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Abstract

Motivation: With the development of droplet based systems, massive single cell transcriptome

data has become available, which enables analysis of cellular and molecular processes at single

cell resolution and is instrumental to understanding many biological processes. While state-of-the-

art clustering methods have been applied to the data, they face challenges in the following aspects:

(i) the clustering quality still needs to be improved; (ii) most models need prior knowledge on num-

ber of clusters, which is not always available; (iii) there is a demand for faster computational speed.

Results: We propose to tackle these challenges with Parallelized Split Merge Sampling on Dirichlet

Process Mixture Model (the Para-DPMM model). Unlike classic DPMM methods that perform

sampling on each single data point, the split merge mechanism samples on the cluster level, which

significantly improves convergence and optimality of the result. The model is highly parallelized

and can utilize the computing power of high performance computing (HPC) clusters, enabling mas-

sive inference on huge datasets. Experiment results show the model outperforms current widely

used models in both clustering quality and computational speed.

Availability and implementation: Source code is publicly available on https://github.com/tiehangd/

Para_DPMM/tree/master/Para_DPMM_package.

Contact: xhx@ics.uci.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Parallelized droplet based single cell transcriptomic profiling has

achieved significant progress in recent years (Zheng et al., 2017).

Compared to traditional methods, parallelized droplet based sys-

tems utilize Gel bead in Emulsion (GEM) to capture single cells in

parallel (the co-occurrence of multiple cells in one GEM is elimi-

nated by controlling the dilution in the reagent oil). The 3’ messen-

ger RNA digital counting is performed through the reading of

unique molecular identifiers (UMI) in each GEM. Massive parallel-

ized droplet based systems have the following properties: (i) Samples

are processed in parallel in microfluidic chip with multiple channels,

allowing the analysis of a much larger number of cells. (ii) The

multiplet rate (rate of multiple cells in one GEM) is controlled to be

less than 2% by limiting dilution, and performs direct counting of

molecule copies using UMI. (iii) The detection result of UMI is min-

imally affected by the composition of nucleobases and gene length,

resulting in low transcript bias. Because of these properties, parallel-

ized droplet based single cell transcriptomic profiling has resulted

in the creation of mass single cell genomic datasets and lead to a

number of advancements such as better approaches for transplant

monitoring (Athanasiadis et al., 2017) and detection of rare cell

populations (Proserpio and Lönnberg, 2016).

Cell clustering based on transcriptomic profiles plays an import-

ant role in single cell analysis. It identifies and characterizes cell
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subtypes from heterogeneous tissues and enhances understanding of

cell identity and functionality. Classic clustering methods such as K-

means (Kanungo et al., 2002), hierarchical clustering (Manning

et al., 2008), spectral clustering (Ng et al., 2001) can be applied dir-

ectly to single cell clustering. Given the high dimensionality of single

cell data, a widely adopted approach involves combining dimension

reduction with classic clustering. Common combinations of methods

include t-SNE with K-means (Grün et al., 2015), PCA with hierarch-

ical clustering (�Zurauskien _e and Yau, 2016) and Rt-SNE with model

based clustering (Fraley and Raftery, 2002; �Zurauskien _e and Yau,

2016). The high dimensionality problem can also be tackled by

replacing Euclidean distances with similarity measures that are ro-

bust in sparse high dimension space such as ranking on shared near-

est neighbors (SNN) (Satija et al., 2015), ward linkage (Guo et al.,

2015) and graph based clustering methods which perform graph

partition by finding maximal cliques on the similarity matrix (Xu

and Su, 2015). Other recent works proposed to solve the problem

with consensus clustering (Kiselev et al., 2017), regulon formation

(Aibar et al., 2017), multi-kernel learning (Wang et al., 2017).

Imputation is shown to be effective for performance improvement

(Lin et al., 2017). Dirichlet Mixture Model (DMM) is well suited

for single cell clustering as the discrete counting information in the

UMI matrix can be directly modeled through Multi-nomial distribu-

tion and conjugate prior likelihood pairs result in efficient inference

(Blei et al., 2003). Recent applications of DMM to single cell ana-

lysis have achieved good results (DuVerle et al., 2016; Sun et al.,

2017). However, there are still challenges to be addressed: (i) There

is demand for faster computational speed for newly created mass

single cell datasets, which can be realized through parallelization

and utilization of HPC clusters. However, standard DPMM meth-

ods are difficult to parallelize. (ii) For challenging tasks, as shown in

the Experiment Section, clustering quality can be significantly

improved. (iii) Most methods are designed for continuous data,

while the scRNA-Seq data is formed of discrete UMI counts.

Conversion of the UMI counts to continuous measure would alter

the straight-forward interpretation and it is more appealing to dir-

ectly model discrete data. (iv) Most methods need prior knowledge

on the number of clusters (DuVerle et al., 2016; Wang and Xu,

2015), which is not always available for rawly processed single cell

data and limits their ability to identify cellular heterogeneity within

the same cluster.

