
Analysis of global and local stress changes in a longwall 
gateroad

I.B. Tulua,*, G.S. Esterhuizenb, D. Gearhartb, T.M. Klemettib, K.M. Mohamedb, and D.W.H. Sub

aDepartment of Mining Engineering, West Virginia University, Morgantown 26505, USA

bNIOSH, Pittsburgh Mining Research Division, Pittsburgh 15216, USA

Abstract

A numerical-model-based approach was recently developed for estimating the changes in both the 

horizontal and vertical loading conditions induced by an approaching longwall face. In this 

approach, a systematic procedure is used to estimate the model’s inputs. Shearing along the 

bedding planes is modeled with ubiquitous joint elements and interface elements. Coal is modeled 

with a newly developed coal mass model. The response of the gob is calibrated with back analysis 

of subsidence data and the results of previously published laboratory tests on rock fragments. The 

model results were verified with the subsidence and stress data recently collected from a longwall 

mine in the eastern United States.

Keywords

Longwall mining; Gateroad design; Flac3D; Horizontal angle; Gob loading; Hollow inclusion 
cells

1. Introduction

In 2015, there were 40 longwall mines operating in the United States, each producing an 

average of 4.5 million tons of coal per year, and they supplied 60% of the U.S. underground 

coal production. This represents a substantial increase from 50% over the previous three 

years [1]. During this period, reportable roof fall rates in U.S. longwall mines also increased. 

Large roof falls that can block the gateroads are not only a ground-fall hazard; they can 

disrupt the ventilation system, block the escape ways, and increase the potential for elevated 

methane levels in the gob. To address these hazards, the National Institute for Occupational 

Safety and Health (NIOSH) Pittsburgh Mining Research Division (PMRD) is conducting 

research to improve the design of ground control systems in longwall gateroads.
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Gateroad layout is primarily determined by the longwall pillar design. Generally, the 

required dimensions of the pillars around a longwall panel are determined first, which 

dictates the location of the gateroads relative to the mined panel. The analysis of long-wall 

pillar stability (ALPS) method is the most accepted design procedure in the United States 

[2]. The ALPS method accounts for local roof geology in the gateroad stability assessment 

by including the coal mine roof rating as an input parameter [2]. The key assumption in the 

ALPS method is that unstable pillars will result in unstable gate entries. However, 

experience provides examples of mines where pillar stability and gateroad stability are 

loosely correlated [3].

Gateroad support design is largely empirical, often based on a trial-and-error approach. 

Gateroad stability and safety can be improved by introducing an engineering-based design 

approach that specifically considers the rock mass and support response to changes in both 

the horizontal and vertical loading conditions induced by the approaching longwall face. 

Such complex stress changes during a longwall retreat can be evaluated with calibrated 

numerical models, allowing support systems to be designed that can accommodate the 

expected loading conditions.

2. Longwall model development and calibration

Esterhuizen et al. developed a modeling approach that can be used to provide realistic stress 

and deformation results along the gateroad chain pillars [4]. In this approach, an “equivalent 

element” method is used to capture the stress/strain response of the pillars and the 

immediate roof and floor rocks to model large-scale, three-dimensional retreat mining 

layouts. One limitation of this approach is that the response of the immediate roof to 

horizontal stress change during the retreat mining cannot be investigated because only the 

vertical stress is solved within the equivalent elements. Recently, this approach has been 

updated for estimating the changes in both the horizontal and vertical loading conditions in 

the immediate roof of the gateroads [5]. The modified approach uses standard elements to 

model the pillars, roof, and floor, which provides the full stress tensor, including horizontal 

stress components in the roof of the coal bed. In addition, interface elements are introduced 

between main geologic units to more accurately model shear and bending of the overburden 

strata.

2.1. Pillar strength modeling

Recently at NIOSH, Mohamed et al. developed a coal material model. In this model, the 

peak strength of the coal is evaluated by the generalized Hoek-Brown failure criterion [6–8]. 

The residual stiffness and strength are evaluated by the Fang and Harrison local degradation 

model [9]. The dilation of the coal material is defined by the Alejano and Alonso peak-

dilation model [9,10].

Mohamed et al. indicated that the Mohr-Coulomb constitutive model provides a method for 

describing the dilation behavior of rocks, and it is available in the majority of numerical 

codes [7]. Therefore, in this model, the equivalent Mohr-Coulomb model parameters derived 

from the Hoek-Brown criterion are used. This model simulates the peak and post-peak 
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behaviors of the coal material by using a strain-softening, ubiquitous joint model available in 

the FLAC3D software.

