
Spectral transformation based on nonlinear principal component analysis for
dimensionality reduction of hyperspectral images
Giorgio Licciardia,b and Jocelyn Chanussota,c

aSigmaphy, GIPSA-Lab, Grenoble, France; bHypatia Research Consortium , Rome, Italy; cFaculty of Electrical and Computer Engineering,
University of Iceland, Reykjavik, Iceland

ABSTRACT
Managing transmission and storage of hyperspectral (HS) images can be extremely difficult.
Thus, the dimensionality reduction of HS data becomes necessary. Among several dimension-
ality reduction techniques, transform-based have found to be effective for HS data. While
spatial transformation techniques provide good compression rates, the choice of the spectral
decorrelation approaches can have strong impact on the quality of the compressed image.
Since HS images are highly correlated within each spectral band and in particular across
neighboring bands, the choice of a decorrelation method allowing to retain as much
information content as possible is desirable. From this point of view, several methods
based on PCA and Wavelet have been presented in the literature. In this paper, we propose
the use of NLPCA transform as a method to reduce the spectral dimensionality of HS data.
NLPCA represents in a lower dimensional space the same information content with less
features than PCA. In these terms, aim of this research is focused on the analysis of the
results obtained through the spectral decorrelation phase rather than taking advantage of
both spectral and spatial compression. Experimental results assessing the advantage of
NLPCA with respect to standard PCA are presented on four different HS datasets.
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Introduction

Hyperspectral (HS) sensors collect information on a
very high number of wavelengths, corresponding to
tens or hundreds of bands. These kinds of data
become increasingly popular and are extremely useful
in several fields of application. Usually, in Earth
observation, HS images are acquired by sensors
mounted on airborne or satellite-borne carriers.
While airborne-based sensors can cover only limited
regions of the Earth surface, satellite based sensors
have the ability to collect information over the entire
globe. However, due to the size of a typical HS
dataset, not all the acquired data can be downlinked
to a ground station. For this reason the dimension-
ality reduction of HS data becomes necessary in order
to match the available transmission bandwidth. From
this point of view it is possible to take advantage of
the high degree of spectral and spatial correlation of
HS data. In general, image compression approaches
can be grouped as lossless or lossy compressions.
Lossless approaches are usually based on the suppres-
sion of the statistical redundancy of the data (Jing &
Guizhong, 2006; Wei et. al., 2010). On the other
hand, a lossy algorithm aims to minimize the data
volume by discarding non-relevant part of informa-
tion. Lossy compression is usually used when higher
ratios are required. Moreover, as long as the

radiometric resolution of the image increases,
expressed as number of bit per pixel, lossy
approaches obtain better results than lossless techni-
ques, in terms of quality of reconstructed images. In
the literature, several lossy approaches have been
proposed for the compression of HS images
(Abousleman et al., 1995; Conoscenti, Coppola, &
Magli, 2016; Fowler et al., 2007; Karami, Heylen, &
Scheunders, 2015; Kulkarni et al., 2006). Many of
these techniques are based on decorrelation trans-
forms, in order to exploit both spatial and spectral
correlations, followed by a quantization stage and an
entropy coder. In particular these approaches involve
the combination of a 1-D spectral decorrelator such
as the principal component analysis transform
(PCA), the Discrete Wavelet Transform (DWT), or
the Discrete Cosine Transform (DCT), followed by a
spatial decorrelator (Abrardo, Barni, & Magli, 2010;
Christophe, Mailhes, & Duhamel, 2008; Kaarna et al.,
2000). It is not difficult to understand that the spec-
tral decorrelation phase plays a critical role for an
effective HS compression. Wavelet-based techniques
include the 3D extensions of JPEG2000, SPIHT, and
SPECK (Kim, Xiong, & Pearlman, 2000; Penna et al.,
IEEE GRSL, 2006a; Tang et al. 2005). These
approaches can be seen as direct 3D extensions of
approaches designed for 2D imagery, where a 1D
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DWT perform the spectral decorrelation, while a 2D
DWT works spatially. Even if these approaches have
been widely used, offering good performances
(Fowler & Rucker, 2007), other approaches for spec-
tral decorrelation have been proposed. In the litera-
ture, there exist many methods for the decorrelation
of HS images in order to represent the inherent
information content in lower dimensionality domain
(Serpico et al., 2003), however, from a coding gain
point of view, the PCA is considered to be the opti-
mal transform for gaussian sources. In Du et al.
(2007) it has been demonstrated that combining
PCA with JPEG2000 yields superior rate-distortion
performance than using DWT for spectral decorrela-
tion. However, even if this approach is compliant
with the Part 2 of the JPEG2000 Standard,1 its prac-
tical application has been limited due to its high
computational complexity. Possible solutions have
been proposed in Du et al. (2008) and Penna et al.,
IGARSS (2006b), where different approaches for a
low-complexity PCA have been proposed. The main
advantage of using the PCA is based on the assump-
tion that in a HS image the number of spectrally
distinct signal sources is limited. The PCA transfor-
mation reproject the data in the direction of the
highest variance. Consequently it is possible to
assume that, after the PCA transformation, the rele-
vant information is retained in the first few principal
components (PCs) having the highest variance, while
the remaining one contain essentially noise only. In
this way the 1D spectral compression is obtained by
considering the statistically more relevant PCs.
However, since the PCA is a linear transformation,
it is not able to decorrelate data presenting nonlinear
correlations between variables. This will result in part
of the relevant information to be retained by the last
PCs and consequently to a loss of a relevant part of
information by discarding them. It has been demon-
strated that this loss of information can have a nega-
tive influence on the following processing stages
(García-Vílchez et al., 2011). From this point of
view, to be really useful, a lossy compression algo-
rithm should be able to deal with both linear and
nonlinear correlations in order to retain as much as
possible of the original information in less compo-
nents as possible. In other terms, a nonlinear general-
ization of the PCA is advisable. In the literature
several approaches have been proposed to perform
the nonlinear version of PCA, among which, the
most effective ones are the Nonlinear Principal
Component Analysis (NLPCA) (Kramer, 1991) and
the Kernel Principal Component Analysis KPCA
(Scholkopf, 1998). While both techniques perform a
dimensionality reduction by projecting the original
data into a lower dimensional feature space, only

