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a b s t r a c t

As one of the seven open problems in the addendum to their 1989 book Computability in
Analysis and Physics Pour-El and Richards (1989) [17], Pour-El and Richards asked, ‘‘What is
the connection between the computability of the original nonlinear operator and the linear
operator which results from it?’’ Yet at present, systematic studies of the issues raised by
this question seem to be missing from the literature. In this paper, we study one problem
in this direction: the Hartman–Grobman linearization theorem for ordinary differential
equations (ODEs). We prove, roughly speaking, that near a hyperbolic equilibrium point
x0 of a nonlinear ODE ẋ = f (x), there is a computable homeomorphism H such that
H ◦ φ = L ◦ H , where φ is the solution to the ODE and L is the solution to its linearization
ẋ = Df (x0) x.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The technique of linearization is important in the study of nonlinear systems and their structural stability. In his 1879
doctoral thesis [16], Poincaré showed that under certain conditions on the eigenvalues of Df (x0), the nonlinear vector field
f (x) is conjugate to its linearization Df (x0) x in a neighborhood of the equilibrium point x0. Later, a number of researchers
contributed to progress on related problems, but the most significant results stem from the work of Grobman [5] and
Hartman [6,7] (in 1959 and 1960, respectively), who showed the conjugacy of solutions as described in the paragraph above,
but without constructive proofs. Their results—whether for flows or maps—go loosely under the name of the Hartman–
Grobman theorem. This theorem (or collection of theorems) remains important, since it shows the structural stability of
hyperbolic equilibria in sufficiently smooth dynamical systems. Our result shows that the conjugacy guaranteeing this
stability is computable.

2. Definitions and notation

Before giving a precise statement of our main result (Theorem 1), some definitions and notational conventions are in
order. First the notion of computability. To carry out computations on infinite objects such as real numbers, we encode
those objects as infinite sequences of rational numbers (or equivalently, sequences of any finite or countable set Σ of
symbols), using representations (see [20] for a complete development). A represented space is a pair (X; δ), where X is
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a set, dom(δ) ⊆ ΣN, and δ :⊆ ΣN
→ X is an onto map (‘‘⊆ ΣN’’ is used to indicate that the domain of δ may be a subset of

ΣN). Every q ∈ dom(δ) such that δ(q) = x is called a δ-name of x (or a name of x when δ is clear from context). Naturally,
an element x ∈ X is computable if it has a computable name. In this paper, we use the following particular representations
for points in Rn; for open subsets of Rn; and for functions in Ck(Rn

; Rm), the set of all continuously k times differentiable
functions defined on open subsets of Rn with ranges in Rm:

(1) For every point x ∈ Rn, a name of x is a sequence {rk} of points with rational coordinates satisfying |x − rk| < 2−k. Thus
x is computable if there is a Turing machine (or a computer program or an algorithm) that outputs a rational n-tuple rk
on input k such that |rk − x| < 2−k. A matrix is computable if every entry of the matrix is a computable real or complex
number;

(2) For every function f ∈ Ck(Rn
; Rm), a name of f is a double sequence {Pl,j} of polynomials with rational coefficients

satisfying dj(Pl,j, f ) < 2−l, where Pl,j are defined on Rn with ranges in Rm,

dj(g, f ) =

k
i=0

sup
|x|≤j

|g(i)(x) − f (i)(x)|,

and f (i) is the ith order derivative of f . Thus, f is computable if there is an (oracle) Turing machine that outputs Pl,j
(more precisely coefficients of Pl,j) on input l, j satisfying dj(Pl,j, f ) < 2−l;

(3) Anameof anopen setO ⊂ Rn is a double sequence of polynomials that is a nameof thedistance functiondRn\O : Rn
→ R,

where dRn\O(x) = infy∈Rn\O |x − y| for all x ∈ Rn. Consequently, the open set O is computable if the distance function
dRn\O is computable.

The notion of computable maps between represented spaces now arises naturally. A map Φ : (X; δX ) → (Y ; δY ) between
two represented spaces is computable if there is a computable map φ :⊆ ΣN

→ ΣN such that Φ ◦ δX = δY ◦ φ. Informally
speaking, this means that there is a Turing machine that outputs a name of Φ(x) when given a name of x as input.

