
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the pe1mission of the Author.

The Analysis and Design of an
Automated Tool to Support
Structured Systems Analysis

A thesis presented in partial fulfilment of the
requirements for

the degree of Master of Arts in Computer Science at
Massey University

Joanne Tucker
1988

Volume I

Abstract

Systems analysis is an inherently difficult task. Errors

that are introduced in the analysis and design phases become

progressively more expensive to fix in the later stages of

the system life cycle. Systems analysis and design

methodologies attempt to reduce the number of errors

introduced into a system model and to detect (and correct)

those errors that do occur as early as possible in the

system development lifecycle. One such methodology that is

widely used in New Zealand is Structured Systems Analysis.

Users of Structured Systems Analysis tend to find that the

documentation produced using the methodology is easier to

read and understand than documentation produced by other

currently used methodologies.

This thesis presents the functional specification of MUSSAT,

a tool to provide automated support for the Structured

Systems Analysis methodology. MUSSAT was designed for a

specific group of users. The needs of these users are

discussed, together with an introduction to the tools and

techniques of Structured Systems Analysis. Existing

versions of Structured Systems Analysis are reviewed and a

modified form of the methodology, incorporated in MUSSAT, is

presented.

A discussion of the tools and techniques used to specify the

MUSSAT model are discussed. This is followed by an

introduction to the MUSSAT system

MUSSAT model are included as

appendices.

model. Details

a series of

of the

technical

Finally, an overview of the extent to which Structured

Systems Analysis is supported by existing Computer Aided

Software Engineering (CASE) tools is presented together with

a discussion of where MUSSAT fits with these CASE tools.

Acknowledgments

During the past two years there have been many people who

have influenced the course and content of the research

presented in this thesis. I am grateful to them all for

their help.

In particular, I would like to thank. my supervisor, June

Verner, for painstakingly reviewing each part of this thesis

and for her invaluable enthusiasm, encouragement and ideas.

I would also like to thank Professor Graham Tate and Richard

Hayward for their constructive criticisms of earlier drafts

of the first four chapters of this thesis.

Finally, I would like to thank Stephen Quinn and Jason

Cruickshanks for their help in using the Department's Vax

11/750, Unix and Emacs and for helping me understand some of

the basics of interactive graphics.

