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ABSTRACT

Modelling the drift of marine debris in quasi-real time can be of societal relevance. One pertinent
example is Malaysia Airlines flight MH370. The aircraft is assumed to have crashed in the Indian
Ocean, leaving floating wreckage to drift on the surface. Some of these items were recovered
around the western Indian Ocean. We use ocean currents simulated by an operational ocean
model in conjunction with surface Stokes drift to determine the possible paths taken by the
debris. We consider: (1) How important is the influence of surface waves on the drift? (2) What
are the relative benefits of forward- and backward-tracking in time? (3) Does including
information from more items refine the most probable crash-site region? Our results highlight a
critical contribution of Stokes drift and emphasise the need to know precisely the buoyancy
characteristics of the items. The differences between the tracking approaches provide a measure
of uncertainty which can be minimised by simulating a sufficiently large number of virtual
debris. Given the uncertainties associated with the timings of the debris sightings, we show that
at least 5 items are required to achieve an optimal most probable crash-site region. The results
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have implications for other drift simulation applications.

Introduction

Drift observations of objects near the surface of the ocean
have led to fundamental advances in the understanding
of ocean dynamics. Most notably, Nansen’s observations
of ice drift in the Arctic led to the formulation of Ekman
theory, which plays a central role in understanding the
dynamics of ocean gyres, fronts, and upwelling, among
others. Since the latter part of the twentieth century, sat-
ellite-tracked drifting buoys continuously provide a
wealth of information on ocean circulation and in-situ
properties (Lumpkin et al. 2017).

Supplementing these observations, simulations of
pathways of floating objects in the marine environment
are routinely undertaken, in particular for assessing the
dispersion and accumulation of marine litter and pol-
lution (e.g. Hardesty et al. 2017; Robinson et al. 2017).
Such assessments require model data that allow for the
connection between the coastal environment (as primary
source of anthropogenic litter or pollution) and the
open-ocean, and thus span wide spatial and temporal
scales. The model data generally stem from simulations
that, to a large extent, faithfully represent the large-

scale upper ocean circulation of the past decades. How-
ever, given the high spatial and temporal variability of
real-world surface flows resulting from features such as
mesoscale eddies, the results of such studies must be
interpreted in a probabilistic context, often with large
uncertainties.

Here, we provide insights on surface drift simulations
of objects for quasi-real-time applications. Instead of
employing simulated data from the past decades using
ocean models driven by reanalysed surface fluxes, we uti-
lise an up-to-date description of simulated surface vel-
ocities which includes the assimilation of direct
observational data. As a case study, we consider debris
of the Malaysian Airlines (flight MH370) aircraft that
were collected in the western Indian Ocean over the
period July 2015 - June 2016.

On 8 March 2014, flight MH370 disappeared on its
way from Kuala Lumpur, Malaysia to Beijing, China
with 239 people on board. Initial analyses from radar
and other communications pointed to a deviation of
the planned flight path towards a southern route in
the Indian Ocean (ATSB 2017). Detailed analysis of sat-
ellite communications, provided in the form of
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handshakes between the aircraft’s engines and satellites,
indicated that the plane had lost contact along the “7th
arc’ around the position of the satellite, which extended
from Java, Indonesia, to the southern Indian Ocean,
southwest of Australia (Figure 1, ATSB 2017). How-
ever, the precise location of the aircraft’s last position
was not known. In the following months, the Joint
Agency Coordination Centre, led by the Australian gov-
ernment, started the search for the aircraft around the
7th arc. The unsuccessful search was halted in January
2017 and spanned an area in excess of ~120000 km?
(Figure 1).

Several items of debris were recovered around the
Indian Ocean and attributed to the MH370 aircraft
(Figure 1). The first and most significant piece was a
flaperon found on La Réunion on 29 July 2015, about
16 months after the disappearance of MH370. Presum-
ing that this item had been drifting with the ocean cur-
rents after the crash, could its discovery help the search
for the missing plane? Or more generally, can ‘back-
tracking’ an object’s path at the ocean surface (i.e. follow-
ing it backwards in time from where it was found) pro-
vide meaningful insights on its origin?