Next some notations. Let AH denote the set of all hyperbolic n × n matrices, where a matrix A is hyperbolic if all of its
eigenvalues have nonzero real part. The operator norm is used for A ∈ AH ; i.e., ∥A∥ = sup|x|≠0 |Ax|/|x|. For Banach spaces
X and Y , let Ck(X; Y ) denote the set of all continuously k times differentiable functions defined on open subsets of X with
ranges in Y , and L(X; Y ) the set of all bounded linear maps from X to Y . Let O denote the set of all open subsets of Rn

containing the origin of Rn, I the set of all open intervals of R containing zero, and F the set of all functions f ∈ C1(Rn
; Rn)

such that the domain of f is in O, f (0) = 0, and Df (0) ∈ AH . In other words, for any f ∈ F , 0 is a hyperbolic equilibrium
point of f . (We recall that if f (x0) = 0 and Df (x0) ∈ AH , then x0 ∈ Rn is called a hyperbolic equilibrium point, or hyperbolic
fixed point, of f .)

3. The main result

We now state our main result.

Theorem 1. There is a computable map Θ : F → O ×O ×C(Rn
; R)×C(Rn

; Rn) such that for any f ∈ F , f → (U, V , µ,H),
where

(a) H : U → V is a homeomorphism;
(b) the unique solution x(t, x̃) = x(x̃)(t) to the initial value problem ẋ = f (x) and x(0) = x̃ is defined on (−µ(x̃), µ(x̃)) × U;

moreover, x(t, x̃) ∈ U for all x̃ ∈ U and −µ(x̃) < t < µ(x̃);
(c) H(x(t, x̃)) = eDf (0)tH(x̃) for all x̃ ∈ U and −µ(x̃) < t < µ(x̃).

Recall that for any x̃ ∈ Rn, eDf (0)t x̃ is the solution to the linear problem ẋ = Df (0)x, x(0) = x̃. So the theorem shows
that the homeomorphism H , computable from f , maps trajectories near the origin, a hyperbolic equilibrium point, of the
nonlinear problem ẋ = f (x) onto trajectories near the origin of the linear problem ẋ = Df (0)x. In other words, H is a
conjugacy between the linear and nonlinear trajectories near the origin. We note that classical proofs of the Hartman–
Grobman linearization theorem are not constructive, and so the effective version of the theorem cannot be obtained from a
classical proof.

The proof of Theorem 1 is presented at the end of this section. In that proof, we make use of a number of lemmas and
auxiliary results, beginning with the following:

Lemma 2. There is a computable map F → R+
× R+

× C(Rn
; C1(R; Rn)), f → (αf , ϵf , uf ), such that for any x̃ ∈ B(0, ϵf ),

uf (x̃)(·) is the solution to the initial value problem ẋ = f (x) and x(0) = x̃ on the interval (−αf , αf ) satisfying uf (·)(·) ∈

C1((−αf , αf ) × B(0, ϵf )), where R+ is the set of all positive real numbers and B(0, r) = {x ∈ Rn
: |x| < r}.

Proof. In [3], it was proved that the solutionmap (f , x̃) → (α(f ,x̃), u(·, x̃)) is computable, where u(t, x̃) is the solution to the
initial value problem ẋ = f (x) and x(0) = x̃ on the interval (−α(f ,x̃), α(f ,x̃)). The lemma can be proved by a similar argument
using successive approximations. �
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The contraction mapping principle is used in computing the homeomorphism H . To apply the contraction mapping
principle, it is essential to decompose the solution eAtx0 to the linear problem ẋ = Ax, x(0) = x0 into the sum of a
contraction and an expansion (an expansion is the inverse of a contraction). In classical proofs, the decomposition is obtained

by transforming A into a block-diagonal matrix RAR−1
=


B 0
0 C


such that eBt is a contraction and eCt is an expansion,

where R is thematrix consisting of generalized eigenvectors corresponding to the eigenvalues of A. Although the eigenvalues
of A are computable from A (see the proof of Lemma 3 below), the process of finding the eigenvectors is not in general
continuous, thus it is a non-computable process. This is one of the non-constructive obstacles appearing in classical proofs.
To overcome this,wemakeuse of an analytic approach that does not require finding eigenvectors. This approach is based on a
function-theoretical treatment of the resolvents (see, e.g., [14,9,10,19]). Lemma 3 below gives an algorithm that decomposes
eAt as desired.