NLPCA provides a demapping function to reproject
the data into the original space. Indeed, the KPCA
use the so-called kernel trick to project the data into
the feature space implicit and unknown. Thus, it is
not possible to reproject data back to the original
space but is possible to reconstruct the data by
means of minimization approaches. For this reason,
the reconstructed images obtained with kernel meth-
ods present strong spectral distortions and conse-
quently, the use of KPCA for compression purposes
is discouraged. In this paper, in order to reduce the
loss of information derived from the dimensionality
reduction, we propose the use of the NLPCA to
project the original data into a reduced dimension-
ality subspace (or feature space) by extracting mean-
ingful components while still retaining the structure
of the raw data. The proposed method will be eval-
uated in terms of compression and distortion perfor-
mances. The remainder is organized as follows. In
section 2, we will present the NLPCA technique,
while in section 3 experimental results will be pre-
sented. Finally, we make some concluding comments
in Section 4.

Nonlinear principal component analysis

NLPCA, commonly referred to a nonlinear general-
ization of the standard PCA, is based on multi-layer
perceptrons (MLP) and is performed by
Autoassociative Neural Networks (AANN) or as
auto-encoder networks (Bishop, 1995; Kramer,
1991). An AANN is a conventional feedforward NN
having sigmoidal activation functions in each node,

σ xð Þ ¼ 1=ð1þ eð�xÞÞ (1)

with σðxÞ ! 1 as x ! þ1 and σ xð Þ ! 0 as x !
�1 The NN is trained by the Standard Conjugated
Gradient (SCG) (Moller, 1993) in order to minimize
the sum-of-squares error of the form:

E ¼ 1
2

XN
n¼1

Xd
k¼1

yk xnð Þ � xnk
� �2

(2)

where ykðk ¼ 1; . . . ; dÞ is the output vector.
Differently from the standard NN topology, the non-
linear AANN sees the use of three hidden layers,
including an internal bottleneck layer of smaller
dimension than either input or output. The network
is trained to perform identity mapping, where the
input Y has to be equal to the output Y 0:This means
that if the training phase finds an acceptable solution,
that is, a solution that gives an error E below a
predefined threshold, a good compressed representa-
tion of the input must exist in the bottleneck layer.
Since there are fewer nodes in the bottleneck layer

1Jpeg2000 part 2—extensions, document ISO/IEC15444-2, www.iso.org.
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than in the input/output, the bottleneck nodes must
represent or encode the information obtained from
the inputs for the subsequent layers to reconstruct the
input. In other words, data compression caused by
the network bottleneck may force hidden units to
represent significant features in the data.

Nonlinear AANN topology

The ability of an AANN to fit arbitrarily nonlinear
functions depends on the presence of a hidden layer
with nonlinear nodes. Without the hidden layer the
network is only capable of producing linear combina-
tions of the inputs, given linear nodes in the output
layer. This can be explained by considering the
AANN as a combination of two successive functional
mappings. The first part represents the encoding or
extraction function:

T ¼ G Yð Þ (3)

that projects the original d-dimensional data Y
onto a lower dimensional subspace defined by the
activations of the units in the central hidden layer
(bottleneck). In a similar way, the second half of the
network defines an arbitrary functional mapping:

Y 0 ¼ H Tð Þ (4)

that project from the lower dimensional space
back into the original d-dimensional space
(Figure 1). In general, the output of each node is
defined as the compositions and superposition of a
single, simple linear, or nonlinear activation function
f (Cybenko, 1989):

yk xð Þ ¼ f
XN
j¼1

wkjxj þ w0

 !
(5)

If we consider an AANN having only one hidden
layer, the coding and decoding subnets correspond to
a simple input-output network. In this way, having
linear activation functions, each node in the output
layer is a linear combination of the input nodes:

y out xð Þ ¼ f
XN
j¼1

wjxj þ w0

 !
(6)

that would correspond exactly to the linear PCA
(Sanger, 1989). A subnetwork lacking a hidden layer
but including sigmoidal activation functions is only
capable of generating multivariable sigmoidal func-
tions, that is, linear functions compressed into the
range (0,1) by the sigmoid:

y out xð Þ ¼ σ
XN
j¼1

wjxj þ w0

 !
(7)

To be nonlinear, each individual function requires
one hidden layer with nonlinear activation functions.
In this way each node of the output layer depends on
the previous hidden layer:

y out xð Þ ¼ 1

1þ e�
PM

i¼1wihi xð Þ þ w0

(8)

where:

hi xð Þ ¼ 1

1þ e
�
PN

j¼1
wijxjþw01

(9)

Substituting hi in Equation (8) we obtain:

Figure 1. Networks implementing mapping (left) and demapping functions (right).
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yout xð Þ ¼ σ
XN
j¼1

wjϕj xð Þ þ w0

 !
(10)

where ϕj xð Þ are nonlinear basis functions that are
able to approximate any continuous function. This
leads to the conclusion that three hidden layers are
necessary in order to obtain an optimal nonlinear
feature extraction.