The input parameters used for coal in this paper are summarized in Table 1. In Table 1, “σci” 

is the intact unconfined compressive strength of the coal, and m, s and a are the peak 

strength scaled parameters of coal. The parameter σc represents peak, and σcr is the residual 

of the field-scale unconfined compressive strength. Nd is a scaled coal degradation 

parameter. This degradation parameter is used to reduce the strength and stiffness of the coal 

from peak values to residual values in the coal model. Υpcrit is the critical plastic shear 

strain that controls the rate of material degradation. The strength of the coal material is 

reduced until plastic shear strain reaches to this critical value. Coal material fracturing is 

simulated by adding an implicit cohesion-less ubiquitous joint within the material. Fractures 

are initiated in those elements that have plastic shear strain equal to or greater than the 

“fracture plastic shear strain” parameter detailed in Table 1. The coal model was originally 

developed to simulate the stress/strain behavior of coal pillar ribs. This model also simulates 

the stress/strain behavior of full coal pillars satisfactorily, as demonstrated in Fig. 1.

To compare the stress-strain behavior of the pillars generated with the coal model of 

Mohamed et al. to results obtained by Esterhuizen et al., numerical models were created in 

which portions of the roof strata, the coal pillar, and the floor strata were simulated [4,7]. 

The same boundary conditions and model geometries used by Esterhuizen et al. were 

modeled [4]. Fig. 1 shows the resulting stress-strain curves obtained from the coal models 

with different pillar width-to-height ratios. The stress-strain behavior presented in Fig. 1 is 

similar to the results published by Esterhuizen et al. [4]. The new coal model can simulate 

the fracture development in coal pillar [7]. Post-peak stress/strain behavior was slightly 

different. For the width-to-height ratios below 8, the pillars exhibit a strain-softening 

behavior. For the width-to-height ratios above 8, the pillars exhibit a strain-hardening 

behavior. The peak pillar strengths simulated by the numerical models are compared with 

the empirical Bieniawski pillar strength equation in Fig. 2. The results show good agreement 

between the model calculations and the empirical equation.

2.2. Gob response modeling

It is important to simulate the gob response accurately to simulate the load distribution along 

the gateroad entries. Esterhuizen et al. indicated that gob modeling can follow two 

approaches: (1) explicitly model the gob formation process so that variations in geology and 

loading conditions can be studied, (2) implicitly model the gob compaction and load 

distribution to accurately model load redistribution to gateroad pillars and surrounding rock. 

As in Esterhuizen et al., the second approach is used in this paper to simulate the behavior of 

the gob [4].

As indicated by Pappas and Mark, laboratory tests on shale and sandstone fragments showed 

that the stress-strain response of caved material should follow a strain-hardening curve [11]. 

Pappas and Mark used the hyperbolic function derived by Salamon to fit test results, and 

they found that this function sufficiently simulates the strain-hardening gob response 

[11,12].
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σ = (a × ε)/(b − ε) (1)

where σ is the vertical gob stress, MPa; ε the vertical gob strain, and ε = b/2, MPa; b the 

maximum strain parameter related to void ratio; and a the gob stress.

Esterhuizen et al. calibrated the hyperbolic equation (Eq. (1)) by matching the model results 

with subsidence profiles that were calculated from the surface deformation prediction 

software (SDPS) [4,13]. To assist selecting appropriate gob parameters, they followed the 

same approach used by SDPS, in which the gob is characterized by the ratio of the 

thicknesses of “strong” and “weak” rocks in the overburden. They classified weak rocks as 

shales and clay stones that have a field scale uniaxial confining strength (UCS) of less than 

40 MPa, while limestone, sandstone, and silt-stone have a field scale UCS above 40 MPa 

and would be classified as strong rocks. Esterhuizen et al. found that 44% represents the 

maximum vertical strain parameter b, which provides the initial bulking factor of 1.79 [4]. 

They also found four different a parameters for four gob types that were classified with a 

ratio of strong to weak rocks in the overburden: (1) weak (25%), (2) moderate (35%), (3) 

strong (50%), and (4) very strong (65%). The strong and moderate gob curves derived by 

Esterhuizen et al. are almost identical to laboratory best-fit curves for sandstone and shale 

materials that were published by Pappas and Mark [4,11].

Su simulated the behavior of the gob which is assumed to be formed under an initial bulking 

factor of 1.5 based on observation of caving height in boreholes, representing a maximum 

vertical strain of 33% and a caving height equal to three times the mining height [14]. Su 

used this approach very successfully for many years for estimating surface subsidence and 

pillar stresses for a number of longwall mines [15]. In addition, it was found that the gob 

parameters used by Su give close stress-strain values to the weak/moderate overburden gob 

response curves published by Esterhuizen et al. up to a gob compaction of 28% [4,14].

Maximum vertical strain is related to initial bulking factor (or initial void ratio). The average 

initial bulking factor of the test samples used by Pappas and Mark are: (1) 1.80 for shale, (2) 

1.74 for sandstone, and (3) 1.87 for strong sandstone [11]. These values of the bulking factor 

represent fully rotated and dislocated blocks, which represents the maximum bulking 

potential of the broken rock. In a mine gob, the void ratio will decrease with distance above 

the floor [16]. A value of 1.5 appears to be good representation of average bulking factor.