The Para-DPMM model (Fig. 1) proposed in this paper addresses

these limitations. Its inference is highly parallelized and can be read-

ily implemented on large HPC clusters, which results in high compu-

tational speed. For large scaled datasets with tens of thousands of

genes and cells, such as the fresh PBMC 68 K dataset used in our se-

cond case study, the clustering is completed in a couple of minutes

using 32 cores. The model is able to automatically determine the

number of clusters with its non-parametric Bayesian setting. Its sam-

pling is highly efficient. New clusters are created by splitting existing

clusters instead of setting aside a single data point, which avoids

going through the low probability density regions in the sampling

space and achieves fast convergence and improved optimality. The

model achieved more than 20% improvement on ARI (adjusted

rand index) for large challenging tasks over current widely used

models in the experiment.

These improvements are due to a split-merge Markov Chain

Monte Carlo (MCMC) inference algorithm that we developed for

this problem. Unlike variational approximation (Blei and Jordan,

2006; Ji et al., 2017; Kurihara et al., 2007) or collapsed Gibbs sam-

pling (Escobar and West, 1995; Neal, 1992), the inference algorithm

is a weight-instantiated sampling method, in which cluster parame-

ters are explicitly instantiated as variables (Ishwaran and James,

2001; Ishwaran and Zarepour, 2002). Variational approximation

algorithms lend themselves to parallelization, but are not guaranteed

to converge to ground truth distribution. Collapsed Gibbs sampling

enables intra-cluster parallelization (Lovell et al., 2013; Williamson

et al., 2013), where the number of processes is parallelized to be of

the same order as the number of clusters. Its parallelization level is

relatively low. The split-merge sampling in Para-DPMM enables

inter-cluster parallelization (Chang and Fisher, 2013; Favaro and

Teh, 2013; Papaspiliopoulos and Roberts, 2008), in which threads

running in parallel are of the same order as data points, resulting in

a high level of parallelization. To improve sampling efficiency, new

clusters are formed by either splitting an existing cluster or merging

two clusters together. Local Gibbs sampling is performed inside

each cluster to propose reasonable split proposals with high accept-

ance ratio.

Fig. 1. Workflow of para-DPMM model
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2 Materials and methods

2.1 Data and model framework
The output of the droplet-based single cell profiling pipeline is a ma-

trix storing UMI counts with rows indexing genes and columns

indexing cells. Each entry in this UMI matrix xu
i is the UMI count of

gene u barcoded in cell i. We use x
!

i to denote the expression of all

genes in cell i measured in terms of read counts. Single cell clustering

is performed on the UMI matrix with size V�N, where V is the

total number of genes and N is the total number of cells.

In the transcriptomic clustering model, the cluster assignment ci

of cell i is the discrete hidden variable to be inferred based on

observed gene expression x
!

i. The model is built on the Dirichlet pro-

cess mixture model (DPMM), which is the infinite form of the

Dirichlet mixture model (DMM). For detailed description of

DPMM model please refer to Görür and Edward Rasmussen (2010).

In the generative form of DPMM model, with parameters h
!

k 2 RV ,

gene expression x
!

i is generated based on the Multi-nomial

distribution

pðx!ijci ¼ k; h
!

kÞ ¼Multinomialðx!ijh
!

kÞ �
YV
u¼1

h
xu

i

k;u (1)

where
PV

u¼1 hk;u ¼ 1. Notation meaning is listed in Table 1. Priors

for h
!

k are accordingly set to be Dirichlet distribution with hyper

parameter k

Dirichletðh
!

kjkÞ ¼
CðkVÞ
CðkÞV

YV
u¼1

hk�1
k;u (2)

For posterior inference of ci given gene expression xi, the itera-

tive inference process can be described as

ðp1; . . . ;pK; pKþ1Þ � pðpjc!; aÞ (3)

h
!

k / pðx!fkgjh
!

kÞpðh
!

kjkÞ 8k 2 f1; . . . ;K;Kþ 1g (4)

ci / pðcijpÞpðx!ijci ¼ k; h
!

kÞ (5)

where fp1; . . . ;pKg represents the mixing proportions of existing

clusters and pKþ1 represents the proportion of next new cluster to be

generated.

2.2 Efficient parallel sampling for the DPMM model
Implementing parallel inference for the DPMM model is not trivial.

Careful examination of the dependence relationships among the vari-

ables is necessary. While collapse Gibbs sampling (Neal, 2000) sim-

plifies the sampling process (when priors are conjugate to the

likelihood), its parallelization is not straight forward (Chang and

Fisher, 2013) as data points become directly dependent on each other

after the cluster parameters are integrated out. The cluster indicators

c
!

can be seen as a fully connected Markov Random Field (MRF) and

can’t be parallelized based on proofs in Gonzalez et al. (2011).

For the split merge sampling adopted in this paper, the cluster

parameters h
!

are explicitly instantiated as variables. The cluster

assignments c
!

and cluster parameters h
!

can be mapped to a two col-

oring MRF with one color being c
!

and the other being h
!

. Based on

theorems in Gonzalez et al. (2011), all cluster assignments c
!

can then

be sampled in parallel, as they are conditionally independent of each

other given h
!

. Theoretically, the maximum number of computing

cores that can be utilized in parallel equals the number of data points.