Nonlinear AANN training

If we consider the two subnetworks separately, for the
subnetwork representing G, we know the input Y
while the desired output T is unknown. On the
other hand, for the network representing H, the
desired output Y’ is known, while the input T is
not. In order to map the input space into a nonlinear
feature space using a supervised training of neural
networks, it is necessary to have a complete knowl-
edge of the relations between the two spaces, and this
is not always possible. This means that it is not
possible to train the subnets separately in order to
define a mapping function between input space and
feature space. However, considering that T is at the
same time output of G and input of H.

Y 0 ¼ H G Yð Þð Þ (11)

is possible to combine the two networks so that the
NN performing G feed directly the NN performing
H. In this case there is no more need to know the
relations between the input and feature spaces since
both input Y and output Y’ of the combined NN are
known and a supervised training to learn identity
mapping is now possible (Cottrell, Munro, & Zipser,
1986). With this configuration the AANN, and con-
sequently the two subnets composing it, can be
trained to minimize Equation (2). In the same way,
E measures the loss of information in the same sense
as PCA.

One of the main difficulties in designing the
AANN relies in the selection of the correct number
of nodes that minimizes the loss of information pro-
duced in the three hidden layers, and in particular in
the bottleneck layer. Being the AANN designed in
order to minimize the reconstruction error, the best
NN topology can be retrieved by using a simple grid
search algorithm that varies recursively the number
of nodes of the hidden layers and evaluated the
respective error. Then the topology presenting the
lowest error is selected. However, without a starting
point, this approach can be extremely time consum-
ing and a different solution should be found.
Analyzing the structure of the AANN, it can be
found that the number of adjustable parameters in
this kind of networks is:

M1 þM2ð Þ d þ kþ 1ð Þ þ d þ k (12)

where M1 and M2 are the numbers of nodes in the
mapping and demapping layers, respectively. The
term d represents the number of nodes of the input/
output layers while the term k refers to the number of
nodes in the bottleneck layer. Equation (12) implies
the following inequality:

M1 þM2 � d
n� k

d þ kþ 1
(13)

where n is the number of training samples.
Equation (13) greatly reduces the number of different
AANN configurations to be tested. Aim of a dimen-
sionality reduction method is to reduce the original
spectral dimension into a lower dimensional space.
This can be translated into the AANN structure as:

k � d; n (14)

Once selected the number of nodes in bottleneck
layer, that corresponds to the number of nonlinear
principal components (NLPCs), then Equation (13)
becomes:

M1 þM2 � n (15)

Assuming a balanced structure of the AANN, M1

and M2 should have the same dimensions
(M1 = M2 = M), and Equation (15) can be simplified
as:

2M � n (16)

Equation (16) is effective only if the number of map-
ping/demapping nodes M is greater than the number
of nodes in the bottleneck layer k, on the contrary
there will not be enough data to effectively extract k
nonlinear components (Kramer, 1991).

NLPCA applied to hyperspectral images

The NLPCA can be used to project HS images into a
lower dimensional feature space. The training of the
AANN can be performed by using the pixels of the
image, where each band corresponds to one input of
the network. It has to be noted that, as the output has
to simply replicate the input, no independent target
data are provided, and there is no need to have an a
priori knowledge for the implementation of the learn-
ing phase. This implies that the AANN training can
be performed in a fully automatic way and that all
pixels in the image can be considered for this task,
which has actually been the technique adopted in this
paper.

Once trained the AANN to perform the identity
mapping, the NLPCs can be obtained directly from
the bottleneck layer. In the same way, the obtained
NLPCs can be subsequently used as input to the
decoding layer in order to obtain the reconstructed
original data. This means that if the training phase of
the AANN finds an acceptable solution, the obtained
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NLPCs present the same information of the input
data but in a lower dimension. Thus the NLPCA
permits to compress the spectra of the HS images in
few components. Moreover, since the goal of the
supervised training of the AANN is identity map, it
is possible to suppose that the training error E is
associated to the noise. This suggests that the use of
the NLPCA permits to suppress or completely
remove noise and artifacts present in the image.