In this paper the gob represents only the caved material and excludes fractured rock above 

the caved zone. Based on the above discussions and the calibration of the gob response curve 

with subsidence data, the gob parameters proposed by Esterhuizen et al. were modified by 

assuming the gob was formed under an average bulking factor of 1.5, which represents a 

maximum strain of 33% and a caving height equal to three times the mining height 

measured from the floor [4]. This value of the bulking factor also provides reasonable 

estimates of the subsidence when used in numerical models. Two values of the a parameter 

are suggested for strong overburden and weak overburden. Fig. 3 shows the stress-strain 

Tulu et al. Page 4

Int J Min Sci Technol. Author manuscript; available in PMC 2019 February 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



behavior of these two gob types and a comparison to the tests results of Pappas and Mark 

[11]. Table 2 shows the gob parameters for these two curves.

In the model, strain-hardening gob behavior is simulated by updating the elastic modulus of 

each zone with the expected tangent modulus. The expected tangent modulus can be 

calculated by taking the derivative of Eq. (1) with respect to vertical strain (Eq. (2)). This 

task is performed by using the FISH option of the Flac3D software [17].

dQ/dQ = E(ε) = (a × b)/(b − ε)2 (2)

2.3. Overburden properties

Esterhuizen et al. published the suggested rock elastic, intact strength and bedding strength 

properties for modeling large-scale coal measure rock in the United States. Some 

modifications and corrections were made to the data that was published by Esterhuizen et al. 

[4]. Updated properties are presented in Tables 3 and 4.

UCS values in Table 3 are laboratory scale values. The field value of the UCS is estimated 

by multiplying the laboratory value with 0.58 [4,8]. Poisson’s ratio was set to 0.25. For 

sandstone and shale, the elastic modulus E is estimated from Eq. (3), and for limestone, the 

elastic modulus is estimated from Eq. (4). These equations were driven from the regression 

analysis of a large number of UCS tests. In Eqs. (3) and (4), the UCS is the laboratory scale 

value in MPa and the resultant elastic modulus is in GPa.

E = 0.143 × UCS + 6.16 (3)

E = 0.1162 × UCS + 15.24 (4)

The friction angles are determined from the database of tri-axial tests [4]. The friction values 

are also assumed to be the same in the laboratory and field scales. The cohesion values listed 

in Table 3 are field scale values and calculated by using Eq. (5).

C =
UCS f ield × (1 − Sin(φ))

2 × Cos(φ) (5)

where C is the field scale cohesion; φ = the friction angle; and UCSfield = UCSlab × 0.58.

Tensile strengths σt are calculated by using Eq. (6).

σt = 0.1 × UCSfield (6)
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The bedding strength parameters summarized in Table 4 were derived by Esterhuizen, Mark 

and Murphy [4]. Bedding tensile strength was set to 10% of the field-scale UCS. Esterhuizen 

et al. indicated that bedding friction angles may seem to be small compared to small-scale 

laboratory strength tests, but the presence of weak clay materials, especially in the shale 

beds, can have a significant impact on the overall shear resistance of a bedding plane [4].

The matrix cohesion and tensile strength decreased from their peak values, given in Table 3, 

to a residual value of 10% of peak over 5 millistrains of plastic strain [18]. The matrix 

friction angle remains constant at the values shown in Table 3. The stress-strain behavior of 

the bedding planes are assumed to be elastic perfectly plastic.

Interfaces between the geological layers in the overburden were modeled with the interface 

elements. This is the major difference from Esterhuizen et al. [4]. Coulomb’s criterion was 

used to define the limiting shear strength of the interfaces. As described by Su, the 

coefficient of friction of interfaces was set to 0.25 [14,15]. Joint shear stiffness was set to 0.5 

GPa/m, and normal stiffness was set to 10 times the shear stiffness [14,15].

3. Verification of the model

Case histories used by Esterhuizen, Mark and Murphy were again used to verify the updated 

modeling methodology and input parameters [4]. In addition, subsidence and vertical stress 

data recently collected by the Pittsburgh Mining Research Division (PMRD) from a 

longwall mine in West Virginia were used to verify the model results. Results of this 

verification study were published by Tulu et al. [5]. The model verification results showed 

that the response of coal measure rocks due to longwall mining can be simulated 

satisfactorily with this updated approach. In this paper, a numerical model is used for 

estimating the changes in both the horizontal and vertical loading conditions induced by an 

approaching longwall face in a West Virginia longwall mine.