In answering this question, several issues arise. We
outline here three key considerations that we examined
through the MH370 case study.

(1) The drift of any floating object on the ocean surface
is influenced by: (1) surface ocean currents, (2)
Stokes drift (nonlinear net drift near the ocean sur-
face which results from surface waves), and (3)
windage resulting from direct wind drag (tangential
shear stress), form drag (pressure differences across
the item), or the ‘sail’ effect (resulting a force at an
oblique angle to the wind direction). The geometry
of the object determines the respective contribution
of these factors to the total drift.

(2) Describing motion from a particle-following
Lagrangian perspective allows for both forward-
and back-tracking in time. However, these two
approaches do not necessarily yield the same result.
We compare both approaches, even though for the
flaperon, a back-tracking approach may seem
more intuitive since presuming any crash site
a priori might not be sensible.
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* Debris was first sighted in Dec 2015, but reported on 22 Mar 2016

Debris discovery dates and locations
1 LaRéunion# 29 Jul 2015
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Figure 1. Geographical distribution of the discovery locations of 9 items of debris ordered according to their discovery dates. The colour
scale shows the ocean depth (m) for the region over which virtual objects were released (see text for details). The maximum range is a
perimeter delineating the extent the aircraft could have flown given its fuel load and consumption. The 7th arc is the possible position
of the aircraft during its last successful automatic satellite communication. The hatched patch roughly shows the area of the underwater
search undertaken by the Australian Transport Safety Bureau (ATSB) between April 2015 and January 2017.



(3) Hypothetically, a more robust probable crash site
could be obtained by including more items of debris
into the analysis. We assess this hypothesis under
the consideration that for most items, their date of
discovery might differ substantially from the true
date of arrival at their respective locations.

While we focus on the MH370 case study to illustrate
our analyses, our results are valid for other applications
of object drift simulations in the ocean.

Materials and methods

Over the period July 2015 - June 2016, 20 pieces of debris
were collected along the western Indian Ocean coasts, of
which 9 were identified as ‘confirmed’ or ‘almost certain’
to belong to the MH370 aircraft (Figure 1, MOT 2018). So
as to properly simulate their possible drifts, we combined
surface currents obtained from the Copernicus Marine
Environment Monitoring Service (CMEMS) operational
model with matching simulated Stokes drift. We first
describe the model products we employed and then
elaborate on the Lagrangian methodology.

Model data

We used daily-mean surface velocities for the period 1
March 2014 to 26 July 2016 from the CMEMS global
ocean 1/12° physics analysis and forecast model in its
most accurate delayed mode. The system uses a global
ocean model based on the NEMO code (v3.1; Madec
2012) in the ORCA12 configuration. It covers the global
ocean at 1/12° nominal resolution (~9 km grid size in the
Indian Ocean) and has 50 levels in the vertical (surface
layer 1 m thick). The model is forced by 3-hourly Euro-
pean Centre for Medium-Range Weather Forecasts
(ECMWF) operational winds and corresponding heat
and freshwater fluxes. It captures all effects of these
fluxes in driving the ocean currents, including the
Ekman drift from the wind, but excludes wave effects.
The model is run operationally, assimilating observa-
tional data. Using a Kalman filter with the SEEK formu-
lation (SAM2vl) and bias correction (3D-Var) with
incremental analysis updates, a range of satellite and
in-situ data are used to update and correct the simulated
ocean state (Lellouche et al. 2013, 2018). In particular,
the use of sea surface temperature and sea surface height
from satellites combined with the mean dynamic topo-
graphy provide a more accurate description of the
upper-ocean hydrography and velocity, resulting in a
state-of-the-art description of the ocean surface proper-
ties at any given time. In the Indian Ocean the sea level
anomaly bias is less than 0.005 m' and the mean error in
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surface (15 m) velocity, assessed against independent
observations, is ~0.1 m/s (Lellouche et al. 2018). The
synoptic evolution of mesoscale features such as eddies
is also more realistically reproduced by the operational
model than by a non-assimilative hindcast.