Noise suppression and spectral dimensionality
reduction can be obtained also with linear PCA.
However, compared to linear decorrelation techni-
ques, NLPCA has many advantages. First of all, with
the PCA or similar approaches the information con-
tent is firstly reprojected onto an orthogonal space
and then the obtained components are ordered in
terms of variance. Then the image dimensionality
reduction through PCA can be obtained by discard-
ing the less relevant components in terms of variance.
Since this kind of approaches detect only linear cor-
relations among spectral bands, a relevant part of the
original information can be retained by the last com-
ponents and consequently lost during the compres-
sion phase (Licciardi et al. 2011). From this point of
view, the NLPCA approach has the advantage to
directly compress the original information into an
already defined number of components, allowing an
almost perfect reconstruction of the original data
(Licciardi, Khan, et al., 2012). This characteristic
also has great impact on the distribution of informa-
tion among components. In fact, differently from
other approaches, in NLPCA the nonlinear compo-
nents are not ranked in term of variance. This means
that the compressed information tends to be distrib-
uted among the components (Licciardi, Del Frate, &
Duca, 2009).

As stated before, the PCA can be obtained using
an AANN without the coding and decoding layers. In
this way it is possible to avoid discarding less relevant
information and project all the information in few
components. However, the main difference between
PCA and NLPCA obtained using AANN is that the
latter is able to map both linear and nonlinear rela-
tions between variables, while PCA is only able to
deal with linear ones. This means that, if nonlinear
correlations exist between variables, NLPCA has the
relevant advantage to describe the data with greater
accuracy in fewer components than PCA.

Many methods have been proposed to extract com-
ponent in a nonlinear manner, for example, locally linear
embedding (LLE) and Isomap (Saul et al. 2004;
Tenenbaum, Silva, & Langford, 2000) visualize high-
dimensional data by projecting (embedding) them into
a two or three-dimensional space. Principal curves and
self-organizing maps (SOM) (Kohonen, 2001) describe
data by nonlinear curves and nonlinear planes up to two
dimensions. The main limitation of these methods is

related to obtaining low number of features, that may
be not sufficient to describe the inherent information of
the data. An alternative solution to NLPCA can be
offered by the Kernel Principal Components Analysis
(KPCA) (Scholkopf, Smola, & Muller, 1998). In KPCA
the original data are firstly mapped into a higher dimen-
sional feature space F, and then PCA is performed in F to
extract nonlinear PCs of the input data. Due to the high
computational complexity, the mapping into a higher
feature space can be exploited by applying the “kernel
trick”method. The “kernel trick” inmachine learning is a
way to easily adapt linear algorithms to nonlinear situa-
tions. In the case of KPCA, the kernel trick permits to
project the input data into a higher dimensional implicit
feature space F without having to compute the mapping
explicitly. Similarly to PCA, the dimensionality reduction
is performed by discarding the less relevant components.
Both KPCA and NLPCA methods could be considered
as a nonlinear generalization of the standard PCA and
tend to produce similar results in terms of feature space.
However, being the feature space F implicit and
unknown, is not always possible to find the exact demap-
ping function from F to the original data space (Mika
et al., 1999). The reconstructed data can be obtained by
minimizing the reconstruction error in F with gradient
descent method. Thus, the results obtained with this
approach are quite far from the optimal solution, pre-
senting high amount of spectral distortion and will not
be considered in this paper.

In the literature, NPCA has been proposed as an
effective instrument for dimensionality reduction
and decorrelation of different types of RS data. In
Licciardi & Del Frate (2011) and Licciardi,
Marpu, et al. (2012) NLPCA has been used to reduce
the dimensionality of different HS images, while in
Licciardi & Del Frate (2011), it has been demon-
strated the effectiveness of NLPCA on other feature
extraction approaches. Finally, in Licciardi et al.
(2015), the NLPCA has been used to effectively
remove noise from HS data.

Experiments

In this work, we will use the NLPCA approach
described above to process different HS images
related to the main fields of application of spectro-
scopy. The selected images comprise Earth obser-
vation images, biological analysis images as well as
X-ray-microscope images. These datasets present
different characteristics in terms of spectral
range, spatial/spectral resolution, acquisition
mode, and type of noise. In particular we selected:

● a satellite-borne image, featuring different kind
of noises, mainly produced by the sensor and
the atmosphere;
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● an airborne image, where the effect of the atmo-
sphere can be considered not present, thus pre-
senting only noise from the sensor;

● a laboratory image that did not present relevant
amount of any kind of noise;

● an image acquired with a scanning electron
microscope (SEM), featuring no correlation
between bands.

Statistical information of the abovementioned data
are reported in Table 1.

It is important to highlight that, if properly
trained, the same AANN can be used for any images
acquired from the same sensor. This means that is
not necessary to train a new AANN for each image to
be compressed.

For each experiment, in order to satisfy Equation
(16), we trained an AANN using about 60% of the
pixels available (randomly selected) for each image.
Once trained we used the coding network to extract
the NLPCs from the bottleneck layer and we evalu-
ated the compression ratio obtained. The perfor-
mance of the dimensionality reduction method is
determined in terms of rate and distortion. Rate
essentially measures the percentage or the amount
of compression that can be achieved. In this case
the compression ratio is directly related to the num-
ber of nonlinear principal components and is
expressed in terms of bits per pixel per band.