Chapter 1

1.1

1.2

1. 3

1. 4

Chapter 2

2.1

Table of Contents

Introduction

Structured Systems Analysis

Users of Structured Systems Analysis

Research Goals and Methodology ··~

Thesis Organisation

SSA: A Brief Overview

Data Flow Diagrams

2 .1. 1 Data Flows

2.1.2 Processes

1

7

11

15

16

18

18

22

22

2. 1. 3 Data Stores . 2 4

2.1.4 External Entities 24

2.2 Data Dictionary 25

2. 2 .1 Data Elements . 25

2 . 2 . 2 D at a It ems . 2 6

2.2.3 Data Dictionary Languages 26

2.3 System Models . 34

Chapter 3 The Users and Their Needs 36

3.1 The Users . 36

3.2 General Requirements of an Automated SSA

Tool .. 46

3.2.1

3.2.2

3.2.3

3.2.4

System Features

Project Features

DFD Features

DD Features

47

48

49

50

V

vi

Chapter 4 A Comparison of SSA Methodologies 54

4.1 Data Flow Diagrams 54

4 .1.1

4 .1. 2

4 .1. 3

4 .1. 4

4 .1. 5

4 .1. 6

Levelling Conventions

DFD Construction Conventions

DFD Element Naming Conventions

DFD Element Symbols

Data Flow Details ·

Lower Level DFD Details

55

58

61

64

72

80

4.1.7 Error and Exception Handling......... 84

4.2 Comparing Data Dictionaries 85

4.3

Chapter 5

5.1

5.2

4.2.1 Types of Data Dictionary Entries 85

4.2.2

4.2.3

Data Dictionary Redundancy

Data Dictionary Definition

Languages

Other SSA Tools

MUSSAT

Design Goals

The MUSSAT System Specification

5. 2 .1 Mouse Buttons

5.2.2 Pull-down Menus

5.2.3

5.2.3

5.2.4

5.2.5

5.2.6

Icon Menu

Dialogue Boxes

Windows

The Cursor

Example Screen Formats

87

91

95

104

107

113

115

116

120

121

129

133

135

Chapter 6 Structured Systems Analysis in Automated

Environments . • 140

6.1 The Place of MUSSAT in CASE

Technologies

6.2

Chapter 7

References

Appendices

Two CASE Tools

Concluding Remarks

Volume

Appendix I CASE Tool Suppliers

Appendix II SSA Rules Used in MUSSAST

Appendix III MUSSAT State Transition Diagrams

Appendix IV MUSSAT Commands in Detail

Appendix V SSA Model of MUSSAT

Appendix VI Cross Reference of MUSSAT Commands

and SSA Processes

Appendix VII Notes on Several MUSSAT Features

Appendix VIII Proposed Improvements to MUSSAT

Appendix IX Comments on Using SSA

vii

140

143

154

161

II

List of Figures

2.1 Context DFD for the order processing example 19

2.2 Level O DFD for the order processing example 20

2.3 DFD of Process 2 CHECK-ORDER..................... 21

2.4 Structured English definition of Process 3

FILL ORDER 28

2.5 Decision Table representation of freight

method policy . 30

2.6 Decision Tree representation off reight

method policy . 31

2.7 Structured English representation of freight

method policy . 32

4. la DeMarco DFD elements . 65

4.lb Gane & Sarson DFD elements 65

4.2 Tailored SSA DFD elements 65

4.3 A level O DFD, DeMarco style..................... 66

4.4 Gane & Sarson exploded process 1 67

4.5a Questionable use of duplicate data flows 73

4.5b Removing redundant data in duplicate data

flows . 74

4. 6 DeMarco exploded process 1 ~. 82

4.7 A Gane & Sarson Data Immediate Access Diagram

(DIAD)

4.8 A DeMarco Data Structure Diagram (DSD)

97

98

viii

ix

4.9 A Gane & Sarson Materials Flow Diagram 101

5 .1 The icon menu . 120

5.2a Parameter specification dialogue box for the OPEN

command . 123

5.2b Error dialogue box for the OPEN command 124

5.2c Confirmation dialogue box for the DELETE

command , . 125

5.2d Parameter specification dialogue box for the

DD Display Command . 126

5.3 An example window with close box, move bar,

scroll box and scroll bars

5.4a Normal MUSSAT cursor shape

129

133

5.4b Alternate 'wait' cursor shapes 134

5.4c Proposed 'draw' cursor shape 135

5.5a MUSSAT screen display and pull-down menu

format

5.5b MUSSAT screen display and dialogue box

format

136

137

CHAPTER 1

Introduction

The evolution of a computerised information system begins

when the need for the· system is recognised. If management

is willing to commit resources to the development of the

system, various design and construction phases will take

place transforming the original idea into an implemented

system. Once the system is operational continued financial

commitment for maintenance will be required, until eventu

ally, the system reaches the end of its productive life and

is phased out.

This is, of course, a simplified picture of the development

of a computer system. The feasibility of a proposed system

will be reviewed periodically during development and if the

perceived benefits of the system are outweighed by the per

.ceived costs the project may be abandoned, even after signi

ficant expenditure.

The term 'system life cycle' is commonly used to describe

the various phases through which a computerised system

evolves. For the development of a system to proceed in a

controlled fashion certain activities must take place and

specific documentation should be produced during each phase

of the life cycle. _There have been many definitions of the

1

2

system life cycle including those in [KAN84], [DAV83],

[WEI84], [POW84] and [DEM78]. Most systems development

textbooks present a version of the traditional system life

cycle, also called the project or software life cycle.

Nevertheless, these life cycle models are similar even

though the names and boundaries of the phases may differ.

Some system life cycle models, such as that presented by

Boehm [BOE81], incorporate techniques such as prototyping,

incremental development and advancemanship. However, these

alternate life cycle models still include some of the ear

lier activities of the traditional system life cycle models.

In this thesis, discussion of the system life cycle will

refer to the traditional life cycle model in which systems

analysis precedes systems design.

One life cycle model [POW84] divides system development into

the following five phases:

Phase

INVESTIGATION

Initial Investigation

Feasibility Study

3

Successful completion documented by

Initial Investigation Report

which, among other activities,
identifies the major options
and recommends one or two of the
options for further consideration
in the next phase.

Oral Report to Management.

Feasibility Report

which includes:

a description of the existing
system; and

rough cost/benefit analysis
estimates and project sched
ules for each alternative.

Project Plan

Working Papers

Which serve as an input to the
next phase and include:

a review of the existing and
proposed system; and

alternative implementations of
the proposed system.