Stokes drift was taken from the ECMWF High RESol-
ution WAve Model (HRES-WAM; Breivik et al. 2016;
ECMWEF 2017). Using an atmospheric forcing consistent
with that used for the ocean model described above, the
wave model explicitly simulates Stokes drift at 1/4° resol-
ution. We interpolated daily-mean Stokes drift velocities
onto the ORCA12 grid and added these to the ocean
model surface current velocities.

Lagrangian tracking of objects

Pathways of objects passively transported by a given flow
can be described from a Lagrangian perspective. In this
frame of reference, an object starting at a given position
and time is moved from that position either forward or
backward in time using the Eulerian velocity description
of the flow field for each time step. Lagrangian simu-
lations of pathways within ocean models are now com-
mon practice (van Sebille et al. 2018) and have been
previously performed to trace pathways of water masses
(e.g. Durgadoo et al. 2013, 2017; Riihs et al. 2013) or
marine litter/pollution (e.g. Robinson et al. 2017).

The Lagrangian experiments for this study were per-
formed using the Ariane software (v2.2.6, Blanke and
Raynaud 1997). Ariane simulates the advection of objects
within a simulated volume-conserving velocity field by
displacing them along analytically computed stream-
lines. It carefully considers the C-grid layout of
NEMO, and has already been successfully run using vel-
ocities simulated by the ORCA12 configuration (e.g.
Durgadoo et al. 2017; Robinson et al. 2017).

For the MH370 case study, the following assumptions

were made:
o All items of debris were simulated as dimensionless

virtual objects passively floating on the ocean surface
(at a constant depth of 0.5 m), in other words being
incapable of self-propulsion, and experiencing zero
drag.

e Windage on all items of debris was assumed negligible.
For the flaperon, buoyancy analyses and the presence
of barnacles suggests that it floated in a near-horizon-
tal, slightly submerged position and thus with negli-
gible windage (Daniel 2016; ATSB 2017).

e By using daily-mean velocity fields the stochastic
effects of quickly changing weather events on the
drift of objects is neglected.

e Itis not known how long each item of debris had been
on the beach before its discovery, or how long it had
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Table 1. Details of the experiments performed. The leeway (given as days prior to the reported discovery date) accounts for not
knowing how long the items of debris have been ashore or drifting in coastal waters before their discovery. Two reference
experiments (shaded rows): back- and forward-tracking with 30-day leeway and 100% Stokes.

Leeway (days)

Stokes drift (%)

No. Objects
(million) 10 30 50 50 100 150

Back-tracking ~ 0.1 X
Release: 1° x 1°around ~ 0.1 X X
La Réunion ~ 0.1 X X

~ 0.1 X X
Forward-tracking ~ 22 X X

~ 22 X X
Release: uniform within ~ 22 X X

the Indian Ocean basin ~1 X X

~73 X X

~ 3.6 X X

~ 1.8 X X

~ 0.9 X X

been drifting in coastal waters before being washed
ashore. Additionally, CMEMs may not simulate the
full spectrum of coastal processes faithfully. To
account for such spatial and temporal uncertainties,
we considered virtual objects within a 1° x 1° box
around each location and covering a 30-day ‘leeway’
period prior to their discovery (Table 1).

e The authorities assumed that the aircraft crashed
somewhere in the south-eastern Indian Ocean. Here,
we first considered the entire Indian Ocean basin as
the possible crash site. Subsequent refinements were
undertaken based on the maximum flight range of
the aircraft or along a swath around the 7th arc.

Two reference experiments were undertaken:

1. Back-tracking: Virtual objects were initiated uni-
formly (1/12° spacing) within a 1°x 1° box around
La Réunion at hourly intervals for 30 days prior to
the discovery date (~112000 independent objects).
These objects, in this case representing the flaperon,
were advected backwards in time until 8 March
2014 and their daily positions recorded.

2. Forward-tracking: Virtual objects were initiated uni-
formly (1/12° spacing) within the Indian Ocean
basin (20-145°E; 50°S-25°N) every hour on 8
March 2014 (~22 million independent objects).
The forward trajectories of these objects were calcu-
lated until 26 July 2016 and their daily positions
recorded.

