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We analyze the accuracy of two numerical methods for the variable coefficient Poisson equation with discontinuities at an irregular
interface. Solving the Poisson equation with discontinuities at an irregular interface is an essential part of solving many physical
phenomena such as multiphase flows with and without phase change, in heat transfer, in electrokinetics, and in the modeling of
biomolecules’ electrostatics. The first method, considered for the problem, is the widely known Ghost-Fluid Method (GFM) and
the secondmethod is the recently introduced Voronoi InterfaceMethod (VIM).TheVIMmethod uses Voronoi partitions near the
interface to construct local configurations that enable the use of the Ghost-Fluid philosophy in one dimension. Both methods lead
to symmetric positive definite linear systems. The Ghost-Fluid Method is generally first-order accurate, except in the case of both
a constant discontinuity in the solution and a constant diffusion coefficient, while the Voronoi Interface Method is second-order
accurate in the 𝐿∞-norm. Therefore, the Voronoi Interface Method generally outweighs the Ghost-Fluid Method except in special
case of both a constant discontinuity in the solution and a constant diffusion coefficient, where the Ghost-Fluid Method performs
better than the Voronoi Interface Method. The paper includes numerical examples displaying this fact clearly and its findings can
be used to determine which approach to choose based on the properties of the real life problem in hand.

1. Introduction

The Poisson equations with discontinuities across irregular
interfaces emerge in applications such as multiphase flows
with and without phase change, in heat transfer, in elec-
trokinetics, or in themodeling of biomolecules’ electrostatics.
Several numerical methods have been proposed to solve this
system, each with their own advantages and disadvantages.
One approach is in the context of Discontinuous Galerkin
methods, an extension of the finite element method (FEM);
e.g., see [1–12] and the references therein. Finite element
methods lead to symmetric positive definite linear systems
that can be efficiently solved with fast iterative solvers [13]. In
addition, FEM-type approaches can derive and use a priori
error estimates to refine the mesh where higher resolution is
needed. However, FEM-type methods rely on the quality of

the underlyingmesh, which is often difficult to obtain in cases
where the irregular domain undergoes large deformations. In
this case, it is challenging to generate a mesh with elements
that pass a quality measure needed to ensure accurate
solutions.

Differential quadrature method is worth mentioning as
presented in [14, 15]. There Lagrange interpolation and/or
modified cubic B-splines are used, depending on boundary
conditions, to approximate the solution to two-dimensional
nonlinear hyperbolic partial differential equations. Irregular
interfaces and discontinuities were, however, not studied
there.

Another approach iswithin the context of finite difference
methods (FDM); e.g., see [16–25] and the references therein.
For finite difference methods the grid is Cartesian (uniform
or adaptive), which leads to a straightforward grid generation

Hindawi
International Journal of Differential Equations
Volume 2018, Article ID 9216703, 8 pages
https://doi.org/10.1155/2018/9216703

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Opin visindi

https://core.ac.uk/display/196311554?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orcid.org/0000-0002-6653-1600
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2018/9216703


2 International Journal of Differential Equations

process. However, interfaces must be represented by other
means and the treatment of boundary conditions requires
additional considerations.

In order to capture the interface and enforce the correct
boundary conditions, several approaches have been explored.
The immersed boundary method (for example, [26–30]) uses
the 𝛿-formulation that smears out the solution profile across
the interface. This produces algorithms that are straight-
forward to implement since they are similar to solving the
same equations on a regular domain. However, the smearing
of the solution introduces 𝑂(1) errors near the interface.
The immerse interface method (IIM) (see, for example,
[31–37]) is a sharp interface method that leads to second-
order accurate solution, albeit it is not a robust second-
order method since it reaches its order by minimizing the
truncation error.The method leads to neither symmetric nor
positive definite linear systems and the application of the
immerse interface method may be difficult in three spatial
dimensions.

In [20], Liu et al. introduced a Ghost-FluidMethodology
(a finite difference approach) that treats the jump condition
in a dimension-by-dimension framework. This leads to a
linear system that is symmetric positive definite and the jump
conditions only affect the right-hand side of the linear system,
leading to an easy-to-implement method. However, the GFM
suffers a loss in accuracy due to smearing of the tangential
derivative of the discontinuity at the interface caused by
this dimension-by-dimension framework, as indicated in
[20].

