Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Massey University Library

Thesis Copyright Form

Title of thesis:	Acetyl-6A	Carboxy lose	in the	photosynthetic
	Fissue o	f marze.		······································

- I give permission for my thesis to be made available to (1) (a) readers in the Massey University Library under conditions determined by the Librarian.
 - I do not wish my thesis to be made available to (b) readers without my written consent for _____ months.
- I agree that my thesis, or a copy, may be sent to (a) (another institution under conditions determined by the Librarian.
 - I do not wish my thesis, or a copy, to be sent to (b) another institution without my written consent for months.
- I agree that my thesis may be copied for Library use. (3) (a)
 - I do not wish my thesis to be copied for Library use (b) _____months. for/____

Signed Mare Kulturfered 17/10/88

Date

The copyright of this thesis belongs to the author. Readers must sion their name in the space below to show that they recognise t ,. They are asked to add their permanent address.

NAME AND ADDRESS

DATE

MASSEY UNIVERSITY

ACETYL-COA CARBOXYLASE IN THE PHOTOSYNTHETIC

TISSUE OF MAIZE

A thesis presented in partial fulfilment of the requirement for the degree of Master of Science in Biochemistry at MASSEY UNIVERSITY

SHANE MCARTNEY RUTHERFURD

1988

ABSTRACT

The aim of this study was, a). to examine further, aspects of the role of acetyl-CoA carboxylase in the regulation of fatty acid synthesis in the provision of acyl lipid for plastid development, and b). to purify acetyl-CoA carboxylase from maize leaves using the affinity methods which have been used successfully to purify the enzyme from animal tissues.

In a constant weight of tissue, carboxylase activity decreased 7.6-fold over the period of 4 to 12 days after sowing, while total acetyl-CoA carboxylase activity increased 9-fold in maize seedlings over the period of 4 to 8 days with no further increase up to day 12. Protein levels decreased 3-fold over the growth period examined, while specific activity was constant at 27.2 to 28.3nmol/min/mg of protein between 4 and 6 days, before increasing to a maximum of 33.2nmol/min/mg of protein at day 7, then decreasing to one third of the maximum value on day 12. Chlorophyll levels in a constant weight of tissue increased 260-fold over the period of 4 to 11 days.

The changes in the level of acetyl-CoA carboxylase activity paralleled changes in fatty acid levels in tissue along the length of the 9-day-old maize leaf. The levels of both biochemical parameters increased in the region from the leaf base to 15mm along the leaf. After which they both decreased to a minimum at 25-30mm along the leaf before increasing to a maximum at 60mm along the leaf, and finally decreasing towards the leaf tip.

A 5-fold increase in acetyl-CoA carboxylase activity was observed from the least favourable chloroplast stromal concentrations of ATP, ADP, Mg²⁺ and H⁺ in the dark, to the most favourable concentrations of these metabolites present in the chloroplast stroma during light periods.

These findings are consistent with, 1). a role for acetyl-CoA carboxylase in the regulation of fatty acid synthesis in maize photosynthetic tissue and, 2). control of acetyl-CoA carboxylase activity via light-dependent changes in the pH and concentrations of ATP, ADP and Mg²⁺ found in the stroma of chloroplasts.

Several attempts were made to purify acetyl-CoA carboxylase using avidin-affinity chromatography. However, after the initial, apparently successful attempt, active enzyme could not be recovered from the avidin-affinity column upon elution with biotin. Changes were made to several chromatographic conditions, and although ionic strength in the range of 0.1 to 1.0M KCl, did not affect the elution of active acetyl-CoA carboxylase from the column; lowering the column flow rates from 1.5ml/hr/ml of gel to 0.15-0.3ml/hr/ml of gel did appear to enhance the binding of the enzyme to the column. Using this flow rate, a 62 000 dalton protein and a 54 500 dalton protein were eluted in a fraction found to contain biotin-containing proteins. Since it is feasible that the 62 000 dalton is biotin-containing and since this protein has a similar molecular weight to 60 000-62 000 dalton biotin-containing subunit of maize leaf acetyl-CoA carboxylase, the potential for purifying acetyl-CoA carboxylase from maize leaves using avidin-affinity chromatography seems to exist. However, further investigation is necessary in order to facilitate the recovery of active carboxylase from the avidin-affinity column.

