space quickly becomes intractable for larger problem instance. To

overcome the exponential time complexity, heuristic based scheduling algorithms of been pro-

posed that found a sub-optimal solution in polynomial time. These heuristics are categorized into

several classes, mainly list based, clustering and task duplication scheduling. Among these, list

scheduling algorithms are generally regarded as having a good cost performance trade-off because

of their low cost and acceptable results. In list scheduling, tasks are sorted by their priorities and

scheduled accordingly [DAYA02, ERL90, THW02, IÖF95, KY94, KA96, LPX05, PK01, SS04].

Although these algorithms can find a feasible solution in polynomial time they are not able to

guarantee to find a suitable solution when size of the problem becomes large.

In this paper we evaluate the quality of the solutions obtained by two best list scheduling al-

gorithms, namely HEFT and CPOP [THW02], for heterogeneous systems by comparing with the

solutions obtained by metaheuristic algorithms. Once these last algorithms do not guarantee the

optimal solution, we obtain for each scheduling the best solution and measure the distance to the

list scheduling solution. The metaheuristic algorithms considered in this study are Ant Colony

System (ACS), Simulated annealing (SA) and Tabu Search (TA).

At first, we introduce the DAG scheduling problem,then describe two static list scheduling al-

gorithms, HEFT and CPOP [THW02]. Followed by an introduction to the Ant Colony System,

Simulated Annealing and Tabu Search. Further, we describe the design and the implementation

on these algorithms with a discussion about the results achieved.

2.2 DAG Scheduling

A scheduling system model represented by a direct acyclic graph (DAG), G =

(V,E,P,W,data,rate), where V is set of v tasks, E is the set of e edges between tasks, and

P is the set of processors available in the system. Each edge(i, j) ∈ E represents the task-

dependency constraint such that task ni should complete its execution before task n j can be

started. A task with no predecessors is called an entry task, nentry, and nexit is one with no

successors. W is a v× p computation cost matrix, where v is the number of tasks and p is the

number of processors in the system. Figure 1 shows an example of a DAG comprising 12 tasks to
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illustrate these definitions graphically. It can be seen that the immediate successors of t3 are t8, t9
and t11; the immediate predecessors of t10 is t6. Furthermore, t1 is an entry task and t12 represents

a pseudo exit-task.
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Figure 1: Example of a DAG and its computation costs matrix [CCR=0.8]

Each wi, j gives the estimated execution time to complete task ni on processor p j. The average

of execution cost of a node ni is defined wi = (∑ j∈P wi, j)/p. The data parameter is a v×v matrix of

communication data, where data(i, j) is the amount of data required to be transmitted from task ni

to task n j. The rate parameter is a p× p matrix and represent the data transfer rate between proces-

sors. The communication cost of edge(i, j), which is for data transfer from task ni (scheduled on

processor pm) to task n j (scheduled on processor pn), is defined by ci, j = data(ni,n j)/rate(pm, pn).

When both ni and n j are scheduled on the same processor (pm = pn), then ci, j becomes zero. The

average communication cost of an edge is defined by ci, j = data(ni,n j)/rate, where rate is the

average transfer rate between the processors in the domain.

The EST (ni, p j) and EFT (ni, p j) are the Earliest Execution Start time and the

Earliest Execution Finish time of node ni on processor p j. For the entry task EST (nentry, p j) = 0.

For other tasks, the EST and EFT values are computed recursively, starting from the entry task as

shown by

EST (ni, p j) = max{TAvailable(p j),maxnm∈pred(ni){AFT (nm)+ cm,i}}

EFT (ni, p j) = wi, j +EST (ni, p j)

where pred(ni) is the set of immediate predecessor tasks of task ni and TAvailable(p j) is the earliest

time at which processor p j is available for task execution. The inner max block in the EST equation

returns the ready time, i.e, the time when all data needed by ni has arrived at the processor p j.

The ob jective f unction of the scheduling problem is to determine the assignment of task of

a given application to processors such that the schedule length or makespan is minimized. After

a task ni is scheduled on processor p j, the Actual Start Time of node ni (AST (ni)) is equal to

EST (ni) and the Actual Finish Time of node ni (AFT (ni)) is equal to EFT (ni). After all nodes in

the DAG are scheduled, the schedule length will be makespan = max[ AFT (nexit)], i.e. the Actual

Finish Time of exit task.
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The Critial Path (CP) of a DAG is the longest path from the entry node to the exit node in the

graph. The length of this path |CP| is the sum of the computation cost of the nodes and inter-node

communication costs along the path. The |CP| value of a DAG is the lower bound of the schedule

length.

2.3 List scheduling Algorithms

The list scheduling technique [KA99] has the following steps: a) determine the available tasks to

schedule, b) assign a priorities to them and c) until all tasks are scheduled, select the task with the

highest priority and assign it to the processor that allows the earliest start time.

Two attributes frequently used to define the tasks priorities are the upward and the downward

ranks. The upward rank of a node ni (ranku) is defined as the length of the longest path from

an entry node to ni (excluding ni). The downward rank of a node ni (rankd) is the length of the

longest path from ni to an exit node. The nodes of the DAG with higher rankd values belong to

the critical path.

2.3.1 HEFT Algorithm

The HEFT (Heterogeneous Earliest Finish Time) algorithm [THW02] is highly competitive in

that it generates a comparable schedule length to other scheduling algorithms, with a low time

complexity. The HEFT algorithm is an application scheduling algorithm for a bounded number of

heterogeneous processors, which has two major phases: a task prioritizing phase for computing

the priorities of all tasks and a processor selection phase for selecting the tasks in the order of

their priorities and scheduling each selected task on its best processor, which minimizes the task’s

finish time. In HEFT algorithm, tasks are ordered by their scheduling priorities that are based on

upward ranking (ranku).

Algorithm 1 The HEFT algorithm

Compute ranku(ni) for all ni ∈V
ReadyTaskList← Start Node
while ReadyTaskList 6= Empty do

ni← node with the maximum ranku in ReadyTaskList
for all p j ∈ P do

Compute EST (ni, p j)
EFT (ni, p j)← wi, j +EST (ni, p j)

end for
Map node ni on processor p j which provides its least EFT
Update T_Available(p j) and ReadyTaskList

end while
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2.3.2 CPOP Algorithm

The critical path (CP)is the longest path in a DAG. The Critical Path on Processor (CPOP) algo-

rithm is a variant of the HEFT algorithm [THW02]. CPOP adopts a different mapping strategy for

the critical path nodes and the non-critical path nodes. A CP processor is defined as the processor

that minimizes the overall execution time of the critical path assuming all the critical path nodes

are mapped onto it. If the selected node is a critical path node, it is mapped onto the CP processor.

Otherwise, it is mapped onto a processor that minimizes its EFT (like in the HEFT algorithm).

Algorithm 2 The CPOP algorithm

Compute ranku(ni) and rankd(ni) for all ni ∈V
Identify the Critical Paths and mark the Critical Path Nodes
priority(ni)← ranku(ni)+ rankd(ni)
ReadyTaskList← Start Node
while ReadyTaskList 6= Empty do

ni← node with the maximum ranku in ReadyTaskList
if ni ∈ Critical Path then

Map ni on the CP Processor
else

for all p j in P do
Compute EST (ni, p j)
EFT (ni, p j)← wi, j +EST (ni, p j)

end for
Map node ni on processor p j which provides its least EFT

end if
Update T_Available(p j)
Update ReadyTaskList

end while

2.4 Metaheuristic Algorithms

2.4.1 Ant Colony System

Ant colony system (ACS) is a metaheuristic that was first proposed by Dorigo and Gambardella

[DG97], it is one of the most popular swarm inspired methods in computational intelligence areas.

And latter adapted to discrete optimization problems [DCG99]. The basic idea is to imitate the

cooperative behaviour of real ants, to solve optimization problems. At first, ants have no clue about

which way belongs to the shortest path to nest, so they choose randomly. Once the ants discover

a paths from nest to food, they changed pheromone on the path. So another ants can follow the

trails to find the food source. The ants that found the shortest path will come back to nest sooner,

than ants via longer paths, and that path will have higher traffic. As this process continuous, the

shortest paths have a huge amount of pheromone and most of ants tend to choose these paths. ACS

includes five steps: (1) ants initialization to positioning (2) for each ant applied a state transition
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rule to incrementally build a solution and a local pheromone updating rule (3) Global pheromone

updating (4) ending test to evaluate the best solution that if it is not acceptable go to step 1.

To apply the ACS meta-heuristic to the task scheduling problem, we need to translate this

problem into the structure of ACS so that ants can find solutions. For this purpose, we considered

a Graph with two subgraphs G1 and G2, where the first represents the set of tasks to schedule and

the second denotes the set of processors available. At each iteration, each ant selects a source node

and a suitable processor based on a selection rule. Then we add tasks that are ready to schedule,

i.e. tasks where their predecessors have been scheduled, and this procedure continues until all task

are scheduled.

In ACS (Ant Colony System) the state transition rule provides a direct way to balance between

exploration of new edges and exploitation of a priori and accumulated knowledge about the prob-

lem. It is defined as follows: an ant positioned on task i chooses the processor u to move to by

applying the rule given by

Prob(i, p) =


max

[
τ(i, p)× [η(i, p)]β

]
if q0 < q(exploitation)

τ(i, p)× [η(i, p)]β

∑
q∈P

(τ(i,q)× [η(i,q)]β )
otherwise (biased exploration)

where q is a random number uniformly distributed in [0..1] and q0 is a parameter (0 ≤ q0 ≤ 1).

Tuning the parameter q0 allows modulation of the degree of exploration and the choice of whether

to concentrate the search of the system around the best-so-far solution or to explore other tours,

here q0 = 0.7. And η(n, p) = 1/AFT (ni,p) is the heuristic function and β = 2 is a parameter which

determine the relative influence of the heuristic information.

The Global Pheromone U pdate Rule is performed only by the best ants that have the shortest

path from source to sink. This rule besides the use of the pseudo-random-proportional rule, cause

to encourage the ants in next iterations to search in a neighbourhood of the best path found up

to current iteration. After all ants finished their tour, we can perform global updating for current

iteration. The pheromone level is updated by applying the global updating rule τ(i, p) = (1−
ρ) · τ(i, p) + ρ · ∆τ(i, p) where ∆τ(i, p) for global best tour is ∆τ(i, p) = 1/ [AFTbest ant(nexit)]

and for other nodes is ∆τ(i, p) = 0. Also, 0 < ρ < 1 is the pheromone decay parameter and

here is ρ = 0.1. In addition to the global pheromone trail updating rule, in ACS the ants use a

Local Pheromone U pdate rule in each iteration since each ant by choosing a processor p for task

i, is applied by τ(i, p) = (1− ξ ) · τ(i, p)+ ξ · τ0 where 0 < ξ < 1 denotes the pheromone decay

parameter and τ0 =
1
|V | is the initial value of pheromone on all edges. Experimentally, a good value

for ξ was found to be ξ = 0.1.

2.4.2 Simulated annealing

Simulated Annealing (SA) is a generic probabilistic meta-algorithm proposed by Kirpatrick, Gelett

and Vecchi [KGV+83] and Cerny [Čer85] used to find an approximate solution to global optimiza-

tion problems. It is inspired by annealing in metallurgy which is a technique of controlled cooling



2.4 Metaheuristic Algorithms 57

of material to reduce defects. In simulated annealing, a cost function to be minimized is defined

in terms of the parameters of the problem at hand. The cost minimization process is governed

by a cooling temperature which varies from a given high value to a low value slowly. At every

temperature, we generate a fixed number of scheduling and calculate cost function(makespan)

for each of them. If the cost function is less than the previous cost, the new configuration is ac-

cepted. If the cost is more than the previous one, the new configuration is chosen with a probability

r≤ exp(−∆C/Tk) where r ∈ [0,1]. Probabilistic acceptance of costlier solutions is behind the suc-

cess of the simulated annealing process. Actually, when ∆C ≤ 0, we have a downhill step, that

means a search for a new solution around a best solution. But if this condition is not satisfied, we

can use the new solution instead of the best solution, with higher cost (uphill step) and helps the so-

lution process overcome the possibility of getting trapped in a local minimum and move toward the

global minimum. The three most important parts are: (1)Cost Function that is the schedule length

of the solution; (2) Generating mechanism to randomly generate a scheduling of a set of tasks; and,

(3) Cooling mechanism that initializes the temperature to a value T0, and in each step, it decreases

by Tk+1 = α ×Tk and α = 0.1. if you chose higher, you will have less exploration of the search

space and move faster to final temperature. In our implementation the length of Markov chain is

|V |, final temperature is 0.01, initial temperature is
[
bestmakespan(Si)−worstmakespan(Si)

]
/ log(0.9),

where Si is the initial solution.

Algorithm 3 The Simulated annealing algorithm
Create an initial(feasible) solution s;
Set an initial temperature T0 (with k← 0);
Set number of trials at each temperature level (level-length) α

while termination criterion not satisfied do
for i = 1→ lengthMarkov chain do

Create new neighbor s′ by applying a random move to s;
Calculate cost difference ∆C between s′ and s : ∆C =C(s′)−C(s);
if ∆C ≤ 0 then

Switch over to solution s′ (current solution s is replaced by s′);
else

Create random number r ∈ [0,1];
if r ≤ exp(−∆C/Tk) then

Switch over to solution s′ (current solution s is replaced by s′);
end if

end if
end for
Update best found solution (if necessary);
Set k← k+1 and Set / Update temperature value Tk for next level k;

end while
return Best found solution
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2.4.3 Tabu Search

Tabu search (TS) is one the a heuristic methods proposed by Glover [Glo89] [Glo90]. Unlike

other meta-heuristics, in TS, we have an intelligent search to perform a systematic exploration of

the solution space. The main idea in TS is to use the information about search history to guide

local search approaches to overcome local optimality. In general we examine a path sequence of

solutions and moves to the best neighbour of the current solution and, to avoid cycling, solutions

that were recently examined are forbidden or tabu. Elements of Tabu Search: 1) Tabu List (short

term memory): to record solutions to prevent revisiting a visited solution; 2) Tabu tenure: num-

ber of iterations a tabu move is considered to remain tabu; 3) Aspiration criteria: accepting an

improved solution even if generated by a tabu move 4) Long term memory: to record attributes

of elite solutions to be used in: a) Intensification(giving priority to attributes of a set of elite so-

lutions) b) Diversification(Discouraging attributes of elite solutions in selection functions in order

to diversify the search to other areas of solution space)

Algorithm 4 Pseudocode for Tabu Search
S← random valuation of variables;
iter← 0;
initialize randomly the tabu_list
while (eval(S)> 0) and (iter < Maxiter) do

choose a move <V,v′ > with the best performance among the non-tabu moves and the moves
satisfying the aspiration criteria;
introduce <V,v > in the tabu_list, where v is the current value of V
remove the oldest move from the tabu_list
assign v′ to V ;
iter← iter+1;

end while
return S

2.5 Result and conclusions

In this section, we evaluate and compare the solution performance of the HEFT and CPOP with

metaheuristic algorithms for single DAG scheduling using an extensive simulation setup. The met-

rics used for comparison are the SLR (schedule length ratio) and the Speedup (used in [THW02]).

In fact, the SLR metric make a normalization on the schedule length to a lower bound.

SLR =
makespane(solution)

∑ni∈CPMIN minp j∈P (w(i, j))
Speedup =

min
p j∈P

[
∑

ni∈V
w(i, j)

]
makespane(solution)

The denominator in SLR is the minimum computation of tasks on critical path. With any algo-

rithm, there is no makespane less than the denominator of SLR equation. Therefore, the algorithm

with lower SLR is the best algorithm. Average SLR values over several task graphs are used in

our results. In Speedup, the sequential time is obtained by the sum of the processing time on the
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processor that minimizes the total computation cost [THW02]. The DAGs used in this simula-

tion setup were randomly generated using the program1 which consider the following parameters:

width as the number of tasks on the largest level; regularity is the uniformity of the number of

tasks in each level; density is the number of edges between two levels of the DAG. These parame-

ters may vary between 0 and 1. An additional parameter, jump, indicates that an edge can go from

level l to level l+ jump. In this paper, we consider DAGs with 10, 20, 30 and 40 tasks; the number

of processors equal to 4, 8, 16, and 32; CCR of 0.1, 0.5, 0.8 and 1; width equal to 0.1, 0.2, 0.8;

density equal to 0.2, 0.8; and jumps of 1, 2, and 4. These combinations give 1152 different DAG

types. Since 5 random DAGs were generate for each combination, the total number of DAGs used

in our experiment was 5760. We do not considers CCR above 1 because for a high speed network

it would not be a realistic value.
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Figure 2: The SLR and Speedup average values for each size graph and CCR=[0.1 0.5 0.8 1.0]

N=10 N=20 N=30 N=40
CCR SA TS ACS SA TS ACS SA TS ACS SA TS ACS
0.1 0.80% 0.60% 0.53% 1.64% 1.38% 0.62% 3.16% 2.94% 1.35% 4.07% 3.90% 1.79%
0.5 7.03% 5.70% 5.74% 7.09% 5.66% 4.04% 7.97% 6.50% 2.84% 7.93% 6.74% 2.88%
0.8 9.96% 6.91% 8.27% 10.0% 6.80% 6.45% 9.93% 6.49% 4.09% 9.48% 6.61% 1.87%
1.0 10.0% 6.23% 7.74% 10.2% 5.65% 6.14% 9.45% 5.85% 2.98% 10.9% 6.98% 2.51%

Table 3: SLR improvement observed with metaheuristic algorithms compared to HEFT

Figure 2 shows the results of SLR and Speedup for list scheduling algorithms (HEFT and

CPOP) and metaheuristic algorithms (ACS, TS and SA). It can be observed that in average there

is a consistent gap between the two types of algorithms, being the best solutions obtained by the

Simulated Annealing metaheuristic. Also HEFT has always better performance than CPOP, as

shown in [THW02]. Considering the results shown on table 3, it can be concluded that for low

CCR (0.1) the HEFT gives near results comparing to metaheuristic approaches. This means that

the effort of using a higher time complexity approach may not be worth. For higher CCRs up to

1https://github.com/frs69wq/daggen
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Figure 3: Scheduling of task graph with HEFT, SA, TS, ACS

1.0 the improvement is always below 11%, which means that the improvement is not very high

in order to compensate the usage of metaheuristic algorithms. For illustrative purpose, in figure 3

we can see an example of the makespan obtained by HEFT, AS, TS and ACS algorithms, for the

DAG represented in Figure 1.

In conclusion, we can say that for low CCR (0.1) HEFT produces schedules competitive with

metaheuristic approaches, with a lower time complexity. For higher CCRs up to 1, the improve-

ment achieved with SA is below 11%, being also competitive the schedules produced by HEFT.

These results show also that new heuristic base algorithms have a narrow space of improvement

over HEFT. Regarding the metaheuristic algorithms, SA showed to achieve consistently better

scheduling solutions for DAG scheduling in heterogeneous systems.
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abstract
Efficient application scheduling algorithms are important for obtaining high performance in

heterogeneous computing systems. In this paper, we present a novel list-based scheduling

algorithm called Predict Earliest Finish Time (PEFT) for heterogeneous computing sys-

tems. The algorithm has the same time complexity as the state-of-the-art algorithm for the

same purpose, that is, O(v2.p) for v tasks and p processors, but offers significant makespan

improvements by introducing a look-ahead feature without increasing the time complexity

associated with computation of an Optimistic Cost Table (OCT). The calculated value is an

optimistic cost because processor availability is not considered in the computation. Our al-

gorithm is only based on an OCT table that is used to rank tasks and for processor selection.

The analysis and experiments based on randomly generated graphs with various character-

istics and graphs of real-world applications show that the PEFT algorithm outperforms the

state-of-the-art list-based algorithms for heterogeneous systems in terms of schedule length

ratio, efficiency and frequency of best results.
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3.1 Introduction

A heterogeneous system can be defined as a range of different system resources, which can be local

or geographically distributed, that are utilized to execute computationally intensive applications.

The efficiency of executing parallel applications on heterogeneous systems critically depends on

the methods used to schedule the tasks of a parallel application. The objective is to minimize the

overall completion time or makespan. The task scheduling problem for heterogeneous systems is

more complex than that for homogeneous computing systems because of the different execution

rates among processors and possibly different communication rates among different processors.

A popular representation of an application is the Directed Acyclic Graph (DAG), which includes

the characteristics of an application program such as the execution time of tasks, the data size to

communicate between tasks and task dependencies. The DAG scheduling problem has been shown

to be NP-complete [CB76, GJ79, Ull75], even for the homogeneous case; therefore, research

efforts in this field have been mainly focused on obtaining low-complexity heuristics that produce

good schedules. In the literature, one of the best list-based heuristics is the Heterogeneous Earliest-

Finish-Time (HEFT) [THW02]. In [CJSZ08], the authors compared 20 scheduling heuristics and

concluded that on average, for random graphs, HEFT is the best one in terms of robustness and

schedule length.

The task scheduling problem is broadly classified into two major categories, namely Static

Scheduling and Dynamic Scheduling. In the Static category, all information about tasks such as

execution and communication costs for each task and the relationship with other tasks is known be-

forehand; in the dynamic category, such information is not available and decisions are made at run-

time. Moreover, Static scheduling is an example of compile-time scheduling, whereas Dynamic

scheduling is representative of run-time scheduling. Static scheduling algorithms are universally

classified into two major groups, namely Heuristic-based and Guided Random Search-based al-

gorithms. Heuristic-based algorithms allow approximate solutions, often good solutions, with

polynomial time complexity. Guided Random Search-based algorithms also give approximate so-

lutions, but the solution quality can be improved by including more iterations, which therefore

makes them more expensive than the Heuristic-based approach [THW02]. The Heuristic-based

group is composed of three subcategories: list, clustering and duplication scheduling. Clustering

heuristics are mainly proposed for homogeneous systems to form clusters of tasks that are then

assigned to processors. For heterogeneous systems, CHP algorithms [BR+04] and Triplet [CJ01]

were proposed, but they have limitations in higher-heterogeneity systems. The duplication heuris-

tics produce the shortest makespans, but they have two disadvantages: a higher time complexity,

i.e., cubic, in relation to the number of tasks, and the duplication of the execution of tasks, which

results in more processor power used. This is an important characteristic not only because of the

associated energy cost but also because, in a shared resource, fewer processors are available to

run other concurrent applications. List scheduling heuristics, on the other hand, produce the most

efficient schedules, without compromising the makespan and with a complexity that is generally

quadratic in relation to the number of tasks. HEFT has a complexity of O(v2.p), where v is the
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number of tasks and p is the number of processors.

In this paper, we present a new list scheduling algorithm for a bounded number of fully con-

nected heterogeneous processors called Predict Earliest Finish Time (PEFT) that outperforms

state-of-the-art algorithms such as HEFT in terms of makespan and Efficiency. The time com-

plexity is O(v2.p), as in HEFT. To our knowledge, this is the first algorithm to outperform HEFT

while having the same time complexity. We also introduce one innovation, a look ahead feature,

without increasing the time complexity. Other algorithms such as LDCP [DK08] and Lookahead

[BSM10] have this feature but with a cubic and quartic time complexity, respectively. We present

results for randomly generated DAGs1 and DAGs from well-known applications used in related

papers, such as Gaussian Elimination, Fast Fourier Transform, Montage and Epigenomic Work-

flows.

This paper is organized as follows: in Section 2, we introduce the task scheduling problem; in

Section 3, we present related work in scheduling DAGs on heterogeneous systems, and we present

in detail the scheduling algorithms that are used for the comparison with PEFT, which is the list

scheduling heuristic proposed here; in Section 4, we present PEFT; in Section 5 we present the

results and, finally, we present the conclusions in Section 6.

3.2 Scheduling problem formulation

The problem addressed in this paper is the static scheduling of a single application in a hetero-

geneous system with a set P of processors. As mentioned above, task scheduling can be divided

into Static and Dynamic approaches. Dynamic scheduling is adequate for situations where the

system and task parameters are not known at compile time, which requires decisions to be made

at runtime but with additional overhead. A sample environment is a system where users submit

jobs, at any time, to a shared computing resource [MAS+99]. A dynamic algorithm is required

because the workload is only known at runtime, as is the status of each processor when new tasks

arrive. Consequently, a dynamic algorithm does not have all work requirements available during

scheduling and cannot optimize based on the entire workload. By contrast, a static approach can

maximize a schedule by considering all tasks independently of execution order or time because

the schedule is generated before execution begins and introduces no overhead at runtime. In this

paper, we present an algorithm that minimizes the execution time of a single job on a set of P

processors. We consider that P processors are available for the job and that they are not shared

during the job execution. Therefore, with the system and job parameters known at compile time,

a static scheduling approach has no overhead at runtime and is more appropriate.

An application can be represented by a Directed Acyclic Graph (DAG), G = (V,E), as shown

in Figure 1, where V is the set of v nodes and each node vi ∈V represents an application task, which

includes instructions that must be executed on the same machine. E is the set of e communication

edges between tasks; each e(i, j) ∈ E represents the task-dependency constraint such that task ni

should complete its execution before task n j can be started. The DAG is complemented by a matrix

1https://github.com/frs69wq/daggen
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W that is a v× p computation cost matrix, where v is the number of tasks and p is the number of

processors in the system. wi, j gives the estimated time to execute task vi on machine p j. The mean

execution time of task vi is calculated by equation 1.

wi = (∑
j∈P

wi, j)/p (1)

The average execution time wi is commonly used to compute a priority rank for the tasks. The

algorithm proposed in this paper uses the wi, j rather than wi as explained in section 3.4.

Each edge e(i, j) ∈ E is associated with a non-negative weight ci, j representing the communi-

cation cost between the tasks vi and v j. Because this value can be computed only after defining

where tasks vi and v j will be executed, it is common to compute the average communication costs

to label the edges [THW02]. The average communication cost ci, j of an edge e(i, j) is calculated

by equation 2.

ci, j = L+
datai, j

B
(2)

where L is the average latency time of all processors and B is the average bandwidth of all links

connecting the set of P processors. datai, j is the amount of data elements that task vi needs

to send to task v j. Note that when tasks vi and v j are assigned to the same processor, the real

communication cost is considered to be zero because it is negligible compared with interprocessor

communication costs.

Figure 1: Application DAG and computation time matrix of the tasks in each processor for a three
processor machine

Additionally, in our model, we consider processors that are connected in a fully connected

topology. The execution of tasks and communications with other processors can be achieved for

each processor simultaneously and without contention. Additionally, the execution of any task is

considered nonpreemptive. These model simplifications are common in this scheduling problem

[DK08, HJ05, THW02], and we consider them to permit a fair comparison with state-of-the-art

algorithms and because these simplifications correspond to real systems. Our target system is a

single site infrastructure that can be as simple as a set of devices (e.g., CPUs and GPUs) connected

by a switched network that guarantees parallel communications between different pairs of devices.
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The machine is heterogeneous because CPUs can be from different generations and also because

other very different devices such as GPUs can be included. Another common machine is the one

that results from selecting processors from several clusters from the same site. Although a cluster

is homogeneous, the set of processors selected to execute a given DAG forms a heterogeneous

machine. Because the clusters are connected by high-speed networks, with redundant links, the

simplification is still reasonable. The processor latency can differ in a heterogeneous machine, but

such differences are negligible. For low communication-to-computation ratios (CCRs), the com-

munications are negligible; for higher CCRs, the predominant factor is the network bandwidth,

and we consider that the bandwidth is the same throughout the entire network.

Next, we present some of the common attributes used in task scheduling, which we will refer

to in the following sections.

Definition (1) pred(ni): denotes the set of immediate predecessors of task ni in a given DAG.

A task with no predecessors is called an entry task, nentry. If a DAG has multiple entry nodes, a

dummy entry node with zero weight and zero communication edges can be added to the graph.

Definition (2) succ(ni): denotes the set of immediate successors of task ni. A task with no

successors is called an exit task, nexit . Similar to the entry node, if a DAG has multiple exit nodes,

a dummy exit node with zero weight and zero communication edges from current multiple exit

nodes to this dummy node can be added to the graph.

Definition (3) makespan or schedule length: denotes the finish time of the last task in the

scheduled DAG and is defined by

makespan = max{AFT (nexit)} (3)

where AFT (nexit) denotes the Actual Finish Time of the exit node. In the case where there is more

than one exit node and no redundant node is added, the makespan is the maximum actual finish

time of all exit tasks.

Definition (4) level(ni): the level of task ni is an integer value representing the maximum num-

ber of edges of the paths from the entry node to ni. For the entry node, the level is level(nentry) = 1,

and for other tasks, it is given by

level(ni) = max
q∈pred(ni)

{level(q)}+1 (4)

Definition (5) Critical Path(CP): the CP of a DAG is the longest path from the entry node

to the exit node in the graph. The lower bound of a schedule length is the minimum critical path

length (CPMIN), which is computed by considering the minimum computational costs of each node

in the critical path.

Definition (6) EST (ni, p j): denotes the Earliest Start Time of a node ni on a processor p j and

is defined as

EST (ni, p j) = max
{

TAvailable(p j), max
nm∈pred(ni)

{
AFT (nm)+ cm,i

}}
(5)
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where TAvailable(p j) is the earliest time at which processor p j is ready. The inner max block

in the EST equation is the time at which all data needed by ni arrive at the processor p j. The

communication cost cm,i is zero if the predecessor node nm is assigned to processor p j. For the

entry task, EST
(
nentry, p j

)
= 0.

Definition (7) EFT (ni, p j): denotes the Earliest Finish Time of a node ni on a processor p j

and is defined as

EFT (ni, p j) = EST (ni, p j)+wi, j (6)

which is the Earliest Start Time of a node ni on a processor p j plus the computational cost of ni

on a processor p j.

The objective of the scheduling problem is to determine an assignment of tasks of a given

DAG to processors such that the Schedule Length is minimized. After all nodes in the DAG are

scheduled, the schedule length will be the Actual Finish Time of the exit task, as expressed by

equation 1.

3.3 Related work

In this section, we present a brief survey of task scheduling algorithms, specifically list-based

heuristics. We present their time complexity and their comparative performance.

Over the past few years, research on static DAG scheduling has focused on finding subop-

timal solutions to obtain a good solution in an acceptably short time. List scheduling heuristics

usually generate high-quality schedules at a reasonable cost. In comparison with clustering algo-

rithms, they have lower time complexity, and in comparison with task duplication strategies, their

solutions represent a lower processor workload.

3.3.1 List-based algorithms

Many list scheduling algorithms have been developed by researchers. This type of scheduling

algorithm has two phases: the prioritizing phase for giving a priority to each task and a processor

selection phase for selecting a suitable processor that minimizes the heuristic cost function. If two

or more tasks have equal priority, then the tie is resolved by selecting a task randomly. The last

phase is repeated until all tasks are scheduled to suitable processors. Table 4 presents some list

scheduling algorithms including some of the most cited, along with their time complexity.

The MH and DLS algorithms consider a link contentions model, but their versions for a fully

connected network were used for comparison purposes by other authors and are therefore de-

scribed here. The schedules generated by the Mapping Heuristic (MH) algorithm [ERL90] are

generally longer than recently developed heuristics because MH only considers a processor ready

when it finishes the last task assigned to it. Therefore, MH ignores the possibility that a proces-

sor that is busy when a task is being scheduled can complete the task in a shorter time, which

thus results in poorer scheduling. The time complexity of MH without contention is O(v2.p) and

O(v2.p3) otherwise. Dynamic Level Scheduling (DLS) [SL+93] is one of the first algorithms that
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Algorithm Reference Complexity

MH [ERL90] O(v2.p)

DLS [SL+93] O(v3.p)

LMT [IÖF95] O(v2.p2)

BIL [OH96] O(v2.p. log p)

FLB [RVG00] O(v.(log p+ logv)+ v2)

CPOP [THW99, THW02] O(v2.p)

HEFT [THW99, THW02] O(v2.p)

HCPT [HJ03] O(v2.p)

HPS [ITM05] O(v2(p. logv))

PETS [IT07] O(v2(p. logv))

LDCP [DK08] O(v3.p)

Lookahead [BSM10] O(v4.p3)

Table 4: List-based scheduling algorithms for heterogeneous systems

computed an estimate of the availability of each processor and thus allowed a task to be scheduled

to a currently busy processor. Consequently, DLS yields better results than MH. The DLS authors

proposed a version for a heterogeneous machine, but the processor selection was based on the Ear-

liest Start Time (EST) as the homogeneous version, which is one of the drawbacks of the algorithm

because the EST does not guarantee the minimum completion time for a task. Additionally, DLS

does not try to fill scheduling holes in a processor schedule (idle time slots that are between two

tasks already scheduled on the same processor), in contrast to other more recent algorithms. The

time complexity of DLS for a fully connected network is O(v3.p), where the routing complexity

is equal to 1. The Levelized min-Time Algorithm (LMT) [IÖF95] is a very simple heuristic that

assigns priorities to tasks based on their precedence constraints, which are called levels. The time

complexity is squared in relation to the number of processors and tasks. The schedules produced

are significantly worse than those produced by other more recently developed heuristics, such as

CPOP [THW99, THW02]. The Best Imaginary Level (BIL) [OH96] defines a static level for DAG

nodes, called BIL, that incorporates the effect of interprocessor communication overhead and pro-

cessor heterogeneity. The BIL heuristic provides an optimal schedule for linear DAGs. Fast Load

Balancing (FLB) [RVG00] was proposed with the aim of reducing the time complexity relative to

that of HEFT [THW99, THW02]. FLB generates schedules comparable to those of HEFT, but it

generates poor schedules for irregular task graphs and for higher processor heterogeneities. The

Critical Path On a Processor (CPOP) [THW99, THW02] achieves better schedules than LMT and

MH as well as schedules that are comparable to those of DLS, with a lower time complexity. The

main feature of CPOP is the assignment of all the tasks that belong to the critical path to a sin-

gle processor. Heterogenous Critical Parent Trees (HCPT) [HJ03] yield better scheduling results

than CPOP, FLB and DLS. The Heterogeneous Earliest-Finish-Time (HEFT) [THW99, THW02]
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is one of the best list scheduling heuristics, as it has quadratic time complexity. In [CJSZ08], the

authors compared 20 heuristics and concluded that HEFT produces the shortest schedule lengths

for random graphs.