The Voronoi Interface Method (VIM) [38] avoids the
loss of accuracy of the GFM of [20] by constructing local
Voronoi partitioning near the interface. The cells adjacent
to the interface therefore have their faces orthogonal to the
fluxes of the solution, hence providing a configuration that
can leverage the Ghost-Fluid Methodology to its fullest.
The advantage is therefore that the solution is second-order
accurate. A drawback is that the solution is computed at
the cells’ center of the Voronoi partition and an additional
interpolation step is required, if the solution is needed on
the original Cartesian mesh. As is the case of GFM of [20],
the linear system is symmetric positive definite and only its
right-hand side is modified by the jump conditions. Finally,
we note that even though the construction of a globalVoronoi
partition may be difficult and costly, the construction of a
local partition, i.e., only for cells that are adjacent to the
interface, is straightforward. In [38], the authors used the
Voro++ library of [39].

In this paper we highlight the performance of both GFM
and VIM. It is worth noting that both methods are uncon-
ditionally stable since they are implicit. Both methods have
also shown that they can handle high ratios of discontinuity
in their coefficients.

2. Governing Equations and
Numerical Methods

We consider the Poisson equation with variable coefficient
and discontinuities (jumps) across an irregular interface, Γ,

which splits the computational domain Ω into two domainsΩ+ and Ω−, both in R𝑛, 𝑛 ∈ N. The governing equation is

∇ ⋅ (𝛽∇𝑢) = 𝑓 for x ∈ Ω+ ∪ Ω−, (1)

where 𝑓 = 𝑓(x) and 𝛽 = 𝛽(x) are given. Here, 𝛽 is bounded
from below by a positive constant and 𝑓 is in 𝐿2(Ω). This
equation is supplemented by jump conditions on the irregular
interface,

[𝑢] = 𝑎,
[𝛽∇𝑢 ⋅ n] = ℎ, (2)

where [𝑢] = 𝑢Γ+ − 𝑢Γ− denotes a jump in 𝑢 across Γ. The
functions 𝑎 = 𝑎(x) and ℎ = ℎ(x) are given. Either Dirichlet,
Neumann, or Robin boundary conditions can be imposed at
the boundaries of the computational domain, 𝜕Ω. In order to
represent the irregular interface, we use the signed distance
level-set function, 𝜙, which is positive inside Ω+, negative
insideΩ−, and zero on Γ.The outward normal to the irregular
interface can be computed from the level-set function by

n = (𝑛1, 𝑛2, 𝑛3) = ∇𝜙∇𝜙 . (3)

2.1. The Ghost-Fluid Method. A detailed description of the
Ghost-Fluid Method is given in [20], we will explore here the
main aspects in two spatial dimensions. The discontinuity in𝛽𝑢𝑛, where 𝑢𝑛 refers to the derivative in the normal direction
to the interface, is [𝛽𝑢𝑛]Γ = [𝛽𝑢𝑥]Γ 𝑛1 + [𝛽𝑢𝑦]Γ 𝑛2. The
discontinuity in 𝛽𝑢𝑡, where 𝑢𝑡 refers to the derivative in the
tangential direction to the interface, is [𝛽𝑢𝑡]Γ = [𝛽𝑢𝑥]Γ𝑛2 −[𝛽𝑢𝑦]Γ𝑛1. These equations lead to [𝛽𝑢𝑥]Γ = [𝛽𝑢𝑛]Γ𝑛1 +[𝛽𝑢𝑡]Γ𝑛2 and [𝛽𝑢𝑦]Γ = [𝛽𝑢𝑛]Γ𝑛2−[𝛽𝑢𝑡]Γ𝑛1. However, in order
to devise amethod in a dimension-by-dimension framework,
the Ghost-Fluid Method smears out the discontinuity in the
tangential derivative leading to the simplification [𝛽𝑢𝑥]Γ =[𝛽𝑢𝑛]Γ𝑛1 and [𝛽𝑢𝑦]Γ = [𝛽𝑢𝑛]Γ𝑛2. The discretization at each
grid point 𝑖, 𝑗 is then given by

