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ABSTRACT. 

The aim of the project was to characterise the Rhizobium loti 

Nod- Tn5 mutant strain, PN233. The Tn5 insertion had been previously 

localised to a 7.1 kb Eco RI chromosomal fragment. This fragment was 

sub-cloned and a Bam HI/Sal I endonuclease restriction map for the 

region was determined. Hind III digests were utilised to identify the 

approximate location of the Tn5 233 insertion and those of four other 

Tn5 insertions (4016, 4019, 4047 and 4053) in the 7.1 kb region. The 

233 mutation was found to map to a 1.45 kb Sal I fragment and that of 

an overlapping 2. 8 kb Bam HI 'fragment. 

The 7.1 kb Eco RI fragment and a larger 22.7 kb fragment that 

encompassed this region, had been cloned into pLAFRl. The construct 

carrying the 22.7 kb fragment (pPN305) was crossed into four R.l. bv. 

trifolii strains, each mutant in one of the four common nod genes, 

A,B,e, and D. The construct was able to complement the node mutation 

indicating the presence of a node gene somewhere on the 22.7 kb 

region. 

The mutations 4047 and 4053 had been found to map to either side 

of the 233 Tn5 insertion. Both insertions affected nodule formation 

and were thus included in further plant complementation tests. These 

experiments involved crossing both the pPN305 and a construct bearing 

the smaller 7.1 kb Eco RI fragment (pPN25) into the R. loti and R.l. 

bv. trifolii Tn5 mutants. What was unusual about the results was that, 

while the 7.1 kb fragment was able to complement the mutations, the 

larger 22.7 kb fragment which encompasses that region could complement 

PN4047 and PN4053 but was unable to complement the PN233 mutant. 

The 2.8 kb Bam HI and 1.45 kb Sal I fragments, to which the 233 

insertion was mapped, and that of an adjacent 1.2 kb Sal I fragment, 

were sub-cloned and then Bal 31 digested in both orientations to 

create a series of overlapping fragments. These fragments were then 

sequenced. The data revealed that the 233 Tn5 had inserted into the R. 

loti node gene. It was determined that the 4047 Tn5 was also located 

in this gene, slightly upstream of 233, while 4053 had inserted into 
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the 5'-region of nodI which is downstream of node. NodA was identified 

upstream of nodC indicating an arrangement of common nod genes 

different from the conventional nodABCIJ found in other rhizobia. The 

promoter for these nod genes, the nod box, was located upstream of the 

nodA gene. 

A particularly puzzling aspect of the results is that, while 

PN4047 is complemented by both pPN305 and pPN25, PN233, which has an 

insertion in the same gene, could only be complemented by the smaller 

fragment carried by the pPN25 construct. To explain this result, it is 

proposed that PN233 is producing a mutant Node protein and that this, 

in combination with doubled copies of a gene or genes present 

elsewhere on the 22.7 kb fragment, is responsible for interfering with 

cqmplementation in this mutant. Alternatively, it may be that the 

imbalance of doubled copies of downstream, co-transcribed genes in the 

presence of one copy of a functional node gene causes complementation 

failure. 
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1.0 INTRODUCTION. 

Microbes play an important role in the biological cycles of 

carbon, oxygen, nitrogen and sulphur which are fundamental to life on 

this planet. While nitrogen is abundant on Earth, most of it is not 

readily utilisable by plants. Consequently, one of the factors that 

most limits global agricultural productivity is the availability of 

fixed nitrogen. The dinitrogen bond is very strong. Consequently, 

industrial processes directed towards fixing nitrogen require 

specialised conditions and are energy-intensive. However, many 

microbes in either a free-living state and/or in a symbiotic 

relationship with a plant are capable of fixing atmospheric nitrogen 

by converting it to ammonia via the following chemical conversions. 
Mg2+ 

N2 + 6e- + 6H+ + 12ATP -------------->2NH3 +12ADP + 12Pi 
NITROGENASE 

At present, a vast amount of money and effort is expended on 

applying industrial nitrogenous fertiliser, which is mainly a product 

of the Haber process, to agricultural crops. The impact of industrial 

fertilisers on the environment and the economic reality that nitrogen 

fertiliser is beyond the reach of many countries, is of worldwide 

concern. Research into biological nitrogen fixation is therefore of 

considerable interest, not only academically, but because of the 

potential applications it may have for crop improvement and 

productivity. 

1.1 DINITROGEN-FIXING PLANT - MICROSYMBIONT ASSOCIATIONS. 

1.1.1 NON-LEGUMINOUS ASSOCIATIONS. 

A number of dicotyledonous, non-leguminous plants from 

phylogenetically unrelated families and genera, form nitrogen-fixing 

root nodules in symbiotic relationships with endophytes that mainly 

belong to the order Actinomycetales and to the genus Rhizobium. The 

actinomycete endophytes of non-legumes can be placed in one family 

Frankiaceae, with a single genus Frankia (Becking, 1975). Examples of 
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some plant genera that have members which bear non-leguminous nodules 

formed by actinomycete-host symbioses are Casuarina, Myrica, Alnus, 

Cerocarpus, Coriaria, Comptonia, and Colletia (Becking, 1975; Bowes et 

al., 1977; Callaham et al., 1979). Some non-leguminous, nodule-bearing 

dicotyledonous hosts capable of symbioses with Rhizobium or supposed 

Rhizobium species are Trema, Parasponia, Zygophyllum, Fagonia, Viola 

and Opuntia (Becking, 1975). 

