
IT Operations Analytics: Root Cause Analysis via
Complex Event Processing

Martin Drasar∗, Tomas Jirsik∗†
∗Institute of Computer Science, †Faculty of Informatics

Masaryk University, Brno, Czech Republic
{drasar,jirsik}@ics.muni.cz

Abstract—IT operation analytics (ITOA) is used for discover-
ing complex patterns in data from IT systems. The analytics pro-
cess still includes a significant portion of human interaction which
makes the analysis costly and error-prone. Human operators
need to formulate queries over the collected data to identify the
complex patterns. Since the queries describe complex relations,
the queries are usually multilevel, perplexing, and complicated
to create. For the querying the complex relations, complex event
processing methods are successfully used in other domains. In
this paper, we demonstrate an application of the complex event
processing principles in the ITOA domain. We adjust T-Rex
complex event processing engine and improve TESLA event
processing language to suit for ITOA tasks. Our demonstration
includes two real-world use-cases. We show the utilization of the
complex event processing for root cause analysis and demonstrate
the natural formulation of complex queries that results in the
reduction of the volume of the required human interaction.

I. INTRODUCTION

Network visibility and application performance analysis
have improved significantly in recent years as novel technolo-
gies for network and application monitoring are continuously
introduced by industry vendors. Network operators and infor-
mation systems managers are provided with a large volume of
data on network behavior and application performance that
needs to be processed and understood to retrieve relevant
information. Technologies for discovering complex patterns in
high volumes of data from IT systems, mainly data on systems’
availability and performance, are called IT operation analytics
(ITOA) technologies [1].

IT operation analytics technologies are used by IT operation
teams for complex data analysis tasks including root cause
analysis, service performance control, or service’s impact
analysis. Despite the advanced technologies used in ITOA
domain, the data analysis still requires a significant portion
of human interaction that slows down the analysis process,
is a potential source of errors, and increases the financial
cost of the analysis. Minimization of the amount of required
human-machine interaction during the analysis process has
been recognized as a challenge by Gartner in algorithmic
ITOA domain [2].

The human interaction in ITOA tasks includes the formu-
lation of complicated, multilevel queries that reveal complex
patterns in the data. The formulation of the queries is a time
demanding task, as an operator needs to define queries over

various data sources, use different query languages, and merge
and interpret the query results. Optimization of the querying
approach in the ITOA domain would lead to the desired
reduction of the volume of the necessary human interaction.
Complex event processing (CEP) systems and event processing
languages (EPL) have been successfully applied in other
domains, such as commercial markets, to effectively analyze
and query the complex data [3]. Application of the CEP in
ITOA domain and definition of EPL language suitable for
ITOA use-cases is expected to improve the analysis processes
in ITOA.

In this paper, we demonstrate the application of the com-
plex event processing approach in the IT operation analytics
domain. We adapt existing T-Rex complex event processing
system [4] for ITOA tasks. We propose several improvements
for associated TESLA event processing language [5] to pro-
vide the sufficient expressiveness in network and application
monitoring domains. The whole concept is demonstrated on
root cause analysis use-cases derived from ITOA day-to-day
practitioner’s experiences.

II. COMPLEX EVENT PROCESSING ARCHITECTURE

The general architecture of the T-Rex complex event pro-
cessor is depicted in Figure 1. The event processor is built
around the TESLA complex event specification language. The
event processor adopts the client-server architecture, with a
well defined binary protocol for exchanging events and event
description between the server that does the event processing
and its clients.

Complex Event
Processing

Engine

Network
Data

Application
Data

11
0000
1111

11
0000
1111

11
0000
1111

11
0000
1111

11
0000
1111

11
0000
1111

11
0000
1111

11
0000
1111

QueryEvent
Producer

01
0110
1010

01
0110
1010

01
0110
1010

Event
Processing
Language

Fig. 1: Complex event processing architecture.

A thorough description of the TESLA event processing
language is beyond the scope of this paper, and we refer the
reader to see [5] for details. In general, its advantages for
ITOA domain stem mainly from its expressiveness, support for
recursion, and ability to process heterogeneous events without
the need for event structure specification.978-3-903176-15-7 © 2019 IFIP

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/196303933?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

T-Rex, which implements the TESLA language and enables
plug-in integration of complex event processing into the ITOA
domain, provides a number of technical advantages. Compared
to other CEP systems, it has a small footprint and infrastruc-
ture requirements, while maintaining comparable performance.
This can be exploited to decentralize the event processing and
remove potential processing bottlenecks. It is also fully open
source, which enabled us to alleviate some shortcomings of
the language in regards to the ITOA domain.

For more natural processing of complex events, we have
made some TESLA language extensions. These include sup-
port for a natural IP address type, support for array and string
operations, and extensions of supported event timers. All these
extensions will be open sourced soon.