𝛽𝑖+1/2,𝑗 ((𝑢𝑖+1,𝑗 − 𝑢𝑖,𝑗) /Δ𝑥) − 𝛽𝑖−1/2,𝑗 ((𝑢𝑖,𝑗 − 𝑢𝑖−1,𝑗) /Δ𝑥)
Δ𝑥

+ 𝛽𝑖,𝑗+1/2 ((𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗) /Δ𝑦) − 𝛽𝑖,𝑗−1/2 ((𝑢𝑖,𝑗 − 𝑢𝑖,𝑗−1) /Δ𝑦)
Δ𝑦

= 𝑓𝑖,𝑗 + 𝐹𝑥 + 𝐹𝑦,

(4)

where 𝛽𝑖+1/2,𝑗 = (𝛽𝑖 + 𝛽𝑖+1)/2 if 𝑥𝑖,𝑗 and 𝑥𝑖+1,𝑗 are on the
same side of the interface or by 𝛽𝑖+1/2,𝑗 = 𝛽+𝛽−(|𝜙−| +
|𝜙+|)/(𝛽+|𝜙−| + 𝛽−|𝜙+|) otherwise, where 𝜙+ is the value of𝜙 of the node in Ω+ and 𝜙− is the value of 𝜙 of the node inΩ−. Here 𝛽± refers to the value of 𝛽 adjacent to the interface
in theΩ± domain and Δ𝑥 and Δ𝑦 are the cells’ sizes in the 𝑥-
and 𝑦-directions, respectively. The left-hand side thus gives
the same symmetric positive definite matrix as the one gen-
erated by the standard five-point stencil discretization of the
Poisson equation on regular domains and only the right-hand
side is altered when a discontinuity occurs. Furthermore,
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𝐹𝑥 = 𝐹𝐿 + 𝐹𝑅 and 𝐹𝑦 = 𝐹𝐵 + 𝐹𝑇 are only activated if
there is a discontinuity present in the local five point stencil.
Here, 𝐹𝐿 and 𝐹𝑅 and the contribution from the left and right
grid points to the current grid point and 𝐹𝐵 and 𝐹𝑇 are the
contributions from the bottom and top grid points.

We give the details for 𝐹𝐿 and 𝐹𝑅 in the 𝑥-direction, refer-
ring the reader to the original paper [20] for the description
for 𝐹𝐵 and 𝐹𝑇 in the 𝑦-direction, since they follow the same
procedure. If 𝜙𝑖−1,𝑗 and 𝜙𝑖,𝑗 have opposite signs, define 𝜃 =|𝜙𝑖−1,𝑗|/(|𝜙𝑖,𝑗| + |𝜙𝑖−1,𝑗|), 𝑎Γ = (𝑎𝑖,𝑗|𝜙𝑖−1,𝑗| + 𝑎𝑖−1,𝑗|𝜙𝑖,𝑗|)/(|𝜙𝑖,𝑗| +|𝜙𝑖−1,𝑗|), where 𝑎𝑖,𝑗 is the jump at the grid node and 𝛽Γ =
(𝑏𝑖,𝑗𝑛1𝑖,𝑗|𝜙𝑖−1,𝑗| + 𝑏𝑖−1,𝑗𝑛1𝑖−1,𝑗|𝜙𝑖,𝑗|)/(|𝜙𝑖,𝑗| + |𝜙𝑖−1,𝑗|). 𝐹𝐿 is then
defined as

𝐹𝐿

=
{{{{{{{{{{{{{

𝛽𝑖−1/2,𝑗𝑎Γ
(Δ𝑥)2 − 𝛽𝑖−1/2,𝑗𝑏Γ𝜃

𝛽+Δ𝑥 if 𝜙𝑖,𝑗 ≤ 0 and 𝜙𝑖−1,𝑗 > 0,
−𝛽𝑖−1/2,𝑗𝑎Γ(Δ𝑥)2 + 𝛽𝑖−1/2,𝑗𝑏Γ𝜃

𝛽−Δ𝑥 if 𝜙𝑖,𝑗 > 0 and 𝜙𝑖−1,𝑗 ≤ 0,
0 otherwise.