3.1. Longwall mine panel layout and geology

The geometry of the study sites can be seen in Fig. 4a. The depth of cover throughout the 

mine ranges from 100 to 230 m, and the typical depth is about 180 m. The longwall panels 

are roughly 365 m wide by 2200 m long. The gateroad system is a three-entry with 

approximately center-to-center, 30-m-wide chain pillars. The mining high is approximately 

2 m.

Three core holes were drilled between crosscut 42 and 43 in the number 1 entry between 

Panel #2 and Panel #3 (Fig. 4b and c). One vertical hole was drilled 15 m into the floor, 

another vertical hole was drilled 15 m into the roof, and a 30° angled hole was drilled 9 m 

over the pillar and also into the roof. The collar locations for the core holes are at a depth of 

182 m. Based on the in-mine mapping, as well as available exploration drillhole data, the 

geologic conditions are typical for the Allegheny Formation. The Middle Kittanning coal 

bed that is mined is overlain by dark gray to carbonaceous clay shale. The clay shale grades 

upward to gray sandy shale, dark gray sandy shale, or gray sandstone. The gray sandy silt 

shale and dark gray sandy silt shale beds vary in grain size and sand content, based on their 
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proximity to the laterally correlative gray sandstone beds. Grain size and sand content will 

decrease as distance from the correlative sandstone beds increases [19].

3.2. Field measurements

There were three hollow inclusion cells installed over the panel and three installed over the 

pillar. The holes for the hollow inclusion cells, from outby to inby, were at 30°, 45°, and 60° 

from the horizontal, and each hole was 9 m deep (Fig. 4c). The hollow inclusion (HI) cell in 

the 30° hole over the panel was overcored two times to get the in situ stress in the rock 

before either panel had mined passed. Table 5 summarizes the measured principal in situ 

stresses. Details of this instrumentation study were published by Gearhart et al. [20]. In this 

paper, the stress changes measured by the hollow inclusion cells were compared to model 

calculations.

4. Three dimensional model development

The overburden in this mine consists of alternating layers of shale, sandstone, and limestone. 

Fig. 5 shows a portion of the over-burden log. Because there is not available laboratory test 

data for mechanical properties of rock layers, Ferm numbers detailed on the geological log 

were used to assign the approximate mechanical properties for each layer. Molinda and 

Mark published the point load strength data for common coal measure rocks [21]. Table 6 

shows data published by Molinda and Mark who classified each rock type with Ferm 

numbers [21]. The mechanical properties of each layer are assigned as shown in Tables 3 

and 4 by matching the Ferm number from the core log and data published by Molinda and 

Mark [21].

The thickness weighted average of the laboratory-scale UCS of the overburden is 54 MPa. 

The behavior of the gob, which is assumed to be formed under an initial bulking factor of 

1.5, was simulated with the weak overburden strain-hardening gob parameters detailed in 

Table 2. The coal material is simulated with the material properties detailed in Table 1. In 

developing the three-dimensional panel scale model, two initial pseudo 2D models were 

developed using FLAC3D to investigate the effect of element size on the results. The first 

pseudo 2D model was developed using 61 different layers with thicknesses ranging from 1 

to 10 m that were used to simulate the overburden. Element size in this model was 1 m. The 

second pseudo 2D model was developed using the same stratigraphy with element sizes 

ranging from 1 to 10 m to reduce the number of elements in the model. Once both pseudo 

2D models were developed, the subsidence and stresses were compared (Figs. 6 and 7). 

They were found to be similar enough to use the second pseudo model overburden geometry 

with larger element sizes in the full three-dimensional model. Fig. 6 shows the comparison 

of the subsidence results calculated by the two pseudo models and the field data. The model 

simulates the subsidence at the centerline of the panel within 2% to the field measurements. 

The shape of the subsidence curve is also satisfactory. The accuracy of the model-calculated 

subsidence at the centerline of the panel confirms that the model simulates the gob 

compaction satisfactorily for this case study.
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4.1. Comparison of the model results with field measurements and discussions

Horizontal and vertical stresses measured by the HI cells and calculated by the model were 

compared. Model results were queried at the same location as that of the HI cells relative to 

the entry, the geology, and the longwall face position. Both sets of HI cells on the pillar side 

and panel side gave credible results. In this paper, only the results of HI cells installed on the 

pillar side of the entry at 30°, 45°, and 60° from horizontal were compared with the model 

results to prevent repetition of the similar results gathered from the panel side. The 

horizontal stress response measured by the HI cells installed on the pillar side of the entry at 

45° and 60° from horizontal are presented as averaged values because the response of these 

cells was similar but different from the HI cell installed at 30° from horizontal. Vertical 

stress measured by all of the HI cells are averaged because they all behaved similarly.