Sampling is inefficient in this naive parallel approach. It is diffi-

cult to open new clusters as parameters sampled directly from the

prior are usually a poor fit of the data. Also, extremely large number

of sampling steps are needed for common scenarios such as: (i)

dividing the current cluster into more fine grained clusters; (ii) trans-

ferring a significant portion of data points in the current cluster to

another cluster and (iii) merging two clusters. The naive approach

has to go through a series of low probabilistic density intermediate

steps in the sampling space to reach the more optimized setting. In

real world applications where sampling time is limited, this ap-

proach leads to sub-optimality.

The split merge sampling mechanism was adopted to solve this

problem. New clusters are created by splitting existing clusters, in-

stead of setting aside a single data point. This endows newly created

clusters with sensible parameters and data membership from the very

beginning, and avoids going through low probability intermediate

states, thus leading to faster convergence. To guarantee that the pro-

cess converges to the desired stationary state, a MCMC is built to sat-

isfy the detailed balance by either accepting or rejecting the splitting

proposal. Merge moves are introduced to make the Markov chain

ergodic, its proposal is accepted based on a separate acceptance ratio.

2.3 Inference through split/merge MCMC sampling
The MCMC sampler is characterized by the states and acceptance

ratio of state transitions. For the Para-DPMM model, each state is

defined as S ¼ fp!; h
!
; c
!
; x
!g. For each update, the algorithm proposes

a new state S� ¼ fp
!
�; h
!
�; c
!
�; x
!
�g which is reachable from the old

state by either a split or merge move. As the derivation for the two

moves are similar, here we take split move as example. The proposed

state is either accepted or rejected based on the acceptance ratio:

pðS�; SÞ ¼ min 1;
pðS�Þ
pðSÞ

qðSjS�Þ
qðS�jSÞ

� �
(6)

where p(S) is the likelihood of the old state, pðS�Þ is the likelihood of

the new state, qðS�jSÞ is the transition probability from old state to

new state and qðSjS�Þ is the reversed transition probability. Updates

with this acceptance ratio satisfy the detailed balance of Markov

chain and are guaranteed to converge to the stationary state.

Derivation of the acceptance ratio is based on the specific split

merge mechanism we choose. The random split with binomial

Table 1. Notations

Notation Meaning

x
!

Collection of cells

c
!

Cluster assignments of cells

h
!

Cluster parameters

p Mixing proportions in the Dirichlet process

k Dirichlet hyper parameter for cluster parameters h
!

a Parameter for Chinese restaurant process

ci Cluster assignment for cell i

h
!

k Collection of parameters for the multi-nomial distribution

in cluster k

hu
k Parameter for multi-nomial distribution of gene u in cluster k

x
!

i The gene expression of ith cell

xu
i The UMI count of gene u in cell i

x
!
fkg The gene expression of cells assigned to cluster k

�c Local split sub-cluster assignment

�hr Parameters for local sub-clusters, r 2 f0; 1g
nk Number of cells in cluster k

�nr Number of cells in sub-cluster r, r 2 f0; 1g
N Total number of cells

K Current number of clusters in the model

V Total number of genes
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distribution is straight forward, yet its performance is not satisfac-

tory, as it doesn’t utilize any information in the data points and the

proposals are unlikely to be reasonable. The acceptance ratio is usu-

ally very low in this scenario.

An improved method is to run local Gibbs sampling in each clus-

ter to learn cluster sub-structures before the split proposal. An add-

itional indicator variable c�¼ f0; 1g is assigned to each data point in

cluster k to denote which data points will be in the sub-clusters after

the possible split. Local Gibbs sampling computes the probability of

assigning data points to either side of the split:

pð�ci ¼ rj�cfrg;:i;! xfrg; �h Þ

¼
�nfrg;:ip ! xij�hr; �ci ¼ r

� �
�nf0g;:ip xij�h0; �ci ¼ 0

� �
þ �nf1g;:ip ! xij�h1; �ci ¼ 1

� � 8r 2 0;1f g

(7)

where c�frg;:i are the assignments to sub-cluster r excluding cell i and

n�
frg;:i is the number of cells in sub-cluster r excluding cell i.

Parameters for local sub-clusters are then updated based on

�hr / pðx!frgj�hrÞpð�hrj�kÞ 8r 2 f0; 1g (8)

where k� is the Dirichlet hyper parameter for sub-cluster parameters �h.

The number of iterations for local Gibbs sampling involves a trade

off between accuracy and computational cost. In practice we found

one iteration is already enough for the model to achieve decent per-

formance. Transition probability qðS�jSÞ based on the local Gibbs sam-

pling is a product of conditional probabilities of assigning each

observation i 2 fkg to a split mixture component as given by Equation

(7). The transition probability from the new state back to old state

qðSjS�Þ is also needed. This reverse transition is the merge operation. In

contrast to the split operation which has diversified splitting choices,

the merge operation is deterministic as there is only one way to merge

two components into one component, so qðSjS�Þ ¼ 1.