HPS[ITM05] and PETS[IT07] are other list scheduling heuristics reported to achieve better

results than HEFT. HPS, PETS, HEFT, HCPT and Lookahead are explained in more detail in

section 3.3.2, and they are used in this paper for comparison with our proposed list scheduling

algorithm.

For the Longest Dynamic Critical Path (LDCP) [DK08], the authors reported better scheduling

results than HEFT, although these results were not significant when considering the associated

increase in complexity. For random graphs, the improvements in the schedule length ratio over

HEFT were less than 3.1%. The algorithm builds for each processor a DAG, called a DAGP, that

consists of the initial DAG with the computation costs of the processors. The complexity is higher

(cubic) because the algorithm needs to update all DAGPs after scheduling a task to a processor.

Another recent algorithm that reported an average improvement in makespan over HEFT is the

Lookahead approach [BSM10]. This algorithm has quartic complexity for the one step Lookahead.

We consider the Lookahead for comparison with our algorithm because it has achieved the best

results reported thus far in the literature. Because it has a higher complexity, it serves as a reference

and an upper bound for our algorithm.

3.3.2 Selected list scheduling heuristics

Here, we describe the list scheduling heuristics for scheduling tasks on a bounded number of

heterogeneous processors selected for comparison with our proposed algorithm, namely HEFT,

HCPT, HPS, PETS and Lookahead.

3.3.2.1 Heterogeneous Earliest Finish Time (HEFT)

The HEFT algorithm [THW02] is highly competitive in that it generates a schedule length com-

parable to the schedule lengths of other scheduling algorithms with a lower time complexity.

The HEFT algorithm has two phases: a task prioritizing and a processor selection phase. In

the first phase task, priorities are defined as ranku. ranku represents the length of the longest

path from task ni to the exit node, including the computational cost of ni, and is given by

ranku(ni) = wi +maxn j∈succ(ni){ci, j + ranku(n j)}. For the exit task, ranku(nexit) = wexit . The task

list is ordered by decreasing value of ranku. In the processor selection phase, the task on top of

the task list is assigned to the processor p j that allows for the EFT (Earliest Finish Time) of task

ni. However, the HEFT algorithm uses an insertion policy that tries to insert a task in at the ear-

liest idle time between two already scheduled tasks on a processor, if the slot is large enough to

accommodate the task.
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3.3.2.2 Heterogeneous Critical Parent Trees (HCPT)

The HCPT algorithm [HJ03] uses a new mechanism to construct the scheduling list L, rather

than assigning priorities to the application tasks. HCPT divides the task graph into a set of

unlisted-parent trees. The root of each unlisted-parent tree is a critical path node (CN). A CN

is defined as the node that has zero difference between its AEST and ALST. The AEST is the

Average Earliest Start Time of node ni and is equivalent to rankd , as indicated by AEST (ni) =

maxn j∈pred(ni){AEST (n j)+w j + c j,i}; AEST (nentry) = 0.

The Average Latest Start Time (ALST ) of node ni can be computed recursively by traversing the

DAG upward starting from the exit node and is given by ALST (ni) = minn j∈succ(ni)

{
ALST (n j)−

ci, j
}
−wi; ALST (nexit) = AEST (nexit).

The algorithm also has two phases, namely listing tasks and processor assignment. In the

first phase, the algorithm starts with an empty queue L and an auxiliary stack S that contains the

CNs pushed in decreasing order of their ALSTs, i.e., the entry node is on top of S. Consequently,

top(S) is examined. If top(S) has an unlisted parent (i.e., has a parent not in L), then this parent

is pushed on the stack S. Otherwise, top(S) is removed and enqueued into L. In the processor

assignment phase, the algorithm tries to assign each task ni ∈ L to a processor p j that allows the

task to be completed as early as possible.

3.3.2.3 High Performance Task Scheduling (HPS)

The HPS [ITM05] algorithm has three phases, namely a level sorting, task prioritization and

processor selection phase. In the level sorting phase, the given DAG is traversed in a top-down

fashion to sort tasks at each level to group the tasks that are independent of each other. As a result,

tasks in the same level can be executed in parallel. In the task prioritization phase, priority is

computed and assigned to each task using the attributes Down Link Cost (DLC), Up Link Cost

(ULC) and Link Cost (LC) of the task. The DLC of a task is the maximum communication cost

among all the immediate predecessors of the task. The DLC for all tasks at level 0 is 0. The ULC

of a task is the maximum communication cost among all the immediate successors of the task.

The ULC for an exit task is 0. The LC of a task is the sum of DLC, ULC and maximum LC for all

its immediate predecessor tasks.

At each level, based on the LC values, the task with the highest LC value receives the highest

priority, followed by the task with the next highest LC value and so on in the same level. In the

processor selection phase, the processor that gives the minimum EFT for a task is selected to

execute that task. HPS has an insertion-based policy, which considers the insertion of a task in the

earliest idle time slot between two already-scheduled tasks on a processor.

3.3.2.4 Performance Effective Task Scheduling (PETS)

The PETS algorithm [IT07] has the same three phases as HPS. In the level sorting phase, similar

to HPS, tasks are categorized in levels such that in each level, the tasks are independent. In the task

prioritization phase, priority is computed and assigned to each task using the attributes Average
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Computation Cost (ACC), Data Transfer Cost (DTC) and the Rank of Predecessor Task (RPT).

The ACC of a task is the average computation cost for all p processors, which we referred to before

as wi. The DTC of a task ni is the communication cost incurred when transferring the data from

task ni to all its immediate successor tasks; for an exit node, DTC(nexit) = 0. The RPT of a task ni

is the highest rank of all its immediate predecessor tasks; for an entry node, RPT (nentry) = 0. The

rank is computed for each task ni based on the task’s ACC, DTC and RPT values and is given by

rank(ni) = round{ACC(ni)+DTC(ni)+RPT (ni)}.
At each level, the task with the highest rank value receives the highest priority, followed by the

task with next highest rank value and so on. A tie is broken by selecting the task with the lower

ACC value. As in some of the other task scheduling algorithms, in the processor selection phase,

this algorithm selects the processor that gives the minimum EFT value for executing the task. It

also uses an insertion-based policy for scheduling a task in an idle slot between two previously

scheduled tasks on a given processor.

3.3.2.5 Lookahead Algorithm

The Lookahead scheduling algorithm [BSM10] is based on the HEFT algorithm, whose main

feature is its processor selection policy. To select a processor for the current task t, it iterates

over all available processors and computes the EFT for the child tasks on all processors. The

processor selected for task t is the one that minimizes the maximum EFT from all children of t on

all resources where t is tried. This procedure can be repeated for each child of t by increasing the

number of levels analyzed. In HEFT, the complexity of v tasks is O(e.p), where EFT is computed

v times. In the worst case, by replacing e by v2, we obtain O(v2.p). The Lookahead algorithm

has the same structure as HEFT but computes EFT for each child of the current task. The number

of EFT calls (graph vertices) is equal to v+ p.e for a single level of forecasting. By replacing

this number of vertices in O(v2.p), in the worst case the total time complexity of Lookahead is

O(v4.p3). The authors reported that additional levels of forecasting do not result in significant

improvements in the makespan. Here, we only consider the one-level Lookahead.

3.4 The proposed algorithm PEFT

In this section, we introduce a new list-based scheduling algorithm for a bounded number of

heterogeneous processors, called PEFT. The algorithm has two major phases: a task prioritizing

phase for computing task priorities, and a processor selection phase for selecting the best processor

for executing the current task.

In our previous work [AB12b], we evaluated the performance of list-based scheduling algo-

rithms. We compared their results with the solutions achieved by three meta-heuristic algorithms,

namely Tabu Search, Simulated Annealing and Ant Colony System. The meta-heuristic algo-

rithms, which feature a higher processing time, always achieved better solutions than the list

scheduling heuristics with quadratic complexity. We then compared the best solutions for both

types, step by step. We observed that the best meta-heuristic schedules could not be achieved if
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we followed the common strategy of selecting processors based only on current task execution

time, because the best schedules consider not only the immediate gain in processing time but also

the gain in a sequence of tasks. Most list-based scheduling heuristics with quadratic time complex-

ity assign a task to a processor by evaluating only the current task. This methodology, although

inexpensive, does not evaluate what is ahead of the current task, which leads to poor decisions in

some cases. Algorithms that analyze the impact on children nodes, such as Lookahead [BSM10],

exist, but they increase the time complexity to the 4th order.

The most powerful feature of the Lookahead algorithm, as the best algorithm with the lowest

makespan, is its ability to forecast the impact of an assignment for all children of the current

task. This feature permits better decisions to made in selecting processors, but it increases the

complexity significantly. Therefore, the novelty of the proposed algorithm is its ability to forecast

by computing an Optimistic Cost Table while maintaining quadratic time complexity, as explained

in the following section.

3.4.1 Optimistic cost table (OCT)

Our algorithm is based on the computation of a cost table on which task priority and processor

selection are based. The OCT is a matrix in which the rows indicate the number of tasks and

the columns indicate the number of processors, where each element OCT (ti, pk) indicates the

maximum of the shortest paths of ti children’s tasks to the exit node considering that processor pk

is selected for task ti. The OCT value of task ti on processor pk is recursively defined by Equation 7

by traversing the DAG from the exit task to the entry task.

OCT (ti, pk) = max
t j∈succ(ti)

[
min
pw∈P

{
OCT (t j, pw)+w(t j, pw)+ ci, j

}]
,

ci, j = 0 i f pw = pk. (7)

where ci, j is the average communication cost, which is zero if t j is being evaluated for processor

pk, and w(t j, pw) is the execution time of task t j on processor pw. As explained before, we use

the average communication cost and the execution cost for each processor. OCT (ti, pk) repre-

sents the maximum optimistic processing time of the children of task ti because it considers that

children tasks are executed in the processor that minimizes processing time (communications and

execution) independently of processor availability, as the OCT is computed before scheduling be-

gins. Because it is defined recursively and the children already have the optimistic cost to the exit

node, only the first level of children is considered. For the exit task, the OCT (nexit , pk) = 0 for all

processors pk ∈ P.
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3.4.2 Task prioritizing phase

To define task priority, we compute the average OCT for each task that is defined by equation 8.

rankoct(ti) =

P

∑
k=1

OCT (ti, pk)

P
(8)

Table 5 shows the values of OCT for the DAG sample of Figure 1. When the new rank rankoct

is compared with ranku, the former shows slight differences in the order of the tasks based on these

two priority strategies. For instance, T 5 has a lower rankoct value than T 4, where T 4 is selected

first for scheduling. With ranku, the opposite is true. The main feature of our algorithm is the cost

table that reflects for each task and processor the cost to execute descendant tasks until the exit

node. This information permits an informed decision to be made in assigning a processor to a task.

Task ranking is a less relevant issue because few tasks in each step are ordered by priority and the

influence on performance is less relevant. By comparing ranku and rankoct , we can see that ranku

uses the average computing cost for each task and also accumulates the maximum descendant costs

of descendant tasks to the exit node. In contrast, rankoct is an average over a set of values that were

computed with the cost of each task on each processor. Therefore, the ranks are computed using a

similar procedure, and significant differences in performance are not expected when using either

system.

For the tests with random graphs reported in the results section, when using ranku the per-

formance is on average better in approximately 0.5%. The OCT exerts a greater influence in the

processor selection phase, and using ranku would require additional computations without provid-

ing a significant advantage.

Task P1 P2 P3 rankoct ranku

T1 64 68 86 72.7 169

T2 42 39 42 41 114.3

T3 27 41 43 37 102.7

T4 42 39 50 43.7 110

T5 28 37 28 31 129.7

T6 42 39 44 41.7 119.3

T7 13 16 22 17 52.7

T8 13 16 33 20.7 92

T9 13 16 20 16.3 42.3

T10 0 0 0 0 20.7
Table 5: Optimistic Cost Table for the DAG of Figure 1; rankoct and ranku are also shown for
comparison purposes
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3.4.3 Processor selection phase

To select a processor for a task, we compute the Optimistic EFT (OEFT ), which sums to EFT

the computation time of the longest path to the exit node. In this way, we are looking forward

(forecasting) in the processor selection; perhaps we are not selecting the processor that achieves

the earliest finish time for the current task, but we expect to achieve a shorter finish time for the

tasks in the next steps. The aim is to guarantee that the tasks ahead will finish earlier, which is the

purpose of the OCT table. OEFT is defined by equation 9.

OEFT (ti, p j) = EFT (ti, p j)+OCT (ti, p j) (9)

3.4.4 Detailed description of PEFT algorithm

In this section, we present the algorithm PEFT, supported by an example, to detail the description

of each step. The proposed PEFT algorithm is formalized in Algorithm 1.

Algorithm 1 The PEFT algorithm
1: Compute OCT table and rankoct for all tasks
2: Create Empty list ready-list and put nentry as initial task
3: while ready-list is NOT Empty do
4: ni← the task with highest rankoct from ready-list
5: for all processor p j in the processor-set P do
6: Compute EFT (ni, p j) value using insertion-based scheduling policy
7: OEFT (ni, p j) = EFT (ni, p j)+OCT (ni, p j)
8: end for
9: Assign task ni to the processor p j that minimize OEFT of task ni

10: Update ready-list
11: end while

The algorithm starts by computing the OCT table and rankoct at line 1. It then creates an empty

ready− list and places the entry task on top of the list. In the while loop, from line 4 to 10, in each

iteration, the algorithm will schedule the task with a higher value of rankoct . After selecting the

task for scheduling, the PEFT algorithm calculates the OEFT values for the task on all processors.

In the processor selection phase, the aim is to guarantee that the tasks ahead will finish earlier, but

rather than analyzing all tasks until the end, to reduce complexity we use the OCT table, which

incorporates that information. In line 9, the processor p j that achieves the minimum OEFT (ni, p j)

is selected to execute task ni.

Table 6 shows an example that demonstrates the PEFT for the DAG of Figure 1.

Figure 2 shows the scheduling results for the sample DAG with the algorithms PEFT, Looka-

head, HEFT, HCPT, HPS and PETS. By comparing the schedules of PEFT and HEFT, we can

see that T1 is assigned to P1 although it does not guarantee the earliest finish time for T1, but P1

minimizes the expected EFT of all DAGs. This is only one example used to illustrate the algo-

rithm, but as shown in the results section, PEFT produces, on average, better schedules than the

state-of-the-art algorithms.



74 List Scheduling Algorithm for Heterogeneous Systems by an Optimistic Cost Table

Ready Task EFT OEFT CPU

Step List selected P1 P2 P3 P1 P2 P3 Selected

1 T1 T1 22 21 36 86 89 122 P1

2 T4,T6,T2,T3,T5 T4 29 61 55 71 100 105 P1

3 T6,T2,T3,T5 T6 55 46 53 97 85 97 P2

4 T2,T3,T5 T2 51 64 57 93 103 99 P1

5 T3,T5,T8 T3 83 80 96 110 121 139 P1

6 T5,T8,T7 T5 112 73 70 140 110 98 P3

7 T8,T7,T9 T8 112 77 106 125 93 139 P2

8 T7,T9 T7 97 124 129 110 140 151 P1

9 T9 T9 142 148 89 155 164 109 P3

10 T10 T10 132 122 152 132 122 152 P2

Table 6: Schedule produced by the PEFT algorithm in each iteration

Figure 2: Schedules of the sample task graph in Figure 1 with (a) PEFT (makespan=122), (b)
Lookahead (makespan=127), (c) HEFT (makespan=133), (d) HCPT (makespan=142), (e) PETS
(makespan=147)

In terms of time complexity, PEFT requires the computation of an OCT table that is O(p(e+

v)), and to assign the tasks to processors the time complexity is of the order O(v2.p). The total
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time is O(p(e+ v)+ v2.p). For dense DAGs, e becomes v2, where the total algorithm complexity

is of the order O(v2.p). That is, the time complexity of PEFT is of the same order as the HEFT

algorithm.

3.5 Experimental Results and Discussion

This section compares the performance of the PEFT algorithm with that of the algorithms pre-

sented above. For this purpose, we consider two sets of graphs as the workload: randomly gen-

erated application graphs and graphs that represent some real-world applications. We first present

the comparison metrics used for the performance evaluation.

3.5.1 Comparison Metrics

The comparison metrics are Scheduling Length Ratio, Efficiency, pair-wise comparison of the

number of occurrences of better solutions and Slack.

Scheduling Length Ratio (SLR)

The metric most commonly used to evaluate a schedule for a single DAG is the makespan, as

defined by equation 1. Here, we want to use a metric that compares DAGs with very different

topologies; the metric most commonly used to do so is the Normalized Schedule Length (NSL)

[DK08], which is also called the Scheduling Length Ratio (SLR) [THW02]. For a given DAG,

both represent the makespan normalized to the lower bound. SLR is defined by equation 10.

SLR =
makespan(solution)

∑
ni∈CPMIN

min
p j∈P

(w(i, j))
(10)

The denominator in SLR is the minimum computation cost of the critical path tasks (CPMIN).

There is no makespan less than the denominator of the SLR equation. Therefore, the algorithm

with the lowest SLR is the best algorithm.

Efficiency

In the general case, Efficiency is defined as the Speedup divided by the number of processors used

in each run, and Speedup is defined as the ratio of the sequential execution time to the parallel

execution time (i.e., the makespan). The sequential execution time is computed by assigning all

tasks to a single processor that minimizes the total computation cost of the task graph, as shown

by equation 11.

Speedup =

min
p j∈P

[
∑

ni∈V
w(i, j)

]
makespan(solution)

(11)
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Number of occurrences of better solutions

This comparison is presented as a pair-wise table, where the percentage of better, equal and worse

solutions produced by PEFT is compared to that of the other algorithms.

Slack

The slack metric [BM02, SJD06] is a measure of the robustness of the schedules produced by

an algorithm to uncertainty in the tasks’ processing time, and it represents the capacity of the

schedule to absorb delays in task execution. The slack is defined for a given schedule and a given

set of processors. The slack of a task represents the time window within which the task can be

delayed without extending the makespan. Slack and makespan are two conflicting metrics; lower

makespans produce small slack. For deterministic schedules, the slack is defined by Equation12.

Slack =
[

∑
ti∈V

M−blevel(ti)− tlevel(ti)
]
/n (12)

where M is the makespan of the DAG, n is the number of tasks, blevel is the length of the longest

path to the exit node and tlevel is the length of the longest path from the entry node. These values are

referred to a given schedule, and therefore the processing time used for each task is the processing

time on the processor that it was assigned. The aim of using this metric is to evaluate whether the

proposed algorithm has an equivalent slack to HEFT, which is the reference quadratic algorithm.

3.5.2 Random Graph Generator

To evaluate the relative performance of the heuristics, we first considered randomly generated

application graphs. For this purpose, we used a synthetic DAG generation program2 with an

adaptation to the fat parameter, as explained next. Five parameters define the DAG shape:

• n: number of computation nodes in the DAG (i.e., application tasks);

• fat: this parameter affects the height and the width of the DAG. The width in each level is

defined by a uniform distribution with a mean equal to f at.
√

n. The height, or the number

of levels, is created until n tasks are defined in the DAG. The width of the DAG is the

maximum number of tasks that can be executed concurrently. A small value will lead to a

thin DAG (e.g., chain) with low task parallelism, whereas a large value induces a fat DAG

(e.g., fork-join) with a high degree of parallelism;

• density: determines the number of edges between two levels of the DAG, with a low value

leading to few edges and a large value leading to many edges;

• regularity: the regularity determines the uniformity of the number of tasks in each level.

A low value indicates that levels contain dissimilar numbers of tasks, whereas a high value

indicates that all levels contain similar numbers of tasks;
2https://github.com/frs69wq/daggen
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• jump: indicates that an edge can go from level l to level l+ jump. A jump of 1 is an ordinary

connection between two consecutive levels.

In the present study, we used this synthetic DAG generator to create the DAG structure, which

includes the specific number of nodes and their dependencies. To obtain computation and com-

munication costs, the following parameters are used:

• CCR (Communication to Computation Ratio): ratio of the sum of the edge weights to the

sum of the node weights in a DAG;

• β (Range percentage of computation costs on processors): the heterogeneity factor for pro-

cessor speeds. A high β value implies higher heterogeneity and different computation costs

among processors, and a low value implies that the computation costs for a given task are

nearly equal among processors [THW02]. The average computation cost of a task ni in a

given graph wi is selected randomly from a uniform distribution with range
[
0,2×wDAG

]
,

where wDAG is the average computation cost of a given graph that is obtained randomly.

The computation cost of each task ni on each processor p j is randomly set from the range

of equation 3.

wi×
(

1− β

2

)
≤ wi, j ≤ wi×

(
1+

β

2

)
(13)

In our experiment, for random DAG generation, we considered the following parameters:

• n =
[
10,20,30,40,50,60,70,80,90,100,200,300,400,500

]
• CCR =

[
0.1,0.5,0.8,1,2,5,10

]
• β =

[
0.1,0.2,0.5,1,2

]
• jump =

[
1,2,4

]
• regularity =

[
0.2,0.8

]
• f at =

[
0.1,0.4,0.8

]
• density =

[
0.2,0.8

]
• Processors =

[
4,8,16,32

]
These combinations produce 70,560 different DAGs. For each DAG, 10 different random

graphs were generated with the same structure but with different edge and node weights. Thus,

705,600 random DAGs were used in the study.

Figure 3a shows the average SLR and Figure 3b shows the average slack for all algorithms as

a function of the DAG size. For DAGs featuring up to 100 tasks, Lookahead and PEFT present

similar results. For larger DAGs, PEFT is the best algorithm, as it outperforms the Lookahead
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algorithm. All quadratic algorithms maintain a certain level of performance, in contrast to the

Lookahead algorithm, which after 100 tasks suffers a substantial decrease in performance. The

Lookahead algorithm bases its decisions on the analysis of the children nodes for the current task,

expecting that those nodes will be scheduled shortly. However, if there are too many concurrent

tasks to schedule, as observed for DAGs with more than 100 tasks, the processor load is substan-

tially changed by the concurrent tasks to be scheduled after the current task. This finding implies

that when the children tasks are scheduled, the conditions are different and the optimization de-

cision made by the parent task is not valid, which results in poorer performance. Compared with

HEFT, our PEFT algorithm improves by 10% for 10 task DAGs. This improvement gradually

decreases to 6.2% for 100 task DAGs and to 4% for 500 task DAGs. Despite this significant

improvement, we can observe that PEFT maintains the same level of Slack as HEFT. Thus, the

schedules produced, although shorter, have the same robustness to uncertainty as those produced

by HEFT.

(a) (b)

Figure 3: (a) Average SLR and (b) slack for random graphs as a function of DAG size

To illustrate the results statistically, boxplots are presented, where the minimum, 25%, mean

and 75% values of the algorithm results are represented. The maximum is not shown because there

is a broad distribution in the results; therefore, we only show values up to the Upper Inner Fence.

We also show the average values, which are indicated by an individual line in each boxplot.

The SLRs obtained for the PEFT, Lookahead, HEFT, HCPT, HPS and PETS algorithms as a

function of CCR and heterogeneity are shown in Figure 5a and 5b, respectively. We can see that

PEFT has the lowest average SLR and a smaller dispersion in the distribution of the results. The

second best algorithm in terms of SLR is Lookahead. In terms of Efficiency, Figure 5c, Lookahead

is the best algorithm, with a performance very similar to that of PEFT. This is an important finding

because with the proposed algorithm, we improved the SLR and also achieved high values of

Efficiency that are only comparable with those of a higher-complexity algorithm. PEFT was the

best quadratic algorithm in our simulation.

Table 7 shows the percentage of better, equal and worse results for PEFT when compared

with the remaining algorithms, based on makespan. Compared with HEFT, PEFT achieves better

scheduling in 72% of runs, equivalent schedules in 3% of runs and worse schedules in 25% of
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(a) (b)

(c)

Figure 4: (a) Boxplot of SLR as a function of CCR; (b) boxplot of SLR as a function of hetero-
geneity and (c) efficiency for random graphs

runs.

PEFT Lookahead HEFT HCPT PETS HPS

better 66% 72% 79% 91% 90%
PEFT worse * 28% 25% 18% 9% 8%

equal 6% 3% 3% 0% 2%

better 28% 64% 70% 86% 84%
Look- worse 66% * 31% 26% 14% 14%
ahead equal 6% 5% 4% 0% 2%

better 25% 31% 29% 91% 72%
HEFT worse 72% 64% * 20% 8% 9%

equal 3% 5% 51% 0% 18%

better 18% 26% 20% 86% 68%
HCPT worse 79% 70% 29% * 14% 13%

equal 3% 4% 51% 0% 18%

better 9% 14% 8% 14% 39%
PETS worse 91% 86% 91% 86% * 60%

equal 0% 0% 0% 0% 1%

better 8% 14% 9% 13% 60%
HPS worse 90% 84% 72% 68% 39% *

equal 2% 2% 18% 13% 1%

Table 7: Pair-wise schedule length comparison of the scheduling algorithms
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3.5.3 Real-world application graphs

In addition to the random graphs, we evaluated the performance of the algorithms with re-

spect to real-world applications, namely Gaussian Elimination [ABK98], Fast Fourier Transform

[CR92, THW02], Laplace Equation [WG90], Montage 3[BGL+04, DSS+05] and Epigenomics4

[BBD+07]. All of these applications are well known and used in real-world problems. Because of

the known structure of these applications, we simply used different values for CCR, heterogeneity

and CPU number. The range of values that we used in our simulation was [0.1,0.5,0.8,1,2,5,10]

for CCR, [0.1,0.2,0.5,1,2] for heterogeneity and [2,4,8,16,32] for CPU number. For Montage

and Epigenomics, we also considered 64 CPUs. The range of parameters considered here rep-

resents typical values within the context of this work [DK08, THW02]. The CCR and hetero-

geneity represent a wide range of machines, from high-speed networks (CCR=0.1) to slower ones

(CCR=10) and from nearly homogeneous systems (heterogeneity equal to 0.1) to highly heteroge-

neous machines (heterogeneity equal to 2). We also considered a wide range of CPU numbers to

simulate higher concurrent environments with 2 processors, as well as low concurrent situations

where the total number of processors, in most of the cases, is higher than the maximum number of

concurrent tasks ready to be scheduled at any given instant.

3.5.3.1 Gaussian Elimination

For Gaussian Elimination, a new parameter, matrix size m, was used to determine the number of

tasks. The total number of tasks in a Gaussian Elimination graph is equal to m2+m−2
2 . The values

considered for m were
[
5,10,15,20,30,50,100

]
. The boxplot of SLR as a function of the matrix

size is shown in Figure 5.

Figure 5: Boxplot of SLR for the Gaussian Elimination graph as a function of matrix size

For all matrix sizes, PEFT produced shorter schedules than all other algorithms with quadratic

complexity and almost the same results as the Lookahead algorithm, which has quartic complexity.

Figure 6 shows the SLR boxplot as a function of the CCR parameter. For low CCRs, PEFT yielded

results equivalent to those of HEFT, and for higher CCRs, PEFT performed significantly better,

3Montage, An Astronomical Image Mosaic Engine, http://montage.ipac.caltech.edu/
4USC epigenome center, http://epigenome.usc.edu/
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obtaining an average improvement of 2%, 9% and 16% over HEFT for CCR values of 2, 5 and

10, respectively. From the boxplots, we can see that statistically, PEFT produced schedules with

lower SLR dispersion than the other quadratic algorithms.

Figure 6: Boxplot of SLR for the Gaussian Elimination graph as a function of the CCR

Concerning heterogeneity, PEFT outperformed HEFT in average SLR by 2%, 3%, 4%, 6%

and 7% for heterogeneity values of 0.1, 0.2, 0.5, 1 and 2, respectively. Concerning the number of

CPUs, the improvement over HEFT was 2%, 6%, 12% and 12% for sets of 4, 8, 16 and 32 CPUs,

respectively. Graphical representation is not provided for SLR as a function of heterogeneity and

CPU numbers.

3.5.3.2 Fast Fourier Transform

The second real application was the Fast Fourier Transform (FFT). As mentioned in [THW02],

we can separate the FFT algorithm into two parts: recursive calls and the butterfly operation. The

number of tasks depends on the number of FFT points (n), where there are 2×(n−1)+1 recursive

call tasks and n log2 n butterfly operation tasks. Also, in this application, because the structure is

known, we simply change CCR, β and the CPU number. Figure 7 shows the SLR for different

FFT sizes.

Figure 7: Boxplot of SLR for the Fast Fourier Transform graph as a function of the input points
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(a) (b)

(c)

Figure 8: Boxplot of SLR for Montage with respect to (a) CCR, (b) number of CPUs and
(c)heterogeneity factor

In this type of application, PEFT and Lookahead yielded the worst results, although the results

were similar to those obtained using HEFT. This example allowed us to conclude, with additional

experiments, that PEFT does not perform better than HEFT when all tasks belong to a critical

path, i.e., when all paths are critical.

3.5.3.3 Montage Workflow

Montage is an application for constructing custom astronomical image mosaics of the sky.

We considered Montage graphs with 25 and 50 tasks, and as in the other real applications,

because the graph structure was defined, we simply considered different values of CCR, β and

CPU number. Figure 8 shows the boxplots of SLR as a function of different hardware parameters.

All algorithms except for PEFT and Lookahead exhibited the same performance for this appli-

cation. The average SLR improvement for PEFT over HEFT for different values of CCR (Figure

8a) started at 0.8% for a low CCR value (equal to 0.1) and increased to 22% at a CCR value equal

to 10. Concerning the number of CPUs, the improvement was 10% with 4 CPUs and increased to

19% for 64 CPUs, as shown in Figure 8b. The improvement for different heterogeneities, Figure

8c, started at 15% for low heterogeneity (β = 0.1) and increased to 18% for a heterogeneity of 2

(β = 2).
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3.5.3.4 Epigenomic Workflow

The Epigenomic workflow is used to map the epigenetic state of human cells on a genome-wide

scale. As was the case for the other real application graphs, the structure of this application is

known; therefore, we simply considered different values of CCR, β and CPU number. In our

experiment, we used graphs with 24 and 46 tasks.

(a) (b)

(c)

Figure 9: Boxplot of SLR for Epigenomic Workflow as a function of (a) CCR, (b) CPU number
and (c) heterogeneity factor

Figure 9 shows the boxplot for SLR as a function of the hardware parameters. Also, for this

application, PEFT always outperformed the other algorithms, including the Lookahead algorithm.

The average SLR improvement of PEFT over HEFT for a low CCR value of 0.1 was 0.1% and

increased to 22% for a CCR value of 10 (Figure 9a). Similarly, PEFT showed (Figure 9b) a

range of SLR improvement for different CPU numbers: 3% for 4 CPUs and 21% for 64 CPUs.

In addition, we observed an average SLR improvement of 15% to 21% for low heterogeneity

(β = 0.1) to high heterogeneity (β = 2) (Figure 9c).

3.6 Conclusions

In this paper, we proposed a new list scheduling algorithm with quadratic complexity for heteroge-

neous systems called PEFT. This algorithm improves the scheduling provided by state-of-the-art

quadratic algorithms such as HEFT [THW02]. To our knowledge, PEFT is the first algorithm to
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outperform HEFT while maintaining the same time complexity of O(v2.p). The algorithm is based

on an Optimistic Cost Table (OCT) that is computed before scheduling. This cost table represents

for each pair (task, processor) the minimum processing time of the longest path from the current

task to the exit node by assigning the best processors to each of those tasks. The table is optimistic

because it does not consider processor availability at a given time. The values stored in the cost

table are used in the processor selection phase. Rather than considering only the Earliest Finish

Time (EFT) for the task that is being scheduled, PEFT adds to EFT the processing time stored in

the table for the pair (task, processor). All processors are tested, and the one that gives the min-

imum value is selected. Thus, we introduce the look ahead feature while maintaining quadratic

complexity. This feature has been proposed in other algorithms, but all such algorithm increase

the complexity to cubic or higher orders.

To prioritize the tasks, we also use the OCT table to define a new rank that is given by the

average of the costs for a given task over all processors. Although other ranks could be used,

such as ranku [THW02], we concluded that with the new rank, similar performance is obtained.

Therefore, the use of ranku would require additional computations without resulting in a significant

advantage.

In terms of Scheduling Length Ratio (SLR), the PEFT algorithm outperformed all other

quadratic algorithms considered in this work for random graph sizes of 10 to 500. Statistically,

PEFT had the lowest average SLR and a lower dispersion in the distribution of the results.

We also compared the algorithms in terms of robustness to uncertainty in the task processing

time, given by the Slack function, and we obtained the same level of robustness for PEFT and

HEFT, which is an important characteristic of the proposed algorithm.

The simulations performed for real-world applications also verified that PEFT performed bet-

ter then the remaining quadratic algorithms. These tests also revealed an exceptional case (the FFT

transform) in which PEFT did not perform better. We concluded that this lack of improvement by

PEFT occurs for graphs with the same characteristics as FFT and that are characterized by having

all tasks belong to a critical path, i.e., having all paths be critical.