The nonlinear components are then used as input
to the decoding network reconstructing the original
data. The quality of the reconstructed image is eval-
uated in terms of distortion that can be defined as the
fidelity of the reconstructed data to the original data.
In this study we evaluated the distortion in terms of
SNR, as defined in (Fowler, 2007):

SNR ¼ 10 log10
σ2

MSE
(17)

where σ2 is the variance of the original image while
MSE is the means square error (MSE) between the
original and the reconstructed image. However, in the
case of real images, noise-free references may not be
available. Thus, the SNR can be derived as the ratio
between the mean value of the pixels in the image,
and the standard deviation of the pixels of a uniform
area in the image:

SNR ¼ 10 log10
μsignal
σnoise

(18)

Ideally, a perfect reconstruction will not remove
noise from the image, thus would not change the
SNR. However, since the NLPCA tends to remove
noise and artifacts from the image, it is expected to
have an improvement of the SNR of the recon-
structed image. A further analysis has been exploited
by measuring the spectral distortion introduced by
the compression. This has been obtained by means of
the Spectral Angle Mapper (SAM) algorithm, that
measures the spectral distance between the recon-
structed image and the original one:

SAM X;X0ð Þ ¼ arccos
X;X0

X2X0
2

� �
(19)

SAM will produce positive values with an ideal
value of 0. However, due to noise suppression, values
that are lower than 3 are referred to a good recon-
structed image.

ROSIS

A first experiment has been performed using an air-
borne data set acquired by the ROSIS sensor over the
University of Pavia, Italy (Figure 2). Covers the 0.43 μ
to 0.86 μ spectrum with 103 bands having a radio-
metric resolution of 14 bit. The image represents a
measure of the radiance and being acquired from an
aircraft, the atmospheric contributions noise can be
considered not relevant. The image is mainly affected
by additive noise in the first bands of the detected
spectrum, mainly due to the sensitivity of the detec-
tors. Moreover, the image is also affected by the so-
called smile effect, that is a common artifact to
pushbroom-type sensors to which ROSIS belongs.
This effect is caused by optical distortions onto the

Table 1. Max, min, mean, and standard deviation average
values of the datasets used in the experimental section.
Dataset Min Max Mean Std. Dev.

Rosis 0 8000 1385 720
Hyperion 0 0.549 0.1607 0.0987
Hyspex 0 0.6593 0.2025 0.1153
SEM 0 255 82 76

Figure 2. RGB image of the ROSIS dataset acquired over the
University of Pavia.
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spatial/spectral detector array which make the instru-
ment spectral response nonuniform for the cross-
track dimension. The consequence of this effect is
that the central wavelength of a band varies with
spatial position across the width of the image in a
smoothly curving pattern. The smile effect producing
an attenuation of the detected signal can be consid-
ered as nonlinear noise (Mouroulis, Green, & Chrien,
2000). The effect of the smile is usually strong on the
bands around atmospheric absorption (760 nm),
however it can’t be detected simply by inspecting
the spectral bands. The most popular technique to
detect if an image is affected by the smile is to analyse
the first components of the Minimum Noise Fraction
(MNF) (Dadon, Ben-Dor, & Karnieli, 2010).

The image has 340 × 610 pixels, and 120,000
samples have been used to train the AANN. In this
experiment, we evaluated several configurations of
the bottleneck layer in order to detect the best
trade-off between SNR and compression. However,
in order to concentrate our attention on the compres-
sion side, we analyzed only the performances
obtained varying the number of nodes in the

bottleneck. For this reason we choose in accordance
with Equation (16) the same number of nodes
(M = 30) in the coding and decoding layers, for all
the different configurations.

The training phase of the different AANNs has
been performed using 60% of the 120,000 pixels in
the image. For each AANN, the training has been
considered complete when the sum of square error
expressed in Equation (2) is minimized. The training
performance has been evaluated in terms of MSE
computed on the complete dataset.

Figures 3 and 4 report the SAM and SNR values
for the PCA and NLPCA approaches as the number
of component varies. Analyzing the distortion perfor-
mances of PCA and NLPCA reported in Table 2 it
can be noted that NLPCA reaches the best trade-off
between distortion and compression with 4 compo-
nents, while PCA saturates the SNR and SAM with
just three components, but with a quality of the
reconstructed image comparable to the one obtained
using NLPCA. This can be explained by the non
completely linear behavior of the investigated image.
In particular, a part of information relevant for the

Figure 3. ROSIS dataset: Distortion rate obtained with NLPCA and PCA, measured as SNR (dB) expressed in terms of bits per
pixel per band (bpppb).

Figure 4. ROSIS dataset: SAM values for the NLPCA and PCA methods measuring the spectral distortion expressed in terms of
bits per pixel per band (bpppb).
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reconstruction is retained in the components present-
ing the lowest variance. This means that in order to
obtain the same quality of the image reconstructed by
the NLPCA method, the PCA approach requires
more components.

From a qualitative point of view the two recon-
structed images are very similar to the original one.
On a further analysis it can be noted that, similarly to
the PCA (Shettigara, 1992), also the NLPCA
approach introduces an improvement in the image.
This is clearly evident in Figure 5 where the band 1 of
the original image and the reconstructed ones are
depicted. As can be seen, the original data are

strongly affected by additive noise. On the other
hand, the reconstructed image seems to not suffer
from this kind of noise and the image reconstructed
with the NLPCA approach seems to be sharper than
the image reconstructed with the PCA approach.