III. ROOT CAUSE ANALYSIS DEMONSTRATION

We present a sample of use-cases which are being tested on
and deployed in large-scale academic and industrial installa-
tions. These installations are equipped with a subset of these
monitoring tools: flow monitoring with heuristic event gen-
eration, intrusion detection systems, application performance
monitoring and time-series analyzers.

We demonstrate two basic scenarios in which the root cause
is a malware infiltration, which manages to avoid direct IDS
detection during the attack phase. For each use case, we
present an infection vector, the associated observable symp-
toms, which dictate the complex event logic, and the complex
event description in the TESLA language. For posterity and to
better convey the logic behind the analysis, a number of event
attributes and event boilerplate are either hidden or taken as
self-evident.

Use case I: Successful infection followed by an attempt to
further spread malware. Infection vector: Weak authentication
on target machine. Symptoms: Dictionary attacks preceding the
infection, optional increase in outgoing traffic from the target,
optional communication with blacklisted servers, IDS events
originating from the target. Complex event definition:

Define CompromisedMachine(ip: inet)
From DictionaryAttack(dst_ip => $target) and

last 10 OutTrafficInc(src_ip = $target) within 7 day
from DictionaryAttack and

last 10 Blacklist(src_ip = $target) within 7 day
from DictionaryAttack and

each IDSEvent(src_ip = $target) within 7 day
from DictionaryAttack

Where ip := $target;

The event definition ties together all occurrences of dictio-
nary attack attempts at some target with subsequent symp-
tomatic events within one week. Thanks to the T-Rex mech-
anism, the one-week sliding window is transparently held for
each occurrence of dictionary attack. All the events which
are part of the given event chain are returned when an event
detected by an IDS with the infected machine as a source is
identified.

Use case II: Infected machine causes service disruption.
Infection vector: Weak authentication on a target machine.
Symptoms: Application performance monitoring (APM) index

decrease, communication with the infected machine. Complex
event definition:
Define MalwareServiceDisruption(ip: inet, source: inet)
From APMIndexDecrease(ip => $target) and

CompromisedMachine($target in [OutTrafficInc.dst_ips,
IDSEvent.dst_ips])

Where ip := $target, source := CompromisedMachine.ip;

This use case demonstrates the easy construction of event
hierarchy and tying of high-level events together. In this case,
it correlates a decrease in performance metric with commu-
nication with compromised machine. One clear advantage is
that this complex event already has the complete event chain of
CompromisedMachine event, thus the chain of events leading
to performance decrease can be easily audited.

The functionality presented above can already be emulated
by a lot of CEP tools. However, our approach enables a unified
approach to heterogeneous event sources and more natural
description of complex events and handling of time windows.
Given the recursive nature of TESLA language, it enables easy
creation of event hierarchy, and thanks to its small footprint,
it can be easily deployed in infrastructure.

IV. CONCLUSIONS

In this paper, we demonstrate an application of the complex
event processing approach into the IT operation analytics
domain. On day-to-day ITOA use-cases, we show the formu-
lation of the complex analysis problems in the TESLA event
processing language and T-Rex engine. Our approach enables
a natural description and processing of patterns that would
require a series of advanced queries otherwise. We believe
that the presented approach demonstrates the efficient and
straightforward description of advanced patterns leading to the
reduction of necessary human interaction presented in ITOA.

ACKNOWLEDGMENTS

This research was supported by the Technology Agency of
the Czech Republic under No. TH02010185 ”Research and
Development of Advanced Analytics Tools for Security and
Performance Analysis of Network Infrastructure, Applications
and Services”.

REFERENCES

[1] P. Adams and M. Govekar, “Hype Cycle for IT Operations Management,”
2013. [Online]. Available: https://www.gartner.com/doc/2556718/hype-
cycle-it-operations-management

[2] Gartner Inc., “Gartner says Algorithmic IT Opera-
tions Drives Digital Business,” 2017. [Online]. Avail-
able: https://www.gartner.com/en/newsroom/press-releases/2017-04-11-
gartner-says-algorithmic-it-operations-drives-digital-business

[3] D. Luckham, “The power of events: An introduction to complex event
processing in distributed enterprise systems,” in Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), vol. 5321 LNCS. Springer, Berlin,
Heidelberg, oct 2008, p. 3.

[4] G. Cugola and A. Margara, “Complex event processing with T-REX,”
Journal of Systems and Software, vol. 85, no. 8, pp. 1709–1728, aug
2012.

[5] ——, “TESLA: A Formally Defined Event Specification Language,”
in Proceedings of the Fourth ACM International Conference
on Distributed Event-Based Systems, ser. DEBS ’10. New
York, NY, USA: ACM, 2010, pp. 50–61. [Online]. Available:
http://doi.acm.org/10.1145/1827418.1827427