.*

ACKNOWLEDGEMENTS

I wish to thank my supervisor, Dr J.C.Hawke, for his advice, encouragement and assistance throughout the course of this study.

I would also like to thank the staff of the Plant Physiology Division, DSIR, for their assistance in using the climate control rooms for growing the maize plants, and Mr J.E.Ormsby for his care of the rats.

Thanks also go to Miss C.C.Mackle for carrying out fatty acid analyses.

Finally, thanks go to my wife, Kay, and my mother, Barbara, for assistance in the preparation of this manuscript.

LIST OF ABBREVIATIONS

ACC	acetyl-CoA carboxylase
ADP	adenosine 5'-diphosphate
AMP	adenosine 5'-monophosphate
АТР	adenosine 5'-triphosphate
BCCP	biotin carboxyl-carrier protein
BSA	bovine serum albumin
CoA	coenzyme A
DGDG	digalactosyl diglyceride
DMCS	dimethyl dichlorosilane
DTT	dithiothreitol
EDTA	ethylenediamine tetraacetic acid
Hepes	N-2-hydroxyethylpiperazine-N'-2-ethanesulphonic acid
Mes	2[N-morpholino] ethane sulphonic acid
MGDG	monogalactosyl diglyceride
PBS	phosphate buffer-saline
PEG	polyethylene glycol
POPOP	l,4-bis[2(5-phenyloxazolyl)]benzene
ррGрр	guanosine 5'-diphosphate-3'-diphosphate
PPO	2,5-diphenyloxazole
рррGрр	guanosine 5'-triphosphate-3'-diphosphate
RNA	ribonucleic acid
Rubisco	ribulose 1,5-bisphosphate carboxylase oxygenase
SDS	sodium dodecyl sulphate
TEMED	N,N,N',N'-tetramethylethylenediamine
Tricine	N-tris[hydroxymethyl]-methyl glycine
Tris	tris (hydroxymethyl) aminomethane
Tween 20	polyoxyethylene sorbitan monolaurate

TABLE OF CONTENTS

Page
ii
v
vi
vii
xii

LIST OF TABLES

CHAPTER 1 INTRODUCTION

1.1	Nature	and Role	of Lipids	in Leaf	Tissue	1
1.2	Sources	of Acety	1-CoA for	Fatty A	cid Synthesis.	3
1.3	Nature	of Acetyl	-CoA Carb	oxylase		6
	1.3.1	Acetyl-C	oA Carboxy	ylase in	<u>E.coli</u>	6
	1.3.2	Acetyl-C	oA Carboxy	ylase in	Animals	7
	1.3.3	Acetyl-C	oA Carboxy	ylase in	Plants	8
		1.3.3.1	Tissue Di	istribut	ion of	
			Acetyl-Co	DA Carbo	xylase	10
		1.3.3.2	Stromal N	Nature o	f	
			Acetyl-Co	DA Carbo	xylase	11

.

xvi

viii

27

28

29

	1.4	Propose	ed Mechani	isms for Acetyl-CoA	
		Carboxy	ylase Acti	ivity	11
	1.5	Regulat	tion of Ac	cetyl-CoA Carboxylase	12
		1.5.1	Regulati	on in <u>E.coli</u>	12
		1.5.2	Regulati	on in Animals	14
			1.5.2.1	Regulation by Covalent	
				Modification	16
		1.5.3	Regulati	on in Plants	18
			1.5.3.1	Effect of Monovalent	
				Cations on the Activity of	
				Acetyl-CoA Carboxylase	20
			1.5.3.2	Effect of Light on the	
				Activity of Acetyl-CoA	
				Carboxylase	20
	1.6	Purific	ation of	Acetyl-CoA Carboxylase	22
		1.6.1	Non-Affi	nity Methods	22
		1.6.2	Avidin-A	ffinity Chromatography	24
			1.6.2.1	Preparation of the Avidin-	25
				Affinity Chromatography	
				Column	
CHAPTER	2	MATERIA	LS		