The best performance of the NLPCA over the PCA
in terms of distortion of the reconstructed image can
be explained not only with the presence of nonlinea-
rities in the original space, but part of the improve-
ment introduced in terms of SNR by the NLPCA
technique can be addressed to the suppression of
the smile effect. Analyzing the MNF components
derived from the reconstructed images (Figure 6) it

Table 2. Target bit-rate, expressed in bits per pixel per band (bpppb), SNR and SAM angle as the number of nodes in the
bottleneck layer changes for the ROSIS dataset.
N. of components 1 2 3 4 5 6 7 8 9 10

Target bit rate (bpppb) 0.6214 1.2427 1.8641 2.4854 3.1068 3.7282 4.3495 4.9709 5.5922 6.2136
NL PCA SNR (dB) 47.1166 48.3528 48.7528 52.0402 52.0517 52.1352 52.036 52.4867 52.5066 52.5111

SAM (°) 1.3237 1.1883 1.1711 0.1634 0.1248 0.1278 0.1039 0.0238 0.01993 0.01275
PCA SNR (dB) 47.9403 51.4869 51.7996 51.8144 51.8311 51.8431 51.849 51.8528 51.8556 51.8578

SAM (°) 3.006 1.1455 0.48 0.4447 0.4578 0.3993 0.36 0.3073 0.2713 0.2486

Figure 5. ROSIS dataset: Detail of band 1 of the original (left) and the best reconstructed images obtained with NLPCA approach
(four components, center) and PCA approach (four components, right), respectively.

Figure 6. ROSIS dataset: Seventh MNF components obtained from the images reconstructed using 10 nonlinear (left) and linear
(right) principal components.
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is possible to note that the smile effect for the image
reconstructed with the PCA is visible in the seventh
component (in the original the smile was evident in
the fourth component), corresponding to slight
attenuation of the artifact. On the other hand, there
is no evidence of smile in any MNF components
obtained from the image reconstructed with the
NLPCA. Thus the NLPCA tends to suppress also
the smile effect contribution and results in higher
performance in terms of noise filtering.

Hyperion

In a second experiment, we applied the proposed
method to a Hyperion image acquired in 2008 over
the Campi Flegrei area, North-West of Naples, Italy.
Hyperion features 242 bands from 0.4 μm to 2.5 μm
with a radiometric resolution of 12 bit. Differently
from the previous experiment, in this case the image
has been acquired from a satellite. This means that
the atmospheric contribution has a relevant role in
terms of noise of the image. For this reason atmo-
spheric correction has been applied and the data
converted into reflectance at ground level. Similar to
the ROSIS instrument, Hyperion is a pushbroom type
sensor, meaning that it could be affected by the smile
effect. Moreover, the Hyperion instrument is charac-
terized by poorly calibrated detectors, that is the
result of small variations in the gain of each column
of detectors. These detectors cause high frequency
errors in the VNIR or SWIR regions, which can be
identified as vertical strips in the image bands. These
stripping errors can affect the mean and standard
deviation of the data values for particular Hyperion
band. Before compressing the Hyperion image a pre-
processing step to remove the most noisy bands not

containing relevant information has been performed
on the original dataset, resulting in 155 spectrally
unique and good quality bands (Datt, Vicar, Niel,
Jupp, & Pearlman, 2003).

The considered image consists of 100 × 100 pixels,
and also this time we trained the AANNs using 60%
of all the pixels from the image. Also in this experi-
ment we evaluated the performances of the NLPCA
dimensionality reduction method by varying only the
number of nodes in the bottleneck. In particular, the
number of nodes in the coding/decoding layers has
been chosen to be 50 for all the configurations.
Similarly to the previous experiment, the rate-distor-
tion of the NLPCA dimensionality reduction method
has been evaluated in terms of SNR and spectral
distortion and compared with the performance of the
standard PCA. Figures 7 and 8 report the SNR and
SAM values as the number of components varies for
PCA and NLPCA, respectively. Analyzing these curves
it can be noted that the best tradeoff between spectral
compression and quality of the reconstructed image is
obtained with nine components. Analyzing the values
reported in Table 3 it is also evident that with the
PCA approach it is possible to obtain a similar quality
with 30 components.

In Figure 9 the reconstructed images, obtained
using only nine components for PCA and NLPCA,
are depicted. As expected, both PCA and NLPCA
performed as noise filters for the input image.
However, a further analysis can be carried out by
inspecting the bands where both linear and nonlinear
noise is present. More in particular, while in band 1
only additive noise is present, band 88 is affected also
by the striping. Thus, due to its linear nature, PCA is
not able to filter all the noises present in band 88, as it
is possible with NLPCA.

Figure 7. Hyperion dataset: Distortion rate obtained with NLPCA and PCA, measured as SNR (dB) expressed in terms of bits per
pixel per band (bpppb).
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Hyspex

A third experiment has been conducted using a field
HS image. In particular we analyzed the performance
of the NLPCA dimensionality reduction on a Hyspex
image acquired on the field for the biochemical

analysis of the vegetation. The considered Hyspex is
a pushbroom sensor with a spectral coverage within
0.4–1.0 μm, for a total of 160 bands having radio-
metric resolution of 12 bit. Before being processed
the image has been converted to reflectance. In this
case, the sensor has been mounted on a tripod very
close to the target vegetation (1m). The static nature
of the support reduced to the minimum the amount
of noise present in the image. Moreover, the proxi-
mity of the target resulted in the almost total absence
of any nonlinear atmospherical contribution. For
these reasons, this dataset is expected to be almost
completely linear.