To calculate the acceptance ratio in Equation (6), we also need

to evaluate the ratio of likelihood between the new state and the old

state pðS�Þ
pðSÞ . According to the generative procedure of DPMM, pðS�Þ

pðSÞ can

be decomposed as

p S�ð Þ
p Sð Þ

¼ p p
!
�; h
!
�; c
!
�; x
!
�

� �

p p
!
; h
!
; c
!
; x
!

� �

¼
p p
!
�

� �

p p
!� �

p c
!
�jp
!
�

� �

p c
!jp!
� � p h

!
�jk

� �

p h
!
jk

� � p x
!jc!�; h

!
�

� �

p x
!jc!; h

!
� �

(9)

pðS�Þ
pðSÞ can be readily derived from Equation (9) to be

pðS�Þ
pðSÞ ¼ a

p
n�

k0
�1

k0
p

n�
k1
�1

k1

pnk�1
k

CðkVÞ
CðkÞV

QV
u¼1 hk�1

k0 ;u

QV
u¼1 hk�1

k1 ;uQV
u¼1 hk�1

k;u

�

ð
Q

i2fk0g
QV

u¼1 h
xu

i

k0 ;u
Þð
Q

i2fk1g
QV

u¼1 h
xu

i

k1 ;u
Þ

ð
Q

i2fkg
QV

u¼1 h
xu

i

k;uÞ

(10)

The detailed derivation is included in the Supplementary

Material.

2.4 Random splits in merge moves
A key consideration when constructing the MCMC sampler is to

avoid the acceptance rate to be too small. For this reason, as men-

tioned in the previous section, we replaced random split with local

Gibbs sampling when designing split moves. When the split is more

reasonable, the likelihood of the new state pðS�Þ significantly

increases, thus increasing the acceptance rate. Merge moves can be

seen as split moves going from the new state back to the old state.

To increase the acceptance rate of merge moves, we should do exact-

ly the opposite. And we included in the model a separate pair of

merge/split moves which is randomized to propose good merges (as

here the splitted cluster is the old state whose likelihood we are try-

ing to decrease). For randomized merge moves, as pðc�i ¼
rjc�frg;:i; x

!
frgÞ is simply 1

2, the ratio of transition probability becomes

qðSjS�Þ
qðS�jSÞ

¼ 1

2

� 	nk0
þnk1

�2

(11)

The derivation of pðS�Þ
pðSÞ is similar to the split move.

Please note the split moves and merge moves that take place in the

model belong to two independent MCMC chains. The integrated dy-

namic process thus formed is a rational MCMC with guaranteed conver-

gence as long as the atomic moves are selected randomly from the two

chains and each of the chains satisfies detailed balance (Tierney, 1994).

3 Performance in cellular heterogeneity analysis

The Para-DPMM model was applied to the challenging task of dis-

tinguishing three T cell types (CD4þ/CD25þ regulatory T cells,

CD4þ/CD45RAþ/CD25- naive T cells and CD8þ/CD45RAþ naive

cytotoxic T cells) similar to Sun et al. (2017). The data was provided

by 10X Genomics and is publicly available (Zheng et al., 2017).

Three datasets of different scales were used: (i) a set of 1200 cells

with the 1000 top variable genes (small scale, referred to as S-Set

below), (ii) a set of 3000 cells with the 3000 top variable genes (me-

dium scale, referred to as M-Set) and (iii) a set of 6000 cells with the

5000 top variable genes (large scale, referred to as L-Set). In these

Table 2. Performance comparison on different data scales

S-Set M-Set L-Set

ARI RI HI ARI RI HI ARI RI HI

Para-DPMM 0.654 6 0.021 0.849 6 0.011 0.699 6 0.023 0.670 6 0.012 0.855 6 0.004 0.711 6 0.008 0.688 6 0.016 0.863 6 0.008 0.726 6 0.016

DIMM-SC 0.578 6 0.029 0.803 6 0.006 0.606 6 0.012 0.352 6 0.009 0.662 6 0.018 0.324 6 0.036 0.331 6 0.013 0.650 6 0.023 0.301 6 0.047

CellTree 0.270 6 0.006 0.637 6 0.015 0.274 6 0.031 0.289 6 0.009 0.643 6 0.016 0.285 6 0.032 0.273 6 0.008 0.634 6 0.024 0.268 6 0.048

Seurat 0.503 6 0.017 0.776 6 0.010 0.553 6 0.019 0.576 6 0.032 0.815 6 0.008 0.630 6 0.015 0.463 6 0.028 0.785 6 0.018 0.569 6 0.036

PCA-Reduce 0.294 6 0.015 0.684 6 0.018 0.368 6 0.036 0.284 6 0.016 0.681 6 0.021 0.363 6 0.041 0.302 6 0.014 0.688 6 0.016 0.376 6 0.032

K-means 0.312 6 0.014 0.680 6 0.004 0.360 6 0.008 0.302 6 0.007 0.678 6 0.012 0.355 6 0.023 0.312 6 0.019 0.683 6 0.005 0.367 6 0.010

SC3 0.602 6 0.018 0.823 6 0.006 0.646 6 0.012 0.614 6 0.026 0.828 6 0.018 0.657 6 0.036 0.640 6 0.017 0.840 6 0.010 0.680 6 0.020

SIMLR 0.203 6 0.014 0.606 6 0.006 0.212 6 0.012 0.334 6 0.011 0.699 6 0.013 0.398 6 0.026 0.381 6 0.008 0.724 6 0.012 0.449 6 0.024

CIDR 0.222 6 0.011 0.605 6 0.014 0.209 6 0.028 0.196 6 0.009 0.617 6 0.015 0.235 6 0.030 0.205 6 0.016 0.628 6 0.009 0.255 6 0.018

Note: Para-DPMM outperformed all comparison methods for a large margin on all experiment settings.
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datasets, cells were randomly selected from the population, we

ensured that each cell type was equally represented in the datasets.

