

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

MASSEY UNIVERSITY

1.*	(a)	I give permission for my thesis, entitled Vigous accomment in Pinus radiite D. Von seed
		to be made available to readers in the Library under the conditions determined by the Librarian.
	(b)	I agree to my thesis, if asked for by another institution, being sent away on temporary loan under conditions determined by the Librarian.
	(c)	I also agree that my thesis may be copied for Library use.
2. *		I do not wish my thesis, entitled
		to be made available to readers or to be sent to other institutions without my written consent within the next two years.
		Signed
		Date
*		Strike out the sentence or phrase which does not apply.
Mass	Library ey Univ ierston	versity North, N.Z.
the	copyrig space b nanent a	ht of this thesis belongs to the author. Readers must sign their name in elow to show that they recognise this. They are asked to add their address.
Nan	ne and A	Address Date
•••••	• • • • • • • • • • • • • • • • • • • •	
	• • • • • • • • • • • • • • • • • • • •	
•••••	•••••	
	••••••	
•••••	•••••	

MASSEY LINIVERSITY

VIGOUR ASSESSMENT IN Pinus radiata D. DON SEEDS

.

A thesis presented in partial fulfilment of the requirements for the degree of Master of Agricultural Science in Seed Technology at Massey University, Palmerston North,

New Zealand

HERO DIEN P. KARTIKO

1990

ABSTRACT

Kartiko, H.D.P.: M.Agr.Sc. (Seed Technology)

Title of Thesis: Vigour Assessment in *Pinus radiata* D. Don Seeds

Supervisors:

¹Dr P. Coolbear and ²Mr A. Firth

¹Seed Technology Centre, Massey University, Palmerston North ²Forest Research Institute, Rotorua

The sensitivity and/or predictivity of various vigour test methods (which include conductivity, tetrazolium, x-ray contrast, seedling growth, controlled deterioration, complex stressing vigour, and low temperature/osmotic stress tests) for prepared lots of Pinus radiata seeds were investigated in this study. The best tests were the controlled deterioration test with two days aging treatment (CD2d) test), the prechilled seedling growth test (SG+pr test), and the complex stressing vigour test (CSV test). These were then further investigated to evaluate their ability to predict the performance of different seed lots at the Forest Research Institute (FRI) nursery, Rotorua.

The CD2d, SG+pr and CSV tests showed good correlation, especially with percentage of plantable seedlings at the FRI nursery. In addition, these tests seem to have met most of the AOSA's (1983) criteria for a practical vigour testing, as they are simple and can be done in a relatively short period of time. For application purposes, it is suggested that the test parameters which gave the highest correlation coefficient value with percentage of plantable seedlings in the nursery should be used as a reliable measurement. Therefore,

percentage normal seedlings should be used in either the CD2d or the CSV test, whereas T_{50} radicle emergence seems more predictive in the SG+pr test.

For application in other nurseries, these tests may still be valid, especially if pre-sowing treatment and nursery conditions are about the same as in the FRI nursery. If conditions do differ, however, the CD2d and SG+pr tests are more likely to be useful than the CSV test. This hypothesis is based on the fact that the CD2d and SG+pr tests also gave good correlations with the glasshouse (optimum conditions) and winter field tests (sub-optimum conditions). In contrast, there was no significant correlation given by the CSV test in relation to the glasshouse and winter field tests.

Seed weight had a significant effect on seedling dry weight and T_{50} radicle emergence if there was a large seed weight variation between seed lots. In this case, generally heavier seeds had better performance than the lighter ones. If there was only small variation in overall seed weight among seed lots, however, the important effects of individual differences in seed weights were masked.

The direction of further studies would seem to be to evaluate the reproducibility of correlation coefficient values and regression equations by the CD2d, SG+pr and CSV tests in the same nursery site over several sowings. Additionally, vigour test evaluation using seed lots from individual clones would also seem to be important.

ACKNOWLEDGEMENTS

In the name of Allah most gracious, most merciful. Praise be to Almighty Allah, the Lord of Universe, and may peace be upon prophet Muhammad s.a.w. and his family.