(5)

Similarly, if 𝜙𝑖+1,𝑗 and 𝜙𝑖,𝑗 have opposite signs, define 𝜃 =|𝜙𝑖+1,𝑗|/(|𝜙𝑖,𝑗| + |𝜙𝑖+1,𝑗|), 𝑎Γ = (𝑎𝑖,𝑗|𝜙𝑖+1,𝑗| + 𝑎𝑖+1,𝑗|𝜙𝑖,𝑗|)/(|𝜙𝑖,𝑗| +|𝜙𝑖+1,𝑗|), and 𝛽Γ = (𝑏𝑖,𝑗𝑛1𝑖,𝑗|𝜙𝑖+1,𝑗| + 𝑏𝑖+1,𝑗𝑛1𝑖+1,𝑗|𝜙𝑖,𝑗|)/(|𝜙𝑖,𝑗| +|𝜙𝑖+1,𝑗|). 𝐹𝑅 is then defined as

𝐹𝑅

=
{{{{{{{{{{{{{

𝛽𝑖+1/2,𝑗𝑎Γ
(Δ𝑥)2 + 𝛽𝑖+1/2,𝑗𝑏Γ𝜃

𝛽+Δ𝑥 if 𝜙𝑖,𝑗 ≤ 0 and 𝜙𝑖+1,𝑗 > 0,
−𝛽𝑖+1/2,𝑗𝑎Γ(Δ𝑥)2 − 𝛽𝑖+1/2,𝑗𝑏Γ𝜃

𝛽−Δ𝑥 if 𝜙𝑖,𝑗 > 0 and 𝜙𝑖+1,𝑗 ≤ 0,
0 otherwise.

(6)

The Ghost-Fluid Method leads to a symmetric positive
definite linear systems that captures the discontinuity in the
normal derivative while smearing out the discontinuity in the
tangential direction to the interface.

2.2. The Voronoi Interface Method. We present a summary
of the method and refer the reader to [38] for a detailed
description. For a given set of seeds, the Voronoi cell of a seed
is defined as the points of space that are closer to that seed
than any other.The union of the Voronoi cells is a tessellation
of space, and the first step for the Voronoi InterfaceMethod is
to generate the Voronoimesh associated with the background
mesh chosen, which in our case is a uniform Cartesian grid.
The seeds are of two types,

(i) if a cell of the background mesh is not crossed by the
irregular interface Γ, its center is a seed of the Voronoi
mesh,

(ii) if a cell of the background mesh is crossed by the
irregular interface Γ, we locate the projection of its
center onto the interface and generate two seeds
located on either side of the projected point at a
distance 𝛿 = min(Δ𝑥, Δ𝑦)/5.

The Voronoi partition associated with those seeds is con-
structed using a simple geometric algorithm. We refer the
reader to the Voro++ library [39] for an efficient tool to
compute Voronoi partitions in both two and three spatial
dimensions.

Equation (1) is then discretized on the Voronoi mesh
using a finite volume approach. The complete derivation
is presented in [38] and leads to the discretization of the
interaction between point 𝑖 and point 𝑗

𝛽𝑖𝑗𝑠𝑖𝑗 𝑢𝑗 − 𝑢𝑖
𝑑𝑖𝑗

= 𝛽𝑖𝑗 𝑠𝑖𝑗𝑑𝑖𝑗 (− sign (𝜙𝑖) [𝑢] + 𝑑𝑖𝑗
2𝛽𝑗 [𝛽∇𝑢 ⋅ nΓ])

+ Vol (C𝑖) 𝑓𝑖,

(7)

where any variable of the form 𝛾𝑘 would be the quantity 𝛾 at
point 𝑘, 𝑑𝑖𝑗 is the distance between 𝑖 and 𝑗, 𝑠𝑖𝑗 is the length of
the face between 𝑖 and 𝑗, 𝛽𝑖𝑗 = 2𝛽𝑖𝛽𝑗/(𝛽𝑖 + 𝛽𝑗), and Vol(C𝑖)
is the volume of the Voronoi cell associated with point 𝑖. The
discontinuities at the interface only affect the right-hand side
of the linear system where the irregular interface is located
and the system is symmetric positive definite.

We remark that the solution is provided at the center of
the Voronoi cells. If the solution is needed on the original
backgroundmesh, then an interpolation step is required.This
can be done, for example, with least square interpolations and
it does not impact the order of accuracy of the solution as long
as the order of the polynomial interpolants is high enough.
In this article, we work with second-order polynomial inter-
polants.