The top variable genes were selected based on their standard devia-

tions across the cell transcriptome profiles in the UMI matrix.

We compared Para-DPMM’s performance with other currently

widely used models, including Seurat (Satija et al., 2015), CellTree

(DuVerle et al., 2016), PCA-Reduce (�Zurauskien _e and Yau, 2016),

SC3 (Kiselev et al., 2017), SIMLR (Wang et al., 2017), CIDR (Lin

et al., 2017) and DIMM-SC (Sun et al., 2017). For models needing

prior knowledge on the number of clusters, we set it to the ground

truth value. The results are shown in Table 2. The model’s perform-

ance was measured with three benchmarks: Adjusted Rand Index

(ARI), Rand Index (RI) and Hubert’s Index (HI). Rand Index (RI)

measures the similarity between two clusterings, it ranges between 0

and 1 with a perfect match being scored 1. Adjusted Rand Index

(ARI) is the corrected-for-chance version of Rand Index, it scores 0

for random matches. Hubert’s Index (HI) (Hubert and Arabie,

1985) is another popular metric for comparing partitions. It has the

advantage of probabilistic interpretation in addition to being cor-

rected for chance. Its value ranges between –1 and 1. The analysis

below mainly refers to ARI due to its wide adoption in the field.

As shown in Table 2, Para-DPMM outperformed all comparison

methods for a large margin on all experiment settings, and the trend

is more significant in the large data setting (L-Set), where it achieved

approximately 5% improvement on ARI compared to SC3 and is

more than 20% better than the other comparison methods. We fur-

ther applied Para-DPMM to the full dataset, which includes 32 695

cells and 32738 genes, where the model achieved a 71.47% score on

ARI.

As mentioned in the previous section, the performance improve-

ment is due to the split merge mechanism which enables the model

to make efficient moves in the sampling space and avoid being

trapped in sub-optimal situations. The underlying Dirichlet Process

allows the model to automatically decide the most appropriate num-

ber of clusters for the data, and the parallelized sampling enhances

the convergence speed.

(a) (b) (c) (d)

Fig. 2. (a) Performance (ARI) with respect to different number of genes on S-Set. (b) Performance with respect to different number of cells on S-Set. (c)

Performance with respect to different number of genes on L-Set. (d) Performance with respect to different number of cells on L-Set

(a)

(c) (d) (e) (f) (g)

(h) (i) (j) (k) (l)

(b)

Fig. 3. (a) t-SNE visualization of Para-DPMM clustering on Fresh PBMC 68K dataset; (b) stability of the clustering result; (c) CD4þ/CD25þ regulatory T cell distribu-

tion; (d) CD4þ/CD45raþ/CD25- naive T cell distribution; (e) CD8þ/CD45raþ naive cytotoxic T cell distribution; (f) CD14þ monocytes distribution; (g) CD19þ B cell

distribution; (h) CD34þ cell distribution; (i) CD4þ helper T cell distribution; (j) CD4þ/CD45roþmemory T cell distribution; (k) CD56þ Natural Killer cell distribution

and (l) CD8þ cytotoxic T cell distribution
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We further explored the relationship of model performance with

different number of genes and cells. Results are presented in

Figure 2. For the small scale setting, the performance slightly

increased with gene number (Fig. 2a), as the cell clusters are more

distinguishable with the added information. This result shows Para-

DPMM’s ability to handle the increasing dimensionality in data, as

posterior inference of multi-nomial model only involves multiplying

one dimension at a time and naturally circumvents the high dimen-

sionality challenge. The DIMM-SC model achieved good perform-

ance with number of genes less than 1000. The Seurat algorithm

performed better with the increase of the number of genes. Its clus-

tering is based on embedding cells to graphs and analyzing the cli-

ques formed. Increasing the number of genes made the edge weight

more accurate. The performance of other comparison methods is

not significantly influenced by number of genes. For large scale set-

ting, the performance of Para-DPMM remained stable (Fig. 2c and

d). The performance slightly improved when more genes were

involved, as more UMI counts are accumulated in the process and

clusters becomes more distinguishable.

4 Analysis on fresh PBMC 68 K dataset

In order to demonstrate our model’s ability to deal with real world

large datasets, in this case study we applied Para-DPMM to a public-

ly available fresh PBMC 68 K dataset (Publicly available on https://

support.10xgenomics.com/single-cell-gene-expression/datasets).