Phase

ANALYSIS AND GENERAL
DESIGN

Systems Analysis

General Design

DETAILED DESIGN AND
IMPLEMENTATION

INSTALLATION

REVIEW

4

Successful completion documented by

User Specification

which includes:

a model of the proposed system;
and

specification of performance,
security and control
requirements etc.

New System Design Specification

which includes:

internal software design,
file or data base design,
hardware specifications,
internal controls, etc.

A fully tested and documented
system.

No new products. Activities include
file conversion and personnel
transitions.

System Development Recap Report and
Post Implementation Review Report.

Weiner and Sincovec [WEI84] provide an alternate description

of the outputs that should be produced as a result of the

Systems Analysis phase. These components comprise a

Software Requirements Document and consists of the following

([WEI84] pp. 17-18):

5

(1) A description of the functional requirements, with an

emphasis on describing the system as it will appear to

the user, including a description of the user inter

face.

(2) A description of the non functional requirements of the

new system.

(3) A project plan.

(4) Maintenance information.

(5) An initial user manual.

(6) A glossary of all technical terms.

The outputs of one phase of the lifecycle are used as inputs

to the next. Therefore, the successful completion of a

phase in the development cycle is, in part, dependent on the

quality of the outputs of the previous phase: if the outputs

of one phase are deficient or contain errors, then the next

phase will not have an accurate description of the current

state of the system on which to base successive work. If an

error is detected in the system model then the outputs of

each phase, from th~ phase in which the error was introduced

to the phase in which the error was detected, must be

amended to present a more accurate model of the system. In

the worst case deficiencies in the Investigation phase will

not be detected until acceptance testing when the users dis

cover that the system developed is not the system that they

6

wanted.

The earlier that deficiencies are detected in the develop

ment of a system the less costly they will be to correct.

Boehm ([BOE81], p. 40) states that errors in large system

development projects not detected until the maintenance

phase are likely to be at least 100 times more expensive to

correct than if detected during the requirements phase. To

compound the problem, another author [CON82] suggests that

during the development of a system a large proportion of all

errors (that are later detected) are introduced during the

analysis and design phases ([CON82] p. 215).

Systems analysis is an inherently difficult task. Analysts

are required to produce complete and unambiguous documenta

tion of a system by working with users who are often unsure

exactly what they want the system to do and, in some cases,

may not even want a new system. The analysis phase needs to

be carried out by experienced computer professionals with

expertise in both computer systems and the application area.

The specification of the new system produced should fulfill

all requirements specified by the users and be detailed

enough to serve as an input into the Detailed Design and

Implementation phase.

Various systems analysis and design methodologies have been

specified in an attempt to reduce the number of errors

introduced into a system model and to detect (and correct)

7

those errors that do occur as early as possible in the sys

tem development lifecycle. One such methodology is Struc-

tured Systems Analysis (SSA). SSA became popular in the

late 1970's and is now widely used, particularly in North

America and New Zealand.

1.1. Structured Systems Analysis

The SSA methodology incorporates a set of tools and tech

niques to describe a logical model of an existing or pro

posed system. The main components of SSA are:

data flow diagrams (DFDs); and an associated

data dictionary (DD).

The logical system model produced during the analysis phase,

using SSA, corresponds to the Software System Model com

ponent in Weiner and Sincovec's list of systems analysis

products given above. Note that the Software System Model

is only one component of several required to fully specify a

proposed computer system.

There are two major variants of the SSA methodology: the

DeMarco [DEM78] and Gane & Sarson [GAN80] [1] SSA methodolo

gies. Although both of these versions of SSA are each based

[l]The text reference throughout this thesis is a repub
lication of: Gane, Chris and Sarson, Trish, Structured Sys
tems Analysis: Tools and Techniques (New York: Improved Sys
tems Technologies Inc., 1977).

on the same principles, they differ in:

physical representation of DFDs;

DFD construction rules;

contents of the DD; and

representation of complex file structures.

8

The discussion in this thesis assumes a familiarity with the

basic SSA tools and their application (as described in

[DEM78] and [GAN80]), however, a brief overview of SSA is

given in Chapter 2.

Neither the Gane & Sarson nor the DeMarco SSA methodology

have proven to be the ideal analysis tool for all situa

tions. SSA, in general, has a number of weaknesses, includ

ing:

reliance upon the skill of the analyst to produce a
good system model;

lack of consistency and completeness checks;

difficulty in modelling interactive systems, and re
lated to this, the inability to model different pro
cessing or response constraints such as monthly re
port runs as opposed to the response times required
for interactive query facilities; and

lack of support in translating the new logical model
produced during systems analysis into the new physi
cal model required as the output of systems design.