3.1.1 Determination of Protein Levels 29

2.1 Plant Materials

3.1 Analytical Methods

2.2 Reagents

CHAPTER 3 METHODS

	3.1.2	Determination of the Levels and	
		Composition of Fatty Acids in Maize	
		Leaves	29
	3.1.3	Determination of Chlorophyll Levels	30
	3.1.4	Determination of Radioactivity	30
3.2	Prepara	ation of Acetyl-CoA	31
3.3	Prepara	ation of Avidin-Sepharose	31
	3.3.1	Determination of the Exchangeable	
		Biotin-Binding Capacity of Avidin-	
		Sepharose	33
3.4	Acetyl-	-CoA Carboxylase Assay	33
	3.4.1	Assay of Rat Liver Acetyl-CoA	
		Carboxylase	33
	3.4.2	Assay of Maize Leaf Acetyl-CoA	
		Carboxylase	34
3.5	Prepara	tion of Maize Leaf Sections	35
3.6	Prepara	tion of Cell-Free Extracts	35
3.7	Polyacr	ylamide Gel Electrophoresis	35
3.8	Transfe	er of Dissociated Proteins from Gels	
	to Nitr	ocellulose Paper	38
3.9	Biotin-	Specific Probing	39
	3.9.1	Detection of Protein on Nitro-	
		cellulose Paper	39
3.10	Purific	ation of Rat Liver Acetyl-CoA	
	Carboxy	lase	40
3.11	Purific	ation of Maize Leaf Acetyl-CoA	
	Carboxy	lase	41
3.12	Purific	ation of Acetyl-CoA Carboxylase	
	Using A	vidin-Affinity Chromatography	42

i x

CHAPTER 4 RESULTS AND DISCUSSION

4.1	General Features of the Maize Leaf Acetyl-	
	CoA Carboxylase Assay	44
4.2	Stability of Acetyl-CoA Carboxylase	
	extracted from Maize Leaves	47
4.3	Levels of Acetyl-CoA Carboxylase in Maize	
	Seedlings of Different Ages	47
4.4	Biochemical Changes During Development of	
	the Maize Leaf	52
	4.4.1 Fatty Acid Content	53
	4.4.2 Protein Levels	58
	4.4.3 Acetyl-CoA Carboxylase Activity	60
	4.4.4 Chlorophyll Levels	65
4.5	Role of Light in the Regulation of Acetyl-	
	CoA Carboxylase	65
4.6	Distribution of Acetyl-CoA Carboxylase in	
	Maize Seedlings	70
4.7	Western Blotting Analysis of Biotin-	
	Containing Proteins	73
	4.7.1 Effect of ATP and MgCl ₂ on the	
	Acetyl-CoA Carboxylase-	
	³⁵ SLR-Streptavidin Interaction	73
	4.7.2 Effect of Probing Time on Acetyl-	
	CoA Carboxylase- ³⁵ SLR-Strept-	
	avidin Interaction	78
	4.7.3 Effect of Blotting Time on Protein	
	Transfer from Polyacrylamide Gels	
	to Nitrocellulose	79
4.8	Purification of Acetyl-CoA Carboxylase	
	from Maize Leaf Tissue	82

	4.8.1	Effect of Polyethylene Glycol on	
		Precipitation of Maize Leaf Acetyl-	
		CoA Carboxylase	86
	4.8.2	Effect of Ammonium Sulphate on the	
		Precipitation of Maize Leaf Acetyl-	
		CoA Carboxylase	88
4.9	Purifica	ation of Maize Leaf Acetyl-CoA	
	Carboxyl	lase Using Avidin-Affinity	
	Chromato	ography	91
	4.9.1	Effect of Ionic Strength and Flow	
		Rate on the Binding of Acetyl-CoA	
		Carboxylase to the Avidin-Affinity	
		Column	94
4.10	Purifica	ation of Rat Liver Acetyl-CoA	
	Carboxyl	ase Using Avidin-Affinity.	
	Chromato	graphy	103
5	GENERAL	DISCUSSION	109
	4.9	 4.8.1 4.8.2 4.9 Purification Carboxyl Chromato 4.9.1 4.10 Purification Carboxyl Chromato 5 5 GENERAL 	 4.8.1 Effect of Polyethylene Glycol on Precipitation of Maize Leaf Acetyl- CoA Carboxylase 4.8.2 Effect of Ammonium Sulphate on the Precipitation of Maize Leaf Acetyl- CoA Carboxylase 4.9 Purification of Maize Leaf Acetyl-CoA Carboxylase Using Avidin-Affinity Chromatography 4.9.1 Effect of Ionic Strength and Flow Rate on the Binding of Acetyl-CoA Carboxylase to the Avidin-Affinity Column 4.10 Purification of Rat Liver Acetyl-CoA Carboxylase Using Avidin-Affinity 5 GENERAL DISCUSSION