3. Numerical Experiments: Results

We present a pair of two-dimensional numerical examples
where the two methods are compared. Both examples have
a star shaped irregular interface. The first example has a
coefficient 𝛽 that is constant in the whole domain. This
example has a constant discontinuity in the solution across
the irregular interface but neither a discontinuity in the
normal nor tangential derivatives at the interface.The second
example has a 𝛽 coefficient that is not constant and has a
discontinuity across the irregular interface. This example has
a nonconstant discontinuity in the solution and nonconstant
discontinuities in the normal and tangential components of
the gradient of the solution at the irregular interface.

3.1. Constant 𝛽-Coefficient. Let us consider ∇ ⋅ (𝛽∇𝑢) = 𝑓(𝑥,𝑦) in two spatial dimensions in Ω = [−1, 1]2 with the level
set function 𝜙 = −√𝑥2 + 𝑦2 + 0.5 + 0.15 cos (5 arctan (𝑦/𝑥)).
We take 𝛽 = 1 when 𝜙 ≤ 0 and an exact solution of 𝑢 =
cos(𝑥)cos(𝑦). For the region 𝜙 > 0, we take 𝛽 = 1 and the
exact solution to be 𝑢 = cos(𝑥)cos(𝑦) + 1. A representation
of the solution and the Voronoi mesh are given in Figure 1.
The comparison of the Ghost-Fluid Method and the Voronoi
Interface Method is shown in Table 1 for the maximum
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Figure 1: Left: visualization of the exact solution, for example, shown in Section 3.1. Right: example of a Voronoi mesh generated.

Table 1: Comparison of the 𝐿∞ error in the solution for the Ghost-Fluid Method and the Voronoi Interface Method, for example,
shown in Section 3.1.

Ghost-Fluid Method Voronoi Interface Method VIM Interpolated
dx ‖𝑢 − 𝑢ℎ‖∞ Order ‖𝑢 − 𝑢ℎ‖∞ Order ‖𝑢 − 𝑢ℎ‖∞ Order
0.25 2.627 × 10−3 — 3.709 × 10−3 — 4.098 × 10−1 —
0.125 6.587 × 10−4 2.00 6.172 × 10−4 2.59 5.901 × 10−2 2.80
0.0625 1.648 × 10−4 2.00 1.565 × 10−4 1.98 1.788 × 10−4 8.37
0.03125 4.121 × 10−5 2.00 4.016 × 10−5 1.96 4.030 × 10−5 2.15
0.015625 1.030 × 10−5 2.00 1.020 × 10−5 1.98 1.023 × 10−5 1.98
0.0078125 2.576 × 10−6 2.00 2.598 × 10−6 1.97 2.656 × 10−6 1.95
0.00390625 6.439 × 10−7 2.00 6.591 × 10−7 1.98 6.655 × 10−7 2.00

Table 2: Comparison of the 𝐿1 error in the solution for the Ghost-Fluid Method and the Voronoi Interface Method, for example,
shown in Section 3.1.

Ghost-Fluid Method Voronoi Interface Method VIM Interpolated
dx ‖𝑢 − 𝑢ℎ‖1 Order ‖𝑢 − 𝑢ℎ‖1 Order ‖𝑢 − 𝑢ℎ‖1 Order
0.25 9.010 × 10−4 — 1.790 × 10−2 — 4.694 × 10−2 —
0.125 2.597 × 10−4 1.79 2.918 × 10−3 5.04 1.417 × 10−3 5.04
0.0625 6.940 × 10−5 1.90 7.365 × 10−5 4.31 7.130 × 10−5 4.31
0.03125 1.792 × 10−5 1.95 1.848 × 10−5 2.00 1.780 × 10−5 2.00
0.015625 4.552 × 10−6 1.98 4.625 × 10−6 1.98 4.518 × 10−6 1.98
0.0078125 1.147 × 10−6 1.99 1.156 × 10−6 1.98 1.142 × 10−6 1.98
0.00390625 2.879 × 10−7 1.99 2.890 × 10−7 1.99 2.871 × 10−7 1.99

error in the solution, in Table 2 for the average error in the
solution, in Table 3 for the maximum error of the gradient,
and in Table 4 for the average error of the gradient. For the
Voronoi Interface Method, we present the errors on both
the Voronoi mesh and the Cartesian mesh. For the Voronoi
mesh, the gradients are computed on the faces of the Voronoi
cells. For example, the solution only experiences a constant
discontinuity in its solution and no discontinuities in its
normal or tangential derivatives nor is there a discontinuity in