The dataset is composed of 68 K freshly processed peripheral blood

mononuclear cells obtained from one donor. Samples are divided

between T cells(> 80%), NK cells(�6%), B cells(�6%) and mye-

loid cells(�7%). Clustering analysis on the data reveals proportion

of each cell types, identifies cell types with similar transcriptome

profiles, finds finer grained subtypes in existing categories and dis-

covers rare cell populations.

The results of the Para-DPMM clustering can be seen in

Figure 3a. Our model divided the data points into 9 clusters, a result

close to the 10 clusters identified with human expert knowledge

(Zheng et al., 2017). The clustering is in accordance with the boun-

daries of clusters visualized in the t-SNE plot. To test the stability of

the clustering we repeated the process 50 times and measured the

probability of each cell being assigned to different clusters. As illus-

trated in Figure 3b, the clusters were quite stable, though there was

some uncertainty on the intersection regions of cluster 1 with 6 and

cluster 3 with 5. We also tested the influence of hyper parameter a

on the clustering result and found different values of a had little
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T
a
b

le
3
.
P

e
rf

o
rm

a
n

ce
co

m
p

a
ri

so
n

o
n

p
a

ir
w

is
e

P
B

M
C

ce
ll

ty
p

e
s

C
D

4
þ

C
D

4
5
ro
þ

/C
D

3
4
þ

C
D

8
þ

/C
D

4
þ

C
D

4
5
ra
þ

C
D

2
5
-

C
D

5
6
þ

/C
D

4
þ

C
D

2
5
þ

A
R

I
R

I
H

I
A

R
I

R
I

H
I

A
R

I
R

I
H

I

P
a
ra

-D
P
M

M
0
.7

0
6

6
0
.0

3
7

0
.8

5
3

6
0
.0

1
9

0
.7

0
6

6
0
.0

3
7

0
.7

5
0

6
0
.0

3
5

0
.8

7
5

6
0
.0

1
8

0
.7

5
0

6
0
.0

3
5

0
.9

9
0

6
0
.0

0
4

0
.9

9
5

6
0
.0

0
2

0
.9

9
0

6
0
.0

0
4

D
IM

M
-S

C
0
.6

7
2

6
0
.0

4
2

0
.8

3
6

6
0
.0

2
1

0
.6

7
2

6
0
.0

4
2

0
.5

6
2

6
0
.0

4
8

0
.7

8
1

6
0
.0

2
4

0
.5

6
2

6
0
.0

4
8

0
.9

7
1

6
0
.0

0
7

0
.9

8
5

6
0
.0

0
3

0
.9

7
1

6
0
.0

0
7

C
el

lT
re

e
0
.2

5
0

6
0
.0

3
1

0
.6

2
5

6
0
.0

1
6

0
.2

5
0

6
0
.0

3
1

0
.1

6
1

6
0
.0

3
4

0
.5

8
0

6
0
.0

1
7

0
.1

6
1

6
0
.0

3
4

0
.7

8
2

6
0
.0

3
8

0
.8

9
1

6
0
.0

1
9

0
.7

8
2

6
0
.0

3
8

S
eu

ra
t

0
.4

3
2

6
0
.0

4
8

0
.7

1
6

6
0
.0

2
4

0
.4

3
2

6
0
.0

4
8

0
.2

8
6

6
0
.0

1
2

0
.6

4
3

6
0
.0

0
6

0
.2

8
6

6
0
.0

1
2

0
.5

8
1

6
0
.0

5
4

0
.7

9
0

6
0
.0

2
7

0
.5

8
1

6
0
.0

5
4

P
C

A
-R

ed
u
ce

0
.6

2
1

6
0
.0

4
0

0
.8

1
1

6
0
.0

2
0

0
.6

2
1

6
0
.0

4
0

0
.4

5
9

6
0
.0

3
8

0
.7

2
9

6
0
.0

1
9

0
.4

5
9

6
0
.0

3
8

0
.5

2
8

6
0
.0

3
2

0
.7

6
4

6
0
.0

1
6

0
.5

2
8

6
0
.0

3
2

K
-M

ea
n
s

0
.2

0
2

6
0
.0

1
0

0
.6

0
1

6
0
.0

0
5

0
.2

0
2

6
0
.0

1
0

0
.1

4
3

6
0
.0

0
8

0
.5

7
2

6
0
.0

0
4

0
.1

4
3

6
0
.0

0
8

0
.7

4
6

6
0
.0

3
4

0
.8

7
3

6
0
.0

1
7

0
.7

4
6

6
0
.0

3
4

S
C

3
0
.6

9
5

6
0
.0

2
6

0
.8

4
7

6
0
.0

1
3

0
.6

9
5

6
0
.0

2
6

0
.7

0
9

6
0
.0

1
6

0
.8

5
5

6
0
.0

0
8

0
.7

0
9

6
0
.0

1
6

0
.9

8
0

6
0
.0

0
4

0
.9

9
1

6
0
.0

0
2

0
.9

8
0

6
0
.0

0
4

S
IM

L
R

0
.4

6
5

6
0
.0

3
4

0
.7

6
1

6
0
.0

1
7

0
.4

6
5

6
0
.0

3
4

0
.3

7
6

6
0
.0

1
7

0
.7

2
1

6
0
.0

0
8

0
.3

7
6

6
0
.0

1
7

0
.7

2
6

6
0
.0

2
6

0
.8

7
8

6
0
.0

1
3

0
.7

2
6

6
0
.0

2
6

C
ID

R
0
.6

8
4

6
0
.0

1
4

0
.8

5
9

6
0
.0

0
7

0
.6

8
4

6
0
.0

1
4

0
.4

3
0

6
0
.0

1
2

0
.7

4
5

6
0
.0

0
6

0
.4

3
0

6
0
.0

1
2

0
.8

2
3

6
0
.0

1
1

0
.9

2
1

6
0
.0

0
5

0
.8

2
3

6
0
.0

1
1

N
o
te

:
T

h
e

p
er

fo
rm

a
n
ce

o
f

S
C

3
w

a
s

co
m

p
a
ra

b
le

to
P
a
ra

-D
P
M

M
fo

r
th

e
C

D
4
þ

C
D

4
5
ro
þ

/C
D

3
4
þ

p
a
ir

.
P
a
ra

-D
P
M

M
a
ch

ie
v