I wish to express my appreciation and sincere gratitude to my parents, my parents-inlaw, my wife, my son, and my brothers and sisters for all their support and sacrifices.

Then I also extend my thanks and gratitude to Dr P. Coolbear for his constructive suggestions and supervision in the conduct of this study, and to Dr M.J. Hill, Mr C.R. McGill and all of the staff of the Seed Technology Centre for all their help and support. I also gratefully acknowledge the help and support of Mr A. Firth, Dr M.I. Menzies, and Mr Mike Dibley of the New Zealand Forest Research Institute, Rotorua.

I also extend my thanks to the Indonesian and New Zealand Governments which have contributed greatly in various phases of this study, and also to the Director and staff of the Forestry Seed Technology Centre, Bogor, Indonesia for all their help and support.

Finally, I also express my gratitude to all of my friends and other people not already mentioned for all of their cooperation and good relationships.

TABLE OF CONTENTS

.

4 B 5 7	ידארד		:		
ACKNOWLEDGEMENTS					
		ONTENTS			
		LES vii			
		JRES is			
LIST	OF APPE	ENDICES xi	i		
I.	INTROI	DUCTION	I		
II.	LITERA	TURE REVIEW	ł		
	2.1.	Pinus radiata: the need for high vigour seed	ŀ		
	2.1.1.	The role of seed vigour in P. radiata forest establishment	ŀ		
	2.1.2.	The problem of low vigour	ł		
	2.1.2.1.	The condition of the mother trees	5		
	2.1.2.2.	Collection date	7		
	2.2.	Seed deterioration	3		
	2.2.1.	Factors affecting seed deterioration	3		
	2.2.1.1.	Effect of genotype	3		
	2.2.1.2.	Effect of storage environment 10)		
	2.2.1.3.	Artificial aging conditions	l		
	2.2.2	Mechanism of seed deterioration 12	2		
	2.3	Seed vigour testing 14	1		
	2.3.1.	The importance of seed vigour testing	1		
	2.3.2.	Seed vigour testing methods 12	5		
	2.3.2.1.	Tests not involving germination	5		
	2.3.2.2.	Tests involving germination)		
	2.3.2.3.	Stress tests 22	2		
	2.3.3	Scope for further investigation 22	3		

Page

III.	MATE	RIALS AND METHODS	35
	3.1.	Deterioration in P. radiata seeds	35
	3.2.	Vigour tests evaluation in P. radiata seeds using 5 seed lots	
		which varied according to seed size and age	37
	3.2.1.	Seed lot preparation	37
	3.2.2.	Vigour testing	38
	3.2.2.1.	Seedling growth tests	38
	3.2.2.2.	Tests not involving germination	38
	3.2.2.3.	Stress tests	41
	3.2.3.	Glasshouse test	43
	3.2.4.	Winter field test	44
	3.3.	Vigour tests evaluation in P. radiata seeds using 16 seed lots	
		which varied according to type of mother tree and	
		collection date	45
	3.3.1.	Seed weight and vigour tests	47
	3.3.1.1.	Seed weight test	47
	3.3.1.2.	Vigour tests	47
	3.3.2.	Nursery and standard germination tests carried out by FRI	
		(the New Zealand Forest Research Institute)	47
IV.	RESUL	TS	48
	4.1.	Deterioration in P. radiata	48
	4.2.	Vigour tests evaluation in P. radiata seeds using 5 seed lots	
		which varied according to seed size and age	54
	4.2.1.	Seed lot performance in the glasshouse test	54
	4.2.2.	Conditions and seed lots performance in the winter field tests	54
	4.2.3.	Seed lots performance in seedling growth test	62
	4.2.4.	Seed lot performance in radiographic test	68
	4.2.5.	Seed lot performance in topographical tetrazolium test	68
	4.2.6.	Seed lot performance in the conductivity test	69
	4.2.7.	Seed lot performance in the controlled deterioration (CD) test	69
	4.2.8.	Seed lot performance in the complex stressing vigour test	69
	4.2.9.	Seed lot performance in low temperature/osmotic stress test	72
	4.2.10.	Correlation between vigour tests and glasshouse/winter field test	72