Sensitivity tests were performed to examine the effect
of including various proportions of the full Stokes drift,
different leeway periods, and the number of particles
released. These are detailed in Table 1.

Subsampling and probability calculations

For each back-tracking experiment, starting at La
Réunion, the positions on 8 March 2014 of all virtual
objects within the domain were recorded. These were
binned and counted on a 1.5° x 1.5° regular grid. A prob-
ability distribution was achieved by dividing the count in
each bin by the total number of virtual objects.

For each of the forward-tracking experiments the fol-
lowing procedure was undertaken:

(1) For each debris discovery location X;, 1 <i <9
(a) Isolate those virtual objects that, within the pre-
scribed leeway period, reach a 1° x1° box
around X;.
The start positions (on 8 March 2014) of the
subset of objects in (a) are binned and counted
on a 1.5° x 1.5° regular grid.
A probability distribution P(X;) is calculated by
dividing the count in each bin by the total num-
ber of virtual objects isolated in (a).
(2) A joint probability distribution is calculated as
P(X, AND X, ... AND Xo) = P(X;) x P(X) X ... X
P(Xo).

(b)

(0)

The joint probability yields a distribution within the
overlapping region of all individual probability distri-
butions. We normalised the joint probability distribution
by dividing by Y [P(X;) x P(X) x ... x P(Xy)].

We portray the (joint) probability distributions by
delineating a ‘most probable’ region which contains the
highest probabilities and which give an accumulated
probability of 0.75 (i.e. the region we assess as most likely
to contain the crash site).

The above-mentioned strategy highlights two ways to
account for uncertainties that result from the chaotic
nature of the (simulated) surface ocean flow. Firstly, by



using a relatively coarse 1.5° x 1.5° binning, correspond-
ing to an area roughly ranging between 18000 and
28000 km? (depending on the location of the bin). Sec-
ondly, by simulating the trajectories of a sufficiently
large number of objects (assessed through the sensitivity
tests which were performed, Table 1). The resulting
probability distributions provide a quantification of the
associated uncertainty.

Results and discussion

Contribution of wave-induced motions to surface
drift

The surface flow within the Indian Ocean can be broadly
separated into three regions. The equatorial and north-
ern Indian Ocean is characterised by seasonal reversals
of winds and currents (Schott et al. 2009). The southern
Indian Ocean consists of a broad sluggish flow associated
with the subtropical gyre (New et al. 2007) and two fast
flowing western boundary currents off the east coasts of
Madagascar and South Africa (Lutjeharms 2006).
Finally, south of the Agulhas Return Current, which
lies near 42°S, the Indian Ocean sector of the Southern
Ocean is strongly influenced by persistent westerly
winds (Durgadoo et al. 2008). This diversity in regimes
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results in a wide range of instantaneous (daily-mean)
simulated surface currents (Figure 2a).

The simulated surface Stokes drift for 8 March 2014
resembles the pattern of the prevailing winds (Figure
2b). A non-negligible contribution O(0.2 m/s) from
these wave-induced velocities is seen in the southern
and eastern Indian Ocean, adding an anticlockwise com-
ponent to the combined velocities between approxi-
mately 10-40°S which is northwestward in the region
west of Australia (Figure 2¢). On average and for regions
outside the subtropical gyre, Stokes drift accounts for
~40% of the combined velocities (Figure 2d). Within
the subtropical gyre, Stokes drift and surface ocean cur-
rents are comparable.

We assess the impact of Stokes drift on the drift of
objects by using the back-tracking experiments from
La Réunion (Table 1). The probability distributions of
the positions of the objects on 8 March 2014 under
different percentages of Stokes drift are shown in Figure
3. The overall anticlockwise pattern of the wave-induced
velocities is reflected in the progressive shift of the distri-
butions from the northern to the southwestern Indian
Ocean, as the percentage of the simulated surface Stokes
drift increases from 0 to 150%. The most probable area
increases ~4 fold in size to ~2 million km* when
accounting for Stokes drift at 100%.