From the results, we can conclude that among the static scheduling algorithms studied in this

paper, PEFT exhibits the best performance for the static scheduling of DAGs in heterogeneous

platforms with quadratic time complexity and the lowest quadratic time complexity.
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abstract
For most Heterogeneous Computing Systems (HCS) the completion time of an application

is the most important requirement. Many applications are represented by a workflow that

is therefore schedule in a HCS system. Recently, researchers have proposed algorithms for

concurrent workflow scheduling in order to improve the execution time of several applica-

tions in a HCS system. Although, most of these algorithms were designed for static schedul-

ing, that is all application must be submitted at the same time, there are a few algorithms,

such as OWM (online workflow Management) and RANK_HYBD, that were presented for

dealing with dynamic application scheduling. In this paper, we present a new algorithm

for dynamic application scheduling. The algorithm focus on the Quality of Service (QoS)

experienced by each application (or user). It reduces the waiting and execution times of

each individual workflow, unlike other algorithms that give privilege to average completion

time of all workflows. The simulation results show that the proposed approach significantly

outperforms the other algorithms in terms of individual response time.
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4.1 Introduction

Heterogeneous Computing Systems (HCS) are characterized by having a variety of different types

of computational units and are widely used for executing parallel applications, especially scientific

workflows. The workflow consist of many tasks with logical or data dependencies that can be dis-

patched to different computation nodes in the HCS. To achieve efficient execution of a workflow

and minimize the turnaround time, we need an effective scheduling strategy that decides when

and which resource must execute the tasks of the workflow. When scheduling multiple indepen-

dent workflows that represent user jobs and, consequently, are submitted at different instants of

time, the common definition of makespan needs to be extended in order to account the waiting

time as well as the execution time of a given workflow, contrary to the makespan definition for

single workflow scheduling [KA99]. The metric to evaluate a dynamic scheduler of independent

workflows has to represent the individual makespan instead of a global measure for the set of

workflows, in order to measure the Quality of Service experienced by the users which is related to

the finish time of each user application.

A popular representation of a workflow application is the Directed Acyclic Graph (DAG) in

which nodes represent individual application tasks and the directed edges represent inter-task data

dependencies.

The DAG scheduling problem has been shown to be NP-complete [CB76]. DAG scheduling

is mainly divided in two major categories, namely Static Scheduling and Dynamic Scheduling.

Most of the scheduling algorithms in static category are restricted to single DAG scheduling. In

[CJSZ08] the authors compared 20 scheduling heuristics for single DAG scheduling. For static

scheduling of multiple DAGs there were proposed some algorithms such as in [HS06] for homo-

geneous non-parallel task graphs with the aim of increasing system efficiency, [ZS06] for het-

erogeneous clusters and non-parallel task graphs and [NS09] for multi-clusters and parallel task

graphs. In [ZS06] the authors proposed an algorithm for scheduling several DAGs at the same

time where the aim was to achieve fairness in the resource sharing, defined by the slowdown each

DAG experiences as a results of competing for resources. In [NS09] the authors proposed several

strategies of sharing the resources based on the proportional share. They defined a proportional

share based on critical path, width and work of each DAG. They also proposed a weighted pro-

portional share that represent a better tradeoff between fairness resource sharing and makespan

reduction of the DAGs. Both works differ from what is proposed here due to their static approach

and due to the objective functions considered. Here we consider a dynamic scheduling and we

focus on the response time the system gives to each application.

For dynamic scheduling multiple parallel task graphs on a heterogeneous system, it was pro-

posed an algorithm in [BM11a] that minimizes the overall makespan, that is the finish time of

all DAGs. In [HHW11] and [YS08] there were proposed two algorithms namely OWM and

RANK_HYBD for dynamic scheduling of multiple workflows. Both algorithms were proposed

for the same context of the algorithm proposed here.
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In this paper, we propose a new algorithm called the Fairness Dynamic Workflow Schedul-

ing (FDWS) for scheduling dynamically workflow applications in a heterogeneous system. The

remainder of this paper is organized as follows: section II describes the workflow representation;

section III discuses related work; section IV presents the FDWS algorithm; section V presents the

experimental results and discussion and section VI concludes the paper.

4.2 Workflow Representation

A workflow application can be represented by a Directed Acyclic Graph (DAG), G(V,E,P,W ) as

shown in Figure 1, where V is the set of v tasks and E is the set of e communication edges between
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Task P1 P2 P3

T1 23 32 28

T2 36 36 16

T3 2 3 3

T4 16 17 13

T5 25 17 28

T6 25 38 37

T7 30 21 29

T8 17 26 36

T9 16 10 21

T10 26 16 26

Figure 1: Application model and computation time matrix of the tasks in each processor

tasks. Each e(i, j)∈ E represents the task-dependency constraint such that task ni should complete

its execution before task n j can be started. P is the set of p heterogeneous processors available

in the system. W is a v× p computation cost matrix, where v is the number of tasks and p is the

number of processors in the system. wi, j gives the estimate time to execute task vi on machine p j.

The mean execution time of task ni can be calculated by wi = (∑ j∈P wi, j)/p. Each edge e(i, j) ∈ E

is associated with a non-negative weight ci, j representing the communication cost between the

tasks ni and n j. Once this value could be computed only after defining where tasks i and j will be

executed, it is common to compute the average communication costs to label the edges [THW02].

The average communication cost ci, j of an edge e(i, j) can be calculated by ci, j = L+ datai, j

B where L

is the average latency time of all processors and B is the average bandwidth of all links connecting

the set of P processors. datai, j is the amount of data elements that task i needs to send to task j.

Note that, when task i and j are assigned to the same processor, the real communication cost is

considered to be zero because it is negligible compared to interprocessor communication costs.

Next, we present some of the common attributes used in task scheduling, that we will refer in

the following sections.

• pred(ni): denotes the set of immediate predecessors of task ni in a given DAG. A task with

no predecessors is called an entry task, nentry. If a DAG has multiple entry tasks, a dummy

entry task with zero weight and zero communication edges is added to the graph.

• succ(ni): denotes the set of immediate successors of task ni. A task with no successors is

called an exit task, nexit . Like the entry task, if a DAG has multiple exit tasks, a dummy exit
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task with zero weight and zero communication edges from current multiple exit tasks to this

dummy node is added.

• makespan: it is the finish time of the exit task in the scheduled DAG, and is defined by

makespan = AFT (nexit) where AFT (nexit) denotes the Actual Finish Time of the exit task.

• Critical Path(CP): the CP of a DAG is the longest path from nentry to nexit in the graph.

The length of this path |CP| is the sum of the computation costs of the tasks and intertask

communication costs along the path. The |CP| value of a DAG is the lower bound of the

makespan. In this paper, the makespan includes de execution and waiting time spent in the

system.

• EST(ni,pj): denotes the Earliest Start Time of a node ni on a processor p j.

• EFT(ni,pj): denotes the Earliest Finish Time of a node ni on a processor p j.

4.3 Related Work

In the past years, most of research on DAG scheduling were restricted to a single DAG. Only a

few scheduling algorithms work on more than one DAG at a time.

Zhao and Sakellariou [ZS06] presented two approaches based on fairness strategy for multi

DAGs scheduling. The fairness is defined on the basis of slowdown that each DAG would ex-

perience (the slowdown is the difference in the expected execution time for the same DAG when

scheduled together with other workflows and when scheduled alone). They proposed two algo-

rithms, one fairness policy based on finish time and another fairness policy based on current time.

Both algorithms, at first, scheduled each DAG on all processors with the static scheduling (like

HEFT [THW02] or Hybrid.BMCT [SZ04]) as the pivot scheduling algorithm, save its schedule

assignment and keep its makespan as the slowdown value of the DAG. Next, sort all DAGs in

descending order of their slowdown in the list. Then until there are unfinished DAGs into the list,

the algorithm selects the first DAG with highest slowdown and then selects the first ready task that

has not been scheduled on the DAG. The key idea is to evaluate the slowdown value of each DAG

after scheduling a task and make a decision on which DAG should be selected to schedule the

next task. The difference between the two fairness based algorithms proposed is that the Fairness

Policy based on Finish Time, calculates the slowdown value of only the selected DAG, whereas

in the Fairness Policy based on Current Time, the slowdown value is recalculated for every DAG.

But these two algorithms are designed to schedule multiple workflow applications that are known

at the same time (off-line scheduling). Here we consider the scheduling of dynamic workflows,

meaning that they arrive at different instants, where the age and remaining time of each concurrent

DAG is considered by the scheduler (on-line scheduling).

Z. Yu and W. Shi in [YS08] proposed a planner-guided strategy (called RANK_HYBD algo-

rithm) to deal with dynamic workflow scheduling of applications that are submitted by different
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users at different instants of time. The RANK_HYBD algorithm ranks all tasks using ranku prior-

ity measure [THW02]. In each step, the algorithm reads all ready tasks from all DAGs and selects

the next task to schedule based on their rank. If the ready tasks belong to different DAGs, the algo-

rithm selects the task with lowest rank and if they belong to the same DAG, the task with highest

rank is selected. With this strategy, The RANK_HYBD algorithm allows the DAG with lowest

rank (lower makespan) to be scheduled first to reduce the waiting time of the DAG in the system.

But this strategy does not achieve good fairness because it always like to finish first lower DAGs

in the system and postpones the higher DAGs. For instance, if a longer DAG is being executed

and several lower DAGs are submitted to the system, the scheduler postpones the execution of the

longer DAG to give priority to the smaller ones.

Hsu, Huang and Wang in [HHW11] proposed Online Workflow Management (OWM) for

scheduling multiple online workflows. In OWM algorithm, unlike in the RANK_HYBD that puts

all ready tasks from each DAG into the ready list, it selects only a single ready task from each

DAG with highest rank into the ready list. Then until there are unfinished DAGs on the system,

the OWM algorithm selects the task with highest priority from ready list. Then it calculates the

earliest finish time (EFT) for the selected task on each processor and selects the processor with

minimum earliest finish time. If the selected processor is free at that time, the OWM algorithm

assigns the selected task to the selected processor otherwise keeps the selected task in the ready

list in order to be scheduling later. In their results, The OWM algorithm has better performance

than RANK_HYBD [YS08] and Fairness_Dynamic (modified version of fairness algorithm

[ZS06]) in handling online workflows. The results of different mean arrival intervals according

to different performance metrics show that the OWM algorithm outperforms Fairness_Dynamic

by 26% and 49%, and outperforms RANK_HYBD by 13% and 20% for average makespan and

average SLR (defined by eq. 5), respectively. As the RANK_HYBD algorithm, OWM uses a

fairness strategy but, instead of scheduling smaller DAGs first, it selects and schedules tasks from

the longer DAGs first. OWM has better strategy by filling the ready list with one task from each

DAG so that it gives to all DAGs the chance to be selected in current time for scheduling. In their

simulation environment, the number of processors is always near to the number of workflows so

that in the most cases the scheduler has suitable number of processors to schedule the ready tasks.

This choice does not expose a fragility of the algorithm that occurs when the number of DAGs

is significant in relation to the number of processors or, the same is to say, for heavier loaded

systems. Another problem with the OWM algorithm is in the processor selection phase where if

the processor with earliest finish time for the selected task is not free, the algorithm postpones

that task and keeps it in the ready list. If the system is heavy loaded, it is possible that in the next

task selection, it is postponed again because meanwhile it may arrive new tasks with highest rank.

Both algorithms, RANK_HYBD and OWM, present results in terms of average makespan.

This metric combines in the same way long and short DAGs and do not allow to infer the average

waiting time spent by the DAGs individually. In this paper we propose new strategies in both

aspects of selecting tasks from ready list and in the processor assignment in order to reduce the
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individual completion time of the DAGs, that is the total time between the submission and the

completion time which includes execution and waiting time. We use the metric Schedule Length

Ratio (SLR) that is a normalized measure of the completion time and that is more appropriated to

conclude about the individual performance experienced by each user.

4.4 Fairness Dynamic Workflow Scheduling

This section presents the Fairness Dynamic Workflow Scheduling (FDWS) algorithm. Figure 2

shows the structure of the FDWS algorithm. It comprises four main components: (1) Submit

application, (2) Workflow pool, (3) Selected Tasks and (4) Processor allocation.
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Figure 2: Fairness Dynamic Workflow Scheduling (FDWS) System

Next we describe all these parts in detail:

• Submit application: users can submit their application at any time in the system.

• Workflow pool: after users submitted their applications they enter the workflow pool (each

application can be represented by a DAG). At each scheduling time, this component finds

all ready tasks of each DAG. The RANK_HYBD algorithm adds all ready tasks into the

ready pool (or list) and the OWM algorithm adds only one task with highest priority from

each DAG into the ready pool. Considering all ready tasks from each DAG leads to a unbi-

ased preference for longer DAGs and the consequent postponing of smaller DAGs resulting

higher SLR and unfair processor sharing. In FDWS algorithm, we add only a single ready

task with highest priority from each DAG to ready tasks pool like as OWM. For assign the
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priority to tasks in the DAG, we used the upward rank [THW02]. ranku represents the length

of the longest path from task ni to the exit node, including the computational cost of ni and

is given by equation 10.

ranku(ni) = wi + max
n j∈succ(ni)

{ci, j + ranku(n j)} (1)

where succ(ni) is the set of immediate successors of task ni, ci, j is the average communica-

tion cost of edge(i, j) and wi is the average computation cost of task ni. For the exit task

ranku(nexit) = 0.

• Selected tasks: in this block we defined a different rank to select the task to be schedule

from the ready tasks pool. To be selected to the pool we use ranku computed for each DAG

individually. To select from the pool, we compute a new rank for task ti belonging to DAG j,

defined by equation 2, and the task with highest rankr is selected.

rankr(ti, j) =
1

PRT
{

DAG j
} × 1

CPL
{

DAG j
} (2)

The metric rankr considers the Percentage of Remaining Task number (PRT) of the DAG

and its Critical Path Length (CPL). The PRT value gives more priority to DAGs that are

almost completed and only have few tasks to execute. This strategy is different from the

Smallest Remaining Processing Time (SRPT) [KSW97]. The SRPT algorithm, on each

step, selects and schedules the application with the smallest remaining processing time. The

remaining processing time is the time needed to execute all remaining tasks of the workflow.

This is very different from our strategy. As an example, if we have two workflows with the

same number of remaining tasks like it is shown in Figure3 (tasks with same name have the

same computational time), using the SRPT strategy, there is no difference between these

T1

T2 T3 T4

T5

T2

T3

T5

T1

T4

DAG1 DAG2

Figure 3: Two sample workflows

DAGs to select the next task, but attending to the response time, it is better to select a

task from DAG1 because it has a lower expected finish time. With rankr we also consider
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the existing concurrency in each level by using the critical path (as it can be seen DAG1 has

lower critical path length than DAG2 and therefore it would be schedule first). Also selecting

only the smallest remaining time is not necessarily better; consider an application that is

being executed and that have a few tasks remaining. With SRPT strategy, the application

would be postponed if shorter DAGs arrive, which would increase the response time to the

user. By using rankr we consider the percentage of remaining tasks to give the opportunity

to the DAGs with fewer remaining tasks to be finished even if the work on those tasks is

higher than the work on the new arrived DAGs.

Note that in RANK_HYDB and OWM, only the individual ranku is used for selecting tasks

into the pool and to select one from the pool of ready tasks which leads to a scheduling

decision that do not considers the DAG history in the workflow pool.

• Processor allocation: the FDWS algorithm uses the following strategy for assigning a task

to a processor. All processors are tested and it selects the processor with lowest finish time

for the current task, but if in current time the processor is busy, it puts the task into the

processor task queue, so that the task is schedule at the first attempt. The finish time of

a task on a processor also considers the queue list. In RANK_HYBD algorithm only the

free resources are considerer at any given scheduling instant. But the processor which is

busy right now, may execute the task with lower finish time. On the other hand, the OWM

algorithm tests all available processors (both free and busy processors), then if the finish

time of the task in the busy processor is less than in a free processor, the OWM algorithm

postpones the assignment of the task to the next steps. Since the system is dynamic, it is

possible that at any time a new application may arrive and the postponed task may have

lower priority than the new ones and therefore being postponed again. This may lead to an

excessive completion time for smaller DAGs.

The proposed FDWS (Fairness Dynamic Workflow Scheduling) algorithm is formalized in

Algorithm 1.

4.5 Experimental Results and Discussion

This section presents performance comparison of the FDWS algorithm with OWM and

RANK_HYBD algorithms. For this purpose, we divide this section into 4 parts where we de-

scribe first the DAG structure; then we present the environment scheduling system and hardware

parameters; in the third part we present the comparison metrics and in the last part we present

results and discuss the results.

4.5.1 DAG structure

To evaluate the relative performance of the algorithm, we considered randomly generated work-

flow (DAG) application graphs. For this purpose, we used a synthetic DAG generation program1.
1http://simgrid.gforge.inria.fr
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Algorithm 1 The FDWS algorithm

1: while Workflow Pool is NOT Empty do
2: if new workflow has arrived then
3: calculate ranku for all tasks of the new Workflow
4: Insert the Workflow into Workflow Pool
5: end if
6: Ready_Pool← ready tasks (one task with highest ranku from each DAG)
7: calculate rankr(ti, j) for each task ti belonging to DAG j in Ready_Pool
8: while Ready_Pool 6= φ AND CPUs f ree 6= 0 do
9: Tsel ← the task with highest rankr from Ready_Pool

10: EFT (Tsel,Pj)← Earliest Finish Time of task Tsel on Processor Pj with considering of
Task Queue and using insertion-based policy

11: Psel ← the processor with lowest EFT for task Tsel
12: if Psel is free then
13: Assign Task Tsel to processor Psel
14: else
15: add Task Tsel into Task_Queue of the processor Psel
16: end if
17: remove Task Tsel from Ready_Pool
18: end while
19: end while

There are four parameters that define a DAG shape:

• n: number of computation nodes in the DAG (i.e., application tasks);

• fat: gives the width of the DAG by e f at∗log(n), that is the maximum number of tasks that can

be executed concurrently. A small value will lead to a thin DAG, like a chain, with a low

task parallelism, while a large value induces a fat DAG, like a fork-join, with a high degree

of parallelism;

• density: denotes the number of edges between two levels of the DAG, with a low value

leading to few edges and a large value leading to many edges;

• regularity: the regularity denotes the uniformity of the number of tasks in each level. A low

value means that levels contain very dissimilar numbers of tasks, while a high value means

that all levels contain similar numbers of tasks;

• jump: indicates that an edge can go from level l to level l+ jump. A jump of 1 is an ordinary

connection between two consecutive levels.

In this paper, we used the synthetic DAG generator only for making the DAG structure which

includes the specific number of nodes and their dependencies. In our experiment, for random

DAG generation, we consider n=
[
10,20,30,40,50,60

]
, jump=

[
1,2,4

]
, regularity=

[
0.2,0.8

]
,



94 Fairness resource sharing for dynamic workflow scheduling on Heterogeneous Systems

f at =
[
0.1,0.4,0.8

]
and density =

[
0.2,0.8

]
. With these parameters we have 216 different struc-

ture DAGs for our experiment. The DAG structure is presented apart from other simulation pa-

rameters because the structure of the workflows is dependent from users requests and independent

from the hardware environment.

4.5.2 Environment system parameters

From the DAG structure obtained as explained above, we obtain computation and communication

costs by using the following parameters:

• CCR (Communication to Computation Ratio): ratio of the sum of the edge weights to the

node weights in a DAG;

• beta (Range percentage of computation costs on processors): it is the heterogeneity factor

for processors speed. A higher value for β implies higher heterogeneity and very different

computation costs among processors and a low value implies that the computation costs for

a given task is almost equal among processors. The average computation cost of a task ni in

a given graph wi is selected randomly from a uniform distribution with range
[
0,2×wDAG

]
,

where wDAG is the average computation cost of the given graph (in our experiment wDAG =

100). The computation cost of each task ni on each processor p j is randomly set from the

range of equation 3.

wi×
(

1− β

2

)
≤ wi, j ≤ wi×

(
1+

β

2

)
(3)

In our experiment, for random DAG generation, we consider CCR =
[
0.1,0.8,2,5

]
, β =[

0,0.1,0.5,1,2
]

and Processors =
[
8,16,32

]
.

For creating the simulation scenarios, we consider two additional parameters: number of work-

flows in each scenario, that are 30 and 50 respectively; and arrival interval value between work-

flows, that are set based on the Poisson distribution with mean value of 0, 50, 100 and 200 time

units respectively. With these parameters (number of concurrent DAGs, arrival interval time, CCR,

beta and CPU number) and considering 10 different workflows per combination, each experiment

involves a test case of 4800 workflows.

4.5.3 Performance metrics

For evaluate and compare our algorithm with other approaches, we used the following metrics:

• Overall makespan: is the finish time of the last task to be executed in a set of workflows

submitted to the system. It is calculated by equation 4. This metric gives the time required

to complete all workflows in the scenario.

Overall makespan = max
ti∈DAGs

{AFT (ti)} (4)
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• Schedule Length Ratio (SLR): we have DAGs with very different structure and execution

time. The SLR normalizes the makespan of a given DAG to the lower bound and is given in

equation 5.

SLRDAGi =
makespan(DAGi)

∑
ni∈CP_DAGi

min
p j∈P

(w(i, j))
(5)

The denominator in the SLR equation is the minimum computation cost of the critical path

tasks. As the numerator represents the total time spent by a DAG in the system, waiting and

execution time, a low value, such as 1, means that the response time was the lowest possible

for that DAG in the target system. On the other hand, a higher value means that, due to the

concurrent DAG scheduling, the DAG required more time to complete. In this sense, the

SLR is a metric of Quality of Service experienced by the users. We used the SLR value

for each Scenario (SLRScenario) and it is equal to average SLR values of all DAGs in each

Scenario.

• Win(%): this metric represents the percentage of the number of occurrences of better re-

sults that is the percentage of DAGs in each scenario that have the shortest makespan when

applying the FDWS algorithm.

4.5.4 Results and discussion

In this section, we compare FDWS with RANK_HYBD and OWM algorithms in terms of SLR,

Overall Makespan, Average Makespan and percentage of Wins. We present results for a set of

50 and 30 DAGs that arrive with a time interval mean value that ranges from zero (all DAGs

available at time zero) to 200 time units. We consider 3 sets of processors with 8, 16 and 32, in

order to analyse the behaviour of the algorithms concerning the system load. The maximum load

configuration is observed for 8 processors, 50 DAGs and a mean arrival time interval of zero.

Figure 4 shows the SLRscenario obtained with the 3 algorithms. We can see that FDWS obtains

significant performance improvement over RANK_HYBD and OWM for all arrival time intervals.

It keeps a stable relative improvement above 35%, for all cases, and being of 40% for the most

loaded scenario. The SLR, as mentioned before, is in fact a metric that reflects the Quality of

Service (QoS) experienced by the users, and therefore, we can conclude that FDWS improves

significantly the QoS of the system.

The results shown in [HHW11] that compare OWM with RANK_HYBD show close results for

both algorithms although OWM performs slightly better. In our experiment this difference is not

obvious and in some cases RANK_HYBD performs better. This is mainly because in [HHW11]

the authors considered that they have 100 DAGs for 90 to 150 processors that is, the number of

DAGs is in general less than the number of processors available. Consequently, the concurrency

is lower than in our experiment.
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Figure 4: Results of different mean arrival times for average SLR for 30 and 50 concurrent DAGs

Table 8 shows the improvement of FDWS over the two other concerning Overall Makespan.

We can see that OWM achieves a better result showing that OWM obtains a total time to process

all DAGs shorter than the others.

Arrival Interval

DAGs Algorithm 0 50 100 200

50
OWM -18.10% -14.13% -10.43% -5.00%

RANK_HYBD 20.55% 16.61% 13.75% 8.60%

30
OWM -22.58% -18.01% -13.510% -7.28%

RANK_HYBD 15.77% 13.42% 10.81% 6.84%
Table 8: Overall Makespan improvement of FDWS over the RANK_HYBD and OWM algorithm;
a negative value means that FDWS as a worse result

Figure 5 shows boxplots for SLRscenario as a function of different hardware parameters such

as CCR, heterogeneity factor and CPU number. The mean value is also shown by a individual

stronger line. We can see that FDWS has statistically better behaviour for all CCRs, heterogeneity

factor and CPU number. Lower mean and median values and also less dispersion.

Figure 6 shows results of Average Makespan, a non normalised measure, that is defined by

the average Makespan of all DAGs in the scenario. These results show similar performance as for

SLR that is the normalized makespan.

Figure 7 shows the percentage of wins and, as it can be seen, FDWS produces in most of the

times better schedules for the DAGs. Only for a low loaded scenario with 30 DAGs and a mean

arrival interval of 200, it is outperformed by OWM.

FDWS is always better than RANK_HYBD and in most of the cases it is better than OWM,

obtaining similar results only for low loaded scenarios.
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Figure 5: Boxplots of SLR value for each scenario with respect to the (a) CCR, (b) CPU and (c)
heterogeneity factor for random graphs
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Figure 6: Results of different mean arrival times for Average Makespan
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Figure 7: Results of different mean arrival times for Win(%)

4.6 Conclusions

Most workflow scheduling algorithms focused on single workflows and there are only a few works

on multiple workflow scheduling. In this paper, we presented a new algorithm called FDWS (Fair-
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ness Dynamic Workflow Scheduling) and compared it with two recent algorithms, namely OWM

[HHW11] and RANK_HYBD [YS08] algorithms that deal with multiple workflow scheduling in

dynamic situations. Based on our experiments, FDWS has better improvement in terms of SLR,

Win(%) and Average Makespan, showing better Quality of Service characteristics. The drawback

of this feature is to obtain a longer Overall execution time. As future work, we intend to find if the

SLR improvement is the main reason to increase the Overall Makespan or if both characteristics

can be reduced.
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abstract
Scheduling independent workflows on shared resources in a way that satisfy users’ Qual-

ity of Service is a significant challenge. In this study, we describe methodologies for off-

line scheduling, where a schedule is generated for a set of known workflows, and on-line

scheduling, where users can submit workflows at any moment in time. We consider the

on-line scheduling problem in more detail and present performance comparisons of state-

of-the-art algorithms for a realistic model of a heterogeneous system.
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5.1 INTRODUCTION

Heterogeneous computing systems (HCSs) are composed of different types of computational units

and are widely used for executing parallel applications, predominantly scientific workflows. A

workflow consists of many tasks with logical or data dependencies that can be dispatched to dif-

ferent compute nodes in the HCS. To achieve an efficient execution of a workflow and minimize

its turnaround time, an effective scheduling strategy that decides when and which resource must

execute the tasks of the workflow is necessary. When scheduling multiple independent workflows

that represent user jobs and are thus submitted at different moments in time, the common defini-

tion of makespan must be extended to account for the waiting time and execution time of a given

workflow. The metric to evaluate a dynamic scheduler of independent workflows must represent

the individual execution time instead of a global measure for the set of workflows to reflect the

Quality of Service (QoS) experienced by the users, which is related to the response time of each

user application.

The efficient usage of any computing system depends on how well the workload is mapped to

the processing units. The workload considered in this study consists of workflow applications that

are composed of a collection of several interacting components or tasks that must be executed in a

certain order for the successful execution of the application as a whole. The scheduling operation,

which consists in defining a mapping and an order of task execution, has been addressed primarily

for single workflow scheduling, i.e., a schedule is generated for a workflow and a specific number

of processors, used exclusively throughout the workflow execution. When several workflows are

submitted, they are considered as independent applications that are executed on independent sub-

sets of processors. However, because of task precedence, not all processors are fully used when

executing a workflow, thus leading to low efficiency. One way to improve system efficiency is to

consider concurrent workflows, i.e., sharing processors among workflows. In this context, there

is no exclusive use of processors by a workflow; thus, throughout its execution, the workflow can

use any processor available in the system. Although the processors are not used exclusively by

one workflow, only one task runs on a processor at any one time.

We first introduce the concept of an application and the heterogeneous system model. Next, the

performance metrics that are commonly used in workflow scheduling and a metric for accounting

for the total execution time are introduced. Finally, we present a review of concurrent workflow

scheduling and an extended comparison of dynamic workflow scheduling algorithms for randomly

generated graphs.

5.1.1 APPLICATION MODEL

A typical scientific workflow application can be represented as a Directed Acyclic Graph (DAG).

In a DAG, nodes represent tasks and the directed edges represent execution dependencies and the

amount of communication between nodes.

A workflow for this application is modeled by the DAG G= (V,E), where V = {n j, j = 1 . . .v}
represents the set of v tasks (or jobs) to be executed and E is a set of e weighted directed edges
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that represents communication requirements between tasks. Each edge(i, j) ∈ E represents the

precedence constraint that task n j cannot start before successful completion of task ni. Data is a

v× v matrix of communication data, where datai, j is the amount of data that must be transferred

from task ni to task n j.

The target computing environment consists of a set P of p heterogeneous processors organized

in a fully connected topology in which all inter-processor communications are assumed to be

performed without contention, as explained in Sect. 5.1.2.

The data transfer rates between the processors, i.e., bandwidth, are stored in a matrix B of

size p× p. The communication startup costs of the processors, i.e., the latencies, are given in a

p-dimensional vector L. The communication cost of the edge(i, j), which transfers data from task

ni (executed on processor pm) to task n j (executed on processor pn), is defined as follows:

ci, j = Lm +
datai, j

Bm,n
. (1)

When both tasks ni and n j are scheduled on the same processor, ci, j = 0. Typically, the communi-

cation cost is simplified by introducing an average communication cost of an edge(i, j) defined as

follows:

ci, j = L+
datai, j

B
, (2)

where B is the average bandwidth among all processor pairs and L is the average latency. This

simplification is commonly considered to label the edges of the graph to allow for the computation

of a priority rank before assigning tasks to processors [THW02].

Due to heterogeneity, each task may have a different execution time on each processor. Then,

W is a v× p matrix of computation costs in which each wi, j represents the execution time to

complete task ni on processor p j. The average execution cost of task ni is defined as follows:

wi =
p

∑
j=1

wi, j

p
. (3)

With respect to the communication costs, the average execution time is commonly used to compute

the priority ranking for the tasks.

An example is shown in Fig. 1 that presents a DAG and a target system with three processors

and the corresponding communication and computation costs. In Fig. 1, the weight of each edge

represents its average communication cost and the numbers in the table represent the computation

time of each task at each of the three processors. This model represents a general heterogeneous

system.

In this section, we present some of the common attributes used in task scheduling, which we

will use in the following sections.

• pred(ni): denotes the set of immediate predecessors of task ni in a given DAG. A task with

no predecessors is called an entry task, nentry. If a DAG has multiple entry nodes, a dummy

entry node with zero weight and zero communication edges is added to the graph.
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Figure 1: Application model and computation time matrix of the tasks in each processor.

• succ(ni): denotes the set of immediate successors of task ni. A task with no successors is

called an exit task, nexit . Like the entry node, if a DAG has multiple exit nodes, a dummy

exit node with zero weight and zero communication edges from current multiple exit nodes

to this dummy node is added.

• makespan or Schedule Length: it is the elapsed time from the beginning of the execution of

the entry node to the finish time of the exit node in the scheduled DAG, and is defined by:

makespan = AFT (nexit)−AST (nentry), (4)

where AFT (nexit) is the Actual Finish Time of the exit node and AST (nentry) is the Actual

Start Time of the entry node.

• level(ni): the level of task ni is an integer value representing the maximum number of edges

composing the paths from the entry node to ni. For the entry node the level is level(nentry) =

1 and for other tasks it is given by:

level(ni) = max
q∈pred(ni)

{level(q)}+1. (5)

• Critical Path(CP): the CP of a DAG is the longest path from the entry node to the exit node

in the graph. The length of this path |CP| is the sum of the computation costs of the nodes

and inter-node communication costs along the path. The |CP| value of a DAG is the lower

bound of the schedule length.

• EST (ni, p j): denotes the Earliest Start Time of a node ni on a processor p j and is defined as:

EST (ni, p j) = max
{

TAvailable(p j), max
nm∈pred(ni)

{
AFT (nm)+ cm,i

}}
, (6)

where TAvailable(p j) is the earliest time at which processor p j is ready. The inner max block

in the EST equation is the time at which all data needed by ni has arrived at the processor

p j. For the entry task EST
(
nentry, p j

)
= max{Ts,TAvailable(p j)}, where Ts is the submission

time of the DAG in the system.
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• EFT (ni, p j): denotes the Earliest Finish Time of a node ni on a processor p j and is defined as:

EFT (ni, p j) = EST (ni, p j)+wi, j, (7)

which is the Earliest Start Time of a node ni on a processor p j plus the execution time of

task ni on processor p j.

The objective function of the scheduling problem from the user perspective, a single workflow, is

to determine an assignment of tasks of this workflow to processors such that the Schedule Length

is minimized. After all nodes in the workflow are scheduled, the schedule length will be the

makespan, defined by (1).

5.1.2 SYSTEM MODEL

Typically, for executing complex workflows, a high-performance cluster or grid platform is used.

As defined in [BB99], a cluster is a type of parallel or distributed processing system that consists

of a collection of interconnected stand-alone computing nodes working together as a single, inte-

grated computing resource. A compute node can be a single or multiprocessor system with mem-

ory, input/output (I/O) facilities, accelerator devices, such as graphics processing units (GPUs),

and an operating system. A cluster generally refers to two or more computing nodes that are con-

nected together. The nodes can exist in a single cabinet or be physically separated and connected

via a local area network (LAN). Figure 2 illustrates the typical cluster architecture.

Figure 2: Conceptual cluster architecture.