the 𝛽 coefficient, which is constant in the entire domain. Both
methods give second-order accuracy in the solution in the𝐿∞- and𝐿1-norms and the solution’s gradient in the𝐿1 -norm.
However, the Voronoi method gives first-order accuracy for
the gradient of the solution in the 𝐿∞-norm while the GFM
gives second-order accuracy for such simplified problems.
A likely explanation for this difference is that the fluxes
in the volume of fluid derivation for the Voronoi Interface
Method are not necessarily computed at the center of the faces
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Table 3: Comparison of the 𝐿∞ error in the gradient of the solution for the Ghost-Fluid Method and the Voronoi Interface Method, for
example, shown in Section 3.1.

Ghost-Fluid Method Voronoi Interface Method VIM Interpolated
dx ‖∇𝑢 − ∇𝑢ℎ‖∞ Order ‖∇𝑢 − ∇𝑢ℎ‖∞ Order ‖∇𝑢 − ∇𝑢ℎ‖∞ Order
0.25 4.829 × 10−3 — 8.160 × 10−3 — 1.872 × 10−0 —
0.125 1.398 × 10−3 1.79 1.550 × 10−3 2.40 3.666 × 10−1 2.35
0.0625 3.776 × 10−4 1.89 5.192 × 10−4 1.58 4.180 × 10−2 3.13
0.03125 9.866 × 10−5 1.94 4.367 × 10−4 0.25 2.082 × 10−2 1.01
0.015625 2.530 × 10−5 1.96 2.551 × 10−4 0.78 1.037 × 10−2 1.00
0.0078125 6.419 × 10−6 1.98 1.376 × 10−4 0.89 5.195 × 10−3 0.99
0.00390625 1.618 × 10−6 1.99 8.580 × 10−5 0.68 2.597 × 10−3 1.00

Table 4: Comparison of the 𝐿1 error in the gradient of the solution for the Ghost-Fluid method and the Voronoi Interface Method, for
example, shown in Section 3.1.

Ghost-Fluid Method Voronoi Interface Method VIM Interpolated
dx ‖∇𝑢 − ∇𝑢ℎ‖1 Order ‖∇𝑢 − ∇𝑢ℎ‖1 Order ‖∇𝑢 − ∇𝑢ℎ‖1 Order
0.25 3.636 × 10−3 — 2.575 × 10−3 — 3.797 × 10−1 —
0.125 8.704 × 10−4 2.06 3.490 × 10−4 2.88 2.908 × 10−2 3.71
0.0625 2.155 × 10−4 2.01 7.553 × 10−5 2.21 5.617 × 10−3 2.37
0.03125 5.343 × 10−5 2.01 1.711 × 10−5 2.14 1.474 × 10−3 1.93
0.015625 1.331 × 10−5 2.01 4.126 × 10−6 2.05 3.707 × 10−4 1.99
0.0078125 3.322 × 10−6 2.00 9.930 × 10−7 2.05 9.345 × 10−5 1.99
0.00390625 8.298 × 10−7 2.00 2.465 × 10−7 2.01 2.350 × 10−5 1.99

Table 5: Comparions of the 𝐿∞ error in the solution for the Ghost-Fluid Method and the Voronoi Interface Method, for example,
shown in Section 3.2.

Ghost-Fluid Method Voronoi Interface Method VIM Interpolated
dx ‖𝑢 − 𝑢ℎ‖∞ Order ‖𝑢 − 𝑢ℎ‖∞ Order ‖𝑢 − 𝑢ℎ‖∞ Order
0.25 6.254 × 10−1 — 9.802 × 10−3 — 6.044 × 10−1 —
0.125 4.063 × 10−1 0.62 2.560 × 10−3 1.94 9.178 × 10−2 2.72
0.0625 2.493 × 10−1 0.70 7.709 × 10−4 1.73 7.041 × 10−4 7.03
0.03125 1.474 × 10−1 0.76 2.370 × 10−4 1.70 2.160 × 10−4 1.70
0.015625 8.488 × 10−2 0.80 5.560 × 10−5 2.09 4.929 × 10−5 2.13
0.0078125 4.802 × 10−2 0.82 1.413 × 10−5 1.98 1.293 × 10−5 1.93
0.00390625 1.481 × 10−2 0.84 3.618 × 10−6 1.97 3.377 × 10−6 1.94

between two points. We also observe that the interpolation
from the Voronoi mesh to the Cartesian mesh does not
impact the solution itself but affects its gradient. However,
the order of accuracy is conserved. We conclude that for such
simple problems the GFM is preferable.