(b)
Stokes Drift
8 March 2014

LR siSiaaa

vrr072

NNEL e

80°E 100°E 120°E

60°E

40°E

Figure 2. Snapshot of simulated surface ocean currents (a), Stokes drift (b), and their combination (c) for 8 March 2014. Panel (d) shows
the combined temporal average between March 2014 and July 2015. Units are in m/s.
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Figure 3. Probability distribution on a 1.5° x 1.5° regular grid of object locations on 8 March 2014 from the La Réunion back-tracking
experiment. For these, simulated surface currents combined with 0, 50, 100 and 150% of simulated Stokes drift (a—d respectively) were
used. In colour, a most probable area is defined whose accumulated probability is 0.75, which is enclosed within the grey area (accu-

mulated probability = 1).

The +50% sensitivity experiments for Stokes drift
provide a measure of the uncertainty in exactly how
waves interact with the debris (in this case the flaperon).
For example, it is uncertain how shorter waves impact
the debris and over what effective depth Stokes drift
should be applied. Indeed, a substantial percentage of
the surface Stokes drift, typically about a third (Breivik
et al. 2016), results from the high frequency tail of the
surface wave spectrum. This component decays rapidly
with depth, with a decay scale that may be as short as
0.1-0.2 m. It is thus questionable whether an item of deb-
ris ‘feels” the full surface Stokes drift or only part of it.
Other factors such as the reflection of short high-fre-
quency waves from the debris could enhance the drift
effect (Longuet-Higgins 1977). Additionally, some lab-
oratory work (e.g. Huang et al. 2011) has suggested
that waves may cause objects to move faster than Stokes
drift.

Windage is ignored in this study. Daniel (2016) ana-
lysed the floating characteristics of the flaperon and con-
cluded that (without barnacles) such ‘windage’ could be
~3% but that with the presence of barnacles, as actually
observed, the flaperon would float slightly submerged
and with 0% windage. Given that barnacles take a

finite time to grow, this is an uncertainty in our study.
Additional windage would in general tend to push the
most likely region further back around the gyre, given
that the prevailing winds are eastward near 40°S and
then northwestward in the eastern regions of the gyre.
Given that Stokes drift is typically 1-2% of the wind
speed (Smith 2006; Ardhuin et al. 2009), an additional
50% in the Stokes term (e.g. from 100% to 150%)
would be comparable to an additional windage of 0.5-
1.0% of the wind speed. However, the (direct) effect of
wind on surface drift might not be aligned to that of
waves. Therefore, the comparison between Figure 3c
and d only gives a plausible difference in distribution
should such an additional windage be included.

Noting the above-mentioned uncertainties, we choose
to proceed with the advection of virtual debris with the
full surface Stokes drift (100%) in the following as
being the most realistic case.

Forward- vs back-tracking

The above back-tracking Lagrangian experiment is intui-
tive since it makes no a priori assumptions on the poss-
ible origins of the debris. Based on the knowledge of the
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Figure 4. Probability distribution on a 1.5° X 1.5° reqular grid of object locations on 8 March 2014 from the forward-tracking to La
Réunion (a) and the La Réunion reverse/back-tracking experiment (b). For these, simulated surface currents combined with 100% of
simulated Stokes drift were used. In colour, a most probable area is defined whose accumulated probability is 0.75, which is enclosed

within the grey area (accumulated probability of 1).

possible position of the aircraft during its last successful
satellite communication (around the 7th arc), a forward-
tracking experiment could also be devised with virtual
flaperons starting around the arc. These two experiments
would, however, not necessarily yield the same results.
Starting from the forward-tracking reference exper-
iment (Table 1) where virtual objects were spatially uni-
formly released within the entire Indian Ocean on 8
March 2014, we isolated those objects that reached a
1° x 1° box around La Réunion between 30 June 2015
and 29 July 2015 (30 days leeway). This subset consisted
of ~27000 objects. Figure 4a shows the probability distri-
bution of the start positions of these objects. The pos-
itions and timings of these subsampled objects around
La Réunion were noted and subsequently used to initiate

a reverse/back-tracking experiment to determine their
respective positions on 8 March 2014. This experiment
is similar to the back-tracking reference experiment
listed in Table 1, but with fewer objects and non-uniform
starting positions around La Réunion. The resulting
probability distribution is shown in Figure 4b. That
Figures 4b and 3c yield similar results (spatial correlation
of 0.9 at the 95% confidence interval, c.i.) suggests that
the number of virtual objects used for the reference
back-tracking experiment is sufficient.