BIBLIOGRAPHY

116

хi

LIST OF FIGURES

Figure	,	Page
1	Structure of monogalactosyl diglyceride (MGDG) and digalactosyl diglyceride (DGDG)	2
2	Alternative proposals for the provision of acetyl-CoA in mature spinach chloroplasts	5
3	Proposed kinetic mechanisms for acetyl-CoA carboxylase	13
4	Sectioning of a second leaf of a maize seedling	36
5	Purification of maize leaf acetyl-CoA carboxylase (Procedure II)	43
6	Effect of time on acetyl-CoA carboxylase activity	45
7	Effect of protein levels on acetyl-CoA carboxylase activity	46
8	Stability of acetyl-CoA carboxylase activity in cell-free extracts of maize leaves	48

xii

9	Levels of acetyl-CoA carboxylase activity in developing maize leaves	49
10	Protein and chlorophyll levels in developing maize	
11	Changes in fatty acid levels during cell develop-	51
	ment in the maize leaf	54
12	Changes in the levels of individual fatty acids during cell development in the maize leaf	57
13	Changes in protein levels during cell development in the maize leaf	59
14	Changes in acetyl-CoA carboxylase activity during cell development in the maize leaf	61
15	Changes in acetyl-CoA carboxylase activity during cell development in the maize leaf	62
16	Acetyl-CoA carboxylase activity in the developing leaf of maize seedlings	64
17	Changes in chlorophyll levels during cell develop- ment in the maize leaf	66
18	Schematic diagram showing various sections of a nine-day-old maize seedling	71

!

xiii

19	Autoradiograph of ³⁵ SIR-streptavidin spotted	
1 2	directly on to nitrocelluloge	74
	differing on to mitrocertarose	74
20	Autoradiographs of biotin-specific probes of	
	partially purified acetyl-CoA carboxylase	76
21	Arrangement of gel and nitrocellulose sheets in	
	the transblotting apparatus during transblotting,	
	for the investigation of transblotting time on	
	protein transfer on to nitrocellulose	80
22	Protein transferred from a polyacrylamide gel to	
	2 sheets of nitrocellulose paper	81
23	Purification of maize leaf acetyl-CoA carboxylase	
	(Procedure I)	83
24	Precipitation of acetyl-CoA carboxylase and	
	protein by polyethylene glycol (PEG)	87
25	Precipitation of acetyl-CoA carboxylase and	
	protein by ammonium sulphate	89
26	Elution profile from avidin-affinity column	93
27	Autoradiograph of biotin-containing proteins and	
	total protein eluted from the avidin-affinity	
	column	98

 $\frac{1}{2}$

.

xiv

28	Elution of biotin-containing protein from the	
	avidin-affinity column	99
29	SDS-15% polyacrylamide gel of the fractions	
	containing Peak 2	100
30	Estimation of the molecular weights of protein	
	bands from 15% polyacrylamide gels	101
31	Elution of acetyl-CoA carboxylase activity and	
	biotin-containing protein from the avidin-	
	affinity column	105
32	Biotin-containing protein and total protein from	
	rat liver, present in the eluted fractions from the	
	avidin-affinity column	106

۰,

xv

LIST OF TABLES

<u>Table</u>		Page
I	Km values of acetyl-CoA and HCO $\overline{3}$ for acetyl-CoA	
	carboxylase obtained from different plant sources	19
II	Fatty acid composition of lipids in the second	
	leaf of the maize seedling	56
III	Acetyl-CoA carboxylase activity observed in the	
	physiological range of ATP, ADP, Mg ²⁺ concentrat-	
	ions, and pH present in the stroma of chloroplasts	
	in the light and dark	68
IV	Distribution of acetyl-CoA carboxylase activity	
	between tissues of nine-day-old maize seedlings	72
V	Effect of ATP and MgCl ₂ on avidin inhibition	
	of acetyl-CoA carboxylase from maize	77
VI	Partial purification of acetyl-CoA carboxylase	
	from maize leaves using Procedure I	85
VII	Partial purification of acetyl-CoA carboxylase	
	from maize leaves using Procedure II	92

xvi

liver

104

xvii