Two morphological types of actinomycetous nodules are known: 

1) Alnus-type and 2) Myrica-Casuarina-type (Torrey and Callaham, 

1978). Alnus-type nodules are found in representatives of Belutaceae, 

Elaegnaceae, Rhamnaceae, Coriariaceae and Rosaceae. The nodules 

comprise modified, often dicotomously-branched roots of arrested 

growth which usually have a coralloid appearance (Becking, 197 5) . 

Myrica/Casuarina-type nodule lobes give rise to a normal root which is 

negatively geotropic (Torrey and Callaham, 1978). 

Actinomycetes enter the host plant via root hair infection. These 

hairs curl on invasion by the actinomycete (Torrey and Callaham, 1978; 

Callaham et al., 1979; Lalonde, 1980). The hyphae perforate the root 

cortical cells by local degradation of the cell walls and penetrate 

the host cell cytoplasm where it is then surrounded by host plasma 

membrane and a thick polysaccharide material termed the capsule. The 

hyphae branch extensively in specific layers of the cortex, 

penetrating most of the host cytoplasm (Newcomb et al., 1978; Lalonde, 

1980). These nodules are highly modified lateral branches, both in 

their origin and in their development (Becking, 1975; Torrey and 

Callaham, 1978). 

1.1.2 LEGUMINOSEAE AND RHIZOBIUM. 

Much research effort is focused on nitrogen fixation in 

leguminous plants, many of which are of immense agricultural 

significance both as pasture and as food crops, examples being clover, 

lucerne (alfalfa), peas, beans, soya beans and peanuts. This symbiotic 

relationship enables them to grow in nitrogen-deficient soils and 

hence they are also of ecological importance, in that they can be used 
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to reclaim poor and nitrogen-deficient land. There are about 18,000 

species in the family Leguminoseae and over 90 percent of plants in 

the sub-families Mimosodeae and Papilionoideae bear highly specialised 

root nodules which provide the appropriate microaerobic conditions 

necessary for the nitrogen-fixing bacterial symbiont, Rhizobium 

(Vincent, 1982) 

Members of the genus Rhizobium characteristically invade the 

roots of leguminous plants and produce root nodules. Taxonomic 

classification of Rhizobium tends to be based on the plant affinity 

(cross-inoculation group) concept. Until recently, fast (generation 

time of under 6 hours) and slow (generation time greater than 6 hours) 

-growing rhizobia were grouped in the same genus Rhizobium. However 

studies of numerical taxonomy, RNA cistron similarities, DNA base 

ratio determination, nucleic acid hybridisation, immunology, 

composition of extracellular polysaccharides, carbohydrate utilisation 

and metabolism, bacteriophage and antibiotic susceptibilities, protein 

composition and types of intracellular inclusion bodies in bacteroids 

(Vincent, 1977; Elkan, 1981; Jordan, 1982; Trinick, 1980) have 

supported a major division of the genus into the fast-growing 

Rhizobium and the slow-growing Bradyrhizobium sp. (Buchanan-Wollaston 

et al., 1980; Jordan, 1982). 

Fast-growing R. japonicum isolated from Asian-type soya beans 

have physiological characteristics similar to other fast-growing 

rhizobia, but their symbiotic properties are similar to the cowpea 

miscellany (Stowers and Eaglesham, 1984). These types of rhizobia have 

been grouped into a new species, R. fredii (Scholla and Elkan, 1984; 

Sadowsky et al., 1987) Likewise, the fast-growing strains that 

nodulate Lotus sp. show low DNA:DNA homology (10-15%) both with other 

Rhizobium sp. and with slow-growing strains able to form symbiotic 

relationships with Lotus (Crow et al., 1981) These fast-growers have 

been grouped into a new Rhizobium species, R. loti (Jarvis et al., 

1982). R. leguminosarum, R. trifolii and R. phaseoli are now 

categorised as different R. leguminosarum biovars, i.e. R.l. bv. 

viciae, R.l. bv. trifolii and R.l. bv. phaseoli. Table 1.1 lists host 

plants and their corresponding microsymbionts. 
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Table 1.1: Microsymbionts and their respective host plants . 

Bacterium 

Rhizobium meliloti 

R. leguminosarum bv. viciae 

bv. trifolii 

bv. phaseoli 

Rhizobium fredii 

Bracl)?fyrhizobium japonicum 

Rhizobium loti 

Azorhizobium caulinodans 

Rhizobium NG234 

Bradyrhizobium sp. Parasponia 

host plant 

lucerne (alfalfa) 

pea, vetch 

clover 

bean 

soya bean 

soya bean 

Lotus 

Sesbania (stem nodules) 

Parasponia (a non-legume) 

Parasponia (a non-legume) 
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