The algorithms for concurrent workflow scheduling may be useful when there are a significant

number of workflows compared to the computational nodes available; otherwise, the workflows

could use a set of processors exclusively without concurrency. Therefore, in the context of the

experiments reported in this study, we consider a cluster formed by nodes of the same site, con-

nected by a single-bandwidth, switched network. In a switched network, the execution of tasks

and communications with other processors can be achieved for each processor simultaneously and

without contention. These characteristics allow for the simplification of the communication costs

computation in the DAG (Fig. 1) by considering the average communication parameters.
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The target system can be as simple as a set of devices (e.g., central processing units (CPUs)

and GPUs) connected by a switched network that guarantees parallel communication between

different pairs of devices. The machine is heterogeneous because CPUs can be from different

generations and other very different devices, such as GPUs, can be included. Another common

machine is the one that results from selecting processors from several clusters at the same site.

Although a cluster is homogeneous, the set of processors selected forms a heterogeneous machine.

The processor latency can differ in a heterogeneous machine, but such differences are negligible.

For low communication-to-computation ratios (CCRs), the communication costs are negligible;

for higher CCRs, the predominant factor is the network bandwidth, and as mentioned above, we

assume the bandwidth is the same throughout the entire network. Additionally, the execution of

any task is considered nonpreemptive.

5.1.3 PERFORMANCE METRICS

Performance metrics are used to evaluate the effectiveness of the scheduling strategy. Because

some metrics may conflict with others, any system design cannot accommodate all metrics simul-

taneously; thus, a balance according to the final goals must be found. The metrics used in this

study are described below.

Makespan
Also referred to as schedule length, makespan is the time difference between the application

start time and its completion. Most scheduling algorithms use this metric to evaluate their

results and their solutions as compared to other algorithms. A smaller makespan implies

better performance.

Turnaround Time
Turnaround time is the difference between submission and final completion of an applica-

tion. Different than makespan, turnaround time includes the time spent by the workflow

application waiting to get started. It is used to measure the performance and service satis-

faction from a user perspective.

Turnaround Time Ratio
The turnaround time ratio (TTR) measures the additional time spent by each workflow in

the system to be executed in relation to the minimum makespan obtained for that workflow.

The TTR for a workflow is defined as:

TTR =
TurnaroundTime

∑
ni∈CP

min
p j∈P

(w(i, j))
, (8)

where P is the set of processors of the HCS. The denominator in the TTR equation is the

minimum computation cost of the tasks that compose the critical path (CP), which is the

lower bound of the execution time for a workflow.
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Normalized Turnaround Time
The normalized turnaround time (NTT) is obtained by the ratio of the minimum turnaround

time and actual turnaround time for a given workflow G and an algorithm ai, defined as

follows:

NTT(G,ai) =

min
ak∈A
{TurnaroundTime(G,ak)}

TurnaroundTime(G,ai)
, (9)

where A is the set of algorithms being compared and ai ∈ A. For an algorithm ai, NTT

provides the distance that its scheduling solutions are from the minimum TTR obtained for

a given workflow G. NTT is distributed in the interval [0,1]. The algorithm with a lower

spread in NTT with values near one, is the algorithm that generates more results closer to

the minimum, i.e., the best algorithm.

Win(%)
The percentage of wins is used to compare the frequency of best results for Turnaround

Time for the set of workflows being scheduled. The algorithm with higher percentage of

wins implies that it obtains better results from the user perspective, i.e., it obtains more

frequently the shortest elapsed time from submission to completion of a user job. Note that

the sum of this value for all algorithms may be higher than 100%; this is because when

more than one algorithm wins, for a given workflow, it is accounted for all those winning

algorithms.

5.2 CONCURRENT WORKFLOW SCHEDULING

Recently, several algorithms have been proposed for concurrent workflow scheduling to improve

the execution time of several applications in an HCS system. However, most of these algorithms

were designed for off-line scheduling or static scheduling, i.e., all the applications are known at the

same time. This approach, although relevant, imposes limitations on the management of a dynamic

system where users can submit jobs at any time. For this purpose, there are a few algorithms that

were designed to address dynamic application scheduling. In the following, a review of off-line

scheduling is presented, followed by a review of on-line scheduling.

5.2.1 OFF-LINE SCHEDULING OF CONCURRENT WORKFLOWS

In off-line scheduling, the workflows are available before the execution starts, i.e., at compile

time. After a schedule is produced and initiated, no other workflow is considered. This approach,

although limited, is applicable in many real-world applications, e.g., when a user has a set of nodes

to run a set of workflows. This methodology is applied by the most common resource management

tools, where a user requests a set of nodes to execute his/her jobs exclusively.

Several algorithms have been proposed for off-line scheduling, where workflows compete for

resources, and the goal is to ensure a fair distribution of those resources, while minimizing the

individual completion time of each workflow. Two approaches based on a fairness strategy for
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concurrent workflow scheduling were presented in [ZS06]. Fairness is defined based on the slow-

down that each DAG would experience (the slowdown is the ratio of the expected execution time

for the same DAG when scheduled together with other workflows to that when scheduled alone).

They proposed two algorithms, one fairness policy based on finish time and another fairness pol-

icy based on current time. Both algorithms first schedule each DAG on all processors with static

scheduling (like HEFT [THW02] or Hybrid.BMCT [SZ04]) as the pivot scheduling algorithm,

save their schedule assignment, and keep their makespan as the slowdown value of the DAG. Next,

all workflows are sorted in descending order of their slowdown. Then, until there are unfinished

workflows in the list, the algorithm selects the DAG with the highest slowdown and then selects

the first ready task that has not been scheduled in this DAG. The main point is to evaluate the

slowdown value of each DAG after scheduling a task and make a decision regarding which DAG

should be selected to schedule the next task. The difference between the two proposed fairness-

based algorithms is that the fairness policy based on finish time calculates the slowdown value of

the selected DAG only, whereas the slowdown value is recalculated for every DAG in the fairness

policy based on current time.

In [NS09], several strategies were proposed based on the proportional sharing of resources.

This proportional sharing was defined based on the critical path length, width, or work of each

workflow. A type of weighted proportional sharing was also proposed that represents a better

tradeoff between fair resource sharing and makespan reduction of the workflows. The strategies

were applied to mixed parallel applications, where each task could be executed on more than one

processor. The proportional sharing, based on the work needed to execute a workflow, resulted in

the shortest schedules on average but was also the least fair with regard to resource usage, i.e., the

variance of the slowdowns experienced by the workflows was the highest.

In [BM10a], a path clustering heuristic was proposed that combines the clustering scheduling

technique to generate groups (clusters) of tasks and the list scheduling technique to select tasks

and processors. Based on this methodology, the authors propose and compare four algorithms: a)

sequential scheduling, where workflows are scheduled one after another; b) gap search algorithm,

which is similar to the former but searches for spaces between already-scheduled tasks; c) inter-

leave algorithm, where pieces of each workflow are scheduled in turns; and d) group workflows,

where the workflows are joined to form a single workflow and then scheduled. The evaluation

was made in terms of schedule length and fairness and concluded that interleaving the workflows

leads to lower average makespan and higher fairness when multiple workflows share the same

set of resources. This result, although relevant, considers the average makespan, which does not

distinguish the impact of the delay on each workflow, as compared to exclusive execution.

In [CDS10], the algorithms for off-line scheduling of concurrent parallel task graphs on a

single homogeneous cluster were evaluated extensively. The graphs, or workflows, that have been

submitted by different users share a set of resources and are ready to start their execution at the

same time. The goal is to optimize user-perceived notions of performance and fairness. The

authors proposed three metrics to quantify the quality of a schedule related to performance and

fairness among the parallel task graphs.
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In [HCTY+12], two workflow scheduling algorithms were presented, multiple workflow grid

scheduling, MWGS4 and MWGS2, with four and two stages, respectively. The four stages version

comprises labeling, adaptive allocation, prioritization and parallel machine scheduling. The two

stages version applies only adaptive allocation and parallel machine scheduling. Both algorithms,

MWGS4 and MWGS2, are classified as off-line strategies and both schedule a set of available and

ready jobs from a batch of jobs. All jobs that arrive during a time interval will be processed in

a batch and start to execute after the completion of the last batch of jobs. These strategies were

shown to outperform other strategies in terms of mean critical path waiting time and critical path

slowdown.

5.2.2 ON-LINE SCHEDULING OF CONCURRENT WORKFLOWS

On-line scheduling exhibits dynamic behavior where users can submit the workflows at any time.

When scheduling multiple independent workflows that represent user jobs and are thus submitted

at different moments in time, the completion time (or turnaround time) includes both the waiting

time and execution time of a given workflow, extending the makespan definition for single work-

flow scheduling [KA99]. The metric to evaluate a dynamic scheduler of independent workflows

must represent the individual completion time instead of a global measure for the set of workflows

to measure the QoS experienced by the users related to the finish time of each user application.

Some algorithms have been proposed for on-line workflow scheduling; they will be described

briefly in this section. Three other algorithms were proposed specifically to schedule concurrent

workflows to improve individual QoS. These algorithms, on-line workflow management (OWM),

rank hybrid (RANK_HYBD), and fairness dynamic workflow scheduling (FDWS), are described

here and compared in the results section. The first two algorithms improve the average completion

time of all workflows. In contrast, FDWS focuses on the QoS experienced by each application (or

user) by minimizing the waiting and execution times of each individual workflow.

In [LCJY09], the min-min average (MMA) algorithm was proposed to efficiently schedule

transaction-intensive grid workflows involving significant communication overheads. The MMA

algorithm is based on the popular min-min algorithm but uses a different strategy for transaction-

intensive grid workflows with the capability of adapting to the change of network transmission

speed automatically. Transaction-intensive workflows are multiple instances of one workflow.

In this case, the aim is to optimize the overall throughput rather than the individual workflow

performance. Because min-min is a popular technique, we consider one implementation of min-

min for concurrent workflow scheduling in our results.

In [XCWB09], an algorithm was proposed for scheduling multiple workflows, with multiple

QoS constraints, on the cloud. The resulting multiple QoS-constrained scheduling strategy of

multiple workflows (MQMW) minimizes the makespan and the cost of the resources and increases

the scheduling success rate. The algorithm considers two objectives, time and cost, that can be

adapted to the user requirements. MQMW was compared to RANK_HYBD, and RANK_HYBD

performed better when time was the major QoS requirement. In our study application, we consider

time as the QoS requirement and thus consider RANK_HYBD in our results section.
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In [BM11a], a dynamic algorithm was proposed to minimize the makespan of a batch of paral-

lel task workflows with different arrival times. The algorithm was proposed for on-line scheduling

but with the goal of minimizing a collective metric. This model is applied to real-world applica-

tions, such as video surveillance and image registration, where the workflows are related and only

the collective result is meaningful. This approach is different from the independent workflows

execution that we consider in this study.

5.2.2.1 Rank Hybrid algorithm

A planner-guided strategy, the RANK_HYBD algorithm, was proposed by Yu and Shi [YS08]

to address dynamic scheduling of workflow applications that are submitted by different users at

different moments in time. The RANK_HYBD algorithm ranks all tasks using the ranku priority

measure [THW02], which represents the length of the longest path from task ni to the exit node,

including the computational cost of ni, and is expressed as follows:

ranku(ni) = wi + max
n j∈succ(ni)

{ci, j + ranku(n j)}, (10)

where succ(ni) is the set of immediate successors of task ni, ci, j is the average communication cost

of edge(i, j), and wi is the average computation cost of task ni. For the exit task, ranku(nexit) = 0.

Algorithm 1 getReadyPool algorithm
if ( a new workflow has arrived ) {

calculate ranku for all tasks of the new workflow
}
Ready_Pool← Read all ready tasks from all DAGs
multiple← number of DAGs with ready tasks in Ready_Pool
if ( multiple == 1 ) {

Sort all tasks in Ready_Pool in descending order of ranku

}
else {

Sort all tasks in Ready_Pool in ascending order of ranku

}
return Ready_Pool

In each step, the algorithm reads all of the ready tasks from the DAGs and selects the next task

to schedule based on their rank. If the ready tasks belong to different DAGs, the algorithm selects

the task with lowest rank; if the ready tasks belong to the same DAG, the task with the highest

rank is selected. The RANK_HYBD heuristic is formalized in Algorithm 2.

With this strategy, RANK_HYBD allows the DAG with the lowest rank (lower makespan) to

be scheduled first to reduce the waiting time of the DAG in the system. However, this strategy

does not achieve high fairness among the workflows because it always gives preference to shorter

workflows to finish first, postponing the longer ones. For instance, if a longer workflow is being

executed and several short workflows are submitted to the system, the scheduler postpones the

execution of the longer DAG to give priority to the shorter ones.
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Algorithm 2 RANK_HYBD algorithm
while ( there are workflows to schedule ) {

Ready_Pool← getReadyPool()
Resources f ree← get all idle resources
while ( Ready_Pool 6= φ & Resources f ree 6= φ ) {

taskselected ← the first task in Ready_Pool
resourceselected ← the processor with the lowest Finish Time for taskselected on Resources f ree

Assign taskselected to resourceselected

Remove resourceselected from Resources f ree

Remove taskselected from Ready_Pool
}

}

5.2.2.2 On-line Workflow Management

The on-line workflow management algorithm (OWM) for the on-line scheduling of multiple work-

flows was proposed in [HHW11]. Unlike the RANK_HYBD algorithm that puts all ready tasks

from each DAG into the ready list, OWM selects only a single ready task from each DAG, the

task with the highest rank (ranku). Then, until there are some unfinished DAGs in the system, the

OWM algorithm selects the task with the highest priority from the ready list. Then, it calculates

the earliest finish time (EFT) for the selected task on each processor and selects the processor that

will result in the smallest EFT. If the selected processor is free at that time, the OWM algorithm

assigns the selected task to the selected processor; otherwise, the selected task stays in the ready

list to be scheduled later. The OWM heuristic is formalized in Algorithm 3.

In the results presented by Hsu et al. [HHW11], the OWM algorithm performs better than

the RANK_HYBD algorithm [YS08] and the Fairness_Dynamic algorithm (a modified version

of the fairness algorithm proposed by Zhao and Sakellariou [ZS06]) in handling on-line work-

flows. Similar to RANK_HYBD, the OWM algorithm uses a fairness strategy; however, instead

of scheduling smaller DAGs first, it selects and schedules tasks from the longer DAGs first. More-

over, OWM has a better strategy by filling the ready list with one task from each DAG so that

all of the DAGs have the chance to be selected in the current scheduling round. In their simula-

tion environment, the number of processors was always equal to the number of workflows so that

the scheduler typically has a suitable number of processors on which to schedule the ready tasks.

This choice does not expose a fragility of the algorithm that occurs when the number of DAGs is

significantly higher than the number of processors, this is for more heavily loaded systems.

5.2.2.3 Fairness Dynamic Workflow Scheduling

The fairness dynamic workflow scheduling (FDWS) algorithm was proposed in [AB12a]. FDWS

implements new strategies for selecting the tasks from the ready list and for assigning the proces-

sors to reduce the individual completion time of the workflows, e.g., the turnaround time, including

execution time and waiting time.
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Algorithm 3 OWM algorithm
while ( there are workflows to schedule ) {

Ready_Pool← getReadyPool()
Resources f ree← get all idle resources
while ( Ready_Pool 6= φ & Resources f ree 6= φ ) {

taskselected ← the first task in Ready_Pool
resourceselected ← the processor with the lowest Finish Time for taskselected on Resources f ree

if ( number of free clusters == 1 &
the Finish Time on a busy cluster < Finish Time on resourceselected ) {

Keep taskselected for next schedule call
}
else {

Assign taskselected to resourceselected

Remove resourceselected from Resources f ree

Remove taskselected from Ready_Pool
}

}
}

The FDWS algorithm comprises three main components: (1) workflow pool, (2) task selection,

and (3) processor allocation. The workflow pool contains the submitted workflows that arrive as

users submit their applications. At each scheduling round, this component finds all ready tasks

from each workflow. The RANK_HYBD algorithm adds all ready tasks into the ready pool (or

list), and the OWM algorithm adds only one task with the highest priority from each DAG into

the ready pool. Considering all ready tasks from each DAG leads to an unbiased preference for

longer DAGs and the consequent postponing of smaller DAGs resulting in higher TTR and unfair

processor sharing. In the FDWS algorithm, only a single ready task with highest priority from

each DAG is added to the ready pool, similar to the OWM algorithm. To assign priorities to tasks

in the DAG, it uses an upward ranking, ranku (10).

The task selection component applies a different rank to select the task to be scheduled from

the ready pool. To be inserted into the ready pool, ranku is computed individually for each DAG.

To select from the ready pool, rankr for task ni belonging to DAG j is computed, as defined by (2),

and the task with highest rankr is selected:

rankr(ni, j) =
1

PRT (DAG j)
× 1
|CP(DAG j)|

. (11)

The rankr metric considers the percentage of remaining tasks (PRT) of the DAG and its criti-

cal path length (|CP|). The PRT prioritizes DAGs that are nearly completed and only have a few

tasks to execute. The use of CP length results in a different strategy then the smallest remaining

processing time (SRPT) [KSW97]. With SRPT the application with the smallest remaining pro-

cessing time is selected and scheduled at each step. The remaining processing time is the time

needed to execute all remaining tasks of the workflow. However, the time needed to complete all

tasks of the DAG does not consider the width of the DAG. A wider DAG has a shorter |CP| than
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other DAGs with the same number of tasks; it also has a lower expected finish time. Therefore, in

this case, FDWS would give higher priority to DAGs with smaller |CP| values.

In both RANK_HYBD and OWM, only the individual ranku is used to select tasks into the

workflow pool and to select a task from the pool of ready tasks. This scheme leads to a scheduling

decision that does not consider the DAG history in the workflow pool.

The processor allocation component considers only the free processors. The processor with the

lowest finish time for the current task is selected. In this study, we use the FDWS without processor

queues to highlight the influence of the rank rankr in the scheduling results. The algorithm is

formalized in Algorithm 4.

Algorithm 4 FDWS algorithm
while ( Work f low_Pool 6= φ ) {

if ( new workflow has arrived ) {
Compute ranku for all tasks of the new Workflow
Insert the Workflow into Work f low_Pool

}
Ready_Pool← one ready task from each DAG (highest ranku)
Compute rankr(ni, j) for each task ni ∈ DAG j in Ready_Pool
Resources f ree← get all idle resources
while ( Ready_Pool 6= φ & Resources f ree 6= φ ) {

taskselected ← the task with highest rankr from Ready_Pool
resourceselected ← the processor with the lowest Finish Time for taskselected on Resources f ree

Assign taskselected to Resourceselected

Remove taskselected from Ready_Pool
}

}

5.2.2.4 On-line Min-Min and On-line Max-Min

The min-min and max-min algorithms have been studied extensively in the literature [MAS+99],

and therefore, we implemented an on-line version of these algorithms for our problem. In the

first phase, min-min prioritizes the task with the minimum completion time (MCT). In the second

phase, the task with the overall minimum expected completion time is chosen and assigned to its

corresponding resource. In each calling, our on-line version first collects a single ready task from

each available DAG with the highest ranku value and then puts all of these ready tasks into the

ready pool of tasks. It then calculates the MCT value for each ready task. In the selection phase,

the task with the minimum MCT value is selected and assigned to the corresponding processor.

The calculation of the MCT value for the tasks in the ready pool only considers available (free)

processors. The max-min algorithm is similar to the min-min algorithm, but in the selection phase,

the task with the maximum MCT is chosen to be scheduled on the resource that is expected to

complete the task at the earliest time.
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5.3 EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we compare the relative performance of the RANK_HYBD, OWM, FDWS, min-

min and max-min algorithms. For this purpose, this section is divided into three parts: the DAG

structure is described, the infrastructure is presented, and results and discussions are presented.

5.3.1 DAG STRUCTURE

To evaluate the relative performance of the algorithms, we used randomly generated workflow

application graphs. For this purpose, we use a synthetic DAG generation program1. We model

the computational complexity of a task as one of the three following forms, which are represen-

tative of many common applications: a.d (e.g., image processing of a
√

d×
√

d image), a.d logd

(e.g., sorting an array of d elements), d3/2 (e.g., multiplication of
√

d×
√

d matrices), where a

is chosen randomly between 26 and 29. As a result, different tasks exhibit different communica-

tion/computation ratios.

We consider applications that consist of 20-50 tasks. We use four popular parameters to define

the shape of the DAG: width, regularity, density, and jumps. The width determines the maximum

number of tasks that can be executed concurrently. A small value will lead to a thin DAG, similar

to a chain, with low task parallelism, and a large value induces a fat DAG, similar to a fork-join,

with a high degree of parallelism. The regularity indicates the uniformity of the number of tasks in

each level. A low value means that the levels contain very dissimilar numbers of tasks, whereas a

high value means that all levels contain similar numbers of tasks. The density denotes the number

of edges between two levels of the DAG, where a low value indicates few edges and a large value

indicates many edges. A jump indicates that an edge can go from level l to level l+ jump. A jump

of one is an ordinary connection between two consecutive levels.

In our experiment, for random DAG generation, we consider the number of tasks n =

{20 . . .50}, jump= {1,2,3}, regularity= {0.2,0.4,0.8}, f at = {0.2,0.4,0.6,0.8}, and density=

{0.2,0.4,0.8}. With these parameters, we call the DAG generator for each DAG, and it randomly

chooses the value for each parameter from the parameter dataset.

5.3.2 SIMULATED PLATFORMS

We resort to simulation to evaluate the algorithms from the previous section. It allows us to

perform a statistically significant number of experiments for a wide range of application config-

urations (in a reasonable amount of time). We use the SimGrid toolkit2 [CLQ08] as the basis

for our simulator. SimGrid provides the required fundamental abstractions for the discrete-event

simulation of parallel applications in distributed environments. It was specifically designed for the

evaluation of scheduling algorithms. Relying on a well-established simulation toolkit allows us to

leverage sound models of a HCS, such as the one described in Fig. 2. In many research papers

1https://github.com/frs69wq/daggen
2http://simgrid.gforge.inria.fr
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on scheduling, authors assume a contention-free network model in which processors can simul-

taneously send to or receive data from as many processors as possible without experiencing any

performance degradation. Unfortunately, that model, the multi-port model, is not representative of

actual network infrastructures. Conversely, the network model provided by SimGrid corresponds

to a theoretical bounded multi-port model. In this model, a processor can communicate with sev-

eral other processors simultaneously, but each communication flow is limited by the bandwidth of

the traversed route and communications using a common network link have to share bandwidth.

This scheme corresponds well to the behavior of TCP connections on a LAN. The validity of this

network model has been demonstrated in [VL09].

To make our simulations even more realistic, we consider platforms derived from clusters

in the Grid5000 platform deployed in France3 [CCD+05]. Grid5000 is an experimental testbed

distributed across 10 sites and aggregating a total of approximately 8,000 individual cores. We

consider two sites that comprise multiple clusters. Table 13 gives the name of each cluster along

with its number of processors, processing speed expressed in flop/s and heterogeneity. Each cluster

uses an internal Gigabit-switched interconnect. The heterogeneity factor (σ ) of a site is determined

by the ratio between the speeds of the fastest and slowest processors.

Table 9: Description of the Grid5000 clusters from which the platforms used in our experiments
are derived

Site Name Cluster Name Number of CPUs Power in GFlop/s Site Heterogeneity

grenoble
adonis 12 23.681

σ = 1.12edel 72 23.492
genepi 34 21.175

rennes

paradent 64 21.496

σ = 2.34
paramount 33 12.910
parapluie 40 27.391
parapide 25 30.130

From these five clusters, which comprise a total of 280 processors (118 in Grenoble and 162

in Rennes), we extract four distinct heterogeneous cluster configurations (two per site). For the

Grenoble site, we build heterogeneous simulated clusters by choosing three and five processors

for each of the three actual clusters for a respective total of nine and 15 processors. We apply

the same method to the Rennes site by selecting two and four processors per cluster for a total of

eight and 16 processors. This approach allows us to have heterogeneous configurations in terms

of both processor speed and network interconnect that correspond to a set of resources a user can

reasonably acquire by submitting a job to the local resource management system at each site.

5.3.3 RESULTS AND DISCUSSION

In this section, the algorithms are compared in terms of TTR, percentage of wins and NTT. We

present results for a set of 30 and 50 concurrent DAGs that arrive with time intervals that range

3http://www.grid5000.fr
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from zero (off-line scheduling) to 90% of completed tasks, i.e., a new DAG is inserted when the

corresponding percentage of tasks from the last DAG currently in the system is completed. We

consider a low number of processors compared to the number of DAGs to analyze the behavior of

the algorithms with respect to the system load. The maximum load configuration is observed for

eight processors and 50 DAGs.

(a) (b)

(c) (d)

(e) (f)

Figure 3: Results of TTR, percentage of wins and NTT on Grenoble site with 9 processors.
(a)(c)(e) 30 concurrent DAGs. (b)(d)(f) 50 concurrent DAGs.

Figures 3, 4, 5, and 6 present results for the Grenoble and Rennes sites for two configurations

and two sets of DAGs. For the case of zero time interval, equivalent to off-line scheduling, for

eight and nine processors and 30 and 50 DAGs, FDWS results in a lower distribution for TTR

but with similar average values to RANK_HYBD and OWM. The small box for FDWS indicates

that 50% of the results fall in a lower range of values, and therefore, the individual QoS for each
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(a) (b)

(c) (d)

(e) (f)

Figure 4: Results of TTR, percentage of wins and NTT on Grenoble site with 15 processors.
(a)(c)(e) 30 concurrent DAGs. (b)(d)(f) 50 concurrent DAGs.

submitted job is better. FDWS generated better solutions more often, but from the NTT graphs,

we conclude that the distance of its solutions to the minimum turnaround time is similar to that of

RANK_HYBD. For HCS configurations with more resources (15 and 16 processors for Grenoble

and Rennes, respectively), the same behavior is observed for both cases of 30 and 50 concurrent

DAGs.

In general, the max-min algorithm yielded poorer results. The min-min algorithm performed

the same as RANK_HYBD and performed better than OWM for time intervals of 20 and higher.

For time intervals of 10 and higher, FDWS performed consistently better for higher numbers

of concurrent DAGs. For the Rennes site, at 10 time intervals, 30 DAGs, and eight CPUs, the

degree of improvement of FDWS over RANK_HYBD, OWM, min-min, and max-min are 16.2%,
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(a) (b)

(c) (d)

(e) (f)

Figure 5: Results of TTR, percentage of wins and NTT on Rennes site for 8 processors. (a)(c)(e)
30 concurrent DAGs. (b)(d)(f) 50 concurrent DAGs.

19.3%, 27.4%, and 63.3%, respectively. Increasing the number of DAGs to 50, the improvements

are 17.5%, 23.4%, 31.5%, and 71.0%. Increasing the time intervals between the DAGs’ arrival

times reduces the concurrency, and thus, the improvements decrease. For the same conditions

with 30 DAGs and a time interval of 50, the improvement of FDWS over the others, in the same

order, are 5.5%, 11.7%, 4.8%, and 8.9%. For 50 DAGs and 50 time intervals, the improvements

are 5.9%, 13.0%, 3.2%, and 11.1%. For the Grenoble site, with nine and 15 processors, the

improvements are of the same order for the same time intervals and number of DAGs, with eight

and 16 processors in the Rennes site.

With respect to the percentage of wins, FDWS always results in a higher rate of best results,

for time intervals equal to or higher than 10. The results in the NTT graphs illustrate that FDWS
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(a) (b)

(c) (d)

(e) (f)

Figure 6: Results of TTR, percentage of wins and NTT on Rennes site with 16 processors. (a)(c)(e)
30 concurrent DAGs. (b)(d)(f) 50 concurrent DAGs.

also has a distribution closer to one, which indicates that its solutions are closer to the minimum

turnaround time than the other algorithms.

5.4 CONCLUSIONS

In this study, we presented a review of off-line and on-line concurrent workflow scheduling

and compared five algorithms for on-line scheduling when the goal was to maximize the user

QoS defined by the completion time of the individual submitted jobs. The five algorithms are

FDWS [AB12a], OWM [HHW11], RANK_HYBD [YS08], on-line min-min, and on-line max-

min, which can all handle multiple workflow scheduling in dynamic situations. Based on our
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experiments, FDWS leads to better performance in terms of TTR, win(%), and NTT, showing bet-

ter QoS characteristics for a range of time intervals from 10 to 90. For the time interval of zero,

equivalent to off-line scheduling, RANK_HYBD also performed well, but the schedules produced

by FDWS had better QoS characteristics.
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abstract
Service-oriented computing has enabled a new method of service provisioning based on

utility computing models, in which users consume services based on their Quality of Ser-

vice (QoS) requirements. In such pay-per-use models, users are charged for services based

on their usage and on the fulfilment of QoS constraints; execution time and cost are two

common QoS requirements. Therefore, to produce effective scheduling maps, service pric-

ing must be considered while optimising execution performance. In this paper, we propose

a Heterogeneous Budget Constrained Scheduling (HBCS) algorithm that guarantees an ex-

ecution cost within the user’s specified budget and that minimises the execution time of the

user’s application. The results presented show that our algorithm achieves lower makespans,

with a guaranteed cost per application and with a lower time complexity than other budget-

constrained state-of-the-art algorithms. The improvements are particularly high for more

heterogeneous systems, in which a reduction of 30% in execution time was achieved while

maintaining the same budget level.
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6.1 Introduction

Utility computing is a service provisioning model that provides computing resources and infras-

tructure management to customers as they need them, as well as a payment model that charges for

usage. Recently, service-oriented grid and cloud computing, which supply frameworks that allow

users to consume utility services in a secure, shared, scalable, and standard network environment,

have become the basis for providing these services.

Computational grids have been used by researchers from various areas of science to execute

complex scientific applications. Recently, utility computing has been rapidly moving towards a

pay-as-you-go model, in which computational resources or services have different prices with

different performance and Quality of Service (QoS) levels [BVB08]. In this computing model,

users consume services and resources when they need them and pay only for what they use. Cost

and time have become the two most important user concerns. Thus, the cost/time trade-off problem

for scheduling workflow applications has become challenging. Scheduling consists of defining an

assignment and mapping of the workflow tasks onto resources. In general, the scheduling problem

belongs to a class of problems known as NP-complete [CB76].

Many complex applications in e-science and e-business can be modelled as workflows

[DBG+03]. A popular representation of a workflow application is the Directed Acyclic Graph

(DAG), in which nodes represent individual application tasks, and the directed edges represent

inter-task data dependencies. Many workflow scheduling algorithms have been developed to ex-

ecute workflow applications. Some typical workflow scheduling algorithms were introduced in

[YBR08]. Most of these algorithms have a single objective, such as minimising execution time

(makespan). However, additional objectives can be considered when scheduling workflows onto

grids, based on the user’s QoS requirements. If we consider multiple QoS parameters, such as

budgets and deadlines, then the problem becomes more challenging.

The contributions of this paper are as follows: a) a new low time complexity algorithm that

obtains higher performance than state-of-the-art algorithms of the same class for the two set-ups

considered here, namely i) minimising the makespan for a given budget and ii) budget-deadline

constrained scheduling; b) a realistic simulation that considers a bounded multi-port model in

which bandwidth is shared by concurrent communications; and c) results for randomly generated

graphs, as well as for real-world applications.

The remainder of the paper is organised as follows. Section II describes the system model,

including the application model, the utility computing model, and the objective function. Section

III discusses related work on budget-constrained workflow scheduling. The proposed schedul-

ing algorithm (HBCS) is presented in Section IV. Experimental details and simulation results are

presented in Section V. Finally, Section VI concludes the paper.
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6.2 Problem Definition and System Model

A typical workflow application can be represented by a Directed Acyclic Graph (DAG), which is

a directed graph with no cycles. In a DAG, an individual task and its dependencies are represented

by a node and its edges, respectively. A dependency ensures that a child node cannot be executed

before all of its parent tasks finish successfully and transfer the input data required by the child.

The task computation times and communication times are modelled by assigning weights to nodes

and edges respectively. A DAG can be modelled by a tuple G(N,E), where N is the set of n

nodes, each node ni ∈ N represents an application task, and E is the set of communication edges

between tasks. Each edge e(i, j) ∈ E represents a task-dependency constraint such that task ni

should complete its execution before task n j can start.

In a given DAG, a task with no predecessors is called an entry task, and a task with no succes-

sors is called an exit task. We assume that the DAG has exactly one entry task nentry and one exit

task nexit . If a DAG has multiple entry or exit tasks, a dummy entry or exit task with zero weight

and zero communication edges is added to the graph.

The target utility computing platform is composed of a set of clusters; each cluster has ho-

mogeneous processors that have a given capability and cost to execute tasks of a given appli-

cation. The collection of clusters forms a heterogeneous system. Processors are priced, with

the most powerful processor having the highest cost. To normalise diverse price units for the

heterogeneous processors, as defined in [ZS12], the price of a processor p j is assumed to be

Price(p j) = αp j

(
1+αp j

)
/2, where αp j is the ratio of p j processing capacity to that of the fastest

processor. The price will be in the range of ]0 . . .1], where the fastest processors, with the highest

power, have a price value equal to 1.

For each task ni, wi, j gives the estimated time to execute task ni on processor p j, and

Cost(ni, p j) = wi, j.Price(p j) represents the cost of executing task ni on processor p j. After as-

signing a specific processor to execute the task ni, AC(ni) is defined as Assigned Cost of task ni.

The overall cost for executing an application is defined as TotalCost = ∑ni∈N AC(ni).

The edges of the DAG represent a communication cost in terms of time, but they are considered

to have zero monetary cost because they occur inside a given site. The schedule length of a DAG,

also called Makespan, denotes the finish time of the last task in the scheduled DAG, and is defined

by:

makespan = max{AFT (nexit)} (1)

where AFT (nexit) denotes the Actual Finish Time of the exit node. In cases in which there is more

than one exit node, and no redundant node is added, the makespan is the maximum actual finish

time of all of the exit tasks.