Quantitatively, the distributions shown in Figure 4 are
not similar (spatial correlation of 0.5, c.i. = 95%; a Kol-
mogorov-Smirnov test rejects the null-hypothesis that
the two distributions stem from the same underlying
continuous population, ci.=95%, p~10"%). The
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forward-tracking experiment (Figure 4a) produces a
most probable area ~2.5 million km? larger than that
produced by the reverse/back-tracking experiments
(Figures 4b and 3c). In theory, the analytical solution
of the trajectory equation, as employed by the Ariane
software, is unique for 3-dimensional non-divergent
flows. Thus, integrating a trajectory forward in time
and then using its final position and integrating a trajec-
tory backward for the same period of time should yield
identical results. In practice, however, tests show that
full reversibility is compromised by slight numerical
errors. Analytical advection in 2-dimensions within
Ariane is achieved by setting the vertical velocity com-
ponent of the flow to zero, hence forcing each object at
each time step to remain at the given constant depth
or density. Thus, a further small error is introduced at
each time step which also accumulates as trajectories
are calculated. The overall effect is that the solution is
no longer unique and forward and backward trajectories
differ. These factors are responsible for the differences
between Figure 4(a) and (b). Other explicit time stepping
methods for advection in 2-dimensions would yield
similar results (van Sebille et al. 2018). Additional
sources of error include slight inconsistencies in timing
when initiating the reverse tracking. Such inconsistencies
can be minimised by using velocity data stored at high
temporal resolution and subsequently reducing the tra-
jectory integration time step. Nonetheless, the qualitative
similarity between the probability distributions resulting
from both strategies shows that the net effect of the above
errors is relatively small. This is achieved by having a
sufficiently large number of independent virtual objects.

Inclusion of multiple debris discovery locations

To explore whether including additional items of debris
can further reduce the uncertainties, we could either run
8 further separate back-tracking experiments or use the
single forward-tracking experiment for all debris
locations. The latter strategy ensures that each debris
item is given equal weight, and is more consistent with
the prognostic input fields. This is therefore the strategy
we use here.

Following the two-step procedure described above,
for each of the 9 debris discovery locations, individual
probability distributions from the reference forward-
tracking experiment were calculated (similar to that
shown in Figure 4a). Their normalised joint probability
distribution is shown in Figure 5a. The most probable
region (with accumulated probability of 0.75) roughly
spans an area of ~1.0 million km® in the southwest
Indian Ocean between 30-80°E and 35-40°S. Compared
to using only the flaperon (item #1), this is a reduction in

area of ~90% (Figure 5b). The area of the overall distri-
bution (with accumulated probability of 1) is reduced by
~50% when debris from all 9 locations are considered.

Figure 5b further shows a quasi-asymptotic behaviour
after the 5" item of debris has been considered; that is
the area reduction beyond that point is relatively small.
Here, the debris locations have been considered in the
temporal order in which the respective items were
reported. However, it is worth noting that this quasi-
asymptotic behaviour does not depend on the order in
which the locations are considered (not shown).

As indicated previously, a 30-day leeway margin was
chosen to account for the temporal uncertainty associ-
ated with not knowing precisely when each item of deb-
ris reached its respective location. We tested this
assumption by altering the margin to 10 and 50 days.
The resulting areas of the most probable region were
found to be similar to that of the reference experiment
(not shown), and to show a similar exponential decrease
in area with increasing number of debris locations con-
sidered (Figure 5b, blue and red curves respectively,
compared with the black curve for the reference exper-
iment). These two sensitivity experiments provide an
error bar to the reference experiment.