Lemma 3. There is a computable map Υ : AH → (0, 1) × N × C(R; L(Rn
; Rn)) × C(R; L(Rn

; Rn)), A → (σA, KA, AS, AU),
such that eAt = AS(t) + AU(t) for all t ∈ R. Moreover, ∥AS(t)∥ ≤ KAe−σAt for t ≥ 0 and ∥AU(t)∥ ≤ KAeσAt for t ≤ 0.

Proof. It is clear that one can compute the eigenvalues of A from the input A ∈ AH since the eigenvalues are zeros of the
characteristic polynomial det(A − λIn) of A, where det(A − λIn) denotes the determinant of A − λIn and In is the n × n unit
matrix. Assume that λ1, . . . , λk, µk+1, . . . , µn (counting multiplicity) are eigenvalues of A with Re(λj) < 0 for 1 ≤ j ≤ k
and Re(µj) > 0 for k+ 1 ≤ j ≤ n, where Re(z) denotes the real part of a complex number z. Then a rational number σA > 0
can be computed from the eigenvalues of A such that Re(λj) < −σA for 1 ≤ j ≤ k and Re(µj) > σA for k + 1 ≤ j ≤ n.

Let M be a natural number such that M > max{σA, 1, |λj| + 1, |µl| + 1 : 1 ≤ j ≤ k, k + 1 ≤ l ≤ n}. We now construct
two simple piecewise-smooth closed curves Γ1 and Γ2 in R2: Γ1 is the boundary of the rectangle with vertices (−σA,M),
(−M,M), (−M, −M), and (−σA, −M), while Γ2 is the boundary of the rectangle with vertices (σA,M), (M,M), (M, −M),
and (σA, −M). Then Γ1 with positive (counterclockwise) orientation encloses in its interior all the λj for 1 ≤ j ≤ k, and Γ2
with positive orientation encloses all theµj for k+1 ≤ j ≤ n in its interior. We observe that for any ξ ∈ Γ1


Γ2, thematrix

A− ξ In is invertible. Since the function g : Γ1


Γ2 → R, g(ξ) = ∥(A− ξ In)−1
∥ is computable (see, for example, [22]) from

A, where (A − ξ In)−1 is the inverse of the matrix A − ξ In, it follows that the maximum of g on Γ1


Γ2 is computable from
A. Let K1 ∈ N be an upper bound of this maximum. Now for any t ∈ R, from (5.47) of [11],

eAt = −
1

2π i


Γ1

eξ t(A − ξ In)−1dξ −
1

2π i


Γ2

eξ t(A − ξ In)−1dξ

= AS(t) + AU(t). (1)

It is clear that AS , AU ∈ C(R; L(Rn
; Rn)). Since integration is a computable operator, it follows that AS and AU are

computable from A. Moreover, a simple calculation shows that ∥ −
1

2π i


Γ1

etξ (A− ξ In)−1dξ∥ ≤ 4K1Me−σAt/π for t ≥ 0 and
∥ −

1
2π i


Γ2

etξ (A − ξ In)−1dξ∥ ≤ 4K1MeσAt/π for t ≤ 0. Let

KA = max{4MK1, 1}. (2)

Then

∥AS(t)∥ ≤ KAe−σAt for t ≥ 0 and ∥AU(t)∥ ≤ KAeσAt for t ≤ 0. (3)

The proof is complete. �

In the following we fix a function f ∈ F and show that the corresponding (U, V , µ,H) described in Theorem 1 is
computable from any name of f ∈ F . For the nonlinear problem