The objective of the scheduling problem is to determine an assignment of tasks of a given

DAG to processors such that the Makespan is minimised, subject to the budget limitation imposed
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by the user, as expressed in equation 2:

∑
ni∈N

AC(ni)≤ BUDGET (2)

The user specifies the budget within the range provided by the system, as shown by equation

3:

BUDGET =CheapestCost + kBudget
(
HighestCost −CheapestCost

)
(3)

where HighestCost and CheapestCost are the costs of the assignments produced by an algorithm

that guarantees the minimum processing time, such as HEFT [THW02], and the least expensive

scheduling, respectively. The least expensive assignment is obtained by selecting the least expen-

sive processor to execute each of the workflow tasks. The algorithm HEFT is used here as one

algorithm that produces the minimum Makespans for a DAG in a heterogeneous system with com-

plexity O(v2.p) [CJSZ08]. Therefore, the lower bound of the execution cost is the minimum cost

that can be achieved in the target platform, obtained by the cheapest assignment; the upper bound

is the cost of the schedule that produces the minimum Makespan. Finally, the budget range feasible

on the selected platform is presented to the user; he/she selects a budget inside that range, repre-

sented by kBudget in the range of [0 . . .1]. This budget definition was first introduced by [SZTD07].

The least expensive assignment guarantees that it is always feasible to obtain valid mapping within

the user budget, although without guaranteeing the minimisation of the makespan. If the user can

afford to pay the highest cost or is limited to the least expensive cost, then the schedule is de-

fined by the HEFT or by the least expensive assignment, respectively. Between these limits, the

algorithm we propose here can be used to produce the assignment.

In conclusion, the scheduling problem described in this paper is a single objective function,

in which only processing time is optimised, and cost is a problem constraint, the value of which

must be guaranteed by the scheduler. This feature is very relevant for users within the context of

the utility computing model, and it is a distinguishing feature compared to other algorithms that

optimise cost without guaranteeing a user-defined upper bound, as described in the next section.

6.3 Related Work

Generally, the related research in this area can be classified into two main categories: QoS op-

timisation scheduling and QoS constrained scheduling. In the first category, the algorithm must

find a schedule map that optimises all of the QoS parameters to provide a suitable balance be-

tween them for time and cost, as in [DÖ05, SKD07, SLH+13, SK12]. In the second category,

the algorithm makes a scheduling decision to optimise for some QoS parameter while subjected

to some user-specified constraint values. For example, considering budget and makespan as the

QoS parameters, an algorithm in the first category attempts to find a task-to-processor map that

best balances between budget and makespan, while an algorithm of the second category takes

user-defined values for the budget as an upper bound and defines a mapping that optimises the
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makespan. The first category of algorithms can produce schedules with shorter makespans, but

the costs of which cannot be limited by the user when submitting the work. Next, we present a

review of the second class of algorithms.

The Hybrid Cloud Optimised Cost scheduling algorithm (HCOC), proposed in [BM11b], and

a cost-based workflow scheduling algorithm called Deadline-MDP (Markov Decision Process),

proposed in [YBT05a], address the problem of minimising cost while constrained by a deadline.

Although these models could have applicability in a utility computing paradigm, we do not con-

sider such a paradigm in this paper.

An Ant Colony Optimisation (ACO) algorithm to schedule large-scale workflows with QoS

parameters was proposed by [CZ09]. Reliability, time, and cost are three different QoS parame-

ters that are considered in the algorithm. Users are allowed to define QoS constraints to guarantee

the quality of the schedule. In [PW10, WPPF08], the Dynamic Constraint Algorithm (DCA) was

proposed as an extension of the Multiple-Choice Knapsack Problem (MCKP), to optimise two

independent generic criteria for workflows, e.g., execution time and cost. In [YB06a], a budget

constraint workflow scheduling approach was proposed that used genetic algorithms to optimise

workflow execution time while meeting the user’s budget. This solution was extended in [YB06b]

by introducing a genetic algorithm approach for constraint-based, two-criteria scheduling (dead-

line and budget). In [BKK+11], the Balanced Time Scheduling (BTS) algorithm was proposed,

which estimates the minimum resource capacity needed to execute a workflow by a given deadline.

The algorithm has some limitations, such as homogeneity in resource type and a fixed number of

computing hosts.

All of the previous algorithms apply guided random searches or local search techniques,

which require significantly higher planning costs and thus are naturally time-consuming. Next,

we consider algorithms that were proposed for contexts similar to that considered here, which are

heuristic-based and have lower time complexity than the algorithms referred to above and which

are used in the Results section for comparison purposes.

In [SZTD07] LOSS and GAIN algorithms were proposed to construct a schedule optimising

time and constraining cost. Both algorithms use initial assignments made by other heuristic al-

gorithms to meet the time optimisation objective; a reassignment strategy is then implemented to

reduce cost and meet the second objective, the user’s budget. In the reassignment step, LOSS at-

tempts to reduce the cost, and GAIN attempts to achieve a lower makespan while attending to the

user’s budget limitations. In the initial assignment, LOSS has lower makespans with higher costs,

and GAIN has higher makespans with lower costs. The authors proposed three versions of LOSS

and GAIN that differ in the calculation of the tasks’ weights. The LOSS algorithms obtained better

performance than the GAIN algorithms, and among the three different types of LOSS strategy, we

used LOSS1 to compare to our proposed algorithm. All of the versions of the LOSS and GAIN

algorithms use a search-based strategy for reassignments; to obtain their goals, the number of it-

erations needed tends to be high for lower budgets in LOSS strategies and for higher budgets in

GAIN strategies.

The algorithms LOSS and GAIN differ from our approach because they start with a schedule,
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and then changes are made iteratively to the schedule until the user budget is guaranteed. We do

not consider any initial schedule, and in contrast to those algorithms, ours is not iterative; the time

to produce a schedule is constant for a given workflow and platform.

A budget-constrained scheduling heuristic called greedy time-cost distribution (GreedyTime-

CD) was proposed by [YRB09]. The algorithm distributes the overall user-defined budget to the

tasks, based on the estimated tasks’ average execution costs. The actual costs of allocated tasks

and their planned costs are also computed successively at runtime. This is a different approach,

which optimises task scheduling individually. First, a maximum allowed budget is specified for

each task, and a processor is then selected that minimises time within the task budget.

In [ZS12, ZS13] the Budget-constrained Heterogeneous Earliest Finish Time (BHEFT) was

proposed, which is an extension of the HEFT algorithm [THW02]. The context of execution is

an environment of multiple and heterogeneous service providers; BHEFT defines a suitable plan

by minimising the makespan so that the user’s budget and deadline constraints are met, while ac-

counting for the load on each provider. An adequate solution is one that satisfies both constraints

(i.e., budget and deadline); if no plan can be defined, it is considered a mapping failure. Therefore,

the metric used by the authors was the planning success rate: the percentage of problems for which

a plan was found. The BHEFT approach consists of minimising the execution time of a workflow

(HEFT based) but within the budget constraints. Our approach is also one of minimising execu-

tion time while being constrained to a user-defined budget; therefore, we compare our proposed

algorithm to BHEFT in terms of execution time versus budget. Additionally, we compare them in

terms of plan success rate, where a deadline is specified for that purpose, similar to [ZS12, ZS13].

Our algorithm differs from BHEFT in two important aspects: first, we allow more processors

to be considered as affordable and, therefore, selected; and second, we do not necessarily select

the processor that guarantees the earliest finish time, as BHEFT does. Instead, we compute a

worthiness value, proposed in this paper, which combines the time and cost factors to decide on

the processor for the current task.

GreedyTimeCD and BHEFT have time complexity of O(v2.p) for a workflow of v nodes

and a platform with p processors. Next, we present our proposed scheduling algorithm, which

minimises processing time while constrained to a user-defined budget and with low time com-

plexity and which obtains better schedules then other state-of-the-art algorithms, namely LOSS1,

GreedyTimeCD, and BHEFT.

6.4 Proposed Budget Constrained Scheduling Algorithm

In this section, we present the Heterogeneous Budget Constrained Scheduling (HBCS) algorithm,

which minimises execution time while constrained to a user-defined budget. The algorithm starts

by computing two schedules for the DAG: a schedule that corresponds to the minimum exe-

cution time that the scheduler can offer (e.g., produced with HEFT) and the highest cost; and

another schedule that corresponds to the least expensive schedule cost on the target machines

(CheapestCost), as explained in section 6.2. With the least expensive assignment, the user knows
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the minimum cost and corresponding deadline to execute the job; with the highest cost assign-

ment, the user knows the minimum deadline that can be expected for the job and the maximum

cost that should be spent to run the job. With this information, the user is able to verify whether

the platform can execute the job before the required deadline and within the associated cost range.

If these parameters satisfy the user’s expectations, he/she specifies the required budget according

to equation 3. HBCS is shown in Algorithm 1.

Like most list-based algorithms [KA99], HBCS consists of two phases, namely a task selection

phase and a processor selection phase.

6.4.1 Task Selection

Tasks are selected according to their priorities. To assign a priority to a task in the DAG, the

upward rank (ranku) [THW02] is computed. This rank represents the length of the longest path

from task ni to the exit node, including the computational time of ni, and it is given by equation

10:

ranku(ni) = wi + max
n j∈succ(ni)

{ci, j + ranku(n j)} (4)

where wi is the average execution time of task ni over all of the machines, ci, j is the average

communication time of an edge e(i, j) that connects task ni to n j over all types of network links in

the network, and succ(ni) is the set of immediate successor tasks to task ni. To prioritise tasks, it

is common to consider average values because they must be assigned a priority before the location

where they will run is known.

6.4.2 Processor Selection

The processor selection phase is guided by the following quantities related to cost. We define

the Remaining Cheapest Budget (RCB) as the remaining CheapestCost for unscheduled tasks, ex-

cluding the current task, and the Remaining Budget (RB) as the actual remaining budget. RCB

is updated at each step before executing the processor selection block for the current task, using

equation 6 (line 9), which represents the lowest possible cost of the remaining tasks:

RCB = RCB−Costlowest (5)

where Costlowest is the lowest cost for the current task among all of the processors. The initial value

for the Remaining Budget is the user budget (RB = BUDGET ), and it is updated with equation 14

after the processor selection phase for the current task (line 19). RB represents the budget available

for the remaining unscheduled tasks:

RB = RB−Cost(ni,Psel) (6)

where Psel is the processor selected to run the current task (line 17 of the algorithm), and

Cost(ni,Psel) is the cost of running task ni on processor Psel .
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Algorithm 1 HBCS algorithm

Require: DAG and user defined BUDGET
1: Schedule DAG with HEFT and Cheapest algorithm
2: Set task priorities with ranku

3: if HEFTcost < BUDGET then
4: return Schedule Map assignment by HEFT
5: end if
6: RB = BUDGET and RCB =CheapestCost

7: while there is an unscheduled task do
8: ni = the next ready task with highest ranku value
9: Update the Remaining Cheapest Budget (RCB) as defined in Eq.6

10: for all Processor pi ∈ P do
11: calculate FT (ni, p j) and Cost(ni, p j)
12: end for
13: Compute CostCoe f f as defined in Eq.7
14: for all Processor pi ∈ P do
15: calculate worthiness(ni, pi) as defined in Eq.10
16: end for
17: Psel = Processor pi with highest worthiness value
18: Assign Task ni to Processor Psel
19: Update the Remaining Budget (RB) as defined in Eq.14
20: end while
21: return Schedule Map

The quantity Cost Coefficient (CostCoe f f ), defined by equation 7, is the ratio between RCB and

RB, and it provides a measurement of the least expensive assignment cost relative to the remaining

budget available. If CostCoe f f is near one, it means that the available budget only allows for

selecting the least expensive processors:

CostCoe f f =
RCB
RB

(7)

HBCS minimises execution time. Therefore, the finish time of the current task (ni) is computed

for all of the processors (FT (ni, p j)) at lines 10 and 11, and they constitute one set of factors for

processor selection. The other set of factors consists of the costs of executing the task on each

processor, that is Cost(ni, p j). The variables pbest and pworst are defined as the processors with

shortest and longest finish times for the current task, respectively.

Processor selection is based on the combination of two factors: time and cost. Therefore, we

define two relative quantities, namely Time rate (Timer) and Cost rate (Costr), for the current task

ni on each processor p j ∈ P, shown in equations 8 and 9, respectively:

Timer(ni, p j) =
FTworst −FT (ni, p j)

FTworst −FTbest
(8)

Costr(ni, p j) =
Costbest −Cost(ni, p j)

Costhighest −Costlowest
(9)
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where FTbest and Costbest are the finish time and cost of the current task on processor pbest , respec-

tively. FTworst is the finish time on processor pworst , and Costhighest and Costlowest are the highest

and the lowest cost assignments for the current task among all of the available processors, respec-

tively. Timer measures how much shorter than the worst finish time (FTworst) the finish time is of

the current task on processor p j. Similarly, Costr measures how much less the actual cost on p j is

than the cost on the processor that results in the earliest finish time. Both variables are normalised

to their highest ranges.

Finally, to select the processor for the current task ni, the worthiness value for each processor

p j ∈ P is computed as shown in equation (10):

worthiness(ni, pi) =



−∞ if Cost(ni, p j)>Costbest

−∞ if Cost(ni, p j)> RB−RCB

Costr(ni, p j)×CostCoe f f

+Timer(ni, p j) otherwise

(10)

The first two statements guarantee that if the cost of task ni on processor p j is higher than

the cost on the processor that gives the minimum FT and if that cost is higher than the available

budget for task ni, then processor p j cannot be selected. With these statements, the resulting

schedule does not exceed the user budget and is guaranteed to be valid. In the third statement,

the worthiness value depends on the available budget and on the time during which a processor

can finish the task. If the remaining budget (RB) is high, then Timer has more influence, and

a processor with the greater difference in FT compared to the worst processor will have higher

worthiness. In contrast, if the remaining budget is smaller, then the cost factor will increase the

worthiness of the processors with lower cost to run task ni. After testing all of the processors, the

one with highest worthiness value is selected, and the remaining budget is updated according to

equation 14.

The two phases, task selection and processor selection, are repeated until there are no more

tasks remaining to schedule. In terms of time complexity, the HBCS requires the computation of

HEFT and the least expensive schedule, which are used as pre-requisites to calculate several vari-

ables in the HBCS algorithm; these are O(v2.p) and O(v2.p∗), respectively, where p∗ is number

of cheapest processors. In our platform with heterogeneous clusters of homogeneous processors,

there is more than one processor with the cheapest cost. The least expensive strategy attempts

to assign each task to the least expensive processor; considering insertion policy to calculate the

Earliest Finish Time (EFT) among all of the cheapest processors, the complexity of the cheapest

algorithm is O(v2.p∗). The complexities of the two phases of HBCS are of the same order as the

HEFT algorithm: O(v2.p). In conclusion, the total time is O(v2.p+ v2.p∗+ v2.p), which results

in time complexity of the order O(v2.p).
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6.5 Experimental Results

This section presents performance comparisons of the HBCS algorithm with the LOSS1

[SZTD07], GreedyTimeCD [YRB09], BHEFT [ZS13], and Cheapest scheduling algorithms. We

consider synthetic randomly generated and Real Application workflows to evaluate a broader range

of loads. The results presented were produced with SimGrid [CLQ08], which is one of the best-

known simulators for distributed computing and which allows for a realistic description of the

infrastructure parameters.

6.5.1 Workflow Structure

To evaluate the relative performances of the algorithms, both the randomly generated and real-

world application workflows were used, namely LIGO and Epigenomics [BCD+08]. The ran-

domly generated workflows were created by the synthetic DAG generation program1. The com-

putational complexity of a task was modelled as one of the three following forms, which are

representative of many common applications: a.d (e.g., image processing of a
√

d.
√

d image),

a.dlogd (e.g., sorting an array of d elements), and d3/2 (e.g., multiplication of
√

d.
√

d matrices),

where a is chosen randomly between 26 and 29. As a result, different tasks exhibit different com-

munication/computation ratios.

The DAG generator program defines the DAG shape based on four parameters: width, regular-

ity, density, and jumps. The width determines the maximum number of tasks that can be executed

concurrently. A small value will lead to a thin DAG, similar to a chain, with low task parallelism;

a large value induces a fat DAG, similar to a fork-join, with a high degree of parallelism. The

regularity indicates the uniformity of the number of tasks in each level. A low value indicates that

the levels contain very dissimilar numbers of tasks, whereas a high value indicates that all of the

levels contain similar numbers of tasks. The density denotes the number of edges between two

levels of the DAG, where a low value indicates few edges, and a large value indicates many edges.

A jump indicates that an edge can go from level l to level l + jump. A jump of one is an ordinary

connection between two consecutive levels.

In our experiment, for random DAG generation, we used as the number of tasks n = [10...60],

jump= [1,2,3], regularity= [0.2,0.4,0.8], f at = [0.2,0.4,0.8], and density= [0.2,0.4,0.8]. With

these parameters, each DAG was created by choosing the value for each parameter randomly from

the parameter data set. The total number of DAGs generated in our simulation was 1000.

6.5.2 Simulation platform

We resorted to simulation to evaluate the algorithms discussed in the previous sections. Simulation

allows us to perform a statistically significant number of experiments for a wide range of appli-

cation configurations in a reasonable amount of time. We used the SimGrid toolkit 2 [CLQ08]

1https://github.com/frs69wq/daggen
2http://simgrid.gforge.inria.fr
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as the basis for our simulator. SimGrid provides the required fundamental abstractions for the

discrete-event simulation of parallel applications in distributed environments. It was specifically

designed for the evaluation of scheduling algorithms. Relying on a well-established simulation

toolkit allows us to leverage sound models of a heterogeneous computing system, such as the grid

platform considered in this work. In many research papers on scheduling, the authors have as-

sumed a contention-free network model, in which processors can simultaneously send data to or

receive data from as many processors as possible, without experiencing any performance degra-

dation. Unfortunately, that model, the multi-port model, is not representative of actual network

infrastructures. Conversely, the network model provided by SimGrid corresponds to a theoretical

bounded multi-port model. In this model, a processor can communicate with several other pro-

cessors simultaneously, but each communication flow is limited by the bandwidth of the traversed

route, and communications using a common network link must share bandwidth. This scheme

corresponds well to the behaviour of TCP connections on a LAN. The validity of this network

model was demonstrated by [VL09].

We consider two sites that comprise multiple clusters. Table 13 provides the name of each

cluster, along with its number of processors, processing speed expressed in GFlop/s, and the stan-

dard deviation (σ ) of CPU capacity as a heterogeneity factor. Column #CPUused shows the number

of processors used from each cluster for 8-, 16- and 32-processor configurations.

Site Cluster #CPUTotal #CPUused Power(GFlop/s) σ

lille
chicon 26 2 4 9 8.9618e9

0.69chimint 20 2 4 7 23.531e9
chinqchint 46 4 8 16 22.270e9

sophia
helios 56 3 6 12 7.7318e9

0.90sol 50 3 5 10 8.9388e9
suno 45 2 5 10 23.530e9

Table 10: Description of the cappello2005grid clusters from which the platforms used in the ex-
periments were derived

6.5.3 Budget-Deadline Constrained Scheduling

Budget-deadline constrained scheduling was introduced in [ZS12, ZS13], in which the BHEFT al-

gorithm was presented. Its aim is to produce mappings of tasks to resources that meet the deadline

and budget constraints imposed by the user. Although BHEFT considers the load of the providers,

the algorithm can be evaluated by attending exclusively to the deadline and budget constraints and

ignoring the providers’ loads, as also presented in [ZS12, ZS13]. This process allows for evaluat-

ing and comparing the algorithms, without the additional random variables that are the providers’

loads. The budget factor is considered here, as defined by equation 3. The deadline constraint

is defined by equation 23, which specifies a deadline value for a given workflow, based on the
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mapping obtained by HEFT:

DeadLine = LBdeadline + kDeadline
(
UBdeadline−LBdeadline

)
(11)

where LBdeadline is equal to HEFTMakespan, the makespan obtained with HEFT, and UBdeadline is

3.HEFTMakespan. The range of values for kDeadline is [0 . . .1]. HEFTMakespan is the minimum time

that the user is allowed to choose to obtain a valid schedule. We restrict the upper bound deadline

as the cube of HEFTMakespan to evince the quality of the algorithms in generating valid mappings.

6.5.4 Performance metrics

To evaluate and compare our algorithm with other approaches, we consider the metric Normalised

Makespan (NM), defined by equation 12. NM normalises the makespan of a given workflow to

the lower bound, which is the workflow execution time obtained with HEFT:

NM =
schedule makespan

HEFTMakespan
(12)

To evaluate the algorithms using the budget-deadline constrained methodology, we consider

the Planning Success Rate (PSR), as expressed by equation 25 and defined in [ZS12, ZS13]. This

metric provides the percentage of valid schedules obtained in a given experiment.

PSR = 100× Successful Planning
Total Number in experiment

(13)

6.5.5 Results and Discussion

Among all of the algorithms mentioned above in the related work section, we selected LOSS1,

GreedyTimeCD, BHEFT, and Cheapest scheduling algorithms; these match our goal and condi-

tions, but we have made some modifications in their original strategies. The original implementa-

tion of the LOSS scheduling algorithm assumed that all of the processors had different costs, and

therefore, there was no conflict in selecting a processor based on the cost parameter. In our grid

environment, each cluster was homogeneous and was based only on the cost parameter, so there

could be more than one processor candidate. In this case, we tested all of the possible processors

and selected that which achieved the smallest makespan. The same procedure was applied to the

least expensive scheduling strategy, which attempts to schedule each task on the service with the

lower execution cost.

To evaluate the performance of each algorithm, we computed the makespan for each DAG and

normalised it using equation 12. The results presented next were obtained by SimGrid with the

bounded multi-port model, and they are presented for two data sets: randomly generated work-

flows and real applications.
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6.5.5.1 Results for Randomly generated workflows

For random DAG generation, as stated previously, we model the computational complexity of

common applications tasks, such as image processing, array sorting, and matrix multiplication.

Figures 1 and 2 show the Normalised Makespan values obtained on two CPU configurations per

site, namely, 8 and 32 processors. We can see that the HBCS algorithm obtains significant per-

formance improvements over the other algorithms for most of the user-defined budget values and

configurations.

(a) Clustername = Lille (b) Clustername = Sophia

Figure 1: Normalized Makespan for Random workflows with CPUused=8

(a) Clustername = Lille (b) Clustername = Sophia

Figure 2: Normalized Makespan of scheduling for Random workflows with CPUused=32

For 8 processors on the Lille site, the improvement of HBCS over BHEFT is 2.0% for k = 0.1,

and it increases to 19.7% for k = 0.9. On the Sophia site, the improvement is 0% for k = 0.1,

and it increases to 29.4% for k = 0.9. For k ≥ 0.7, the second-best algorithm is LOSS1, and the

improvements of HBCS over LOSS1 are 24.7% and 18.2% for k = 0.7 and k = 0.9, respectively.

For 32 processors, the same pattern of results is obtained on the Lille and Sophia sites but with

greater differences for lower k values. On the Lille site, the improvement of HBCS over BHEFT

is 5.4%, 13.4% and 18.8% for k values of 0.1, 0.2, and 0.3, respectively. The performance of

BHEFT and GreedyTimeCD are very similar for all of the ranges of k on both sites. For k ≥ 0.7,

the second best algorithm is again LOSS1.

In conclusion, HBCS outperforms all of the other algorithms, indicating that HBCS can

achieve lower makespans for any given budget.
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(a) Clustername = Lille (b) Clustername = Sophia

Figure 3: Planning Success Rate for Random workflows

The results of the evaluation made with the budget-deadline constrained methodology are

shown in Figure 2, where the deadline and budget factors assume the values of 0.2, 0.5, and 0.8.

The figures present the average values for 8, 16 and 32 processors for each site. HBCS yielded

higher PSR values for all of the cases. The PSR obtained by HBCS for shorter deadline factors

is significantly higher than the PSR values obtained with the other algorithms. On both sites, for

deadline and budget factors of 0.2 and 0.8, respectively, the HBCS PSR is greater than 80%, while

for the remaining algorithms, the PSR is less than 30%. We can conclude that HBCS obtains the

highest Planning Success Rates for the two levels of heterogeneity considered here.

6.5.5.2 Results for Real World Applications

To evaluate the algorithms on a standard and real set of workflow applications, synthetic workflows

were generated using the code developed in [Peg13]. Two well-known structures were chosen

[JCD+13], namely Epigenomics3, for mapping the epigenetic state of human DNA, and LIGO 4.

The Epigenomics workflow is a highly pipelined application with multiple pipelines operating on

independent chunks of data in parallel. In these two real applications, most of the jobs have high

CPU utilisation and relatively low I/O, so they can be classified as CPU-bound workflows.

Workflows with 24 and 30 tasks were created for both Epigenomics and LIGO. For each

workflow size, 300 different workflow instances were generated, obtaining a total collection of

600 workflows for each type of application.

For Normalised Makespan, Figures 4 and 5 show that HBCS achieves better performance for

most of the budget factor values. The improvements increase with the budget factor and the site

heterogeneity. Similar behaviour is obtained for the LIGO application.

Figures 6 and 7 show the Planning Success Rate for the Epigenomics and LIGO workflows.

For each site, the average PSRs for 8, 16, and 32 CPUs are presented. These results are consistent

with those obtained for the randomly generated workflows. It is also observed that for some cases,

particularly for Epigenomics, only HBCS obtained valid schedules and significant success rates.

3USC Epigenome Center, http://epigenome.usc.edu
4http://www.advancedligo.mit.edu
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(a) Clustername = Lille , CPUused =8 (b) Clustername = Sophia , CPUused =8

Figure 4: Normalized Makespan for Epigenomics workflows on cappello2005grid

(a) Clustername = Lille , CPUused =8 (b) Clustername = Sophia , CPUused =8

Figure 5: Normalized Makespan for LIGO workflows on cappello2005grid

(a) Clustername = Lille (b) Clustername = Sophia

Figure 6: Planning Success Rate for Epigenomics workflows

6.6 Conclusions and Future Work

In this paper, we have presented the Heterogeneous Budget Constrained Scheduling algorithm,

which maps a workflow to a heterogeneous system and minimises the execution time constrained

to a user-defined budget. The algorithm was compared with other state-of-the-art algorithms and

was shown to achieve lower makespans for all of the budget factors in higher heterogeneity plat-

forms; that is, HBCS can produce shorter makespans for the same budget. A reduction of up

to 30% in execution time was achieved while maintaining the same budget level. Considering

Budget-Deadline constrained scheduling, HBCS achieves a higher planning success rate for more
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(a) Clustername = Lille (b) Clustername = Sophia

Figure 7: Planning Success Rate for LIGO workflows

heterogeneous systems. In some particular cases, the PSR obtained with HBCS is considerably

higher than the PSRs obtained with the other algorithms. For example, for the budget and dead-

line factors of 0.8 and 0.2, respectively, on the Lille and Sophia sites, the PSR of HBCS is greater

than 80%, while all of the other algorithms achieve PSRs less than 30%. On these sites, HBCS

performs significantly better than the other algorithms for the more restricted deadline factors of

0.2 and 0.5.

The results achieved for two real applications, namely LIGO and Epigenomics, are consistent

with the randomly generated workflows for both metrics.

Concerning time complexity, HBCS has the same complexity as GreedyTimeCD and BHEFT,

having a constant running time for all ranges of budget factors for a given workflow and platform,

because it has bounded complexity. In contrast, the LOSS algorithms have a search-based step,

and their running time therefore depends on the number of iterations to find a solution, where for

lower budgets, the number of iterations is significantly greater.

In conclusion, we have presented the HBCS algorithm for budget constrained scheduling,

which has proved to achieve better performance with lower time complexity than other state-

of-the-art algorithms. The results were obtained in a simulation with a realistic model of the

computing platform and with shared links, as occurs in a common grid infrastructure.

In future work, we intend to extend the algorithm to consider the dynamic concurrent DAG

scheduling problem. This consideration will allow users to execute concurrent workflows that

might not be able to start together but that can share resources so that the total cost for the user

can be minimised.
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abstract
To execute scientific applications, described by workflows, whose tasks have different exe-

cution requirements, efficient scheduling methods are essential for task matching (machine

assignment) and scheduling (ordered for execution) on a variety of machines provided by a

heterogeneous computing system. Several algorithms for concurrent workflow scheduling

have been proposed, being most of them off-line solutions. Recent research attempted to

propose on-line strategies for concurrent workflows but only address fairness in resource

sharing among applications while minimizing the execution time. In this paper, we pro-

pose a new strategy that extends on-line methods by optimizing execution time constrained

to the user budget. Experimental results show a significant improvement of the produced

schedules when our strategy is applied.
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7.1 Introduction

With the raising in usage of high-speed internet, grid infrastructures are becoming a novel design

structure of distributed computing. The Utility Computing model to deploy those systems has

become more popular and widely used to provide a price regulated high performance computing

to the users. In the utility model, users are allowed to submit their jobs to different resources,

based on the computational cost and jobs deadline. Resources are shared so that the provider can

optimize the running costs, but the provider has also to guarantee a high Quality of Service (QoS)

by ensuring a fairness access to the shared resources to all users.

Scientific jobs are commonly represented as workflow applications that consist of many tasks,

with logical or data dependencies, that can be dispatched to different compute nodes. When

scheduling multiple independent workflows that represent user jobs and are thus submitted at

different moments in time, a dynamic behaviour is required to redistribute the workload. Most

concurrent workflow scheduling algorithms proposed are for static, or off-line, conditions such as

[ZS06, NS09, BM10a]. However, there are some proposed methods which address the problem

of scheduling on-line multiple workflows, namely OWM [HHW11], RANK_HYBD [YS08] and

FDWS [AB12a], which target is to minimize the average relative waiting time of the jobs. In

this context the common definition of makespan is extended to account for the waiting time and

execution time of a given workflow [ABS14].

In the utility model, users consume the services and resources when they need to, and pay

only for what they use. Cost and time become the two most important factors that users are con-

cerned about. Thus, the cost/time tradeoff problem for scheduling workflow applications becomes

a challenging problem. In this paper we propose a scheduling strategy that extend the former con-

current on-line scheduling algorithms by considering fairness resource sharing constrained to the

user defined budget, for each job.

The remainder of this paper is organized as follows: section II describes the scheduling system

model; section III reviews related works; section IV presents the proposed algorithm; section V

presents the experimental results and discussion; and finally, section VI concludes the paper.

7.2 Scheduling System Model

The proposed scheduling system model consists of an application model, a utility grid model,

budget model and a performance criterion for scheduling.

A typical workflow application can be represented by a Directed Acyclic Graph (DAG), a

directed graph with no cycles. In a DAG, an individual task and its dependency is represented by a

node and its edges. A dependency ensures that a child node cannot be executed before all its parent

tasks finish successfully and transfer the required child input data. The task computation time and

communication time is modelled by assigning weight to nodes and edges respectively. A DAG

can be modeled by a tuple G(V,E) where V is the set of v nodes and each node vi ∈V represents

an application task, and E is the set of communication edges between tasks. Each edge e(i, j) ∈ E



7.2 Scheduling System Model 137

represents the task-dependency constraint such that task vi should complete its execution before

task v j can be started. In a given DAG, a task with no predecessors is called an entry task and a

task with no successors is called an exit task. We assume that the DAG has exactly one entry task

nentry and one exit task nexit . If a DAG has multiple entry or exit tasks, a dummy entry or exit task

with zero weight and zero communication edges is added to the graph.

The service-oriented architecture for Utility Grids is shown in Figure 1 [YVB06]. Each user

should submit its applications with user QoS requirements into the system. Then, all information

about each application is collected into the application Data Base (DB). A utility grid model con-

sists of several Grid Service Providers (GSPs), each of which provides some services to the users.

GSPs charge different services by their QoS. Users only execute their jobs in GSPs that satisfy

their QoS requirements, and only pay for what they use. To inform and attract users, each GSP

should publish their services into Grid market directory (GMD). Ready Tasks Pool component col-

lects tasks which are ready to execute among accepted workflow applications in application DB. A

task is ready when all required information are prepared, i.e., its parents are executed. Then, Grid

scheduler enquires GMD to query about available services for each task and their QoS attributes.

Also contacts the Grid Service Information to gather detailed information of each service, espe-

cially the available time slots for processing tasks. Using these information, the Grid scheduler

executes a Task Scheduler algorithm to decide the map allocation based on user QoS parameters

for each ready task of a workflow to one of the available services. The Service Executer is used

to monitor task assignment on the service and to get notifications of successfully or failure of task

execution on GSPs resources.
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Figure 1: A General View of Grid Scheduler System

After collecting the job and platform information, the budget model is the third parameter in

our model. The available user defined budget for a workflow application must never be exceeded.

Generally, the cost model can be divided into two main categories: (1) charge computing resources

on hourly or monthly usage (time interval), and any partial hours are rounded up such as Amazon

Elastic Compute Cloud (Amazon EC2) [Ama], (2) charges based on the number of CPU cycles

required by a customer’s application such as Google AppEngine [Goo]. In this paper, we consider

the second category of pay-as-you-go pricing model.

The general objective is to minimize the completion time, also called Makespan. It is denoted

by the finish time of the last task of the scheduled workflow application. But, when schedul-
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ing various independent workflows that represent user jobs and therefore are submitted at differ-

ent moments in time, the completion time (or turnaround time) includes both the waiting time

and execution time of a given workflow, extending the makespan definition for single workflow

scheduling.

Therefore, our performance criteria to assign tasks to processors, from all workflows, considers

the minimization of the turnaround time of each workflow, subjected to the user budget limitation

imposed to each workflow.

7.3 Related Work

Generally, the related research in this field can be classified into two main categories: off-line and

on-line scheduling. In off-line scheduling, the workflows are available before the execution starts,

i.e., at compile time. After a schedule is produced and initiated, no other workflow is considered.

