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Abstract 
 

              A biomedical integrated circuit design (IC) is utilized for the development of a 

novel non-invasive electro-therapy device, for low frequency multi-channel biomedical 

stimulation to transform immune activity and induce anti-viral state. Biomedical 

integrated circuit design is an important branch of modern electronic engineering that 

uses the application of electronic engineering principles for biomedical disciplines, to 

develop bioelectronics devices that are implanted within the body and for non-invasive 

devices to improve patient’s lives. These devices use the application of an electric field 

to stimulate reactions to restore normal cell functions and activate the cells to treat a 

variety of disorders or disease conditions. Bioelectronics devices can be designed for 

use as alternative treatments to overcome the deficiencies of several conventional 

medical treatments. It could potentially assist as drug-free relief when therapeutic drugs 

become ineffective, costly, with serious side effects and cannot be replaced, loss of 

future treatment options, and hence, life threatening, as for drug resistant Human 

immunodeficiency virus (HIV-1) patients.  

              Since the underlying mechanisms of the biological system and disease state is 

dominated by electrostatic interactions, specifically, the interaction between HIV-1 and 

the host cell that is predominantly by electrostatic interactions (protein charge-charge 

interaction) has an important role in its life cycle replication. At given pulses, the charge 

distribution and polarization of the electro-active protein molecules takes place, 

inducing conformation change which can enhance immune activity and inhibit the 

interaction of HIV-1 and host cells, disturbing its life cycle, leading to the mechanisms 

of the inactivation signal-induced virus death. These electrically induced protein 

transformations is used in this research as blood-cell treatment and as anti-HIV-1 

electrotherapy. 

              Advances in bioelectronics technology, which involve new CMOS IC design, 

and in bio-electrochemistry science, which include cellular function, electro-active 

biomolecules and their responses, have contributed to this project to develop the 

concept of a novel electro-therapy device, for biomedical treatment applications. This 

involves understanding of the underlying mechanisms of the biological system and 

disease condition from an electronic engineer’s point of view as well as the interface 
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between the electronic signal and the biological cells, and how electronic devices and 

circuitry directly communicate with the electro-active body tissue and blood cells.  

              This research project addresses the design and development of a novel energy-

efficient miniature biomedical device using a new CMOS technology. It can generate, 

deliver and control an appropriate periodical low frequency electrical pulses, through 

the low-resistance skin surface to a patient’s blood. The notable feature of such a smart 

device is its cellular specificity: the parameters of the generated electrical pulse which 

are designed and selected in order to stimulate only one particular type of tissue (blood) 

leaving the others unaffected. The device comprises a mixed-signal low power dual-

band waveform generator (WFG) chip along with a novel two band tuning system. It 

was fabricated using Global Foundries (GF) 8RF-DM 130-nm CMOS process with a 

supply voltage of ±1V for the analog circuit and +1V for logic circuits. The WFG core 

(band I) can be tuned in the range 6.44 kHz - 1003 kHz through bias current adjustment, 

while a lower frequency (band II) in the range 0.1 Hz to 502 kHz can be provided 

digitally. Two WFG approaches, that comprise relaxation oscillators with different 

relaxation timing networks, have been developed for comparison. 

              Since the aim of this work is to transfer electrical signal in a specifically 

controlled fashion through the tissue, a novel low power active electrode-pair signal 

delivery system, compatible with human skin with high signal integrity, is developed. 

The circuit was fabricated in a 130-nm CMOS process using a low supply-voltage of 

+1.2V to deliver bi-phase square waveform signals from 16 selectable low-frequency 

channels. The individual active electrode can also be used to deliver mono-phase 

square/triangular waveform output signals. Accuracy, safety, low power, light-weight, 

miniature and low-cost characteristics are the main concerns. Being a miniature 

bioelectronics component with low power consumption, the proposed device is suitable 

both as a non-invasive and as an implantable biomedical device, in which WFG and 

electrodes circuitry can communicate with the electro-active biomolecule, strongly 

stimulating certain events in a complex biological system. 

              A theoretical analysis, experiment design and performance are carried out in in-

vitro environments to examine the effect of the designed signal on human blood cellular 

proteins. Proteins that display a heterogeneous structure have various conductivities and 

permittivity (determining the interaction with the electrical field) and possess dielectric 

properties with a large conformation change, undergoing structural rearrangements in 
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response to cellular signals. The frequency-dependent dielectric present in proteins 

involves the redistribution and alignment of the proteins charged molecule and its polar 

molecule in response to an applied external electrical field can also induce conformation 

change. Interference polarization within proteins could interrupt the interaction between 

both sides of predominantly host cell proteins and of the HIV-1 infective envelope and 

its protein particles. This could disturb the signalling proteins for cell activation, and, 

hence, the virus cannot conjugate with the target cells and control the host cell protein 

activity. Since the virus is unable to reproduce out of a host cell, hence the virus cannot 

mutate and develop resistance easily, and use alternative binding and entry mechanisms 

as in the pharmacological approaches. After carefully studying the interaction of the 

HIV-1 virus and the host cell, with respect to signal transfer, CD4 receptor, co-receptors 

CCR5 and nuclear transport factor nucleoporins FGNup153 proteins of the lymphatic 

system, which are essential targets for HIV-1 infection and its life cycle replication 

represent an attractive target to investigate in this research project. The activities of the 

underlying mechanism of the target cell are then examined utilizing 

immunofluorescence microscopy technique with specific fluorescent labelled 

antibodies, and accurate results are obtained with relatively low cost. The results 

demonstrated that the low frequency electrical pulse could inhibit virus attachment and 

fusion. It is also could provide a permeability barrier, that prevents the import and 

export of large macromolecule virus particles through the nuclear pore complex. These 

effects could induce an antiviral state for a period of time, and stope HIV-1 virus 

replication, with no potential risks and harm to the host cells, compared to the common 

drugs. This is promising for the conception of HIV-1 treatment in vivo. Although 

further investigations are required in order to fully use the application of electrical 

stimulation in vivo for treatment, the result is provides the necessary impetus for the 

applications of low frequency electrical stimulation on human immune response. This 

might offer important antiviral therapy against the most devastating pathogens in human 

history. 

              This doctoral research is not only of academic interest but also highly relevant 

to medical applications. It is considered potentially beneficial in the development of 

knowledge in advanced technology for electro-medical treatment devices, their design, 

structure and applications to extend life, and for future growth in the biotechnology 

industry, therefore beneficial for the patients, physicians and for humanity. 
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