When considering criticism number three in the above list it

is possible to argue that using SSA the analyst should not

be concerned with, nor have decided the type of interface

9

that the proposed system should incorporate at the analysis

Hence the inability to show any one particular type phase.

of user interface in the logical new model should not be a

concern

Nevertheless, in some cases the analyst knows even before

the analysis phase begins that the system to be produced

must be interactive. In such cases it would be naive and

counterproductive to ignore the requirements of an interac

tive user interface, especially when the incorporation of

such an interface is likely to have a significant impact on

cost and size estimates (made both at the feasibility and

later stages) and the system design itself. Size and cost

estimates should be as accurate as possible so that the sys

tem alternative selected or even the decision to continue

system development is made with the best possible informa

tion.

Even in view of the above weaknesses of the methodology, SSA

has one main advantage over other design methodologies such

as ISAC [LUN81], JSD [JAC83] and Information Engineering

[MAR81]: namely, that the specification produced using SSA

serves as a good communication tool, especially between the

analyst(s} and users. Data flow diagrams are conceptually

simple and are similar to other diagrams familiar to many

users in the business world. Unlike ISAC, a SSA system

specification is relatively concise which means that manage

ment of the documentation may be simplified and intended

10

users of the system are not given copious and daunting

amounts of documentation to approve.

Data flow diagrams also highlight the transformation of

data, that is, the processes within the system. Users are

process oriented: they think in terms of objects and the

operations performed on objects, such as editing_a document

or updating a master file, not in terms of entities, attri

butes and relationships . [TAT86]. Information Engineering

takes the latter approach. SSA helps users to identify

errors and omissions in systems modelled using DFDs since

the model more closely represents the way they view the real

world.

Individuals and organisations who use SSA are likely to

tailor one of the SSA methodologies to suit the peculiari

ties of their working environments. Such adaptations can be

considered to produce hybrid versions of the SSA methodol

ogy.

The research documented iri this thesis is concerned with the

development of an automated SSA tool. Such software is

required to provide computerised assistance in developing

and maintaining SSA system models.

A tailored form of the SSA methodology will be required for

the proposed automated SSA tool. The user groups of an

automated SSA tool are expected to have specific needs that

are not explicitly catered for in either of the two standard

11

SSA methodologies, therefore, a hybrid SSA needed to be

defined to suit the requirements of the intended users of

the system.

Investigation of automated support for SSA was considered a

suitable topic for this thesis because:

Most of the automated SSA tools currently available
are expensive;

Automated SSA tools may be able to offer assistance
in other areas of system development in addition to
systems analysis; and

An automated SSA tool may be able to provide a means
of overcoming some of the deficiencies in the SSA
methodology.

1.2. Users of Structured Systems Analysis

Although SSA has been in use for over a decade, automated

tools supporting the methodology have only recently become

commercially available. It is not known how useful systems

analysts find such automated tools: whether they are useful

aids in developing the logical model of a system, or only

useful in documenting and checking a system model developed

using pencil and paper.

In either case, even an experienced analyst usually requires

several iterations to produce the final version of a DFD.

Drawing and updating DFDs manually is tedious and automated

tools are expected to, at least, help reduce the time con

suming nature of DFD maintenance and development. Time sav-

12

ings may not be as readily apparent in the initial specifi

cation of a DFD, where the time taken to specify a DFD using

an automated SSA tool and drawing a DFD by hand may be simi

lar. The real time savings are expected to be most evident

in DFD maintenance where, using an automated SSA tool, the

user does not need to redraw the entire DFD in order to pro

duce an updated copy.

Post-implementation changes to a system should be reflected

in the system documentation. The maintenance of system

documentation can be error prone and time consuming and is

often poorly done. An automated SSA tool may be a useful

aid in maintaining system models developed or simply docu

mented using SSA.

Automated SSA tools may also encourage more creative experi

mentation with system designs if changes are easy to make

and control. Hence, alternative system designs may be able

to be produced quicker and at less cost. In addition,

alternate system designs may be more complete using an

automated SSA tool since less effort may be required to

develop these alternate designs. Designs that are more com

plete or thorough (even at a very high level) may help users

to understand their needs and the proposed system better and

hence help create a system meeting their requirements as

closely as possible.