For the evaluation we considered a part of the
image, consisting of 364 × 365 pixels. In this case
the AANNs have been trained using only a small set
of randomly selected pixels (9395). A grid search
approach has been exploited in order to find the
best number of nodes in the coding/decoding layers.
100 nodes have been found to be sufficient to extract
all the different components. Similarly to the previous
experiments, the analysis of the training performance
as the number of nodes in the bottleneck layer
changes, expressed in terms of MSE, indicates that
two NLPCs are sufficient for retaining all the relevant
information.

Figures 10 and 11 report the SNR and SAM values,
respectively, as the number of components changes
for NLPCA and PCA, respectively. From the analysis
of the values reported in Table 4 it can be noted that

Figure 8. Hyperion dataset: SAM values for the NLPCA and PCA methods measuring the spectral distortion obtained as the
number of components changes.

Table 3. Target bit-rate, expressed in bits per pixel per band (bpppb), SNR and SAM angle as the number of nodes in the
bottleneck layer changes for the Hyperion dataset.
N. of components 1 2 3 4 5 10 15 20 25 30

Target bit rate (bpppb) 0.4129 0.8258 1.2387 1.6516 2.0645 4.1290 6.1935 8.2581 10.3226 12.3871
NL PCA SNR (dB) 9.6663 15.1024 16.2748 25.9095 26.8618 29.8141 29.788 31.1918 31.5197 31.4154

SAM (°) 23.062 17.328 16.0905 10.8611 7.4664 3.3512 3.2381 2.9487 2.8255 2.5979
PCA SNR (dB) 10.0958 17.2185 20.105 21.734 22.6621 25.6123 27.079 28.2384 29.3227 30.3227

SAM (°) 16.982 11.7237 10.642 10.1242 8.4702 5.9231 5.3539 4.748 4.1366 3.7322

Figure 9. Hyperion dataset: Detail of bands 1 and 88 of the
original Hyperion dataset (left), the PCA-reconstructed (cen-
ter) and the NLPCA-reconstructed (right) images, respectively.
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for both methods the best tradeoff between quality of
the reconstructed image and spectral compression is
obtained with 2 components. Aside from slight dif-
ferences, both methods offer similar performances in
terms of compression and reconstruction, confirming
the initial hypothesis of an almost completely linear
image. This is also confirmed by comparing the two
principal components obtained with the two meth-
ods. Figure 12 reports the scatter plots obtained com-
paring PC1 with NLPC1 and PC2 with NLPC2. In
both cases the components present high degrees of

correlation. Figure 13 reports the RGB representa-
tions of the original image, and the reconstructed
images obtained using six components for the PCA
and NLPCA methods, respectively. On a qualitative
analysis there is no relevant difference between the
original image and the reconstructed ones.

This experiment shows that in case of images that
are mainly characterized by linear correlations, both
PCA and NLPCA obtain similar results. This because,
referring to Equation (10), linear basis functions can
be considered as a subset of ϕjðxÞ, demonstrating that

Figure 10. Hyspex dataset: Distortion rate obtained with NLPCA and PCA, expressed in terms of SNR (dB), as the number of
components changes.

Figure 11. Hyspex dataset: SAM values for the NLPCA and PCA methods measuring the spectral distortion obtained as the
number of components changes.

Table 4. Target bit-rate, expressed in bits per pixel per band (bpppb), SNR and SAM angle as the number of nodes in the
bottleneck layer changes for the HYSPEX dataset.
N. of components 1 2 3 4 5 6 7 8 9 10

Target bit rate (bpppb) 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0
NL PCA SNR (dB) 13.9248 28.3841 28.4801 28.5573 28.5878 28.7536 28.820 28.7402 28.6677 28.7554

SAM (°) 6.6698 1.7341 1.6043 1.6228 1.4978 1.4567 1.4251 1.3564 1.3971 1.3327
PCA SNR (dB) 16.6928 25.3289 28.3198 29.5001 30.3739 30.8837 31.3594 31.7443 32.0421 32.3321

SAM (°) 5.9352 2.4155 1.8192 1.6079 1.4965 1.4203 1.3504 1.292 1.2611 1.2239
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NLPCA is able to manage both linear and nonlinear
correlations between variables

Scanning electron microscope

To further appreciate the effectiveness of the pro-
posed method, a last experiment is conducted on a
different kind of image. In this experiment we
applied the NLPCA technique to an image acquired
by a scanning electron microscope. This kind of
microscope is based on energy-dispersive X-ray
spectroscopy (EDX) and investigate the interaction
of X-ray and target samples by measuring it with a
energy-dispersive spectrometer (Goldstein et al.,
2003). The energy-dispersive detector permits to
separate the characteristic x-rays of different ele-
ments into an energy spectrum. It is possible to
compose a dataset of images, each of them related
to the energy of a specific element. For this experi-
ment we considered an image representing a seed in

water. The dataset was composed by 15 bands digi-
talized at 16 bit, the first 14 representing the energy
values of the following minerals: Al, Ca, Cb, Cl, Fe,
K, Mg, Mn, Na, O, P, Si, So, Ti, and a fifteenth band
obtained measuring the backscatter electron values
of the surface of the sample. Representing the elec-
tromagnetic response of different elements, these 15
bands result to be extremely uncorrelated.
Moreover, most of them are also noisy, as depicted
in Figure 14. Aim of this experiment is to demon-
strate the ability of NLPCA to compress images
where the bands are poorly correlated with the
others.