In this context, we consider what might cause the
differences between the most likely region in Figure 4a
(using only the flaperon) and that in Figure 5a (using all
9 items). Firstly, as each subsequent item of debris is
included in the analysis, the most probable regions show
a regular progression between Figures 4a and 5a (not
shown), retreating from the central and eastern portion
of the South Indian Ocean between 30-40°S and moving
steadily to occupy a more westward position. Also, there is
a general anticlockwise circulation in this region (Figure
2d; New et al. 2007) which would bring surface objects
from the west to the east (between 30-40°S) and thereafter
northwards west of Australia, subsequently reaching the
westward South Equatorial Current between 10-15°S
which would be expected (on average) to bring the objects
towards Reunion, then Madagascar and then to the Afri-
can coast. Since the inclusion of further items of debris
tends to drive the most probable region further backwards
around this circulation pattern, we speculate that there
could be significant delays between beaching and discov-
ery for some of the later items, that would have the spur-
ious effect of giving more time for the items to circulate
and result in starting positions further back around the
gyre than they should be. This speculation is supported
by the observation that some items of debris appear to
be discovered significanly ‘out of sequence’ with e.g.
items 5 and 7 being found 8 and 10 months after item
1, even though they are ‘upstream’ and would usually be
expected to be found earlier.
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Figure 5. (a) Normalised joint probability distribution on a 1.5° x 1.5° regular grid derived from all 9 debris locations on 8 March 2014
from the forward-tracking experiment, which uses simulated surface currents combined with 100% of simulated Stokes drift. A most
probable area is defined whose accumulated probability is 0.75 (blue area), which is enclosed within the grey area (accumulated prob-
ability = 1). (b) The area (km?, left axis) and % area decrease from only considering the first debris location (%, right axis, lines with
brown circles), as a function of the number of debris locations considered (taken in order as shown in Figure 1). All curves describe
the region with an accumulated probability of 0.75, except for the thick dashed curve which shows the area of the entire distribution

(accumulated probability of 1).

Finally, are ~22 million starting objects used for the
reference forward-tracking experiment sufficient? Redu-
cing the number of starting objects by half yields prob-
ability distributions (spatial correlations of ~0.8, c.i.=
95%, not shown) that fall well within the error bar that
we defined above (Figure 5b, green curve), suggesting
that the number of objects used for the reference for-
ward-tracking experiment is sufficient.

Implications for the search for MH370

Coming back to whether the discovery of debris could
assist the search for the missing MH370 aircraft, 2
additional clues might help to restrict the geographical
area: (1) the maximum range the aircraft could have
flown given its fuel load and consumption rate and (2)
the possible position of the aircraft during its last
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Figure 6. Refinement of Figure 5a by considering (a) the maximum possible range of the MH370 aircraft and (b) a 5° swath along either
side of the 7th arc between the island of Java and 45 °S. For each panel, in colour, a most probable area is defined whose accumulated
probability is 0.75, which is enclosed within the grey area (accumulated probability = 1).

successful satellite communication (along the 7th arc).
From Figure 5a it is clear that the region within the maxi-
mum range perimeter (and indeed around the arc) is
associated with low probabilities, that is, the chance that
all 9 items of debris originated from there is low. How-
ever, Figure 6 shows the result of refining the calculations
for Figure 5a by only considering those trajectories which
originated either within the maximum range (Figure 6a)
or both within the maximum range and near the arc
(Figure 6b, for which we used a ~550 km swath on either
side of the arc). In the latter case, the most probable region
for the crash site around the Arc lies between 30-35°S and

80-95°E. We note in particular that the area searched by
the Australian Transport Safety Bureau (here also binned
onto a 1.5° x 1.5° grid) overlaps with the region of highest
probabilities that intersects the arc (Figure 6b). At the
time of writing, metadata was not available from the
2018 Ocean Infinity search, which extends to 25°S.

In the full list of debris recovered around the western
Indian Ocean, 2 items were identified as ‘likely’ to orig-
inate from MH370, 8 as ‘very likely’, and 7 as ‘not ident-
ifiable’ (MOT 2018). None of these were considered in
the present study. From Figure 5b, we deduce that the
inclusion of more debris discovery locations in the



analysis is not likely to lead to a significant refinement of
the most probable area. Also, with a 30-day leeway, item
#8 (Antsikara) is representative of 7 other items retrieved
around the same site in June 2016.