v

	4.3.	Vigour tests evaluation in P. radiata seeds using 16 seed lots	
		which varied according to type of mother tree and	
		collection date	87
	4.3.1.	Seed lot performance in the standard germination and nursery	
		tests carried out by FRI	87
	4.3.2.	Seed weight	88
	4.3.3.	Seed lot performance in the vigour tests done at Seed	
		Technology Centre	88
	4.3.4.	Correlation of seed weight, standard germination, and vigour	
		tests with FRI nursery test	94
	4.3.4.1.	Correlation between seed weight and nursery test	94
	4.3.4.2.	Correlation between standard germination test by (FRI) and	
		the nursery test	97
	4.3.4.3	Correlation between vigour tests and nursery test	97
v.	DISCU	SSION	103
	5.1.	Deterioration in P. radiata seeds	103
	5.1.1.	The pattern of deterioration	103
	5.1.2.	The role of high temperature and relative humidity	104
	5.1.3.	Changes which may be associated with the loss of vigour and	
		viability	105
	5.1.4.	Changes in normal seedling dry weight	106
	5.2.	Vigour test evaluation	106
	5.2.1.	Promising suitable vigour tests for P. radiata	107
	5.2.1.1.	The controlled deterioration test with 2 days aging	
		(CD2d test)	108
	5.2.1.2.	The prechilled seedling growth test (SG + pr test)	110
	5.2.1.3.	The complex stressing vigour test (CSVT)	113
	5.2.1.4.	The low temperature germination test at 10°C, 0 bar	114
	5.2.2.	Suitable vigour tests for assessing seedling establishment	
		at Rotorua (FRI) nursery	115
	5.2.3.	The effect of seed coat condition on germination performance	
		and the conductivity test result	117
	5.2.3.1.	The effect of seed coat condition on germination performance	117

	5.2.3.2.	The effect of the condition of the seed coat on the conductivity	
		test result	120
	5.2.4.	The relationship between seed weight and seedling performance	122
VI.	CONCL	USION	125
	6.1.	Deterioration in P. radiata seeds	125
	6.2.	Promising suitable vigour tests for P. radiata	125
	6.3.	Suitable vigour tests for assessing seedling establishment	
		of P. radiata at Rotorua (FRI) nursery	126
	6.4.	The relationship between seed weight and seedling performance	128
	6.5.	Scope for further studies	128
BIBL	IOGRAP	НҮ	130
APPE	ENDICES		146

•

LIST OF TABLES

٠

•

Table

.

Page

2.1.	Vigour tests not involving germination	24
2.2.	Vigour tests involving germination	29
2.3.	Stress tests	32
3.1	Planting years and clone number of parent trees of the seed lot	
	used in the aging study of <i>P. radiata</i> seeds	35
3.2.	Moisture contents after the controlled deterioration test	42
3.3	Description of P. radiata seed lots	46
4.1.	100 seed weight data for the different seed lots	89

LIST OF FIGURES

•

Figure	<u>Pa</u>	nge
4.1.A.	Changes in % radicle emergence, during accelerated aging at	
	40°C and 45°C with 100% RH up to 14 days	49
4.1.B.	Changes in % normal seedlings during accelerated aging at	
	40°C and 45°C with 100% RH up to 14 days	50
4.1.C.	Changes in T_{50} radicle emergence and T_{50} normal seedlings during	
	accelerated aging at 40° C with 100% RH up to 14 days	51
4.1.D.	Changes in T_{50} radicle emergence and T_{50} normal seedlings during	
	accelerated aging at 45°C with 100% RH up to 14 days	52
4.1.E.	Changes in normal seedlings dry weight during accelerated aging	
	at 40°C and 45°C with 100% RH up to 14 days	53
4.2.A.	Percentage of normal seedlings in glasshouse test	55
4.2.B.	T ₅₀ normal seedlings in glasshouse test	56
4.2.C.	Normal seedlings dry weight in glasshouse test	57
4.3.A.	Cumulative emerged and normal seedlings in the winter field test	58
4.3.B.	Surviving emerged and normal seedlings in the winter field test	59
4.3.C.	Time of 50% emergence and 50% establishment of normal seedlings	
	in the winter field test	60
4.3.D.	Dry weight of shoots of normal seedlings in the winter field test	61
4.4.A.	Percentage of radicle emergence in seedling growth test	63
4.4.B.	Percentage of normal seedlings in seedling growth test	64
4.4.C.	T ₅₀ radicle emergence in seedling growth test	65
4.4.D.	T ₅₀ normal seedlings in seedling growth test	66
4.4.E.	Normal seedlings dry weight in seedling growth test	67