In this case we choose to train the different
AANNs using 20 nodes in the coding/decoding
layers, while from the analysis of the training per-
formance we selected 14 nodes in the bottleneck
layer.

On a quantitative analysis, Figures 15 and 16
and Table 5 report the SNR and the SAM values

Figure 12. Hyspex dataset: The first two components obtained with the PCA and NLPCA transformation. The components
present correlation as reported on the scatter plots on the right part of the picture.

Figure 13. Hyspex dataset: RGB images obtained combining bands 60 (R), 40 (G) and 30 (B) of the original dataset (left), of the
reconstructed ones obtained using 6 components for PCA (center) and NLPCA (right) approaches, respectively.
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Figure 14. SEM dataset: 15 bands acquired at the energy values related to different elements.

Figure 15. SEM dataset: Distortion rate obtained with NLPCA and PCA, expressed in terms of SNR (dB), as the number of
components changes.

Figure 16. SEM dataset: SAM values for the NLPCA and PCA methods measuring the spectral distortion obtained as the number
of components changes.
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of the proposed method compared to the PCA
based one, respectively. As it can be noted, the
NLPCA based method is able to obtain a good
tradeoff between compression and distortion with
four components. On the other hand, even if PCA
is able to reach a good SNR with six components, it
still requires almost all the principal components to
get also a good spectral reconstruction.

Analyzing the SAM values reported in Table 5
it is possible to note that for 15 components the
SAM value for the PCA method is 0, correspond-
ing to a perfect reconstruction of the original
image. On the other hand, the SAM value for the
NLPCA approach is higher (3.15°), suggesting a
moderate distortion between the original image
and the reconstructed one. This means that while
PCA preserved entirely the original information
expressed as a combination of signal and noise,
NLPCA was able to remove part of the noise
present in the image. This can be quantitatively
evaluated by analyzing Figure 17. This also sug-
gests that since the original bands are not linearly
correlated, the information is distributed among
all the linear principal components, as reported in
Figure 17. Thus is no more possible to discard the
components with less variance without loosing
relevant information. This is also evident from

Figure 18, where the original image (R = Si;
G = So; B = Ti) and the reconstructed ones,
obtained both using 14 components from PCA
and NLPCA, are depicted. In particular, even if
most of the information is contained in the first
14 principal components, the PCA is not able to
correctly reconstruct the original image. On the
other hand, 14 nonlinear components are enough
to correctly reconstruct the original image.

Conclusions

This paper presented a novel approach for the
dimensionality reduction of HS data based on
the nonlinear generalization of the standard
PCA. Aim of the presented method is to preserve
as much of the original spectral information as
possible with a compression rate higher than
those obtained using PCA-based approaches. The
main advantage on using NLPCA relies on the
assumption that thanks to the nonlinear functions,
it permit to project in a lower dimensional space
the same information content of the standard PCA
but with less features.

The proposed approach has been tested both
qualitatively and quantitatively on several images,
featuring different types of information and

Table 5. Target bit-rate, expressed in bits per pixel per band (bpppb), SNR and SAM angle as the number of nodes in the
bottleneck layer changes for the SEM dataset.
N. of components 1 2 3 4 5 6 7 8 9 10 15

Target bit rate (bppppb) 4.2667 8.5333 12.8 17.0667 21.3333 25.6 29.866 34.1333 38.42 42.6667 64
NL PCA SNR (dB) 32.943 36.6146 38.813 39.0478 39.8155 39.8683 39.975 39.9432 39.851 39.8001 39.7994

SAM (°) 29.2 20 19.6 9.95 8.05 8.75 8.2 7.9 5.8 5.9 3.15
PCA SNR (dB) 27.9492 32.5649 35.159 36.7354 37.9011 38.7614 38.9065 38.9432 39.2389 39.2981 39.4434

SAM (°) 29.821 28.5923 26.6353 25.2159 23.2841 19.5785 17.939 16.1927 13.7499 13.4586 0

Figure 17. PCA components obtained from the 15 SEM bands.
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affected by different kind of noises. For each image
considered, the rate-distortion obtained from the
reconstruction of the image was evaluated in
terms of SNR and SAM. The experiments demon-
strate that the NLPCA method tends to obtain
good reconstructions of the original images with
less components than PCA. Only in one case,
when the investigated image was not affected by
any kind of relevant noise, the two methods
obtained similar results.

From a computational point of view, a direct
comparison between PCA and NLPCA could not be
achieved. In particular, it is important to separate the
time spent to estimate the projection function from
the computational time necessary to project the ori-
ginal data into the feature space. Indeed, NLPCA
requires a long time to identify the optimal topology
of the AANN while PCA just need to compute the
covariance matrix (or the correlation matrix).
However, once defined the projection functions,
both compression processes are comparable in
terms of computational time.

Another important result came from the analysis
of the reconstructed images. In particular, while PCA
is able to effectively filter only the additive noise
present in the original image, thus, enhancing the
spectral information of the reconstructed one,
NLPCA is able to filter both linear and nonlinear
noise. The ability of the NLPCA to deal with both
linear and nonlinear noises, results in reconstructed
images that have a higher SNR, if compared with
those obtained with PCA.
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