When considering the implication of our results for
the search for MH370, we must acknowledge several
sources of uncertainties, which led to the assumptions
made in this study. The geometry of a debris determines
its buoyancy characteristics (e.g. drift depth and wind-
age) and hence influence its drift. These characteristics
would be different for different pieces of debris. Here
we demonstrated the usefulness of the methodology
that we employed in including multiple items of debris.
Our results could be refined further if, for all debris,
their buoyancy characteristics and their time of arrival
on land were known precisely.

Summary and conclusions

We undertook a detailed study of trajectory calculations
in the Indian Ocean in connection with the disappearance
of flight MH370 in 2014. We used a state-of-the-art ocean
circulation model which includes the assimilation of avail-
able data to provide the best possible estimates of the
ocean surface currents during the relevant period.

We showed the importance of including Stokes drift
into the calculations. This is a nonlinear effect which results
from the wave field in the ocean, and critically affects the
results since this term can be of the same order as the
wind- and buoyancy-driven surface ocean currents in
large regions of the subtropical gyre. Entirely ignoring
Stokes drift in the calculations can result in large errors,
which in our case study clearly demonstrates. Although
there are still uncertainties arising from the windage on
the floating items of debris, we believe that this effect is
relatively small (at least for debris item #1) and likely to be
much less than the differences between using 50% or 150%
of the Stokes drift term. It is our opinion that the scenarios
including Stokes drift at 100% may be the most realistic,
but more work is clearly required to refine this assumption.

If wave model output is not available then where the
waves are in equilibrium with the wind (a ‘wind-sea’),
it may be a fair approximation to assume that Stokes
drift is in the same direction as the wind and pro-
portional to it; e.g. the Doppler sonar observations of
Smith (2006) suggest a near-surface Stokes drift of
~1.25% of the wind speed averaged over the surface
‘bubble zone’ (~1.5 m), while the High-Frequency
radar observations of Ardhuin et al. (2009) suggest a
range 0.5-1.2% of the wind speed for Stokes drift aver-
aged over the top 1 m. However, wave model output is
necessary to adequately describe Stokes drift where (1)
the wind and wave fields are evolving (2) fetch is limited
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(near coasts etc), or (3) remotely generated swell is sig-
nificant (e.g. in the southeastern Pacific; Hanley et al.
2010). Given its importance, Stokes drift should be
taken from wave model output where possible.

We also investigated possible numerical errors in the
tracking methodologies by carefully undertaking both
back-tracking and forward-tracking experiments (Figure
4). The differences between these two distributions arise
from the non-reversibility of the trajectories primarily
due to numerical inaccuracies in the tracking scheme in
2-dimensions (which accumulate along the trajectories).
These inaccuracies would also apply to other models
and other tracking techniques. However, we were here
able to examine the net effect of these errors (for the
first time in any such study), and found them to be rela-
tively small. In fact, the differences between these figures
give a measure of the uncertainty in the method.

Overall, this study shows the utility of our state-of-
the-art assimilative ocean models in providing insights
into the drift of particles in the ocean surface. An over-
view of current and future developments of various
assimilative models is described in detail in Schiller
et al. (2018). We showed the importance of including
Stokes drift, and the need for better quantitative under-
standing of its magnitude and effect, and also highlighted
the high level of accuracy in the numerical schemes
which are able to follow the particles over ocean-basin
scales (O(1000) km) and gyre timescales (several
years). In addition to providing insights into possible air-
craft crash sites, the technique also has clear applications
for the drift simulation of oil spills, of marine litter and
pollution, and of non-swimming larvae, and for studies
of the occurrence of invasive species as the ocean cur-
rents change in response to climate warming.

Note

1. Figure 15 of the CMEMS Quality Information Docu-
ment, available at http://cmems-resources.cls.fr/
documents/QUID/CMEMS-GLO-QUID-001-024.pdf
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