ẋ = f (x), x(0) = x̃ (4)

let us denote by x(t, x̃) or φt(x̃) the unique solution of (4), that is, x(t, x̃) = φt(x̃) = uf (x̃)(t) in terms of Lemma 2. Also for
the fixed function f let us use α and ϵ to denote the corresponding positive real numbers αf and ϵf , computable from f , in
Lemma 2; that is,

α = αf , ϵ = ϵf . (5)

Equation ẋ = f (x) can be written in the form

ẋ = Ax + F(x), (6)

where A = Df (0) and F(x) = f (x) − Ax. Since f ∈ F , A = Df (0) ∈ AH . It follows from Lemma 3 that there are 0 < σA < 1,
KA ∈ N, AS, AU ∈ C(R; L(Rn

; Rn)) computable from A satisfying (1) and (3). Thus a rational number t0 > 0 can be computed
from A such that

∥AS(t0)∥ < 1/(KA + 1) < 1, ∥AU(−t0)∥ < 1/(KA + 1) < 1. (7)
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Some remarks are in order about (7):

(1) We can assume, without loss of generality, that

0 < t0 < α. (8)

Indeed, if t0 < α, then the inequality is trivially satisfied. If t0 ≥ α, where α is given by Lemma 2, we can recompute
the values of αf and ϵf so that (8) is satisfied and use these new values in the remainder of the proof. Note that the
computation of αf and ϵf is independent of the computation of t0. The idea of recomputing both αf and ϵf is based on
the fact that f (0) = 0. Thus the solution x(t), which is identically zero, of the initial value problem ẋ = f (x), x(0) = 0
is defined for all t ∈ (−∞, +∞) and, in particular, on the interval [−t0 − 1, t0 + 1]. By standard results of dynamical
systems theory (e.g. Theorem 4 on p. 92 of [15]), there exists some εf > 0 such that any solution of ẋ = f (x) with
the initial value in B(0, εf ) is also defined for t ∈ [−t0 − 1, t0 + 1]. Knowing that such εf exists, it is not difficult
to devise an algorithm which computes in finite time some rational number ϵf satisfying 0 < ϵf < εf and a rational
number αf satisfying αf > t0. (The sketch of the algorithm: Generate smaller and smaller balls and numerically simulate
the trajectories along time for each ball B, with increasing resources, to get increasing values of tB > 0 such that any
trajectory starting in B is guaranteed to exist in (−tB, tB). Since the maximal interval of existence of a solution of an ODE
is semi-computable [3], one will eventually reach some tB > t0. At this point stop the algorithm and take αf = tB and ϵf
as the radius of B.)

(2) We note that t0 is computable from A = Df (0) (independently of α).
(3) x(t0, ·) and its derivative are computable from f on B(0, ϵ). Indeed, by Lemma 2, both x = x(t, x̃) and its derivative are

computable from f on (−α, α)×B(0, ϵ); subsequently, x(t0, ·) and its derivative are computable from f on B(0, ϵ), since
0 < t0 < α and t0 is computable from A = Df (0).

Let us denote AS(t0), AU(t0), AS(0), and AU(0) by B, C , PS and PU , respectively. Then, by (3), ∥PS∥ ≤ KA and ∥PU∥ ≤ KA.
Moreover, Rn

= Es  Eu, where Es
= PSRn and Eu

= PURn. The linear manifolds Es and Eu are the stable subspace and the
unstable subspace of A, respectively, which are invariant under A (see, e.g., [19]).

From the construction it is readily seen that the linear maps B, C , PS , and PU are computable from A, hence also from f ,
since A = Df (0). Moreover, since they are linear maps, their derivatives are also computable from f . The following lemma
summarizes some properties of these linearmapswhichwill be used repeatedly in the remainder of the proof. For simplicity
we abbreviate P ◦ Q by PQ for maps P,Q : Rn

→ Rn.