4.1.1. Results for 30° HI cell during first panel passing—Fig. 8 shows the 

comparison of the horizontal stress response measured by the HI cell installed on the pillar 

side of the entry at 30° from horizontal and calculated by the model during first panel 

mining. The horizontal axis shows the relative distance between the instrumentation site and 

longwall face. Positive numbers indicate that the longwall face is outby the instrumented 

site. The vertical axis shows the percentage of stress change calculated with respect to the 

initial in situ stress value of the measured and/or calculated stress component. Solid green 

and red lines in Fig. 8 show the results for the HI cell. The red line represents the stress 

measured perpendicular to the entry, and the green line represents the stress measured 

parallel to the entry. Dotted blue and black lines show the model results.

When the first panel passes by the HI cell location, the magnitude of the horizontal stress 

perpendicular to the entry direction starts to decrease until it reaches to a value 10% less 

than its original magnitude. This minimum value was measured when the HI cell was 120 m 

inby the face. After that, its magnitude increases gradually as far as face is 550 m away from 

the HI cell. Fig. 8 shows that the model result for the horizontal stress perpendicular to the 

entry is also showing an initial 10% decrease in the magnitude, followed by an increase. 

However, the minimum value is calculated approximately 30 m inby the face, and the 

magnitude increases within 150 m and stays constant.

Fig. 8 shows that the magnitude of the horizontal stress parallel to the entry direction starts 

to increase gradually as the face approaches and passes the cell location. The model result 

for the horizontal stress parallel to the entry is also showing a similar increasing trend as 

shown by the measurement, but the final change in the magnitude calculated by the model is 

smaller than this measurement.

The reason for the difference in the results appears to be related to the time-dependent 

response of the rock mass, which means that stress change happens with time and is not 

solely based on the location of the advancing longwall face. However, the model results are 

calculated with a static solution, therefore, time-dependent effects are not simulated. Model 

results only depend on the distance between the face and the monitoring instruments.

4.1.2. Results for the 45° and 60° HI cells during first panel passing—Fig. 9 

shows the average change in horizontal stresses measured by two HI cells, installed on the 
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pillar side of the entry at 45° and 60° from horizontal (Fig.4), and comparable model results. 

The HI cell measurements follow similar trends as in Fig. 8. The magnitude of horizontal 

stress change calculated by the model parallel to the entry is approximately 20% of the in 

situ value, which is similar to the field measurement. However, the model calculates a 

gradual increase in horizontal stress perpendicular to the entry, which contradicts with the 

field measurement.

The difference in the stress magnitude perpendicular to the entry may be related to the fact 

that the geology of the roof in the model consists of uniform strata over the entire longwall 

panel. However, the geological model developed from the core-hole data showed that the 

thickness of each stratum can change rapidly and strata are not uniform. There is a strong 

limestone stratum on the roof which is very close to the HI cells, and its thickness and height 

from the roof can vary within a distance of 10 m, based on the core-hole data obtained at the 

monitoring site. The core-hole data over the extent of the longwall panel is too widely 

spaced to identify local variations of the limestone bed. The difference between the uniform 

geology in the model and the actual geology might create the difference between the model 

results and HI cells measurements.

4.1.3. Results for vertical stress changes during first panel passing—Fig. 10 

shows the average vertical stresses measured by three HI cells, installed on the pillar side of 

the entry at 30°, 45°, and 60° from horizontal and comparable model results. Vertical stress 

measured by the HI cells increased by 44% of its initial value. The vertical stress measured 

by the HI cells started to increase when the face was approximately 180 m inby the HI cells 

and continued to increase until the face was 480 m outby the HI cells. Vertical stress 

calculated by the model increased by 32% of its initial value. Model results showed that 

vertical stress started to increase when the face was approximately 30 m inby the HI cells 

and continued to increase until the face was 120 m outby the measurement location.

The difference between the vertical stress measurements and model results appears to be 

related to the time-dependent response of the rock mass measured by the HI cells, but not 

included in the model. However, the magnitude and general trend of the vertical stress 

predicted by the model is similar to the field measurements.

4.1.4. Results for 30° HI cell during second panel passing—Fig. 11 shows the 

comparison of the horizontal stress response measured by the HI cell installed on the pillar 

30° from horizontal and calculated by the model during the second panel mining. Both 

horizontal stresses measured by the HI cell stayed constant until the face is near the HI cell. 

After that, the horizontal stress parallel to the entry started to increase and, perpendicular to 

entry, started to decrease. The model results also showed similar trends. However, the model 

results showed a gradual increase of horizontal stresses when the instrument location was 

outby the face. In addition, when the face was near the instrumented location, horizontal 

stresses parallel to entry started to increase with a higher slope than the measurement. 

Similarly, horizontal stress perpendicular to the entry started to drop with a higher slope than 

measured.
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In this case, the model calculated horizontal stress changes that were again more rapid as 

compared to HI cell measurements. The HI cells indicated that there is a delayed response of 

the rock mass to changes in the longwall face position. Time-dependent behavior is not 

included in the models. The model response only depends on the relative location of the 

cells with respect to the longwall face.