		x

Figure	<u>Pa</u>	age
4.5.	Seed lot performance in controlled deterioration (CD) test	70
4.6.	Seed lot performance in complex stressing vigour test	71
4.7.A.	Percentage of radicle emergence at 10 °C	73
4.7.B.	T ₅₀ radicle emergence at 10°C	74
4.7.C.	T_{50} radicle emergence at $15^{\circ}C$	75
4.8.	Radicle emergence from seedling growth test + prechilling treatment	
	vs surviving normal seedlings in the field	77
4.9.	Radicle emergence from seedling growth test without prechilling	
	vs surviving normal seedlings in the field	78
4.10.	Normal seedlings from the controlled deterioration test with 2 days	
	aging treatment vs normal seedlings in the glasshouse	79
4.11.	Normal seedlings from the controlled deterioration test with 2 days	
	aging treatment vs T ₅₀ normal seedlings in the glasshouse	80
4.12.	Normal seedlings from the controlled deterioration test with 2 days	
	aging treatment vs surviving normal seedlings in the field	81
4.13.	Normal seedlings from the controlled deterioration test with 2 days	
	aging treatment vs T ₅₀ normal seedlings in the field	82
4.14.	Normal seedlings from the complex stressing vigour test vs surviving	
	normal seedlings in the field	83
4.15.	Radicle emergence in $10\degree$ C, 0 bar vs surviving normal seedlings in	
	the field	84
4.16.	Radicle emergence in 15° C, 0 bar vs surviving normal seedlings in	
	the field	85
4.17.	Radicle emergence in 20 $^{\circ}$ C, 0 bar vs surviving normal seedlings in	
	the field	86

<u>Figure</u>		Page
4.18.A.	100 seed weight of Pinus radiata clones on lot 13 at moisture	
	content 7.69%	90
4.18.B.	100 seed weight of Pinus radiata clones of lot 14 at moisture	
	content 7.69%	91
4,18.C.	100 seed weight of Pinus radiata clones of lot 15 at moisture	
	content 7.69%	92
4.18.D.	100 seed weight of Pinus radiata clones of lot 16 at moisture	
	content 7.69%	93
4.19.	Seed weight vs seedling height in the nursery	95
4.20.	Seed weight vs seedling diameter in the nursery	96
4.21.	Radicle emergence from the controlled deterioration test with 2 days	
	aging treatment vs plantable seedlings in the nursery	98
4.22.	Normal seedlings from the controlled deterioration test with 2 days	
	aging treatment vs plantable seedlings in the nursery	99
4.23.	T_{50} radicle emergence in the controlled deterioration test with 2 days	
	aging treatment vs T ₅₀ germination in the nursery	. 101
4.24.	T_{50} normal seedlings in the controlled deterioration test with 2 days	
	aging treatment vs T ₅₀ germination in the nursery	. 102

• .

LIST OF APPENDICES

Appendix

.