3.2. Nonconstant 𝛽-Coefficient. Let us consider ∇ ⋅ (𝛽∇𝑢) =𝑓(𝑥, 𝑦) in two spatial dimensions in Ω = [−1, 1]2 with the
level set function 𝜙 = −√𝑥2 + 𝑦2+0.5+0.15 cos (5 arctan (𝑦/
𝑥)). We set 𝛽 = 𝑦2 ln (𝑥 + 2) + 4 and the exact solution to𝑢 = 𝑒𝑥 in the region where 𝜙 ≤ 0. In the region where 𝜙 > 0,
we set 𝛽 = 𝑒−𝑦 and the exact solution to 𝑢 = cos(𝑥)sin(𝑦).
Figure 2 provides a representation of the solution and of
the diffusion coefficient. The comparison of the Ghost-Fluid
Method and theVoronoi InterfaceMethod is shown inTable 5

for the maximum error in the solution, in Table 6 for the
average error in the solution, in Table 7 for the maximum
error of the gradient, and in Table 8 for the average error
of the gradient. Again, for the Voronoi Interface Method we
present the results on both the Voronoi and the Cartesian
meshes. For example, there is a nonconstant discontinuity
in the solution, a nonconstant discontinuity in the normal
derivative of the solution to the interface, a nonconstant
discontinuity in the tangential derivative of the solution to
the interface, a discontinuity in the 𝛽 coefficient across the
interface, and a 𝛽 coefficient that is not constant in each
domain as in the previous example. The Ghost-Fluid Method
is only first-order accurate in both the 𝐿∞- and the 𝐿1-norm,
as well as in the 𝐿1-norm for the gradient of the solution.
However, it is not consistent in the 𝐿∞-norm for the gradient
of the solution. This example is a case where the lack of
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Figure 2: Visualization of the exact solution 𝑢 (left) and of the diffusion coefficient 𝛽 (right), for example, shown in Section 3.2.

Table 6: Comparison of the 𝐿1 error in the solution for the Ghost-Fluid Method and the Voronoi Interface Method, for example,
shown in Section 3.2.

Ghost-Fluid Method Voronoi Interface Method VIM Interpolated
dx ‖𝑢 − 𝑢ℎ‖1 Order ‖𝑢 − 𝑢ℎ‖1 Order ‖𝑢 − 𝑢ℎ‖1 Order
0.25 6.446 × 10−2 — 2.291 × 10−3 — 4.557 × 10−2 —
0.125 3.393 × 10−2 0.93 4.022 × 10−4 2.51 2.041 × 10−3 4.48
0.0625 1.692 × 10−2 1.00 1.038 × 10−4 1.95 9.891 × 10−5 4.37
0.03125 7.908 × 10−3 1.10 2.985 × 10−5 1.80 2.718 × 10−5 1.86
0.015625 3.982 × 10−3 0.99 7.243 × 10−6 2.04 6.729 × 10−6 2.01
0.0078125 2.155 × 10−3 0.89 1.790 × 10−6 2.02 1.717 × 10−6 1.97
0.00390625 1.035 × 10−3 1.06 4.509 × 10−7 1.99 4.401 × 10−7 1.96

Table 7: Comparison of the 𝐿∞ error in the gradient of the solution for the Ghost-Fluid Method and the Voronoi Interface Method, for
example, shown in Section 3.2.

Ghost-Fluid Method Voronoi Interface Method VIM Interpolated
dx ‖∇𝑢 − ∇𝑢ℎ‖∞ Order ‖∇𝑢 − ∇𝑢ℎ‖∞ Order ‖∇𝑢 − ∇𝑢ℎ‖∞ Order
0.25 1.259 — 1.309 × 10−2 — 2.658 × 10−0 —
0.125 1.227 0.04 9.931 × 10−3 0.55 6.334 × 10−1 2.07
0.0625 1.139 0.11 2.954 × 10−3 1.60 8.950 × 10−2 2.82
0.03125 1.156 -0.02 1.589 × 10−3 0.89 4.373 × 10−2 1.03
0.015625 1.188 -0.04 1.038 × 10−3 0.62 2.155 × 10−2 1.02
0.0078125 1.205 -0.02 5.177 × 10−4 1.00 1.070 × 10−2 1.01
0.00390625 1.214 -0.01 3.194 × 10−4 0.70 5.329 × 10−3 1.01

orthogonality between the cells’ faces and the solution’s fluxes
lowers the accuracy of the GFM’s dimension-by-dimension
approach. The Voronoi Interface Method provides a solution
to that drawback and, therefore, produces a second-order
accurate solution in the 𝐿∞- and 𝐿1-norms, and first-order
accurate (resp., second-order accurate) gradients in the 𝐿∞-