ed

b
et

te
r

p
er

fo
rm

a
n
ce

th
a
n

a
ll

co
m

p
a
ri

so
n

m
et

h
o
d
s

in
th

e
o
th

er
tw

o
p
a
ir

s.

958 T.Duan et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/35/6/953/5085373 by B-O
n C

onsortium
 Portugal user on 10 April 2019

https://support.10xgenomics.com/single-cell-gene-expression/datasets
https://support.10xgenomics.com/single-cell-gene-expression/datasets


effect on the clustering when ranging from 0.1 to 1. The reason for

this robustness lies in the relative strength of prior (compared to

likelihood) in determining posterior cluster distribution. Given the

high dimensionality (number of genes) of the dataset, the likelihood

dominates the posterior distribution in the sampling process and the

small difference caused by different a in the prior distribution is

negligible.

Since there is no available ground truth cell labeling for this data-

set to obtain detailed knowledge about the specific cell types which

compose the clusters, we resorted to 10 purified cell populations

Publicly available on https://support.10xgenomics.com/single-cell-

gene-expression/datasets of the cell types that were previously iden-

tified in this dataset using human expert knowledge. The cell type’s

gene expression profile was obtained by averaging the profiles of

each purified population. The cell type assignment was based on the

covariance between profiles of the cell types and samples. The distri-

bution of each cell type is visualized in Figure 3c–3l. CD14þ mono-

cytes, CD19þ B cells and CD56þ NK cells were easily separated

from other cell types. On the other hand, we observed a significant

overlap of CD4þ/CD45þ/CD25- naive T cell, CD8þ/CD45raþ
naive cytotoxic T cells and CD4þ/CD45þ memory cells on the t-

SNE plot.

These cell type distributions easily explain certain clusters, more

specifically clusters 2, 3 and 7, which are composed mostly of

CD19þ B cells, CD56þ NK cells and CD14þ monocytes, respect-

ively. Other clusters are composed of multiple cell types. Cluster 6 is

a combination of CD4þ/CD45þ/CD25- naive T cells and CD8þ/

CD45raþ naive cytotoxic T cells, clusters 1 and 5 also contain a sig-

nificant amount of these cell types while being mainly composed of

CD4þ/CD25þ regulatory T cells.

We found that three pairs of cells were largely overlapping in the

clusters, namely CD4þ/CD45roþ memory T with CD34þ cells,

CD8þ cytotoxic T with CD4þ/CD45raþ/CD25- naive T cells and

CD56þ Natural Killer with CD4þ/CD25þ regulatory T cells. We

further tested our model’s ability to distinguish these three pairs of

cells. 2000 cells from each category were randomly selected and

clustered based on the 16 000 genes with top expression variation.

Results are presented in Table 3. The performance of SC3 was

comparable to Para-DPMM for the CD4þCD45roþ/CD34þ pair.

Para-DPMM achieved better performance than all comparison

methods in the other two pairs. We found it was significantly easier

to distinguish between CD56þ Natural Killer and CD4þ/CD25þ
regulatory T cells than the other two pairs.

5 Applicable scenario analysis

The Para-DPMM model should be applied to datasets created with

UMI based techniques. In UMI labeling based systems, the UMI

counts are independent of transcript length and is suitable to model

with Multi-nomial distribution. As illustrated in Islam et al. (2014)

and Phipson et al. (2017), earlier non-UMI based techniques intro-

duced bias during the cDNA amplification phase, the resulting ex-

pression matrix is correlated with transcript length and

normalizations used in RPKM and FPKM are necessary. For these

datasets, clustering methods based on continuous similarity meas-

ures such as Seurat, SC3 and PCA-Reduce are more appropriate

choices.