4.1.5. Results for 45° and 60° HI cells during second panel passing—Fig. 12 

shows the comparison of the average horizontal stress response measured by the HI cells 

installed on the pillar 45° and 60° from horizontal and calculated by the model during the 

second panel mining. Both horizontal stresses measured by the HI cells stayed constant until 

the face is near the monitoring instruments. After that, both stresses started to increase. The 

model results showed a gradual increase compared to measurements for stress calculated 

perpendicular to the entry. The stress calculated parallel to the entry decreased gradually 

from its peak when the instruments’ location is inby the face.

There was a significant difference between the measured and model results for the horizontal 

stress perpendicular to the entry after the panel had passed the instrument site. The 

difference may be related to the slower time-dependent response of the rock mass compared 

to the instantaneous response of the model. A further contributing factor may be the 

difference between the uniform geology assumed in the model and the effect of unknown 

variations in the actual geology.

4.1.6. Average results for vertical stress during second panel passing—Fig. 

13 shows the comparison of the average vertical stress response measured by the HI cells 

installed on the pillar at 30°, 45°, and 60° from horizontal and calculated by the model 

during the second panel mining. The vertical stress measured by the HI cells increased more 

than 2 times of its initial value when the face is approximately 15 m outby the HI cells. 

Vertical stress calculated by the model increased 2.5 times of its initial value at the same 

point.

4.2. Discussion

During the first panel mining, the HI cell data showed that the horizontal stress 

perpendicular to the entry reduced from its original value, and the horizontal stress measured 

parallel to the entry increased. The model results also captured this behavior. This means 

that after the first panel passed, the stress was oriented in a more favorable direction with 

respect to the entries and in a less favorable direction for the crosscuts.

During the second panel mining, the horizontal stress that measured parallel to the entry 

started to increase and that perpendicular to entry started to decrease. This means that after 

the second panel passed, the stress was oriented in an even more favorable direction with 

respect to the entries compared to the situation after passing of the first panel.

The HI-cell measurements also provided some insight into the height of the caved zone over 

the longwall panel. The average horizontal stresses measured by the HI cells installed at 45° 

and 60° over the pillar started to increase as the face passed the instruments. The horizontal 

stress perpendicular to the entry increased more than the horizontal stress parallel to entry. 
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The 30° cell did not indicate a similar change in stress. This response can be explained if the 

HI cells are located above the stress shadow of the caved zone, and stress is transferred to 

the upper strata that has not caved yet. It, therefore, appears to indicate that the height of 

caving was between 4.5 and 6 m above the roof line, which verifies that the bulking factor of 

1.5 is a good approximation for modeling the height of the caved rock.

5. Conclusions

This paper summarizes and verifies an updated approach for panel scale modeling of 

longwall extraction with subsidence/stress data recently collected from a longwall mine in 

the eastern United States. The model results show that the response of coal measure rocks 

due to longwall mining can be simulated satisfactorily with this updated approach. The 

paper also provides a basic set of input data and a modeling approach for overburden rocks, 

coal material, and gob material.

There are some differences between the measurements and model results. The HI cell 

measurements demonstrated that there is a delayed, time-dependent response of the rock 

mass to changes in the mining geometry. However, the model did not include time-

dependent effects. The results are calculated with a static solution that assumes 

instantaneous response of the rock mass to changes in the mining geometry. The model 

results are only dependent on the relative distance between the face and the instruments. In 

addition, the model assumes uniform geology over the longwall panels, but in reality the 

geology of the roof can change over short distances. The spacing of the core holes is 

insufficient to identify these local changes in geology. These differences between the real 

world and the model approximation are likely to have contributed to the difference between 

the model results and HI cell measurements.

During the first panel mining, the measurements and model results showed that the 

horizontal stress measured perpendicular to the entry reduced from its original value and the 

horizontal stress measured parallel to the entry increased. This means that, after the first 

panel passed, the stress was oriented in a more favorable direction with respect to the entries, 

and less favorable for the crosscuts. During the second panel mining, measurement and 

model results showed that the stress was oriented in an even more favorable direction with 

respect to entries compared to the situation after passing of the first panel.

The elevated horizontal stress measured inby the face by the 45° and 60° HI cells appeared 

to indicate that the height of the caved zone extended less than 4.5 m above the roof line. 