This method, although restricted, can be applied in many real-world applications, e.g. when a user

has a set of nodes to run a set of workflows. On-line scheduling exhibits dynamic behavior in

which users can submit the workflows whenever they need to.

There are some algorithms proposed specifically to schedule concurrent workflows to im-

prove individual QoS, namely, RANK_HYBD [YS08] and Fairness Dynamic Workflow Schedul-

ing (FDWS) [AB12a]. The first algorithm minimize the average completion time of all workflows.

In contrast, FDWS focuses on the QoS experienced by each application (or user) by minimizing

the waiting and execution times of each individual workflow. In [ABS14], it is presented a re-

view of on-line and off-line scheduling algorithms, for concurrent workflow scheduling, and a

performance comparison for on-line scheduling.

In [YS08], Yu and Shi proposed a planner-guided strategy, the RANK_HYBD algorithm to

address dynamic scheduling of workflow applications that are submitted by different users at dif-

ferent moments in time. The RANK_HYBD algorithm, collects all new arrival workflows submit-

ted by users, and ranks all tasks using the ranku priority measure [THW02], which represents the

length of the longest path from task ni to the exit node, including the computational cost of ni, and

it is expressed as follows:

ranku(ni) = wi + max
n j∈succ(ni)

{ci, j + ranku(n j)}, (1)

where succ(ni) is the set of immediate successors of task ni, ci, j is the average communication cost

of edge(i, j) and wi is the average computation cost of task ni. For the exit task ranku(nexit) = 0.

In each step, the RANK_HYBD algorithm fills the ready tasks pool by all ready tasks from each

submitted workflows and selects the next task to schedule based on their rank. If all tasks in

the ready tasks pool belong to different workflows, the algorithm selects the task with lowest

rank and if they belong to the same workflow, the task with highest rank is selected. Finally,

among of all free processor, the processor with lowest finish time for selected task is chosen. The

RANK_HYBD algorithm has some weakness points in its strategy. It allows the workflow with
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the lowest rank (lower makespan) to be scheduled first to reduce the waiting time of the workflow

in the system. However, this strategy does not achieve high fairness among the workflows because

it always gives preference to shorter workflows to finish first, postponing the longer ones.

To overcome these problems with the RANK_HYBD algorithm, the FDWS algorithm was

proposed in [AB12a]. FDWS applied new strategies for selecting the tasks from the ready tasks

pool and for assigning the processors to reduce the individual completion time of the workflows,

e.g., the turnaround time, including execution time and waiting time. The FDWS algorithm, unlike

the RANK_HYBD algorithm, adds only a single ready task with highest priority (ranku) from

each workflow to the ready pool. Therefore, instead of scheduling smaller workflows first like

RANK_HYBD, it selects and schedules tasks from the longer workflows as well and all workflows

have chance to be scheduled in each step. In the Task Selection phase, FDWS assigns a secondary

priority to each task in ready tasks pool. To be inserted into the ready tasks pool, the ranku was

computed for each workflow individually. After filling the ready tasks pool by one ready task from

each workflow, rankr is computed as the secondary priority rank for task ni belonging to DAG j,

defined by (2). Then, the task with highest rankr from the ready pool is selected.

rankr(ni, j) =
1

PRT (DAG j)
× 1

CPL(DAG j)
. (2)

The rankr metric considers the Percentage of Remaining Tasks value (PRT) of the workflow

(DAG) and its Critical Path Length (CPL). The PRT value gives more priority to workflows that

are almost completed and only have few tasks to execute. Unlike RANK_HYBD algorithm which

uses only the individual ranku for selecting tasks into ready tasks pool and for execution in each

round, in FDWS, the workflow history in the workflow application DB pool is considered to make

a scheduling decision.

An alternative strategy is the resource reservation policy, where a static scheduling decision

based on resource availability is made when an application workflow is submitted into the system.

But this strategy lead us to unfair scheduling because if a workflow application with higher number

of tasks and execution time is submitted, it may reserve most of the resources and make higher

waiting time for next applications.

But none of these approaches, consider cost as a QoS parameter in their scheduling strategies.

In this paper, we propose a strategy for on-line scheduling of concurrent workflows with budget

constraints defined by users for each workflow, as described in the next section. We apply our

strategy to RANK_HYBD and FDWS in order to consider the budget constraint.

7.4 The Proposed Strategy

In our model the user specifies the budget constraint by selecting a budget value in the interval

limited by the cheapest and highest costs. For the job j the budget is specified as expressed by
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equation 3:

BUDGET ( j) = Costlowest( j)+ kBudget( j)×(
Costhighest( j)−Costlowest( j)

) (3)

where Costhighest( j) and Costlowest( j) are the total cost of the assignment produced by the high-

est and cheapest scheduling, that is obtained by selecting the most expensive and most cheapest

processors to execute each task of workflow j. Therefore, for each workflow, it is presented to

the user the budget range that is possible to achieve in the selected platform and he/she selects a

budget inside that range, that is represented by kBudget . This budget definition was first introduced

in [SZTD07].

The workflow management system represented in Figure 1 gathers applications information

submitted by users, scheduling and runtime monitoring. Next we describe how tasks are selected

to the Ready Task Pool and the scheduling strategy.

7.4.1 Ready Tasks Pool

There is a ready tasks pool which is filled by the ready tasks belonging to each submitted and

unfinished workflow at each scheduling round. In general, two methods are used to fill the ready

tasks pool, first, like FDWS algorithm, gather only a single ready task with highest priority (ranku)

from each workflow, or insert all ready tasks belonging to each unfinished workflow application

into ready tasks pool such as RANK_HYBD. But the important key is how to order these ready

tasks, i.e., how to assign priority to each ready task based on our QoS parameters to have higher

quality solutions and system performance. For selecting a task from ready tasks pool to be sched-

ule on resources, we defined a new strategy to assign a secondary priority to each task of the

ready tasks pool. Because our goal is to execute applications in the lowest turnaround time with

its limited budget, the cost factor should be taken into account. To achieve this purpose, for each

workflow j, we define the Task Proportion (T Pj), equation 4, which is the ratio of unscheduled

number of tasks to the total number of tasks in the workflow (DAG), and Budget Proportion (BPj),

equation 5, which is the ratio of the Remaining Cheapest Budget (RCB j) to the Remain Budget

(RB j). RCB j is the remaining lowestCost for unscheduled tasks and RB j is the actual remaining

budget.

T Pj =
unscheduled number of tasks

Total number of tasks
(4)

BPj =
RCB j

RB j
(5)

RCB j is updated in each step after making the processor selection for the selected task belong-

ing to workflow(j) by using equation 6.

RCB j = RCB j− lowestCost(Tsel) (6)
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where lowestCost(Tsel) is the lowest cost for current task (selected task for scheduling). The initial

value for Remaining Cheapest Budget is RCB j = lowestCost where lowestCost is the total cost of the

assignment for workflow j produced by the cheapest scheduling. In addition, the initial value for

Remain Budget is RB j = BUDGETj where BUDGET is user defined budget for application work-

flow, and it will be updated, by equation 14, after the processor selection phase for the selected

task.

RB j = RB j−Cost(Tsel,Psel) (7)

where Psel is the processor selected to run the current task (Tsel), and Cost(Tsel,Psel) is the cost of

running task Tsel on processor Psel .

To assign the secondary priority to each task in ready tasks pool, we propose rankB for each

task ti in the pool, that belongs to workflow j, defined by equation 8. The task with highest rankB

is selected to be schedule.

rankB(ti, j) =
1

T Pj
× 1

BPj
(8)

The rankB value is the product of two factors: a) the first one is the inverse of the fraction of the

workflow j that is remaining in the system; and b) the ratio of the budget value over the remaining

cheapest budget. This priority factor gives higher priority to the workflows that have a lower

percentage of tasks unscheduled and to workflows that have higher budgets when compared to the

cheapest budget for the DAG. The rational for the first factor is to give higher priority to workflows

that where submitted earlier, so that a longer workflow with several tasks already executed may

have priority over a short and recent workflow. And the rational of the budget factor is that the

scheduler will consider first tasks that can spend more budget and therefore they will select more

expensive and faster processors, resulting in a lower turnaround time for the workflow.

7.4.2 Task scheduler

The Task scheduler is another important key in workflow management system which has responsi-

bility for selecting affordable resource for the current selected task. In this part, we propose a new

strategy for processor selection phase based on QoS requirements. The processor to be selected to

execute the current task is guided by the following strategy related to cost. To achieve minimum

execution time under limited budget, first, the task with highest rankB is selected from ready tasks

pool, then the finish time of selected task (tsel) is computed for all processors (FT (tsel, pi)) and

these values are one of the factors for processor selection. The variables FTmin(tsel) and FTmax(tsel)

are defined as lowest and highest finish time for selected task, respectively. The other factor is the

cost of executing the task on each processor Cost(tsel, pi).

The new processor selection strategy is based on the combination of the two factors, time and

cost, and therefore two relative quantities are defined, namely, Time quota (Timeq) and Cost quota

(Costq) for selected task (tsel) on each processor pi ∈ P, shown in equations 9 and 10, respectively.

Timeq(tsel, pi) =
FTmax(tsel)−FT (tsel, pi)

FTmax(tsel)−FTmin(tsel)
(9)
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Costq(tsel, pi) =
Costbest(tsel)−Cost(tsel, pi)

Costhighest(tsel)−Costlowest(tsel)
(10)

where Costbest(tsel) is the cost of selected task on the processor with lowest finish time (processor

with FTmin(tsel)). Timeq shows how far is the finish time of selected task on processor pi, from the

worst finish time (FTmax(tsel)). Similarly, Costq shows how far the actual cost, on pi, is from the

best cost (Costbest(tsel)). Both variables are normalized with their highest range.

In addition to these variables that give time and cost relative processor performance, there

is a limitation on cost consumption. This constraint is represented by the spare budget, that is

defined by the difference between the remaining budget available (RB) and the remaining cheapest

assignment (RCB). Once RCB includes the minimum cost of tsel , this quantity is added to the spare

budget available, as expressed by equation 11.

Costlim(tsel) =Costlowest(tsel)+(RB j−RCB j) (11)

The Budget Proportion (BP), defined by equation 5, is the ratio between RCB and RB, and

gives a measure of how far the cheapest assignment is from the remaining budget available. If BP

is near to one, it means that the available budget only allows to select the cheapest assignment. In

addition, the Costlim controls the processor decision to avoid cost consumption higher than user

defined budget.

Finally, to select the processor for current task tsel belonging to workflow j, it is computed the

Quality value (Q) for each available and free processor pi ∈ P as shown in equation 12.

Q(tsel, pi)
pi∈P



−∞ if Cost(tsel, pi)

>Costbest(tsel)

−∞ if Cost(tsel, pi)

>Costlim(tsel)

Timeq(tsel, pi)+ otherwise

BPj×Costq(tsel, pi)

(12)

The first two statements guaranty that if the cost of task tsel on processor pi is higher than

the cost on the processor that gives the minimum FT, and if that cost is higher than the available

budget for task tsel , then processor pi cannot be selected. Otherwise, the processor is evaluated

considering the time and cost quantities. The processor with higher Quality value is selected.

Algorithm 1 shows the general algorithm used to implement the algorithm versions shown in

table 11. The characteristics that differentiate each version are the strategy to select ready tasks

from each workflow, the priority assigned to each ready task in the task pool and, the processor

selection policy. These policies are parameters of the general algorithm.
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Algorithm 1 The General Budget Constrained Scheduling Strategies for On-Line Workflow Ap-
plications
Require: Input Strategies

1- A filling strategy to add ready tasks from each workflow into Ready Tasks pool
2- A priority strategy for assigning a rank to each task into Ready Tasks pool
3- A processor selection strategy

while Application DB 6= φ do
- Fill Ready Tasks pool based on the input filling strategy
for all ti ∈ Ready Tasks pool do

- Assign a rank value for ti according to the input priority strategy for ready tasks
end for
while Ready Tasks 6= φ do

- Select task Tsel with highest priority from Ready Tasks pool
- Select best suitable processor based on the input processor selection strategy
- Assign Task Tsel to selected Processor
- Update the Remain Budget (RB) and the Remain Cheapest Budget (RCB) as defined in
Eq.14 and Eq.6
- Remove Task Tsel from Ready Tasks pool

end while
end while

Algorithm Strategies

Name Filling Ready Pool Selecting task to schedule Processor Selection

B-RANK_HYBD1 for each
work f low Insert
all ready tasks

if all ti ∈ ready pool belong to
same work f olow then select
ti with highest ranku, else
select ti with lowest ranku

select p j ∈ P with lowest FT (ti, p j)
where cost(ti, p j)≤Costlim(ti)

B-RANK_HYBD2
select p j ∈ P with Highest Q(ti, p j)
value (Eq.12)

B-FDWS1

for each
work f low Insert
Single ready task
with highest ranku

select ti ∈ ready pool with
highest rankr (Eq.2)

select p j ∈ P with lowest FT (ti, p j)
where cost(ti, p j)≤Costlim(ti)

B-FDWS2
select p j ∈ P with Highest Q(ti, p j)
value (Eq.12)

B-FDWS3 select ti ∈ ready pool with
highest rankB (Eq.8)

select p j ∈ P with lowest FT (ti, p j)
where cost(ti, p j)≤Costlim(ti)

B-FDWS4
select p j ∈ P with Highest Q(ti, p j)
value (Eq.12)

Table 11: Description of the modified algorithms for on-line budget constrained scheduling

7.5 Experimental Results and Discussion

This section presents performance results obtained with the new strategies applied to two schedul-

ing algorithms. We implemented modified versions of RANK_HYBD [YS08] and FDWS

[AB12a], called Budget RANK_HYBD (B-RANK_HYBD) and Budget FDWS (B-FDWS) to

consider budget limitation imposed by users. In the processor selection phase of these two al-

gorithms, cost is not taken into account and there is a possibility to have higher cost than the

limited budget defined by the user. So, in modified version, instead of considering all processors

to compute the finish time of current task, processors are filtered based on the cost limitation value
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defined by Equation 11 and we select the processor that allows the lowest finish time among all af-

fordable processors. To evaluate the influence of the new strategy proposed in this study, rankB for

selecting tasks and quality measure value (Q) for selecting processors, we consider several version

of the scheduling algorithms as described in Table(11). For all algorithms, we select processors

that are free on current time (no reservation policy).

This section is divided into four parts, namely, workflow structure description, the environ-

ment scheduling system and hardware parameters, the performance metric, and finally results and

discussion are presented.

7.5.1 Workflow structure

To evaluate the relative performance of the algorithms, a model of execution time of the tasks on

resources is needed. We use the method described in [ASMH00] to model the application ex-

ecution times for our simulation. The model consists of an Expected Time to Compute (ETC)

matrix, that contains the estimation execution times of each task on all resources. The parameters

of this model can be changed to investigate the performance of algorithms under different hetero-

geneous computing systems and under different types of tasks. The ETC model is based on three

parameters: machine heterogeneity, task heterogeneity and consistency, which allow us to sim-

ulate various possible heterogeneous scheduling problems as realistically as possible [BSB+01].

The task heterogeneity is defined as the variety among the execution times of the tasks and, Ma-

chine heterogeneity, on the other hand, represents the possible variation of the running time of a

particular task across all the processors.

Based on the two first parameters, four categories can be proposed for ETC matrix:

1. Machineheterogeneity = High, Taskheterogeneity = High

2. Machineheterogeneity = High, Taskheterogeneity = Low

3. Machineheterogeneity = Low, Taskheterogeneity = High

4. Machineheterogeneity = Low, Taskheterogeneity = Low

In our simulation we consider two values 0.2 and 0.8 as low and high heterogeneity values.

The ETC matrix can be further classified into two categories, consistent and inconsistent. In

the consistent model, if for a task ti a processor p j has shorter execution time than processor

pk, them the same is true for any other task. In inconsistent model a processor p j may execute

some jobs faster than pk and be slower for some other jobs. The consistent model can be seen as

modelling a heterogeneous system in which the processors differ only in their processing speed

and, a inconsistent model may represent a network in which there are different types of machines

architectures. In this paper we consider the consistent model.

In order to generate dynamic and concurrent workflows scheduling, we consider 100 workflow

applications, in each scenario, that arrive with time intervals that range from 10% to 90% of

completed tasks, i.e., a new workflow is inserted when the corresponding percentage of tasks from
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the last workflow currently in the system is completed. Each workflow application consists of a

number of tasks between 10 and 100 tasks. For each workflow, we generate random values for

kBudget in the range (0 . . .1).

7.5.2 Simulation platform

We resort to simulation to evaluate the algorithms from the previous section. It allows us to

perform a statistically significant number of experiments for a wide range of application config-

urations (in a reasonable amount of time). We use the SimGrid toolkit 1 [CLQ08] as the basis

for our simulator. SimGrid provides the required fundamental abstractions for the discrete-event

simulation of parallel applications in distributed environments. It was specifically designed for the

evaluation of scheduling algorithms. Relying on a well-established simulation toolkit allows us to

leverage sound models of a heterogeneous computing systems, such as the Grid platform consid-

ered in this work. The network model provided by SimGrid corresponds to a theoretical bounded

multi-port model. In this model, a processor can communicate with several other processors si-

multaneously, but each communication flow is limited by the bandwidth of the traversed route and

communications using a common network link have to share bandwidth. In this experiments, we

connected all processor over one shared bandwidth.

We consider platforms with 8 and 32 processors as a low and high number of processors,

compared to the number of workflows, to analyze the behaviour of the algorithms with respect to

the system load. The maximum load configuration is observed for 8 processors and 100 workflows.

7.5.3 Performance metric

The metric to evaluate a dynamic scheduler of independent workflows, must represent the individ-

ual completion time in order to measure the QoS experienced by the users related to the finish time

of each user application. A global measure for the set of workflows would hide relevant delays on

shorter workflows.

To evaluate the algorithms we consider the relative improvement on Turnaround Time

(TurnaroundTimeimp) achieved with our strategy, for a given workflow, when compared to the

maximum Turnaround Time achieved for that workflow among all strategies. The Turnaround

time is the difference between submission and final completion of an application. The

(TurnaroundTimeimp) is obtained by the ratio of the difference of turnaround time for a given

workflow G and an algorithm algi, and the maximum turnaround time among all algorithms, as

shown by equation 13.

TurnaroundTimeimp(algi) =
maxalgk∈algset{T TG(algk)}−T TG(algi)

maxalgk∈algset{T TG(algk)}
, (13)

where algset is the set of algorithms under comparison and algi ∈ algset . This metric for an al-

gorithm algi gives the improvement achieved by each algorithm in comparison to the maximum

1http://simgrid.gforge.inria.fr
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Turnaround Time obtained for a given workflow G. The algorithm that generates more relative

improvements is the best algorithm.

7.5.4 Results and discussion

In this section, we compare the modified versions B-FDWS and B-RANK_HYBD in terms of

TurnaroundTimeimp value. We present results for 1000 instance of the scenario with a set of

100 DAGs that arrive with time intervals that range from 10% to 90% of completed tasks, i.e., a

new DAG is inserted when the corresponding percentage of tasks from the last DAG currently in

the system is completed. In addition we generate 4 different types based on task heterogeneity

and machine heterogeneity. In total we tested 4000 instances. Also we consider two different

level of processors (low and high) compared to the number of DAGs, to analyse the behaviour

of the algorithms with respect to different system load. We consider 2 sets of processors with 8

and 32 where the maximum load configuration is observed for eight processors. Based on our

observations, task heterogeneity does not have a significant effect on results, therefore we do not

categorize results based on this parameter.

Results are presented attending to the three strategies referred to in Table 11, namely, Ready

Pool Filling strategy, Task Selection strategy and Processor Selection strategy. Figure 2 shows the

Turnaround Time percentage improvement achieved for the 6 algorithm’s versions.

For low number of CPUs, as we can see in Fig 2(a) and Fig 2(b), the filling policy for adding

ready tasks from workflow applications into ready tasks pool, is the strategy that differentiates the

two algorithms RANK_HYBD and FDWS. The FDWS filling strategy, which selects a single task

from each workflow, leads to higher fairness in scheduling and avoids the postponing of larger

workflows as happens with RANK_HYBD, contributing to a better relative turnaround time. The

improvements are more significant when we have higher concurrency in the system, i.e. low

arrival time, starting on 67% improvement for arrival time interval of 10%, and 30% improvement

for arrival time interval of 90%.

As we move to higher arrival time intervals, when comparing the algorithms versions that use

the quality measure Q, with the ones that do not use it, we conclude that Q improves the algorithms

performance. For instance, B-RANK_HYBD2 has 46% improvment over B-RANK_HYBD1, as

well as 27% improvement for B-FDWS2 over B-FDWS1 and 28% for B-FDWS4 over B-FDWS3.

For higher arrival time intervals, which means lower concurrency, using the quality measure Q

achieves higher turnaround time percentage improvement on platforms with larger values of ma-

chine heterogeneity. We obtained improvements of 58%, 36% and 39% of turnaround time, with

arrival time of 90% for B-RANK_HYBD2, B-FDWS2 and B-FDWS4 over B-RANK_HYBD1,

B-FDWS1 and B-FDWS3, respectively.

On the other hand, for higher number of CPUs, in addition to filling ready task policy, two other

strategies, rankB and quality measure Q, proposed here, have higher influence in the improvements

obtained with both algorithms. Fig. 2(c) and Fig. 2(d) show that, besides the filling ready task

policy used by FDWS which improves algorithm performance over RANK_HYBD, quality mea-

sure Q always improves the algorithm’s performance. The improvements of B-RANK_HYBD2,
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Figure 2: Turnaround Time improvement values for 8 and 32 processors and, for low and high
machine heterogeneity

FDWS2 and FDWS4 over B-RANK_HYBD1, FDWS1 and FDWS3, respectively, start at 55% for

arrival time interval of 10% and increase to 240% for arrival time interval of 90%.

Comparing results of FDWS1 to FDWS3 or FDWS2 to FDWS4, we can conclude that rankB,

as the policy for selecting the task from ready tasks pool to be schedule, improves slightly the

algorithm performances, in comparison to rankr. The highest improvement observed is 9%.

7.6 Conclusion

In this paper we present a new strategy for dynamic scheduling of concurrent workflows with two

conflicting QoS requirements. To the best of our knowledge, there is no previous research that

deal with multiple workflow scheduling that are submitted at different moments in time and that

are based on the two conflicting QoS parameters, namely, time optimization and cost constraint at

the same time. We propose a new priority rank, called, rankB for task selection and a quality value

Q for the processor selection phase on the workflow management system.

The new strategies allowed to obtain better performances in almost all presented cases. For

some other configurations, such as lowest processor number (1/8 of the number of concurrent

DAGs) and lower arrival time, the most significant factor is the filling of the ready pool. For the

other configurations the most influence factor to improve performance is the usage of the qual-

ity factor Q proposed in this paper. Additionally, we apply this strategy to two state of the art
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algorithms in order to consider the budget constraint, namely, FDWS and RANK_HYBD algo-

rithms. In the future work, we intend to add a deadline constraint as another QoS parameter into

our strategies.
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abstract
The execution of scientific applications, under the utility computing model, is constrained

to Quality of Service (QoS) parameters. Commonly, applications have time and cost con-

straints such that all tasks of an application need to be finished within a user-specified

Deadline and Budget. Several algorithms have been proposed for multiple QoS work-

flow scheduling, but most of them use search-based strategies that generally have a high

time complexity, making them less useful in realistic scenarios. In this paper, we present a

heuristic scheduling algorithm with quadratic time complexity that considers two important

constraints for QoS-based workflow scheduling, time and cost, named Deadline-Budget

Constrained Scheduling (DBCS). From the deadline and budget defined by the user, the

DBCS algorithm finds a feasible solution that accomplishes both constraints with a success

rate similar to other state-of-the-art search-based algorithms in terms of the successful rate

of feasible solutions, consuming in the worst case only approximately 4% of the time. The

DBCS algorithm has a low-time complexity of O(n2.p) for n tasks and p processors.
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resources

8.1 Introduction

Utility computing is a service provisioning model that provides computing resources and infras-

tructure management to consumers as they need them, as well as a payment model that charges

for usage. Service-oriented grid and cloud computing, which supply frameworks that allow users

to consume utility services in a secure, shared, scalable, and standard network environment, have

become the basis for providing these services.

Computational grids have been used by researchers from various areas of science to execute

complex scientific applications. Utility computing has been rapidly moving towards a pay-as-you-

go model, in which computational resources or services have different prices with different per-

formance and Quality of Service (QoS) levels [BVB08]. In this computing model, users consume

services and resources when they need them and pay only for what they use. In this context, cost

and time become two of the most relevant user concerns. Thus, the cost/time trade-off problem

for scheduling workflow applications has become challenging. Scheduling consists of defining an

assignment and mapping of the workflow tasks onto resources. In general, the scheduling problem

belongs to a class of problems known as NP-complete [CB76].

Most research on workflow QoS aware scheduling considers the optimization of one QoS

parameter, such as time, constrained to another QoS parameter, such as cost [AB14a, ZS13]. Other

approaches consider a bi-objective approach that consists in optimizing two QoS parameters, such

as time and cost simultaneously [PW10, SKD07, SLH+13], the constraints being mainly related

to processor availability and load. Other combination of QoS parameters may be considered, such

as time and reliability [DÖ05].

Workflow scheduling to satisfy multiple QoS parameters is becoming an active research area

in the context of utility computing. Many algorithms have been proposed for multi-objective

scheduling, but in most of them, meta-heuristic methods or search-based strategies have been

used to achieve good solutions. However, these methods based on meta-heuristics or search-based

strategies usually need significantly high planning costs in terms of the time consumed to produce

good results, which makes them less useful in real platforms that need to obtain map decisions

on the fly. In this paper, a low-time complexity heuristic, named Deadline-Budget Constrained

Scheduling (DBCS), is proposed to schedule workflow applications on computational heteroge-

neous infrastructures constrained to two QoS parameters. In our model, the QoS parameters are

time and cost. The objective of the proposed DBCS algorithm is to find a feasible schedule map

that satisfies the user defined deadline and budget constraint values. To fulfill this objective, DBCS

implements a mechanism to control the time and cost consumption by each task when producing

a schedule solution. To the best of our knowledge, the algorithm proposed here is the first low-

time complexity heuristic for a bounded number of heterogeneous resources addressing two QoS

parameters that obtains similar performances to higher-time complexity scheduling algorithms in

a small fraction of the scheduling time.

The contributions of this paper are:

• a review of multiple QoS parameter workflow scheduling on heterogeneous resources;
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• a new heuristic algorithm with quadratic complexity for workflow application scheduling,

constrained to time and cost, on a bounded set of heterogeneous resources;

• similar performances of search-based state-of-the-art algorithms in a small fraction of the

time that ranges from 0.004% to 4%;

• a realistic simulation considering a bounded multi-port model in which bandwidth is shared

by concurrent communications;

• extensive evaluation with results for randomly generated graphs as well as for real-world

applications.

The remainder of the paper is organized as follows. Section 2 describes related work. Section

3 defines the scheduling problem and describes the system model. Section 4 presents the proposed

scheduling algorithm. Section 5 presents results, and Section 6 concludes the paper.

8.2 Related Work

Workflow scheduling has been extensively investigated. The scheduling strategies can be classified

into two main categories: single and multiple QoS parameters.

On the single QoS parameter, the execution time of a workflow application, also called

makespan, has been the major concern in most of the scheduling strategies. In [AB14c, CJSZ08],

a wide study on list scheduling algorithms is presented for makespan optimization.

The problem becomes more challenging when two or more QoS parameters are considered

in the scheduling problem. Time, cost, energy and reliability are common QoS parameters con-

sidered in recent research work in this area. Many algorithms consider time and cost in their

formulation but most of them perform: a) optimization of one parameter constrained to the other;

b) optimization of both parameters in a bi-objective formulation; and c) a consideration of an un-

limited number of resources, in particular for cloud platforms, where the strategy to accomplish

time constraints is by allocating new computational instances.

Concerning the optimization of one parameter constrained to the other, Mao et al. [MH11] pro-

posed an auto-scaling mechanism that automatically scales computing instances based on work-

load information to minimize the cost of the scheduling map while meeting application deadlines

on cloud environments. Zeng et al. [ZVL12] proposed ScaleStar, a budget-conscious schedul-

ing algorithm to minimize the execution time of large-scale many-task workflows in Clouds with

monetary costs. Yu et al. [YBT+05b] proposed a QoS-based workflow scheduling algorithm uti-

lizing a Markov Decision Process approach for the service Grid that minimizes the total cost of the

application while meeting the deadline constraints imposed by the user. Their algorithm first cate-

gorizes tasks into two classes: synchronization tasks (the nodes that have more than one parent or

child) and simple tasks. Then, the original workflow is partitioned into sub-workflows, and based

on the two classes of tasks, sub-deadlines are assigned to each partition. Finally, the cost opti-

mized mapping for each partition is obtained, guaranteeing the application deadline. In [YLW07],
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Yuan et al.proposed a time-cost tradeoff dynamic heuristic scheduling strategy to optimize the cost

and time of the whole workflow. In addition, [YLWZ09] presented a heuristic scheduling algo-

rithm called DET (Deadline Early Tree), which minimizes cost with a deadline constraint. The

communication time between tasks is not considered in their model. Sakellariou et al. [SZTD07]

presented the LOSS1 algorithm to construct schedules that optimize time constrained to a cost.

The algorithm uses initial assignments made by other heuristic algorithms to meet the time op-

timization objective; then, a reassignment strategy is implemented to reduce cost and meet the

cost constraint that is specified by the user budget. Zheng et al., in [ZS12] and [ZS13], proposed

the algorithm Budget-constrained Heterogeneous Earliest Finish Time (BHEFT), which optimizes

the execution time of a workflow application constrained to a budget. Arabnejad et at.[AB14a]

proposed a Heterogeneous Budget Constrained Scheduling (HBCS) algorithm that guarantees an

execution cost within the user’s specified budget and that minimizes the application execution

time similarly to BHEFT. The results presented show that the HBCS algorithm achieves lower

makespans, with a guaranteed cost per application. The algorithm proposed in this paper ex-

tends the HBCS algorithm to consider deadline (time) and budget (cost) as constraints. Similar to

HBCS, in this paper, we propose a quality measure for each processor that combines time and cost

constraints, which is used for processor selection and may not necessarily select the processor that

guarantees the earliest finish time. BHEFT uses a different formulation that, in two steps, selects

the set of affordable processors, the cost factor, and then selects the processor that minimizes the

processing time. LOSS1 and BHEFT are also selected for comparison to the algorithm proposed

in this paper, DBCS, as an alternative approach that optimizes time constrained to a budget.

The following algorithms use a bi-objective formulation. Talukder et al. [TKB09] proposed

a workflow execution planning approach using Multi-objective Differential Evolution (MODE) to

satisfy the user time and cost constraint parameters. Chen et al. [CZ09] proposed an ant colony

optimization (ACO) to schedule large-scale workflows with various QoS parameters such as reli-

ability, time, and cost in computational grids. Garg et al. [GS11] proposed a multi-objective non-

dominated sort particle swarm optimization (NSPSO) approach to find schedule maps minimizing

the makespan and total cost under the specified deadline and budget constraints. In [YB06b], Yu et

al. proposed a genetic algorithm (GA) approach for scheduling workflow applications constrained

to budget and deadline, on heterogeneous environments. Two fitness functions are used to en-

courage the formation of individuals who satisfy the deadline and budget constraints. Prodan et

al. [PW10] proposed a general bi-criteria scheduling heuristic called the Dynamic Constraint Al-

gorithm (DCA) based on dynamic programming to optimize two independent generic criteria for

workflows, e.g., execution time and cost. The DCA scheduling algorithm has two main phases:

The first selects one criterion as primary and optimizes it and, in the second phase, optimizes

the secondary criteria while keeping the primary criteria within a defined sliding constraint. GA

and DCA are considered in this paper for comparison to the DBCS algorithm as state-of-the-art

search-based algorithms with higher-time complexity. In particular, DCA performs a full domain

search in the second phase of the algorithm.

Other algorithms were proposed considering the cloud on-demand resource allocation. In
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[ANE13], two scheduling algorithms for cost minimization constrained to a deadline for IaaS

Cloud environments were proposed. Due to on-demand resource provisioning, the time constraint

can always be accomplished as long as the cloud provides an unlimited number of computational

resources. This model corresponds to an unbounded set of resources, which differs from our

context that considers a bounded set of processors.

Other approaches, such as Malawski et. al [MJDN15], proposed three scheduling algorithms

for scientific workflow ensembles on clouds to complete workflows from an ensemble under bud-

get and deadline constraints. Our problem differs from such a model because we did not consider

the composition of several inter-related workflows grouped into ensembles. A comprehensive

survey about grid and cloud workflow scheduling is presented in [WWT15].

Among all of these previous works, we select a few that are closer to our context. Most of the

works consider a scheduling decision to optimize for some QoS parameter while being subjected to

some user-specified constraint or optimize all of the QoS parameters to provide a suitable balance

between them. In this study, our goal is not the optimization of QoS parameters; instead, we

consider budget and deadline constraints rather than cost and time optimization as goals similarly

to [YB06b].

In terms of time complexity, most of the scheduling strategies mentioned above are search

based and usually require long execution time before producing good results, making them less

useful in a realistic computational infrastructure.