Page

1.	Quantitative tetrazolium test results	146
2.	Nursery and standard germination test procedures (carried out by FR1)	148
3.	Temperature in glasshouse test	150
4.A.	Temperature in the winter field test	151
4.B.	Rainfall in the winter field test	152
5.	Seed lot performance in glasshouse and winter field tests	153
6,	Seed lot performance in vigour tests	154
7.	Correlation (r) between vigour tests and glasshouse/winter field test	157
8.	Seed lot performance in standard germination and nursery tests	
	(carried out by FRI)	161
9.	Seed lot ranking in standard germination and nursery tests according	
	to relative vigour score	162
10.	Seed lot ranking in the overall seed lots in standard germination	
	and nursery tests according to relative vigour score	163
11.	Calculation of mean relative vigour score in nursery test	164
12.	Seed lot performance in vigour tests done at Seed Technology Centre	165
13.	Seed lot ranking in vigour tests according to relative vigour score	166
14.	Seed lot ranking (within groups) in vigour test according to mean	
	relative vigour score	167
15.	Seed lot ranking in vigour tests according to mean rvs	168
16.	Calculation to obtain mean relative vigour score (rvs) in vigour tests	169

Appendix		Page
17.	Correlation of seed weight, standard germination, and vigour tests	
	with nursery test	. 170
18.	Summary of weather during seedling growth of <i>P. radiata</i> in the	
	nursery at the FRI, Rotorua in 1987/88	. 171

• .

•

xiii

.

I. INTRODUCTION

Pinus radiata which originally might have come from Ano Nuevo Point, on the southwestern part of the North American coast (Bannister, 1973) nowadays covers over one million hectares of plantation forests in New Zealand (FR1, 1987) and produces a very useful and versatile wood, e.g. logs, solid timber, wood chips, pulp and paper. These account for ten percent of New Zealand's overseas earnings (Clifton, 1985). It has a medium density soft wood with an even texture. In addition, the physical structure of the wood permits ready preservative treatment. Therefore, the end products are stable, strong, resistant to insects and fungi, and easily finished with a variety of stains, clear finishes, paint and overlays (FRI, 1987).

For planting purposes, a large number of genetically improved seed is needed, and for 1984-1985 season, for example, the seed demand was about 3500 kg. To fulfil this demand, almost all of the current seed production is from 850 series clones and half of the total quantity is collected from Gwavas orchard. By 1990, production from 850 series clones is planned to be reduced and almost completely replaced by seed from 268 and 875 series clones collected mainly from Kaingaroa orchard (Vincent, 1986). Despite the fact that these seeds are genetically improved, the vigour of the seeds at present seems to be quite low, even though laboratory germination tests show that at least 90% of seeds are viable (see section 2.1.2.). Therefore, it is important to select the best seed production methods, and the best clones which can produce high vigorous seeds. This requires the identification of suitable vigour tests for this species.

It appears that there are not many reports concerning vigour tests in *P. radiata* or other tree species. In the few studies which have been conducted there has been little attempt to

correlate results with field performance. This analysis is very crucial, as high vigour seeds according to a vigour test do not always produce good performance in the field (see section 2.3.).

In some agricultural seeds, some vigour tests gave high and significant correlation with field performance in certain stations. However, they may give poor correlations with field performance in other stations (see section 2.3.). Therefore, an investigation to look for a general vigour test with suitability for all kind of field conditions seems to be over ambitious (see Hampton and Coolbear, 1990).

Based on these reasons, vigour test evaluation in *P. radiata* was conducted in this study with objectives as follows:

(i) to characterise the seed deterioration pattern in *P. radiata*, in order to determine suitable aging treatments for creating seed lots which have different vigour levels,

(ii) to investigate promising suitable vigour tests for *P. radiata*, and

(iii) to investigate these tests for their suitability for predicting seedling establishment in the nursery at the Forest Research Institute (FRI), Rotorua.

To fulfil these objectives, three stages of experimentation were conducted in this study. The first stage was a study using accelerated aging techniques to determine the best methods of preparing deteriorated seed lots. The second stage was evaluation of various vigour test methods using 5 prepared seed lots which varied according to seed weight and age. The third stage was evaluation of the best test methods (i.e. the controlled deterioration test with 2 days aging treatment, the prechilled seedling growth test, and the complex stressing vigour test) to predict seedling performance at the FRI nursery using 16 mixed seed lots which varied according to type of mother tree and collection date.

٠.,

•