13

Existing automated SSA tools may possibly incorporate

version(s) of SSA that overcome some of the deficiencies of

the original methodology.

An automated SSA tool is required or would be useful in a

number of fields in which research is currently being done.

Within the Massey University Department of Computer Science

an automated SSA tool may be useful in the following areas:

(1) The Department offers some courses that require stu

dents to produce SSA system models. An automated SSA

tool would be a useful teaching aid for such courses.

(2) Two groups of researchers within the Department require

software that allows users to specify SSA system models

using a graphical interface.

Many of the existing automated SSA tools are not available

in New Zealand, and those that are available are expensive

and often unable to be evaluated thoroughly enough, either

by han~s-on experience or detailed documentation. Without

the tools being available for evaluation it is difficult to

decide whether they are cost-effective. In addition, unless

potential users are able to gain hands-on experience of

available tools, it is difficult to specify exactly what

constitutes a useful automated SSA tool. Without a thorough

analysis of what is required of an automated SSA tool by

potential users, short-term exposure to such tools would be

an inadequate foundation on which to base any decision about

14

the usefulness or otherwise of an automated SSA tool.

There are a number of automated SSA tools and aids commer

cially available.[2]

These include:

Excelerator

Teamwork/SA

PCSA

DesignAid

Anatool

ProkitAnalyst,

Blues

(Index Technologies Corp.)

(Cadre Technologies Inc.)

(StructSoft Inc.)

(Nastec Corp.)

(Abvent)

(McDonnell Douglas
Automation Co.)

(De Landgraff Consultancy).

Potential users of an automated SSA tool are expected to

require specific features of such software. This thesis

identifies the features that one group of users would

require in such an automated SSA tool so that the tool will

be useful to them. These needs can also be used as criteria

to evaluate existing automated SSA tools and in determining

whether the ideal automated SSA tool exists. Given the

current technology, it may be that an ideal tool at area

sonable price is not commercially available.

[2]The names and addresses of the suppliers of the named ·
automated SSA tools are listed in Appendix I.

15

1.3. Research Goals and Methodology

It was the aim of the research documented in this thesis to

design an automated SSA tool that allows systems analysts to

develop and maintain system models using SSA. The design

goal was broken into the following sub-steps:

(1) Identify the needs of potential users of an automated

SSA tool.

(2) Investigate the SSA methodology in light of the

requirements of the users.

(3) Present the design of an automated SSA tool that satis

fies the needs of the selected user(s) and incorporates

an appropriate form of the SSA methodology.

(4) Compare features of commercially available automated

SSA tools with the system designed presented in this

thesis.

It may have been more appropriate to examine existing

automated SSA tools before steps 1 to 3, however, at the

time this research was undertaken it was not known which, if

any, automated tools would be available for evaluation.

Permission was granted by the Reserve Bank of New Zealand

(after steps 1 and 2 were under way) to use their copy of

Excelerator for evaluation. Later in the year a demonstra

tion version of PCSA was ordered from the U.S.A. but was not

received until December, 1986. In addition, the proposed

16

automated SSA tool was designed before using any existing

tools so that the design was not biased by the characteris

tics {and perhaps limitations) of existing tools. Hence, an

evaluation of existing SSA tools was not carried out until

steps 1 to 3 were completed.

1.4. Thesis Organisation

The body of this thesis is divided into six chapters and an

nine appendices:

Chapter 2 presents an overview of the SSA features common to

both the Gane & Sarson and DeMarco versions of the methodol

ogy.

Chapter 3 describes the potential user groups of an

automated SSA tool and outlines their general needs. A dis

cussion of the reasons for selecting a subset of all identi

fied users is also presented in Chapter 3.

Chapter 4 includes a discussion of the differences between

existing SSA methodologies and introduces the characteris

tics of the hybrid SSA methodology suggested in section 1.1.

A discussion of the major design decisions and techniques

used in the development of MUSSAT: Massey University Struc

tured Systems Analysis Tool, is given in Chapter 5. Chapter

5 also includes an overview of the user interface of MUSSAT.

Details of the MUSSAT design are included in a series of

technical appendices, each of which is introduced in Chapter

17

5.

Chapter 6 gives an overview of CASE Tools and compares the

goals of MUSSAT with the goals of existing CASE tools. The

user interfaces of two automated SSA tools are discussed and

compared with the user interface of MUSSAT.