Current droplet-based single cell sequencing techniques has the

drop out phenomenon, where not all transcriptome information is

captured during the cell reads. This results in a sparser expression

matrix when the sequencing depth is not deep enough. To test the

robustness of Para-DPMM regarding to varying sequencing depth,

we measured the model performance on different data scales (S-Set,

M-Set and L-Set) with sequencing depth ranging from 3000 to

30 000 reads per cell. As shown in Figure 4, the model performance

is highly correlated with sequencing depth when reads per cell is less

than 10 000 and performance is stable after sequencing depth

reaches 18 000 reads per cell. The recommended minimum sequenc-

ing depth for 10X platform is 50 000 reads per cell (Baran-Gale

et al., 2017), which lies well inside the model’s robust region.

6 Scalability analysis on parallel computing
clusters

In this section, we analyze the scalability of the model. Para-DPMM

was implemented on a HPC cluster built with the BeeGFS system,

the model uses the OpenMP framework and is able to run in parallel

on multiple cores in one node. We tested the model’s scalability with

up to 32 cores. Further improvement on parallelization is possible if

(a) (b) (c)

Fig. 5. (a) Comparison of computing time on S-set; (b) comparison of computing time on L-set and (c) comparison of computing time on PBMC 68K dataset

Table 4. Computing speed comparison of different models

Para-DPMM DIMM-SC CellTree Seurat PCA-reduce K-means SC3 SIMLR CIDR

S-Set 1.14 s 33.10 s 1.82 s 28.46 s 5.56 s 5.30 s 3.11 min 9.26 min 7.09 s

M-Set 2.16 s 4.77 min 3.06 s 1.23 min 2.07 min 20.12 s 5.21 min 1.28 h 54.39 s

L-Set 3.88 s 16.98 min 6.41 s 2.48 min 11.10 min 48.95 s 8.43 min 6.65 h 6.77 min
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the model is extended with the MPI framework, which is not in the

scope of this paper. We requested 64 GB RAM for all experiment

settings.

We recorded the model’s computing time on variating number of

cores for different dataset sizes, results are shown in Figure 5. The

trade off between the gain and cost of parallelization is clearly exem-

plified on the small dataset (S-Set, shown in Fig. 5a), where fastest

computing speed was achieved with eight computing cores, after

which computing became slower as the number of cores further

increased. The cost of parallelization came from coordination be-

tween different threads, including parallel tasks creation, I/O of the

shared memory and communications between threads, which even-

tually offsets the gains. Figure 5a demonstrates it is not necessary to

use more than eight cores for training on the small dataset. The

strength of parallelized implementation becomes evident when deal-

ing with large scaled datasets, such as the PBMC 68K data. As

shown in Figure 5c, the computing speed is approximately 12 times

faster when using 32 cores compared to a single core. The comput-

ing time is initially inversely proportional to the number of cores,

and then gradually converge to constant time.

6.1 Based on Amdahl’s law

Speed Up ¼ 1
P
N þ S

(12)

where P denotes the parallelized portion in the code, N denotes

number of cores and S ¼ 1� P denotes the serial portion in the

code, the parallelization ratio of the model implementation is as

high as 91%.

We also compared other models’ computing speed (Please note

the computing time is significantly affected by factors at software

engineering level. This comparison should only serve as guidance for

real world applications, and not to be used for inferring algorithm

complexity.) with Para-DPMM (Table 4). For fairness, the measure-

ments include only running time and exclude time for data I/O and

dimension reduction (in Seurat). All models were run on eight cores

and towards convergence. Para-DPMM and CellTree are significant-

ly faster than other comparison methods. Para-DPMM is about

30% faster than CellTree on small data setting and 40% on large

settings.

7 Discussion

As shown in the experiments, the Para-DPMM model scales well

with different dataset size (Table 2) and with variating data dimen-

sionality (Fig. 2). This scalability and versatility enables its possible

wide application on real world genomic systems. Clustering analysis

on the fresh PBMC dataset (Fig. 3a) identified cells with similar

transcriptome profiles and helped uncover finer grained heteroge-

neous structures for each cell type. As illustrated in the applicable

scenario analysis (Section 5), the model should only be applied to

UMI-based datasets.

To cope with the large scaled single cell transcriptomic datasets,

the model’s inference process is highly parallelized and ready for

applications in large computing clusters. This parallelization is

achieved by explicitly instantiating the cluster parameters of the

model and makes data points conditionally independent of each

other. While the model can potentially utilize as many computing

cores as the number of data points, 32 cores are generally enough

for current large datasets (Fig. 5c).

The split-merge mechanism is adopted in the model to signifi-

cantly improve convergence and optimality of the result. The inte-

grated split-merge process is formed with two independent MCMC

chains which generates high acceptance ratio for both split and

merge moves. We performed detailed comparison with current

widely used methods, and Para-DPMM model simultaneously

achieved significant improvements on both clustering accuracy and

computing speed. The model’s performance increases with higher

dimensionality of the data, and it automatically infers number of

clusters from the dataset without using prior knowledge.

Several extensions of the Para-DPMM model are possible. For sin-

gle cell datasets created from heterogeneous sources (e.g. PBMC cells

from multiple individuals), the model could be extended to include

hierarchical processes to discover fine grained sub-structures in the

clusters. Given the availability of purified cell populations, the cluster-

ing accuracy could be further improved with semi-supervised guid-

ance. We will explore these possible extensions in the near future.
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