(resp., 𝐿1-) norm. Similarly to the previous example, we
observe a decrease in accuracy for the gradient computed
on the Cartesian mesh after the interpolation step, but the
order of accuracy is conserved. The solution itself does not
suffer from the interpolation step. For this type of complex
problems, the Voronoi Interface Method is able to provide a
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Table 8: Comparison of the 𝐿1 error in the gradient of the solution for the Ghost-Fluid Method and the Voronoi Interface Method, for
example, shown in Section 3.2.

Ghost-Fluid Method Voronoi Interface Method VIM Interpolated
dx ‖∇𝑢 − ∇𝑢ℎ‖1 Order ‖∇𝑢 − ∇𝑢ℎ‖1 Order ‖∇𝑢 − ∇𝑢ℎ‖1 Order
0.25 2.611 × 10−1 — 2.126 × 10−3 — 3.895 × 10−1 —
0.125 1.438 × 10−1 0.86 6.395 × 10−4 1.73 3.400 × 10−2 3.52
0.0625 7.136 × 10−2 1.01 1.957 × 10−4 1.71 5.631 × 10−3 2.59
0.03125 3.922 × 10−2 0.86 6.409 × 10−5 1.61 1.464 × 10−3 1.94
0.015625 2.019 × 10−2 0.96 1.593 × 10−5 2.01 3.713 × 10−4 1.98
0.0078125 1.033 × 10−2 0.97 4.132 × 10−6 1.95 9.359 × 10−5 1.99
0.00390625 5.222 × 10−3 0.98 1.099 × 10−6 1.91 2.358 × 10−5 1.99

second-order accurate solution and consistent gradient that
the Ghost-Fluid Method cannot produce. VIM is therefore
the recommended approach.

4. Conclusion

This paper has considered the numerical solution of the
Poisson equation with jump conditions across an irregu-
lar interface. In particular, we have compared the results
obtained with the Ghost-Fluid Method and the Voronoi
Interface Method. The Ghost-Fluid Method imposes the
jump conditions in a dimension-by-dimension framework,
leading to a linear system that is symmetric positive definite
in which the jump conditions only affect the right-hand
side. However, the dimension-by-dimension approach forces
a smearing of the tangential quantities in the jump, leading to
a loss of accuracy unless both the discontinuity in the solution
and the variable coefficient 𝛽 are constant. The Voronoi
Interface method solves that problem by constructing a
Voronoi partition for cells adjacent to the interface. A finite
volume discretization over those cells produces discretized
fluxes that are orthogonal to the cells’ faces themselves and
alignedwith the normal direction to the interface.TheGhost-
Fluid philosophy can therefore be readily applied, resulting
in a linear system that is also symmetric positive definite
with only its right-hand side affected by the jump conditions.
The resulting solution is second-order accurate (versus first-
order accurate in the general case of theGhost-FluidMethod)
and the solution’s gradient is first-order accurate (versus
zeroth-order accurate in the case of theGhost-FluidMethod).
The Voronoi Interface Method can therefore be considered
superior in general. In the particular case where both the
discontinuity across the interface is constant and the variable
coefficient 𝛽 is constant over each subdomains and across
the interface, the Ghost-Fluid Method gives a second-order
accurate solution and also second-order accurate gradient,
giving this approach an advantage over the Voronoi Interface
Method. The likely reason is that the discrete fluxes for the
Voronoi Interface Method are not located at the center of
the faces between two points. Finally, the Voronoi Interface
Method provides the solution at the center of the Voronoi
cells. An interpolation step is required if the solution on the
original Cartesian mesh is needed which can, for example,
be carried out with least square interpolations. The order of

accuracy is then preserved though the quality of the gradient
of the solution is impacted.
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