This observation seems to confirm that the bulking factor of 1.5 is a reasonable value for 

estimating the height of the caved zone.
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Fig. 1. 
Stress-strain curves obtained from a calibrated coal model.
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Fig. 2. 
Pillar strength results obtained by numerical models after calibrating the models to the 

empirical pillar strength equation.
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Fig. 3. 
Stress-strain behavior of the two gob types and a comparison to the tests results.
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Fig. 4. 
Field monitoring location.
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Fig. 5. 
A portion of the overburden log.
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Fig. 6. 
Comparison of the subsidence measurements with model results.
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Fig. 7. 
Model-calculated vertical stress distribution.
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Fig. 8. 
Horizontal stress response of 30° HI cell during first panel mining.
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Fig. 9. 
Average horizontal stress response of 45 and 60° HI cells during first panel mining.
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Fig. 10. 
Average vertical stresses response by three HI cells during first panel mining.
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Fig. 11. 
Horizontal stress response of 30° HI cell during second panel mining.
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Fig. 12. 
Average horizontal stress response of 45° and 60° HI cells during second panel mining.
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Fig. 13. 
Average vertical stress response by three HI cells during second panel mining.
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Table 2

Parameters for modeling various gob types.

Overburden type a (MPa) b

Weak 3.00 0.33

Strong 7.24 0.33
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Table 4

Suggested bedding strength properties.

Type Cohesion (MPa) Friction (°) Tension (MPa)

Limestone 9.47 32 0.81

7.55 30 0.58

6.70 28 0.46

Sandstone 8.11 30 0.70

6.76 30 0.58

6.04 27 0.46

4.53 25 0.35

3.35 20 0.23

Shale 2.96 10 0.46

2.44 7 0.35

1.78 7 0.23

0.50 7 0.17

0.30 5 0.12

0.20 5 0.06

0.10 5 0.03

Int J Min Sci Technol. Author manuscript; available in PMC 2019 February 05.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Tulu et al. Page 30

Ta
b

le
 5

H
I-

ce
ll 

ov
er

co
ri

ng
 3

D
 in

 s
itu

 m
ea

su
re

m
en

ts
.

O
ve

rc
or

e 
no

.
P

ri
nc

ip
al

 s
tr

es
s 

(M
P

a)
M

ax
im

um
 p

ri
nc

ip
al

 s
tr

es
s 

di
re

ct
io

n

M
ax

im
um

In
te

rm
ed

ia
te

M
in

im
um

D
ip

 (
°)

A
zi

m
ut

h 
(°

)

1
6.

52
5.

47
4.

14
13

11
7

2
8.

28
6.

58
3.

47
4

29
0

Int J Min Sci Technol. Author manuscript; available in PMC 2019 February 05.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Tulu et al. Page 31

Ta
b

le
 6

C
om

m
on

 c
oa

l m
ea

su
re

 r
oo

f 
ro

ck
s 

an
d 

th
ei

r 
po

in
t l

oa
d 

st
re

ng
th

 p
ro

pe
rt

ie
s 

[2
1]

.

F
er

m
 n

o.
D

es
cr

ip
ti

on
A

xi
al

 s
tr

en
gt

h 
(M

P
a)

D
ia

m
et

ri
c 

st
re

ng
th

 (
M

P
a)

A
ni

so
tr

op
y

St
at

e
U

R

A
ve

ra
ge

St
d.

A
ve

ra
ge

St
d.

14
Sl

um
pe

d 
sa

nd
y 

sh
al

e
PA

35

20
C

oa
l

11
2

6
2

1.
96

W
Y

, P
A

, K
Y

, W
V

35

11
3

B
la

ck
 s

ha
le

 w
ith

 c
oa

l s
tr

ea
ks

34
7

5
2

6.
30

O
H

, P
A

35

11
4

B
la

ck
 s

ha
le

44
30

10
6

4.
40

IL
, P

A
39

11
9

B
la

ck
 s

ha
le

 w
ith

 f
os

si
l s

he
lls

18
6

9
4

2.
05

K
Y

39

12
2

D
ar

k 
gr

ay
 la

ye
re

d 
sh

al
e

53
19

25
31

2.
12

W
V

, P
A

45

12
3

D
ar

k 
gr

ay
 s

ha
le

 w
ith

 c
oa

l s
tr

ea
ks

36
9

9
4

4.
00

PA
, W

V
, O

H
33

12
4

D
ar

k 
gr

ay
 s

ha
le

36
28

8
4

4.
50

PA
, W

Y
, K

Y
36

12
7

D
ar

k 
gr

ay
 f

ir
ec

la
y

0
0

9
6

PA
, O

H
, W

V
30

13
7

L
ig

ht
 g

ra
y 

gr
ee

n 
fi

re
cl

ay
33

45
6

0
5.

50
K

Y
28

14
7

G
re

en
 c

la
ys

to
ne

0
0

0
0

O
H

, P
A

30

23
7

L
ig

ht
 g

ra
y 

gr
ee

n 
fi

re
cl

ay
 w

ith
 li

m
es

to
ne

 N
od

ul
es

64
24

24
0

2.
67

PA

32
2

D
ar

k 
gr

ay
 s

ha
le

 a
nd

 I
nt

er
be

dd
ed

 s
an

ds
to

ne
78

27
17

9
4.