In this paper, our goal is to propose a novel low-time complexity workflow scheduling al-

gorithm that addresses the budget and deadline constraints. To evaluate the performance of our

scheduling strategy, we select four well-known algorithms, namely, DCA [PW10], Genetic Algo-

rithm (GA) [YB06b], LOSS1 [SZTD07] and BHEFT [ZS12, ZS13]. The DCA and GA schedul-

ing algorithms are search-based methods that obtain near-optimal schedule maps among the set of

solutions. The LOSS1 algorithm tries to accomplish the objective function by using a task reas-

signment (rescheduling) strategy. The BHEFT is a low-time complexity scheduling strategy that

minimizes time constrained to a budget, but it is included here as a low-time complexity alterna-

tive. In addition to these algorithms, we include a RANDOM strategy for task assignment, i.e., the

scheduler randomly selects a resource without taking into account the execution time. This is the

lower-time complexity algorithm, and it is also the base line for comparison.

8.3 Problem Definition

This section presents the system model, the application model and the scheduling objectives.

8.3.1 System Model

The target utility computing platform is composed of a set of heterogeneous resources that provide

services of different capabilities and costs [BVB08]. Processor price is defined so that the most

powerful processor has the highest cost and the less powerful processor has the lowest cost. In

a utility grid, the resource price is commonly defined and charged per time unit [PW10, YB06b,
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ZS12], so that if a task takes k time units to process in a resource that costs y euros per time

unit, the cost of executing the task in that resource is k× y euros. In a cloud environment, the

granularity of charging resource usage varies, charging per hour being a common practice, such

as in Amazon Elastic Compute Cloud (Amazon EC2) 1, and partial hours are rounded up. This

approach has the disadvantage that there is no cost benefit of adding resources for workflows that

run for less than an hour [JDB+12]. It also makes the effective evaluation of scheduling algorithms

and solutions difficult. Therefore, in this paper, we consider that a heterogeneous resource has a

set of processors available and that each one has a price per time unit, so that the cost imputed

to the workflow execution is only the effective used time. Although this assumption may seem

unrealistic for the hour pricing model, it is only true if we consider the current dominant policy

and individual user contracts with the provider. However, other models may be explored such as,

for example, a group of users that rent a set of resources so that resources are shared and probably

cost less than individual contracts. This is a feasible approach for a research group. Other players

are more flexible and charge per minute, with a minimum of 10 minutes, such as the Google

Compute Engine 2. Additionally, there is an emergent market of cloud providers that put in the

market the spare resources of their private clouds, so that a wider set of pricing models may be

available in the near future. Therefore, for the sake of an unambiguous comparison of the results

produced by the scheduling algorithms, as in [PW10, YB06b, ZS12], we consider the second as

the time unit, as well as the unit for processor charging.

8.3.2 Application Model

A typical workflow application can be represented by a Directed Acyclic Graph (DAG), a directed

graph with no cycles. A DAG can be modeled by a three-tuple G =< T,E,Data >. Let n be the

number of tasks in the workflow. The set of nodes T = {t1, t2, · · · , tn} corresponds to the tasks

of the workflow. The set of edges E represent their data dependencies. A dependency ensures

that a child node cannot be executed before all its parent tasks finish successfully and transfer

the required child input data. Data is a n× n matrix of communication data, where datai, j is the

amount of data that must be transferred from task ti to task t j. The average communication time

between the tasks ti and t j is defined as:

C(ti→t j) = L+
datai, j

B
(1)

where B is the average bandwidth among all processor pairs and L is the average latency. This

simplification is commonly considered to label the edges of the graph to allow for the computation

of a priority rank before assigning tasks to processors [THW02].

Due to heterogeneity, each task may have a different execution time on each processor. Then,

ET (ti, p j) represents the Execution Time to complete task ti on processor p j in available processors

1http://aws.amazon. com/ec2
2http://cloud.google.com/compute/
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set P. The average execution time of task ti is defined as:

ET (ti) =

∑
p j∈P

ET (ti, p j)

|P| (2)

where |P| denotes the number of resources in processor set P.

In a given DAG, a task with no predecessors is called an entry task and a task with no succes-

sors is called an exit task. We assume that the DAG has exactly one entry task tentry and one exit

task texit . If a DAG has multiple entry or exit tasks, a dummy entry or exit task with zero weight

and zero communication edges is added to the graph.

In addition to these definitions, we next present some of the common attributes used in task

scheduling, which will be used in the following sections.

pred(ti) and succ(ti) denote the set of immediate predecessors and immediate successors of

task ti, respectively. FT (ti) is defined as the Finish Time of task ti on the processor assigned by

the scheduling algorithm.

Schedule length or makespan denotes the finish time of the last task of the workflow and is

defined as makespan = FT (texit).

EST (ti, p j) and EFT (ti, p j): denotes Earliest Start Time (EST) and the Earliest Finish Time

(EFT) of a task ti on processor p j, respectively, and are defined as:

EST (ti, p j) = max
{

TAvailable(p j), max
tparent∈pred(ti)

{AFT (tparent)+C(tparent→ti)}
}

(3)

EFT (ti, p j) = EST (ti, p j)+ET (ti, p j) (4)

where TAvailable(p j) is the earliest time at which processor p j is ready. The inner max block

in the EST equation is the time at which all data needed by ti arrive at the processor p j. The

communication time C(tparent→ti) is zero if the predecessor node tparent is assigned to processor p j.

For the entry task, EST (tentry, p j) = 0. Then, to calculate EFT , the execution time of task ti on

processor p j (ET ) is added to its Earliest Start Time.

The financial cost Cost(ti, p j) of executing task ti on specific processor p j during the time span

of ET (ti, p j) is the sum of three cost components:

Cost(ti, p j) = EC(ti, p j)+TC(ti)+SC(ti) (5)

where EC(ti, p j) denotes the cost of running task ti on processor p j and is defined as EC(ti, p j) =

ET (ti, p j)×Price(p j) where Price(p j) denotes the processor price per time unit. TC(ti) denotes

the cost of transferring the data required for task ti. In addition, SC(ti) denotes the data storage

cost of task ti. These cost components are determined by the target platform infrastructure.
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TotalCost is the overall cost for executing an application and is defined as:

TotalCost = ∑
ti∈T

AC(ti) (6)

where AC(ti) is defined as Assigned Cost of task ti. After assigning a processor psel to execute

task ti, the assigned cost value is equal to AC(ti) =Cost(ti, psel). In the case of an intra-cluster data

transfer, zero monetary costs for communications between tasks are considered, i.e TC(ti) = 0.

We also considered zero cost for task storage usage, SC(ti) = 0, as this factor is common to all

algorithms and does not influence the comparison of results.

8.3.3 Scheduling problem

For a given workflow G, a scheduling is defined by a function schedG : T → P which assigns to

each task ti ∈ T a processor p j ∈ P, subject to:

• Processor constraint so that no processor executes more than one task at the same time;

• Precedence constraint represented by the edges of the workflow G;

• Budget constraint defined as:

∑
ti∈T

AC(ti)≤ BUDGET (7)

• Deadline constraint defined as:

MakespanG ≤ DEADLINE (8)

The scheduling consists in finding a schedule map between tasks and resources that can meet

user-defined QoS constraints, i.e., the total execution time of the workflow must not be larger

than the user defined deadline, and the total cost must not be larger than the user defined budget.

These values of DEADLINE and BUDGET should be negotiated between users and providers

in a range of feasibility values so that there are feasible scheduling solutions. Note that there

is no optimization function in the formulation, so that any scheduling solution that matches the

constraints is a plausible solution.

8.4 Proposed Deadline-Budget Constrained Scheduling Algorithm

In this section, we present the Deadline-Budget Constrained Scheduling algorithm (DBCS), which

aims to find a feasible schedule within a budget and deadline constraints. The DBCS algorithm

is a heuristic strategy that in a single step obtains a schedule that always accomplishes the budget

constraint and that may or may not accomplish the deadline constraint. If the time constraint is

met, we have a successful schedule; otherwise, we have a failure, and no schedule is produced. The
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algorithm is evaluated based on the success rate. Before the description of the DBCS algorithm,

we next present the attributes used in the algorithm:

• tcurr denotes the current task to be scheduled, selected on the task selection phase among all

ready tasks;

• FTmin(tcurr) and FTmax(tcurr) denote the minimum and maximum finish time of current tasks

among all available processors. Idle slots in the processor schedule, which can accommo-

date the current task, are also considered;

• Costmin(tcurr) and Costmax(tcurr) denote the minimum and maximum execution cost of the

current task among all available processors on the target platform;

• Costbest(tcurr) is the execution cost of the current task on the processor that obtains the lowest

finish time among all available processors;

• ∆Cost represents the spare budget defined as the difference between unconsumed budget and

cheapest cost assignment for unscheduled tasks. The initial value is ∆Cost = BUDGETuser−
Costcheapest where BUDGETuser is the user defined budget as maximum allowed cost and

Costcheapest , defined as Costcheapest = ∑ti∈T Costmin(ti), is the cost of the cheapest assignment

and represents the cost lower bound for executing the application. ∆Cost is updated at each

step after selecting the processor for the current task tcurr, as shown in eq (9):

∆Cost = ∆Cost −
[

AC(tcurr)−Costmin(tcurr)

]
(9)

The DBCS, as a list scheduling algorithm, consists of two phases, namely, a task selection

phase and a processor selection phase as described next.

8.4.1 Task Selection

Tasks are selected according to their priorities. To assign a priority to a task in the DAG, the

upward rank (ranku) [THW02] is computed. This rank represents, for a task ti, the length of the

longest path from task ti to the exit node(texit), including the computational time of ti, and it is

given by Eq.10:

ranku(ti) = ET (ti)+ max
tchild∈succ(ti)

{
Cti→tchild + ranku(tchild)

}
(10)

where ET (ti) is the average execution time of task ti over all resources, Cti→tchild is the average

communication time between two tasks ti and tchild , and succ(ti) are the set of immediate successor

tasks of task ti. To prioritize tasks, it is common to consider average values because they have to

be prioritized before knowing the location where they will run. For the exit node, ranku(texit) =

ET (texit).
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8.4.2 Processor Selection

The processor to be selected to execute the current task is guided by the following quantities

related to cost and time. To control the consumed cost and time, a limit value for each factor is

needed. We define two variables, CL and DL as limits for cost and time. To select the best suitable

processor, a trade-off between these two variables is evaluated. In the following paragraphs, we

describe these two variables in detail.

CL(tcurr) is the maximum available budget for the current task tcurr that can be consumed by

its assignment, and it is defined as the minimum cost for tcurr plus the spare budget available:

CL(tcurr) =Costmin(tcurr)+∆Cost (11)

All available processors are filtered by CL(tcurr) to guarantee that the application can be exe-

cuted without exceeding the budget constraint. We defined this filtered processor set as admissible

processors, Padmissible. In the most restricted case, only the cheapest processors are considered.

Otherwise, no feasible schedule exists under the user defined budget.

DL(tcurr) is defined as the sub-DeadLine that is assigned to each task based on the total appli-

cation deadline. There are some studies that proposed different strategies to distribute workflow

deadlines among tasks. In [YBT05a], tasks are grouped in different levels based on their depth

in the graph, and then the final deadline is divided into levels in such a way that all tasks belong-

ing to the same level have the same sub-deadline. In [YBT+05b], first the original workflow is

partitioned into sub-workflows, and then the total deadline is divided among partitions. In this

paper, we apply the common and direct project planning sub-deadline distribution strategy. The

sub-deadline value for each task ti is computed recursively by traversing the task graph upwards,

starting from the exit task. Due to heterogeneity, sub-Deadline can be defined in several different

forms. Here, we consider the minimum execution time of the current task, as shown by Eq.11:

DL(tcurr) = min
tchild∈succ(tcurr)

[
DL(tchild)−C(tcurr→tchild)−ETmin(tchild)

]
(12)

where ETmin is defined as the minimum execution time of task tcurr among available processors.

For the exit task, the sub-deadline is equal to the user defined deadline, DL(texit) = DEADLINE.

Unlike the cost limit, the sub-Deadline is a soft limit as in most deadline distribution strategies

on grid platforms with a fixed number of available resources [YRB09]; if the scheduler cannot

find a processor that satisfies the sub-deadline for the current task, the processor that can finish the

current task at the earliest time is selected.

The processor selection phase is based on the combination of the two QoS factors, time and

cost, to obtain the best balance between time and cost minimum values. We define two relative

quantities, namely, Time Quality (TimeQ) and Cost Quality (CostQ), for current task tcurr on each

admissible processor p j ∈ Padmissible, shown in (16) and (17), respectively. Both quantities are
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normalized by their maximum values.

TimeQ(tcurr, p j) =
Ω×DL(tcurr)−FT (tcurr, p j)

FTmax(tcurr)−FTmin(tcurr)
(13)

CostQ(tcurr, p j) =
Costbest(tcurr)−Cost(tcurr, p j)

Costmax(tcurr)−Costmin(tcurr)
×Ω (14)

where

Ω =


1 if FT (tcurr, p j)< DL(tcurr)

0 otherwise
(15)

TimeQ measures how much closer to the task sub-deadline (DL) the finish time of the current

task on processor p j is. Processors with higher TimeQ values have a greater possibility of being

selected. If the current task has a higher finish time on processor p j than its sub-deadline, TimeQ

assumes a negative value for p j, reducing the possibility of this processor being selected.

Similarly, CostQ measures how much less the actual cost on p j is than the cost on the processor

that results in the earliest finish time (Costbest). Although CL, eq(11), is the maximum allowed cost

for the current task, here, Costbest is used to avoid selecting a processor that performs worse and

costs more than the processor that guarantees the earliest finish time.

In the case that none of the processors from Padmissible can guarantee tcurr sub-deadline, CostQ
is zero for all of them, and TimeQ for each processor p j is a negative value that represents the

relative finish time obtained with p j. The processor from Padmissible with higher TimeQ, i.e., closer

to zero, would be selected. Note that, in any case, cost will be lower than CL, the maximum

available budget for the current task.

Finally, to select the most suitable processor for the current task, the Quality measure (Q) for

each processor p j ∈ Padmissible is computed as shown in Eq(18):

Q(tcurr, p j) = TimeQ(tcurr, p j) +CostQ(tcurr, p j)×
CostCheapest

BudgetUnconsumed
(16)

where the cost quality factor is weighted by the ratio of the cheapest cost execution for unsched-

uled tasks over the unconsumed budget, so that the effectiveness of the cost quality factor can

be controlled. A higher value of the fraction means that the unconsumed budget is close to the

cheapest cost execution for unscheduled tasks, so that the cost factor is more predominant in the

processor Quality measure. In the same way, a lower value means a higher difference between un-

consumed budget and cheapest cost execution for unscheduled tasks, so that the cost factor is less

influential, allowing the selection of more expensive processors that guarantee a lower processing

time for tcurr.

The DBCS algorithm is shown in Algorithm 1. First, the possibility of finding a schedule map

under a user defined budget is checked in lines 1-3. After some initializations in lines 4-5, the

algorithm starts to map all tasks of the application (while looping in lines 6-14). At each step, on
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line 7, among all ready tasks, the task with highest priority (ranku) is selected as the current task

(tcurr). Then, in lines 8-10, the Quality measure for assigning tcurr to processor p j (Q(tcurr, p j)) is

calculated. Note that, first, the finish time (FT ) and execution cost of the current task is calculated

and then the quality measure for all admissible processors is calculated. Next, the processor with

the highest quality measure among all processors is selected (line 11-12). Finally, after assigning

the processor to the current task, the ∆Cost variable is updated using Eq.9 (line 13).

Algorithm 1 DBCS algorithm

Require: a DAG and user’s QoS Parameters values for time (DEADLINEuser) and cost
(BUDGETuser)

1: if BUDGETuser <Costcheapest then
2: return no possible schedule map
3: end if
4: Initialize ∆Cost = BUDGETuser−Costcheapest
5: Compute the upward rank (ranku) and sub-DeadLine value (DL) for each task
6: while there is an unscheduled task do
7: tcurr = the next ready task with highest ranku value
8: for all p j ∈ Padmissible do
9: calculate Quality measure Q(tcurr, p j) using Eq.18

10: end for
11: Psel = Processor p j with highest Quality measure (Q)
12: Assign current task tcurr to Processor Psel
13: Update ∆Cost using Eq.(9)
14: end while
15: return Schedule Map

In terms of time complexity, DBCS requires the computation of the upward rank (ranku) and

sub-DeadLines (DL) for each task that have complexity O(n.p), where p is the number of available

resources and n is the number of tasks in the workflow application. In the processor selection

phase, to find and assign a suitable processor for the current task, the complexity is O(n.p) for

calculating FT and Cost for the current task among all processors, plus O(p) for calculating the

Quality measure. The total time is O(n.p+ n(n.p+ p)), where the total algorithm complexity is

of the order O(n2.p).

8.5 Experimental Results

This section presents performance comparisons of the DBCS algorithm with DCA [PW10],

LOSS1 [SZTD07], GA [YB06b], BHEFT [ZS12, ZS13] and RANDOM scheduling algorithms.

We consider synthetic randomly generated and Real Application workflows to evaluate a wider

range of loads. The results presented were produced with SIMGRID [CLQ08], which is one of

the simulators for distributed computing and allows for a realistic description of the infrastructure

parameters.
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8.5.1 Workflow Structure

To evaluate the relative performances of the algorithms, both the randomly generated and real-

world application workflows were used; namely, MONTAGE and EPIGENOMICS [BCD+08] are

used. The randomly generated workflows were created by the synthetic DAG generation program3.

The computational complexity of a task is modelled as one of the three following forms, which are

representative of many common applications: a.d (e.g., image processing of a
√

d×
√

d image),

a.dlogd (e.g., sorting an array of d elements), d3/2 (e.g., multiplication of
√

d×
√

d matrices)

where a is picked randomly between 26 and 29. As a result, different tasks exhibit different

communication/computation ratios.

The DAG generator program defines the DAG shape based on four parameters: width, regular-

ity, density, and jumps. The width determines the maximum number of tasks that can be executed

concurrently. A small value will lead to a thin DAG, similar to a chain, with low task parallelism,

and a large value induces a fat DAG, similar to a fork-join, with a high degree of parallelism. The

regularity indicates the uniformity of the number of tasks in each level. A low value means that

the levels contain very dissimilar numbers of tasks, whereas a high value means that all levels

contain similar numbers of tasks. The density denotes the number of edges between two levels

of the DAG, where a low value indicates few edges and a large value indicates many edges. A

jump indicates that an edge can go from level l to level l + jump. A jump of one is an ordinary

connection between two consecutive levels.

In our experiment, for random DAG generation, it was considered as the number of tasks n =

[30,70,90], jump = [1,2,3], f at = [0.2,0.4,0.8], regularity = [0.2,0.8], and density = [0.2,0.8].

With these parameters, each DAG is created by picking the value for each parameter randomly

from the parameter data set. The total number of DAGs generated in our simulation is 10000.

8.5.2 Simulation Platform

We resorted to simulation to evaluate the algorithms discussed in the previous sections. Simulation

allows us to perform a statistically significant number of experiments for a wide range of appli-

cation configurations in a reasonable amount of time. We used the SIMGRID toolkit4 [CLQ08]

as the basis for our simulator. SIMGRID provides the required fundamental abstractions for the

discrete-event simulation of parallel applications in distributed environments. It was specifically

designed for the evaluation of scheduling algorithms. Relying on a well-established simulation

toolkit allows us to leverage sound models of a heterogeneous computing system, such as the grid

platform considered in this work.

We consider three sites that comprise multiple clusters and have different CPU power compo-

sitions. The Rennes site has normal distribution of CPU power among its clusters, and the Sophia

site contains a higher number of low-speed processors, while the Lille site has a higher number of

fast processors.

3https://github.com/frs69wq/daggen
4http://simgrid.gforge.inria.fr



162
Low-time complexity budget-deadline constrained workflow scheduling on heterogeneous

resources

To normalize diverse price units for the heterogeneous processors, as defined in [ZS12], the

price of a processor p j ∈ P is assumed to be Price(p j) = αp j(1+αp j)/2, where αp j is the ratio of

p j processing capacity to that of the fastest processor of the set P. The price will be in the range

of ]0 · · ·1], where the fastest processor, with the highest power, has a price value equal to 1.

Table 13 provides the name of each site, along with the set of clusters that compose the site. For

each cluster, it presents the total number of processors (#CPUTotal), processing speed expressed in

GFlop/s and processor cost. #CPUused shows the number of processors used from each cluster for

8-, 16- and 32-processor configurations.

Site Cluster #CPUTotal #CPUused Power(GFlop/s) Cost($)

rennes

paradent 64 3 7 13 21.496e9 0.61$

paramount 33 2 3 6 12.910e9 0.31$

parapide 25 1 2 4 30.130e9 1.00$

parapluie 40 2 4 9 27.391e9 0.87$

sophia

helios 56 3 6 12 7.7318E9 0.16$

sol 50 3 5 10 8.9388e9 0.19$

suno 45 2 5 10 23.530e9 0.70$

lille

chicon 26 2 4 9 8.9618e9 0.19$

chimint 20 2 4 7 23.531e9 0.70$

chinqchint 46 4 8 16 22.270e9 0.64$

Table 12: Description of the Grid5000 clusters from which the platforms used in the experiments
were derived

8.5.3 Budget and Deadline parameters

To evaluate the DBCS algorithm, in our simulation, we need to define a value for time and cost as

DEADLINE and BUDGET constraint parameters. For each site, these parameters are computed

independently of the number of CPUs on that site. Additionally, to have better performance anal-

ysis, the DEADLINE and BUDGET values are calculated among all possible sites in our tested

platform, i.e., all resources in the three possible sites rennes, sophia and lille are considered

regardless of the site at which the DAG is to be executed.

To specify the deadline parameter, we define the mintime and maxtime as the lowest and highest

execution time of the application as shown in Eq.17 and Eq.18.

mintime = ∑
ti∈CP

(
ET ∗min(ti)+C(tparentCP→ti)

)
(17)

maxtime = ∑
ti∈CP

(
ET ∗max(ti)+C(tparentCP→ti)

)
(18)

where CP is the set of tasks belonging to the critical path, tparentCP is the critical parent of task

ti and C is the average communication time between task ti and its critical parent. ET ∗min(ti) and

ET ∗max(ti) are defined as the minimum and the maximum execution time for task ti on the fastest

and the slowest processor among all sites. In our tested sites, the slowest and fastest processors,
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Pf astest and Pslowest , belong to cluster parapide and helios, respectively. Please note that both

of these values are defined as the lowest and highest possible makespans based on an infinite

number of CPUs. For a bounded number of resources, the minimum and maximum execution

time may be very optimistic and not reachable. The processing time range is defined based on the

critical path to specify a deadline based on the lower bound of the makespan.

Similarly, to specify a budget constraint, we need to estimate the maximum and the minimum

cost to obtain a range of feasible budgets to execute the application. We defined the maxcost and

mincost as the absolute highest and lowest possible costs for executing the application, which are

calculated by summing the maximum and the minimum execution costs for each task, respectively,

among all resources in all sites.

With these highest and lowest bound values, we define for the current application a unique

DEADLINE and BUDGET constraint, independently of the execution site, as described by Eq

(23) and Eq 24):

DEADLINEuser = mintime +αD× (maxtime−mintime) (19)

BUDGETuser = mincost +αB× (maxcost −mincost) (20)

where the deadline parameter αD and budget parameter αB can be selected in the range of [0 . . .1].

8.5.4 Performance Metric

To evaluate and compare our algorithm with other approaches, we consider the Planning Success-

ful Rate (PSR), as expressed by Eq (25). This metric provides the percentage of valid schedules

obtained in a given experiment.

PSR = 100× Successful Planning
Total Number in experiment

(21)

8.5.5 Results and Discussion

As we selected GA, DCA, LOSS1 and BHEFT algorithms for comparison, we first describe the

adaptations considered from their original strategies. A RANDOM scheduling algorithm is also

considered.

The original implementation of the LOSS1 scheduling algorithm assumed that all of the pro-

cessors had different costs, and therefore, there was no conflict in selecting a processor based

on the cost parameter. In our heterogeneous environment, each cluster is homogeneous, so there

could be more than one processor candidate. In this case, we test all of the possible processors and

selected the one that achieves the earliest finish time. Also, to apply the time and cost constraint

parameters in the algorithm, the loop exit point to test and generate a schedule map changed to

cover QoS parameters time and cost. For the GA scheduling algorithm, the default configuration

used for producing results is: population size equals 300, swapping mutation, replacing mutation
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Figure 1: Planning Success Rate for Random workflows

probability equal to 0.5 and a generation limit of 100. For the DCA algorithm, we considered 100

cells for the memorization table and a maximum of 10 intermediate solutions per cell. In both al-

gorithms, as stated before, we stop the solution search after obtaining the first feasible solution for

the scheduling problem in our implementation. Undoubtedly, increasing the configuration param-

eters for the GA and DCA algorithms, we would be able to achieve higher successful percentage

rates, but it would increase the execution time of the algorithms exponentially. Here, we use the

same configurations as in their original papers. For BHEFT, we stop the makespan optimization

constrained to the defined BUDGET, as the current makespan is lower than the defined DEAD-

LINE. The RANDOM scheduling strategy uses the task selection phase, as described in 8.4.1, to

select the current task but selects the processor randomly for each task.

8.5.5.1 Results for Randomly Generated Workflows

For randomly generated workflows, we model the computational complexity of common appli-

cation tasks, such as image processing, array sorting, and matrix multiplication. To observe the

ability of finding valid schedule maps, we selected a low set of values, {0.1,0.3,0.5}, for time and

cost parameters (αD and αB) to test the performance of each algorithm on harder conditions.
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Figure 2 shows the average Planning Successful Rate (PSR) obtained on three different sites

with CPU configurations per site equal to 8, 16 and 32 processors. The main result is that the

algorithm DBCS obtains similar performance to other state-of-the-art search-based algorithms for

the range of budget and deadline values considered here. For the Sophia and Lille sites, DBCS

is very close to DCA performance and better than GA and LOSS1 for most of the cases. In

addition, DBCS always obtains better results than BHEFT, which presents very low PSR values

for the most restricted cases. On the contrary, even on the most restricted cases, DBCS always

obtains PSR values close to the DCA results. Due to the definition of the budget that is based on

the cheapest processor across all sites, the lower budget values are too restrictive on the Rennes

site, as its cheapest processor cost about twice the Pslowest . Therefore, the PSR values in Rennes

are lower than in the other two sites. DBCS achieves similar PSR values as the best higher-time

complexity algorithms, which in some cases is DCA and in other cases is GA. On the Rennes

site, BHEFT did not produce valid schedules. The RANDOM scheduling strategy gives the lowest

PSR values, which were near zero.
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Figure 2: Execution time for each algorithm to find a valid solution (log scale)

As a heuristic algorithm, the main advantage of the DBCS consists in having an execution

time in the range of the heuristic algorithms, such as BHEFT and RANDOM, but a planning

success rate similar to the higher-time complexity search-based algorithms. Figure 2 shows, in

logarithmic scale, the processing time of each of the algorithms to find a valid solution. We can

observe that the algorithm DBCS requires an average of 4 milliseconds to obtain a valid solution,

whereas other algorithms take substantially more time on average, DCA being the most expensive,

with an average value of approximately 100 seconds, followed by GA with approximately 10

seconds and LOSS1 with approximately 100 milliseconds. Compared to those algorithms, DBCS

produces schedules in a fraction of the time, which ranges from 0.004% to 4%. The three heuristic

algorithms, DBCS, BHEFT and RANDOM, have a time complexity of O(n2.p) for n nodes and

p processors and, therefore, obtain an execution time in the same range, below 10 milliseconds.

However, DBCS achieves higher planning success rates than both of them, as shown above.
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8.5.5.2 Results for Real World Applications

To evaluate the algorithms on a standard and real set of workflow applications, a set of workflows

were generated using the code developed in Pegasus toolkit5. Two well-known structures were

chosen [JCD+13], namely: MONTAGE and EPIGENOMICS. MONTAGE is an I/O-intensive

workflow, and EPIGENOMICS is a compute-intensive workflow. For each of the MONTAGE

and EPIGENOMICS workflows, we generated 300 DAGs with a number of tasks equal to 46

and 50, respectively. Additionally, we consider the application Wien2K [BSM+01], which is a

material science workflow for performing electronic structure calculations of solids that contains

two parallel sections with sequential synchronization activities in between. In this experiment, we

use Wien2k workflows with 30 tasks that were obtained from trace data collected from historical

executions conducted in the Austrian Grid6. To complement the characterization of these real

world applications, Figure 3 shows the Communication to Computation Ratio (CCR) associated

with each application. Once a deadline is specified based on the workflow critical path, if the

workflow has higher CCR distribution or higher average CCR value, it will decrease the success

rate of that workflow.
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Figure 3: CCR values for each workflow on different sites

We consider the following values for time and cost parameters: αD,αB ∈ {0.3,0.5,0.7}. Fig-

ure 4, 5 and 6 shows the PSR for each real application and for three different sites.

As the results for random graph applications indicate, none of the algorithms always performs

better for all sites and applications. For the EPIGENOMICS workflow, Figures 4.b, 4.c and 4.d,

DBCS obtained similar performances to other higher complexity algorithms, always achieving the

best result for the Sophia site. For the Lille site, the results are similar to Sophia, DBCS be-

ing the best algorithm for the lower budget (αB = 0.3) and producing slightly lower performance

than DCA for medium and larger budgets. DBCS is always better than BHEFT, except for a single

case in Lille, with significantly better performance in most configurations of the deadline and

budget. For the MONTAGE workflow, Figures 5.b, 5.c and 5.d, the DCA algorithm consistently

obtained higher PSR values, but DBCS obtained comparable PSR values for higher budgets. This

is explained by the fact that MONTAGE has a higher average CCR; thus, the deadline imposed,

5https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator
6http://www.austriangrid.at
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Figure 4: Normalized Makespan for EPIGENOMICS workflows on GRID5000

based on the critical path, is too restrictive, in particular on Rennes. This only affects DBCS,

BHEFT and RANDOM because due to their heuristic nature, a moving forward strategy, they do

not roll back and change the task assignment. The other algorithms that are search-based strate-

gies may change the task assignment during the solution space search. BHEFT also obtains good

performances, comparable to DBCS, in particular for Sophia and Lille. For the Wien2K algo-

rithm, Figures 6.b, 6.c and 6.d, DCA presents generally better performances, but DBCS achieves

the same value for many cases and a PSR value very close to the best algorithm that alternates

from DCA, GA and LOSS1. In Rennes site, BHEFT produces results only for the higher dead-

line (αD = 0.7), while DBCS produces very good PSR values for all cases as well as DCA, GA

and LOSS1. In Sophia, the results are similar to Rennes but with lower PSR values. BHEFT

produces results for more cases but significantly lower than DBCS. In Lille, the results follow

the same pattern as in Rennes with a PSR value of 100% for all algorithms, except RANDOM in

the highest deadline. In the other cases, DBCS is close to the best algorithms, which are DCA and

GA, and significantly better than BHEFT.

EPIGENOMICS workflow has the highest rate of successful schedules due to its lower average

CCR as well as lower CCR distribution values, which makes it more feasible to find schedule maps

for the range of budgets and deadlines. The RANDOM algorithm only produces valid schedules

for Wien2K in Rennes, with a much lower performance than DBCS, showing that the slightly
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Figure 5: Normalized Makespan for MONTAGE workflows on GRID5000

higher processing time of DBCS compensates. The same conclusion can be drawn in relation to

BHEFT, where with a similar scheduling time, DBCS obtains globally better performances.

8.6 Conclusions and Future Work

In this paper, we presented the Deadline-Budget Constrained Scheduling algorithm (DBCS),

which maps a workflow to a heterogeneous system constrained to user-defined deadline and bud-

get values. The algorithm was compared with other state-of-the-art algorithms. In terms of time

complexity, which is a critical factor for effective usage on real platforms, our algorithm has the

lowest time complexity (quadratic time complexity), while other algorithms mostly have cubic or

polynomial time complexities. In terms of the quality of results, DBCS achieves rates of success-

ful schedules similar to higher-time complexity algorithms for both random and real application

workflows on diverse platforms and also for the range of values of deadline and budget constraints

considered in this paper. Compared to other low-time complexity algorithms, namely, BHEFT

and RANDOM, DBCS performs, in general, significantly better for the workflows and platforms

considered.

In conclusion, we have presented the DBCS algorithm for budget and deadline constrained
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Fig. 2 Evaluated workflows
applications

9.1 Synthetic workflows

We analyse in this section the results for the three types of
synthetic workflows.

9.1.1 Type-1 workflows

We start by analysing the results for the three comparison
metrics, makespan, economic cost, and hypervolume, sum-
marised in Fig. 3.

First, Fig. 3a shows that MOHEFT outperformed SPEA2
in terms of hypervolume for all evaluated instances. We did
not include HEFT in this comparison because it only deliv-

ers a single solution with the optimal makespan. It is remark-
able that, for this workflow type, MOHEFT always com-
puted solutions with the same hypervolume value, mean-
ing that the shape of the optimal set of tradeoff solutions
in this case does not vary with the workflow size. In terms
of makespan (see Fig. 3b), all the three methods computed
the same solution, which confirms that the performance of
MOHEFT does not degrade compared to HEFT. In case of
SPEA2*, the results are not surprising since the algorithm is
initialised with the solution computed by HEFT. Both MO-
HEFT and SPEA2 computed the same cheapest schedule il-
lustrated in Fig. 3c, which considers the cheapest instance
(m1.small) for the entire workflow. This fact is a conse-
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Figure 6: Normalized Makespan for Wien2K workflows on GRID5000

scheduling, which has proved to achieve a similar performance to higher-time complexity algo-

rithms, namely, DCA, GA and LOSS1, but with a time complexity of the heuristic algorithms,

namely, BHEFT and RANDOM, of the order O(n2.p) for n tasks and p processors.