59
W

V
, P

A
48

32
3

D
ar

k 
gr

ay
 s

ha
le

 w
ith

 s
an

ds
to

ne
 s

tr
ea

ks
48

24
11

5
4.

36
PA

, K
Y

40

32
4

D
ar

k 
gr

ay
 m

as
si

ve
 s

an
dy

 s
ha

le
55

15
9

7
5.

91
W

V
, P

A
, I

L
, K

Y
47

32
5

D
ar

k 
gr

ay
 m

as
si

ve
 c

hu
rn

ed
 s

an
dy

 s
ha

le
42

11
13

11
3.

23
W

V
, P

A
48

32
7

D
ar

k 
gr

ay
 s

an
dy

 f
ir

ec
la

y
9

1
0

0
K

Y
29

33
2

L
ig

ht
 g

ra
y 

gr
ee

n 
sh

al
e 

an
d 

In
te

rb
ed

de
d 

sa
nd

st
on

e
32

10
10

6
3.

20
IL

, W
Y

, K
Y

44

33
7

L
ig

ht
 g

ra
y 

gr
ee

n 
sa

nd
y 

fi
re

 c
la

y
41

8
39

30
1.

05

35
7

R
ed

 a
nd

 g
re

en
 s

an
dy

 c
la

ys
to

ne
64

43
0

0

43
7

R
ed

 a
nd

 g
re

en
 s

an
dy

 f
ir

ec
la

y 
w

ith
 li

m
es

to
ne

12
4

5
2

2.
45

54
1

G
ra

y 
cr

os
sb

ed
de

d 
sa

nd
st

on
e

61
5

24
13

2.
49

PA
, K

Y
, W

Y
63

54
3

G
ra

y 
sa

nd
st

on
e 

w
ith

 S
ha

le
 S

tr
ea

ks
 r

ip
pl

e
80

48
28

14
2.

86
O

H
, P

A
, W

Y
, K

Y
, W

V
63

54
4

G
ra

y 
m

as
si

ve
 s

an
ds

to
ne

75
27

94
40

0.
80

W
V

, K
Y

, P
A

77

74
9

G
ra

y 
sa

nd
st

on
e 

w
ith

 c
oa

l s
pa

rs
0

0
0

0
W

V
, O

H
43

76
4

H
ar

d 
qu

ar
tz

 p
eb

bl
e 

co
ng

lo
m

er
at

e
98

23
67

35
1.

46
PA

46

77
2

Sh
al

e 
br

ec
ci

a
22

2
0

0

Int J Min Sci Technol. Author manuscript; available in PMC 2019 February 05.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Tulu et al. Page 32

F
er

m
 n

o.
D

es
cr

ip
ti

on
A

xi
al

 s
tr

en
gt

h 
(M

P
a)

D
ia

m
et

ri
c 

st
re

ng
th

 (
M

P
a)

A
ni

so
tr

op
y

St
at

e
U

R

A
ve

ra
ge

St
d.

A
ve

ra
ge

St
d.

78
2

Sh
al

e 
pe

bb
le

 s
ha

le
y 

lim
es

to
ne

 b
re

cc
ia

0
0

0
0

K
Y

78

80
2

L
ay

er
ed

 f
in

e 
gr

ai
ne

d 
sh

al
ey

 li
m

es
to

ne
79

14
15

4
5.

27
O

H
63

80
4

M
as

si
ve

 f
in

e 
gr

ai
ne

d 
sh

al
ey

 li
m

es
to

ne
61

32
41

30

89
4

M
as

si
ve

 f
in

e 
gr

ai
ne

d 
sh

al
ey

 li
m

es
to

ne
30

16
14

3
2.

14
K

Y
35

90
4

M
as

si
ve

 f
in

e 
gr

ai
ne

d 
sa

nd
st

on
e

12
5

38
12

6
23

0.
99

O
H

10
0

Int J Min Sci Technol. Author manuscript; available in PMC 2019 February 05.


	Abstract
	Introduction
	Longwall model development and calibration
	Pillar strength modeling
	Gob response modeling
	Overburden properties

	Verification of the model
	Longwall mine panel layout and geology
	Field measurements

	Three dimensional model development
	Comparison of the model results with field measurements and discussions
	Results for 30° HI cell during first panel passing
	Results for the 45° and 60° HI cells during first panel passing
	Results for vertical stress changes during first panel passing
	Results for 30° HI cell during second panel passing
	Results for 45° and 60° HI cells during second panel passing
	Average results for vertical stress during second panel passing

	Discussion

	Conclusions
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.
	Fig. 7.
	Fig. 8.
	Fig. 9.
	Fig. 10.
	Fig. 11.
	Fig. 12.
	Fig. 13.
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6