In future work, we intend to extend the algorithm to consider the dynamic concurrent DAG

scheduling problem. This model will allow users to execute concurrent workflows that might not

be able to start together but that can share resources so that the total time and cost for the user can

be minimized to meet their deadlines and budgets.
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abstract
Workflow applications described by directed acyclic graphs (DAGs) present intrinsic paral-

lelism among tasks and their processing time can be optimized by a task parallel approach.

However, the optimization process has limitations due to task dependencies. As common

resource managers allocate a set of resources to execute a single workflow, in a user centric

approach, those resources cannot be fully utilized by a single job, incurring higher costs

to the user without obtaining any improvement in the job processing time. In this paper

we propose a framework that executes simultaneously several workflow applications, where

resources are shared among jobs. A user, when submitting a job, specifies a budget and

a deadline for the job, in a range of values specified by the framework, and that can be

accomplish with the available infrastructure. The framework is dynamic (on-line), so that

it can receive jobs at any moment in time. For concurrent workflow scheduling, several

algorithms have been proposed, being most of them off-line solutions. Recent research at-

tempted to propose on-line strategies for concurrent workflows but only addressing fairness

in resource sharing among applications while minimizing the execution time. The Multi-

Workflow Deadline-Budget scheduling algorithm (MW-DBS) is proposed here to schedule

multiple and concurrent workflow applications that may be submitted at different moments

in time and with individual user’s budget and deadline constraints. We study the scalability

of the algorithm with different types of workflows and infrastructures. Experimental results

171
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show that our strategy is able to increase the scheduling success rate of finding a scheduling

solution for each job as well as to obtain higher revenue for the provider through a higher

rate of completed jobs.
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1 Introduction

Many scheduling algorithms have been proposed to optimize the execution of a single workflow

application on Heterogeneous Computing Systems (HCS) and with a single Quality of Service

(QoS) parameter, usually minimizing the execution time of the application [AB14c, BSB+01,

THW02]. However, with the introduction of other factors such as execution cost, more objectives

need to be considered based on user’s QoS requirements. On the other hand, other studies [BM08]

show that the execution of a single DAG on a set of processors leads to a wastage of resources.

Although the provider may charge for all processors during the execution time, it is an evidence

that the user is paying more than it is able to use.

The framework proposed in this paper intends to reduce costs for the user when running work-

flow applications as well as to allow that a provider increases the number of successful applications

and therefore obtains also higher revenues. In this context, scheduling algorithms must be able to

support the scheduling of concurrent workflow applications, that may be submitted at different

moments in time and with individual QoS parameter values. Therefore, scheduling frameworks

should consider not only a schedule solution map for each single application, but also focus on

the overall performance, defined as the success rate of finding a valid solution for all submitted

applications.

To address the problem mentioned above, we introduce here a new scheduling strategy, Multi-

Workflow Deadline-Budget scheduling algorithm (MW-DBS), for scheduling concurrent work-

flow applications with multiple QoS constraints, here, time and cost. The MW-DBS algorithm

contains two main steps: first, it selects a task from each ready workflow and assigns a priority to

each task based on the remaining time to application deadline; and second, for the high priority

task, selects a suitable resource based on a quality measure computed to each resource, based on

the job QoS parameters and provider profit.

The main contributions of this paper are: a) proposal of a framework for concurrent job sched-

ule; b) a new low time complexity scheduling algorithm to deal with concurrent workflows con-

strained to time and cost. Our algorithm, increases the provider profit by increasing the acceptance

rate of successful applications; c) a realistic simulation that considers a bounded multi-port model

in which bandwidth is shared by concurrent communications; and d) we present results for ran-

domly generated graphs, as well as for real-world applications.

The remainder of the paper is organized as follows. In the next section, we describe the

framework and the computational model. Then, we describe the related work, followed by the

details of our MW-DBS scheduling algorithm. Then we show the benefits of the MW-DBS by

comparison and simulation. Finally, we present conclusions and directions for future work.

2 Scheduling Framework

In the proposed framework, presented in Figure 1, applications can be submitted by any user

and at any moment in time, into the system. The aim of this structure is to schedule tasks from
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Figure 1: A general view of the Framework for concurrent workflow scheduling

the workflow applications into available resources, constrained by user’s QoS demands. Submit-

ted applications are collected by Application Data Base (DB) with their specifications and QoS

requirements. In this architecture, a Framework Scheduler (FS) receives applications from Appli-

cation DB and generates tasks-to-resource maps for all applications. To make a proper decision in

resource selection strategy for each application’s task, FS needs the status information of available

resources. The Resource Service Information is responsible for observing and collecting informa-

tion about the current state of resources such as resource capacities, memory size, network band-

width, availability, functionality and especially the available time slots for processing tasks. The

Globus Monitoring and Discovery System (MDS) [CFFK01] is an example of Resource Service

Information. Besides resource status, the list of ready-to-execute tasks and user’s QoS require-

ments for each application are also necessary for making a feasible schedule. The Ready Task

pool module collects tasks which are ready to execute among accepted workflow applications in

Application DB. A task is considered ready when its parents are executed. The QoS Parameter

module contains the user’s QoS requests for their workflow applications. These two modules are

used to select the task and related application at each step of the scheduling process. The Service

Executor module implements the task assignment by submitting each task to the selected resource,

and monitors their execution. The Globus GRAM (Grid Resource Allocation and Management)

[CFK+98] is a good example of service executor module.

Finally, Task scheduler finds the suitable task-to-processor map for executing each ready task

based on its QoS attributes and on the detailed information of each service.

2.1 Application model

A workflow application can be represented by a Directed Acyclic Graph (DAG) in which nodes

represent tasks and edges represent task and data dependencies. A dependency ensures that a child

node cannot be executed before all its parent tasks finish successfully and transfer the required

child input data. The overall finish or completion time of an application is usually called the



2 Scheduling Framework 175

schedule length or makespan. The model to obtain the total execution cost for an application may

consider computation costs, storage costs and data transfer costs.

A DAG can be modeled by a tuple G=< T,E >, consisting of a set of tasks, T = {t1, t2, . . . , tn}
where n is the number of tasks in the workflow, and a set of dependencies among the tasks

E = {< ta, tb >,. . . ,< tx, ty >} where ta and tx are parent tasks of tb and ty, respectively. The

C(ti→t j) represents the average communication time between the parent tasks ti and child task t j

which is calculated based on the average bandwidth and latency among all processor pairs. This

simplification is commonly considered to label the edges of the graph to allow for the computation

of a priority rank before assigning tasks to processors [THW02]. Due to heterogeneity, each task

may have a different execution time on each processor.

In a given DAG, a task with no predecessors is called an entry task and a task with no succes-

sors is called an exit task. We assume that the DAG has exactly one entry task tentry and one exit

task texit . If a DAG has multiple entry or exit tasks, a dummy entry or exit task with zero weight

and zero communication edges is added to the graph.

2.2 Task execution cost and time model

We consider there is a central storage connected to all resources in order to keep all required files.

In this model, in addition to the execution time of task ti on processor ṕ (ET (ti, ṕ)), the target

processor ṕ will be occupied by task ti during its data input and output file transfer operations, into

and from central storage. Therefore, Time Reservation (T R) for executing task ti on processor ṕ

is defined as:

T R(ti, ṕ) = Tin(ti)+ET (ti, ṕ)+Tout(ti) (1)

where Tin(ti) and Tout(ti) are the transfer time of all input and output files required for task ti
execution, and are defined as:

Tin(ti) = ∑
tp∈pred(ti)

C(tp→ti) (2)

Tout(ti) = ∑
tc∈succ(ti)

C(ti→tc) (3)

where pred(ti) and succ(ti) denote the set of immediate predecessors and immediate successors

of task ti, respectively. Unlike previous research that considered only the maximum transfer time

of the input or output data, in this paper, we consider the sum of all transfer time from parents/to

children for each task. In realistic platforms each concurrent file cannot use full bandwidth. In

this paper, the total time of serial transmission are considered as transfer time of input/output files,

since it would be equivalent to send all files in parallel on a shared link. Also, we assume each

processor has its own Network Interface Card (NIC) to handle packet flow control between proces-

sors and central storage. In this case, the transmission time can be performed and overlapped with
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the computation. In this paper, we assume that only output transmission time can be performed in

parallel with another task execution. Thus, the Time Reservation (T R) can be simplified as:

T R(ti, ṕ) = Tin(ti)+ET (ti, ṕ) (4)

Based on these definitions, we can compute the Finish Time of task ti on processor ṕ, FT (ti, ṕ),

considering the execution time of itself and its predecessors as:

FT (ti, ṕ) =



T R(ti, ṕ) , pred(ti) = /0

max
tp∈pred(ti)

{
FT (tp)+T R(ti, ṕ)

}
, pred(ti) 6= /0

(5)

The makespan denotes the finish time of the last task of the workflow and is defined as:

DAGmakespan = FT (texit) (6)

FT (ti) denotes the Finish Time of task ti on the processor assigned by the scheduling algorithm.

The economic cost depends on three parameters: a) the total occupied time of the resource

which starts by transferring input files for the task, then its execution time and, finally, the time

used by the processor to transfer output files; b) the cost of transferring data (input/output) required

for the task; and c) the data storage cost of the task. In the case of intra-cluster data transference,

as in this paper, zero monetary costs are considered for communications between tasks and task

storage usage. So, the financial cost of executing task ti on target processor ṕ is simplified to

Cost(ti, ṕ) = T R(ti, ṕ)×Price(ṕ) where Price(ṕ) denotes the price of processor per time unit.

TotalCost is the overall cost for executing an application and is defined as:

DAGCost = ∑
ti∈T

AC(ti) (7)

where AC(ti) is defined as Assigned Cost of task ti. After assigning a processor psel to execute

task ti, the assigned cost is equal to AC(ti) =Cost(ti, psel).

2.3 Scheduling objectives

For a given scenario which includes a set of workflow applications that may be submitted at differ-

ent moments in time by users with individual time and cost constraints, the objective of our work-

flow scheduling strategy is to find a schedule map between tasks and resources for each workflow

application that can meet its user-defined QoS constraints, i.e, the completion time of the workflow

must not be larger than the user defined time constraint (DEADLINE), and the execution cost must

not be larger than the user defined total cost (BUDGET). Due to various independent applications,

the completion time (or turnaround time) includes both the waiting time and execution time of a

given workflow, extending the makespan definition for single workflow scheduling [KA99]. These
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values of DEADLINE and BUDGET for each workflow application should be negotiated between

the user and the provider in a range of feasibility values so that there are feasible scheduling solu-

tions. Note that there is not any optimization function in the formulation, so that any scheduling

solution that match the constraints, for a given workflow, is a plausible solution.

3 Related Work

In general, scheduling algorithms on heterogeneous computing systems have focused on single

workflow applications. In contrast, multiple workflow scheduling has not received much atten-

tion. In [ZH14] it was proposed a scheduling algorithm in order to optimize performance and

cost for Workflows in the Cloud. Bochenina in [Boc14] introduced a strategy for mapping the

tasks of multiple workflows with different deadlines on the static set of resources. Kumar et al.

[KR12] proposed a time and cost optimization algorithm for hybrid clouds. Using a schedule

map of a workflow, authors in [JHC+11] proposed a method to minimize the total execution time

of a scheduling solution for concurrent workflows in HPC cloud. In [BM10a] four strategies,

which differ in the ordering of tasks, for scheduling multiple workflows on Grids are discussed.

Zhao and Sakellariou in [ZS06] proposed to merge multiple workflow application into a single

DAG which can be scheduled by traditional DAG scheduling algorithms in order to minimize the

overall makespan and achieve fairness, defined based on the slowdown experienced by each DAG

due to competition for resources with other DAGs. But most of these strategies are designed for

off-line workflow scheduling which imposes limitations on the management of a dynamic system

where users can submit jobs at any moment in time, i.e, they scheduled only available and sub-

mitted workflows at this time and after a schedule is produced and initiated, no other workflow is

considered.

There are few on-line algorithms proposed specifically to schedule concurrent workflows with

the aim of improving individual QoS requirements. In [YS08] and [HHW11] there were proposed

two algorithms namely RANK_HYBD and OWM (Online Workflow Management), to schedule

multiple online workflows and targeting to have lower average makespan and turnaround time for

submitted workflows at different instants of time and by different users. In [AB12a, ABS14] au-

thors proposed the fairness dynamic workflow scheduling (FDWS) algorithm. The main objective

of FDWS algorithm is to reduce the individual turnaround time for each workflow application in

the system. The FDWS algorithm focuses on the QoS experienced by each application (or user) by

minimizing turnaround time, while RANK_HYBD and OWM algorithms try to reduce the average

completion time of all workflows.

Xu et al.[XCWB09] propose a multiple QoS constrained scheduling strategy of multi-

workflows (MQMW) for cloud computing. The MQMW algorithm minimizes the makespan and

cost of workflows which can be submitted and start at any time. In [AB14b], authors proposed

on-line strategies for concurrent workflows that extend the former concurrent on-line scheduling

algorithms by considering fairness resource sharing constrained to the user defined budget and

optimize the turnaround time, for each workflow application.
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However, our approach here is different from the algorithms described above, in that we si-

multaneously consider time and cost as constraints of the scheduling problem and do not perform

optimization. The scheduling framework proposed in this paper is the first multiple online work-

flow scheduling system that simultaneously considers user’s budget and deadline constraints for

concurrent workflow scheduling in heterogeneous computing systems.

4 Concurrent Scheduling Algorithm

In this section, we present the Multi-Workflow Deadline-Budget scheduling algorithm (MW-

DBS), an improved version of [AB15], which aims to find a feasible schedule within an individual

BUDGET and DEADLINE constraints for each submitted application. The common scheduling

objective of concurrent applications is to increase the number of successful applications, but in

addition to this objective, the proposed framework tries to increase the revenue of the provider by

giving higher priority to jobs with higher budgets.

Generally, in most on-line scheduling system, without in advance reservation, the scheduler is

called when an executing task finishes and there is at least one free available processor to execute

new tasks. Like other online scheduler, MW-DBS consists of two main phases, namely a task

selection phase and a processor selection phase as described next.

4.1 Task selection

The MW-DBS algorithm should select a suitable task to be executed among all tasks from ready

tasks pool which is filled by the ready tasks belonging to each submitted and unfinished work-

flow application. In general, two methods are used to fill the ready tasks pool: a) first collect a

single ready task from each workflow [AB12a, AB14b, ABS14, HHW11], and b) insert all ready

tasks [YS08] belonging to each unfinished workflow application. Adding all ready tasks from

each available workflow leads to an unfair strategy because the high number of ready tasks may

cause that some workflow applications may not participate in the current scheduling round. In

MW-DBS algorithm, to fill the ready tasks pool, a single ready task with highest priority upward

rank[THW02] (ranku) is selected and added to the list. From the set of ready tasks we need to

select one to schedule based on the QoS parameters defined to each application.

The key point in task selection phase is which task should be selected for scheduling among

all ready-to-execute tasks. So, a priority assignment strategy based on our QoS parameters is

defined to assign a secondary rank to each task in ready tasks pool. Since we are dealing with both

time and cost factors, the secondary rank assignment strategy should considers both measures.

Additionally, results in [AB12a, ABS14] show that taking into account the workflow history of

scheduled tasks, leads to a better performance.
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In this paper, we propose a new strategy (rankD) to assign a secondary priority to each task ti
belonging to workflow j in the ready tasks pool, defined by equation 8:

rankD(ti, j) =CostR
ti, j ×

1
TimeR

ti, j ×PRTj
(8)

where CostR
ti, j is the relative Cost Ratio of task ti from workflow j and it is calculated as:

CostR
ti, j =

B j

CA j
(9)

where B j is the cost constraint value (user’s BUDGET) and CA j is defined as Cheapest Assign-

ment, i.e. all tasks from application j scheduled to cheapest processors. TimeR
ti, j is the relative

Time Ratio of task ti from workflow j and it is calculated as:

TimeR
ti, j =

D j−SD(ti)
D j

(10)

where D j is the time constraint value (user’s DEADLINE) and SD(ti) is defined as Sub-Deadline

assigned to task ti. We applied the common and direct project planning sub-deadline distribution

strategy. SD(ti) is computed recursively by traversing the task graph upwards, starting from the

exit task. Due to heterogeneity, sub-Deadline can be defined in several different forms. Here, we

consider the average execution time of the current task, as shown by Eq(11):

SD(ti) = min
tchild∈succ(ti)

[
SD(tchild)−T R(tchild)

]
(11)

where T R is defined as the average time reservation of task ti among available processors. For

the exit task, the sub-deadline is equal to the user defined deadline (SD(texit) = D j). PRTj is the

Percentage Remaining Tasks of workflow j and calculated as:

PRTj =
Unscheduled tasks of workflow j

Total tasks of workflow j
(12)

The rankD priority value contains two major factors: a) the cost parameter which gives higher

priority to the submitted and unfinished workflow applications that have higher budget ratio in or-

der to maximize the provider profit, and b) the time parameter which contains two time measures,

TimeR and PRT . The first has responsibility of assigning higher priority to workflows which have

lower sub-deadline. The second ensures that a workflow with few unscheduled tasks has higher

priority. Finally, the task with highest rankD in ready tasks pool is selected to be schedule in the

next phase.

4.2 Processor selection

The processor selection phase has the responsibility for selecting an affordable resource for the

current task (tcurr) and it is repeated until there is no more tasks left in ready tasks pool. A new
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strategy for processor selection phase based on QoS requirements is proposed. In order to control

the consumed cost and time, a bound value for each factor is needed. Next, we describe first bound

values for cost and time, and then we present a new strategy for processor selection.

The Cost bound value (CostBound) is a limitation on budget consumption by each task based

on used budget, by previously scheduled tasks, and available budget for the current task that can

be consumed by its assignment:

CostBound(tcurr) =Costmin(tcurr)+∆
Cost
j (13)

where Costmin denotes the minimum execution cost of the current task among all processors and

∆Cost
j = RB j−RCA j represents the spare budget defined as the difference between unconsumed

budget and cheapest cost assignment for unscheduled tasks for workflow j which task tcurr belongs

to. The Remain unconsumed Budget of workflow j (RB j) has an initial value equal to the available

user budget (B j) and is updated at each step after selecting the processor for tcurr as shown in

Eq(14), where AC(tcurr) is the Assigned Cost. Similarly, RCA j is defined as Remaining Cheapest

Assignment of workflow j with initial value equal to Cheapest Assignment (CA j) and updated by

Eq(15).

RB j = RB j−AC(tcurr) (14)

RCA j = RCA j−Costmin(tcurr) (15)

All free available processors are filtered by CostBound(tcurr) in order to guarantee that the appli-

cation can be executed without exceeding the budget constraint. For the current assignment, we

defined this set of acceptable processors as Padmissible. In the most restricted case, only the cheapest

processors are considered. Otherwise, no feasible schedule exists under the user defined budget.

For the Time bound value it is used the sub-Deadline (SD), introduced in task selection phase,

and it is a soft limitation as in most deadline distribution strategies for a fixed number of available

resources [YRB09]; if the scheduler cannot find a processor that satisfy the sub-deadline for the

current task, the processor that can finish the current task at earliest time is selected.

The processor selection phase is based on a quality measure assigned to each processor that

combines the QoS factors. Once there in no optimization step, each resource is evaluated in terms

of the processing time and cost for the current task tcurr. Two quantities are defined, namely, Time

Quality (TimeQ) and Cost Quality (CostQ), on each admissible processor ṕ ∈ Padmissible, shown in

(16) and (17), respectively. Both quantities are normalized by their maximum values.

TimeQ(tcurr, ṕ) =


1− FT (tcurr, ṕ)

SD(tcurr)
if FT (tcurr, ṕ)< SD(tcurr)

1− FT (tcurr, ṕ)
FTmin(tcurr)

otherwise

(16)
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CostQ(tcurr, ṕ) =


1− Cost(tcurr, ṕ)

Costmax(tcurr)
if FT (tcurr, ṕ)< SD(tcurr)

1 otherwise

(17)

Where FTmin(tcurr) and Costmax(tcurr) denote the minimum finish time and the maximum execution

cost of current task among all available processors.

Finally, to select the most suitable processor for tcurr, the Quality measure (Q) for each pro-

cessor ṕ ∈ Padmissible is computed as shown in Eq(18) and the processor with highest Q is selected.

Q(tcurr, ṕ) = TimeQ(tcurr, ṕ)×CostQ(tcurr, ṕ) (18)

Resources for which the finish time is lower than the deadline (FT (tcurr, ṕ) < SD(tcurr)),

TimeQ measures how much the finish time of current task on a processor is closer to the task

sub-deadline. The processor with higher TimeQ has higher possibility to be selected. Otherwise,

TimeQ assumes a negative or zero value, reducing the processor quality value. Processors with

a lower cost to execute tcurr have a higher CostQ, increasing their quality measure. However, for

the processors that do not cover the sub-deadline, the processor with lowest finish time should be

selected regardless of what cost it has. In this case, CostQ is set to 1, being the processors quality

only influenced by TimeQ. It should be noted that in both cases, the tested processors are selected

from admissible processor list so that it can be guaranteed that the application can be executed

without exceeding its budget constraint.

The MW-DBS algorithm is shown in Algorithm 1. First, all ready-to-execute tasks in ready

tasks pool are ranked by rankD priority value (Eq.8). To fill ready tasks pool, the framework

collects a single ready-to-execute task with highest primary rank value ranku [THW02] from each

submitted and unfinished workflow application. Until there is at least one ready and unscheduled

task in ready tasks pool and free available processors, the current task tcurr is selected and its

quality measure Q (Eq.18) is calculated among all admissible processors (Padmissible⊂Pf ree). Then,

the current task tcurr is assigned to processor Psel that has the highest quality measure. Then, the

Remaining unconsumed Budget (RB) and Remaining Cheapest Assignment (RCA) are updated for

workflow j where task tcurr belongs to.

In terms of time complexity, MW-DBS requires the computation of the upward rank (ranku)

and Sub-DeadLines (SD) for each task that have complexity O(n.p), where p is the number of

available resources and n is the number of tasks in the workflow application. In the processor se-

lection phase, to find and assign a suitable processor for the current task, the complexity is O(n.p)

for calculating FT and Cost for current task among all processors, plus O(p) for calculating the

Quality measure. The total time is O(n.p+ n(n.p+ p)), where the total algorithm complexity is

of the order O(n2.p).
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Algorithm 1 MW-DBS algorithm

1: for all ti, j ∈ Ready Tasks pool do
2: Assign a priority rank rankD(ti, j)
3: end for
4: Pf ree← free processors ṕ ∈ P
5: while (Ready Tasks 6= φ & Pf ree 6= φ) do
6: tcurr← task with highest rankD

7: for all ṕ ∈ Padmissible do
8: calculate Quality measure Q(tcurr, ṕ)
9: end for

10: Psel ← Processor ṕ with highest Q
11: Assign current task tcurr to Processor Psel
12: Update RB j and RCAJ

13: Pf ree← Pf ree−Psel
14: Remove Task tcurr from Ready Tasks pool
15: end while

5 Experimental Results

This section presents performance comparisons of the MW-DBS algorithm. We implemented

modified versions of FDWS[AB14b], MIN-MIN and MAX-MIN. The MIN-MIN and MAX-MIN

algorithms have been studied extensively in the literature [MAS+99], and therefore we imple-

mented an online version of these algorithms for our problem. We use the version of FDWS

algorithm proposed in [AB14b], namely FDWS2.

In the modified versions of these three algorithms, instead of considering all processors to com-

pute the finish time of current task, processors are filtered (Padmissible) based on the cost limitation

value defined by Eq.13 and the processor that allows the lowest finish time among all affordable

processors is selected.

5.1 Simulation platform

We resorted to simulation to evaluate the algorithms discussed in the previous sections. Simulation

allows us to perform a statistically significant number of experiments for a wide range of appli-

cation configurations in a reasonable amount of time. We used the SIMGRID toolkit1 [CGL+14]

as the basis for our simulator. SIMGRID provides the required fundamental abstractions for the

discrete-event simulation of parallel applications in distributed environments. It was specifically

designed for the evaluation of scheduling algorithms. Relying on a well-established simulation

toolkit allows us to leverage sound models of a heterogeneous computing system, such as the grid

platform considered in this work.

The network model provided by SimGrid corresponds to a theoretical bounded multi-port

model. In this model, a processor can communicate with several other processors simultaneously,

1http://simgrid.gforge.inria.fr
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but each communication flow is limited by the bandwidth of the traversed route and communica-

tions using a common network link have to share bandwidth. In this experiments, we connected

all processor over one shared bandwidth.

We consider three sites that comprise multiple clusters and having different CPU power com-

position. The Rennes site has normal distribution of CPU power among its clusters, the Sophia

site contains a higher number of low speed processors, while Lille site has a higher number of fast

processors.

Table 13 provides the name of each site, along with the set of clusters that compose the site. For

each cluster, it presents the total number of processors (#CPUTotal), processing speed expressed in

GFlop/s and processor cost. #CPUused shows the number of processors used from each cluster for

8 and 16 processors configurations.

Site Cluster
#CPU #CPU Power Cost
Total used (GFlop/s) ($)

rennes

paradent 64 3 7 21.496e9 0.61$

paramount 33 2 3 12.910e9 0.31$

parapide 25 1 2 30.130e9 1.00$

parapluie 40 2 4 27.391e9 0.87$

sophia

helios 56 3 6 7.732E9 0.16$

sol 50 3 5 8.939e9 0.19$

suno 45 2 5 23.530e9 0.70$

lille

chicon 26 2 4 8.962e9 0.19$

chimint 20 2 4 23.531e9 0.70$

chinqchint 46 4 8 22.270e9 0.64$

Table 13: Description of the Grid5000 clusters from which the platforms used in the experiments
were derived

5.2 Budget and deadline parameters

To evaluate the scheduling algorithm of the proposed framework, we need to define values for

deadline and budget constraints for each individual application. For each tested site these param-

eters are computed independently of the number of CPUs on that site.

To specify the deadline parameter, we define the minD and maxD as the lowest and highest

execution time of the application, as shown in Eq.19 and Eq.20.

MinD = ∑
ti∈CP

(
T Rmin(ti)

)
(19)

MaxD = ∑
ti∈CP

(
T Rmax(ti)

)
(20)

where CP is the critical path. Please note that both of these values are defined based on an infinite

number of CPUs. For a bounded number of resources, the minimum and maximum execution
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times may be very optimistic and not reachable. The processing time range is defined based on

the critical path, in order to specify a deadline based on the lower bound of the makespan.

In the same way, to specify a budget constrain, we need to estimate the maximum and the

minimum cost to obtain a range of feasible budgets to execute the application. We defined the

MinB and MaxB as absolute lowest and highest possible costs for executing the application, that

are calculated by summing the maximum and the minimum execution costs for each task, as shown

in Eq.21 and 22, respectively.

MinB = ∑
ti∈T

(
Costmin(ti)

)
(21)

MaxB = ∑
ti∈T

(
Costmax(ti)

)
(22)

With these highest and lowest bound values, we define a deadline (D) and a budget (B) con-

straints for the workflow application j as described in Eq(23) and Eq(24):

D j = minD +αD×
(

maxD−minD

)
(23)

B j = minB +αB×
(

maxB−minB

)
(24)

A lower deadline parameter αD results in a lower deadline D for the application, which would

require resources with higher capacity and cost, therefore making it difficult to meet its time con-

straint with low budget. Thus, to define range for budget and deadline parameters, in order to

adopt them to a more realistic situation, αD is selected in the range [0 . . .1]. If αD < 0.5, then the

budget parameter αB is selected in the range of [0.5 . . .1], otherwise the range is [0 . . .0.5].

5.3 Workflow structure

Workflow applications can be categorized as Synthetic and Real World applications. In order

to generate dynamic and concurrent scenarios, we consider 50 workflows in each scenario, that

arrive with time intervals that range from 5%, 15% and 30% of the deadline of the previous one,

i.e., a new workflow is inserted when the corresponding percentage of the deadline from the last

workflow has elapsed. The total number of scenarios is 5000 and each scenario is tested for 9

different combinations of deadline and budget parameters.

5.3.1 Synthetic workflow applications

The Synthetic workflow category was created by the synthetic DAG generation program2. The

computational complexity of a task is modelled as one of the three following forms, which are

representative of many common applications: a.d (e.g., image processing of a
√

d×
√

d image),

a.dlogd (e.g., sorting an array of d elements), d3/2 (e.g., multiplication of
√

d×
√

d matrices)

2https://github.com/frs69wq/daggen
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where a is picked randomly between 26 and 29. As a result, different tasks exhibit different

communication/computation ratios.

The DAG generator program defines the DAG shape based on four parameters: width, regu-

larity, density, and jumps. In our experiment, for synthetic DAG generation, it was considered a

number of tasks in the range n = [40 . . .120], a f at of 0.1, 0.4, 0.8, a regularity and density of 0.2

and 0.8, and a jump in the range [1 . . .4].

5.3.2 Real world workflow applications

To evaluate the algorithms on a standard and real set of workflow applications, a set of workflows

were generated using the code developed in Pegasus toolkit3. Four well know structures were

chosen [JCD+13], namely: Montage, CyberShake, Epigenomics and LIGO. For each workflow

type, we generated 300 DAGs with a number of tasks randomly taken in the range [30 . . .100].

5.4 Performance metrics

To evaluate the framework, we consider two distinct metrics to evaluate performance improvement

in both perspectives, i.e. users and service providers.

5.4.1 Planning successful rate

The metric to evaluate a dynamic scheduler of independent workflows, must represent the individ-

ual successful rate of finding a valid schedule map for each workflow application in the scenario,

in order to measure the QoS experienced. We consider the Planning Successful Rate (PSR), as

expressed by Eq (25):

PSR = 100× Successful Planning
Total Number in experiment

(25)

The PSR metric represented the QoS experienced by the users related to the finish time of each

user application.

5.4.2 Profit

For the providers, the critical parameter is profit, which is defined as the total cost of successful

workflow applications. Commonly, a higher number of successful applications may not lead to

higher profits. To calculate the profit metric for an algorithm, first we define the total cost of the

successful applications as Totalcost(alg). Then, the profit metric for each algorithm is calculated

as the ratio of the total cost achieved by the algorithm and the maximum total cost among all

algorithms (max(Totalcost)) for each scenario.

Profitalg =
Totalcost(alg)
max(Totalcost)

(26)

3https://confluence.pegasus.isi.edu/
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Figure 2: PSR values for synthetic workflow applications and different interval arrival time
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Figure 3: PSR values for Real World workflow applications and different interval arrival time
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5.5 Results and Discussion

In this section, we compare the MW-DBS algorithm with FDWS2[AB14b] and the modified ver-

sions of MIN-MIN and MAX-MIN , called MIN-MIN* and MAX-MIN* in the figures. We con-

sider a low number of processors compared to the number of DAGs to analyze the behavior of the

algorithms in a higher concurrent environment. The maximum load configuration is observed for

8 processors and 50 DAGs. Also, the filled circle connected by dot lines in the figures represent

the average values.

Figure 2 and 3 show the average PSR obtained on three different sites with CPU configurations

per site equal to 8 and 16 processors, for different arrival times, and for synthetic and real world

applications. In general, for both cases, the MW-DBS algorithm shows better performance in all

sites. Also, the MAX-MIN* algorithm yielded poorer results than the MIN-MIN* algorithm in

most cases.

The main advantage of MW-DBS algorithm occurred for low time intervals, that shows signifi-

cant performance improvement rather than other algorithms. Increasing the time intervals between

the DAGs arrival times reduces the concurrency, and thus, the improvements are less significant.

In another view, comparing results of two different workflow datasets, the PSR value of syn-

thetic workflow applications is higher than for real world workflows. The reason can be explained

based on workflow structure. Real world workflows have higher parallelism and are more bal-

anced than synthetic ones, so the defined user time constraint value which is calculated based on

the critical path (Eq.23) may not be achieved, i.e, the MW-DBS algorithm scheduled some tasks

of the workflow and after some time it realizes that the deadline cannot be met resulting in a

failed workflow. An alternative strategy is to have a pre-scheduling method to remove unfeasible

workflows, but it would increase the require time to make scheduling decisions.

From the service provider’s viewpoint, the major key is how much revenue is made. Figures.

4 and 5 shows the profit value of MW-DBS algorithm over other compared algorithms. As it is

shown, the proposed scheduling algorithm presents higher performance for profit in addition of

higher user satisfaction, higher PSR, in the majority of the cases.

The alternative to the framework that reserves a set of processors to each job, presents a PSR

and profit near zero for the high concurrent conditions considered in the experiment, and therefore,

are not presented graphically.

6 Conclusion

In this paper, we have presented a framework for dynamic scheduling of concurrent workflows

with two conflicting QoS requirements. To the best of our knowledge, there is no previous re-

search that deal with multiple workflow scheduling that are submitted at different moments in

time and that are based on the two conflicting QoS parameters, namely, time and cost constraint

at the same time. The main advantage of the proposed framework is the heuristic scheduler with

low complexity, which make it suitable for usage in real grid infrastructures. In terms of result
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Figure 4: Profit values for synthetic workflow applications for different interval arrival time
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Figure 5: Profit values for Real World workflow applications for different interval arrival time



7 Acknowledgment 189

accuracy, we used a simulator with a realistic model of the computing platform and with shared

links, as occurs in a common grid infrastructure.

The scheduler algorithm, MW-DBS, maps each workflow to a heterogeneous system con-

strained to a user-defined budget and time. The MW-DBS algorithm obtains better performances

in almost all presented cases, synthetic and real world applications, specially for lower arrival

time. The increase on the PSR implies a higher revenue for the provider that charges based on the

successful completed jobs.

In future work, we intend to extend the algorithm to consider more QoS parameter such as

energy, reliability and fault tolerance in grid environments.
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