Lemma 4. The following hold for the linear maps B, C, PS , and PU :

(i) PSPU = PUPS = 0, PSPS = PS , and PUPU = PU .
(ii) PS + PU = id and Rn

= Es  Eu, where id is the identity map.
(iii) BPU = PUB = 0 and CPS = PSC = 0.
(iv) PSB = BPS = B and CPU = PUC = C.
(v) The linear manifold Es is invariant under B and the linear manifold Eu is invariant under C.

Proof. The proof of (i) can be found in Section 1.5.3 of [11], the proof of (ii) in Section 4.6 of [19], and proofs of (iii) and (v)
in [4]. The equalities in (iv) follow from (ii), (iii), and the fact that B and C are linear maps. �

Remark 5. As a consequence of the above lemma, for any x0 ∈ Rn, if we use y0 and z0 to denote PSx0 ∈ Es and PUx0 ∈ Eu

respectively, then x0 = (PS + PU)x0 = y0 + z0. Since Rn
= Es  Eu, we may identify (y0, z0) with y0 + z0. Similarly, for any

function x : Rn+1
→ Rn, if we denote PSx(t, x0) by y(t, y0, z0) and PUx(t, x0) by z(t, y0, z0), then

x(t, x0) = y(t, y0, z0) + z(t, y0, z0) = (y(t, y0, z0), z(t, y0, z0)).

These notations will be used throughout the rest of the paper.

Lemma 6. BB−1PS = B−1BPS = PS and CC−1PU = C−1CPU = PU , where B−1
= AS(−t0) and C−1

= AU(−t0). In other words,
B−1 is the inverse of B on the stable manifold Es of the linear map A while C−1 is the inverse of C on the unstable manifold Eu of
A. Moreover, both B−1 and C−1 are computable from f .

Proof. It is sufficient to prove that CC−1PU = C−1CPU = PU . The same argument can be used to show that BB−1PS =

B−1BPS = PS . Define two holomorphic functions φ1(ξ) = et0ξ and φ2(ξ) = e−t0ξ , ξ ∈ R2. Then the function φ(ξ) =

φ1(ξ)φ2(ξ) ≡ 1 is holomorphic. If one uses the Dunford-Taylor integrals to define the operator φ(A) as

φ(A) = −
1

2π i


Γ2

φ(ξ)R(ξ)dξ = −
1

2π i


Γ2

φ(ξ)(A − ξ I)−1dξ,

then the following property holds [11]:

φ(ξ) = φ1(ξ)φ2(ξ) ⇒ φ(A) = φ1(A)φ2(A).
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In other words,

φ1(A)φ2(A) =


−

1
2π i


Γ2

et0ξR(ξ)dξ
 

−
1

2π i


Γ2

e−t0ξR(ξ)dξ


= φ(A)

= −
1

2π i


Γ2

R(ξ)dξ

= PU .

Consequently, CC−1PUx = PU(PUx) = PUx, x ∈ Rn. Similarly, C−1CPUx = PU(PUx) = PUx, x ∈ Rn.
It is clear from Lemma 3 that B−1

= AS(−t0) and C−1
= AU(−t0) are both computable from A, and thus from f . �

We note that (B + C)x̃ = (AS(t0) + AU(t0))x̃ = eAt0 x̃ is the solution at time t0 to the linearization ẋ = Df (0)x = Ax,
x(0) = x̃ of the nonlinear problem ẋ = f (x) and x(0) = x̃ (see (1)). It is clear from (7) that B and C−1 are contractions on Rn.
This fact plays a key role in the construction of the desired homeomorphism H . Another key fact used in the construction
is that, near the hyperbolic equilibrium point 0, the (nonlinear) feedback, x(t0, ·) − (B + C), is weak, where x(t0, ·) is the
solution to the nonlinear problem ẋ = f (x) at time t0. Thus, if B is a contraction on the stablemanifold Es, then so is PSx(t0, ·)
near 0. This allows one to construct H on Es, say H1, by using the contraction mapping principle via a fixed point argument.
Using the same argument, one can also construct H on Eu, say H2. Since Rn

= Es  Eu, we obtain the desired map H as the
sum ofH1 andH2. Definition 7 together with Lemmas 8 and 9 below give some quantitative bounds for this ‘‘weak feedback’’
at time t0 in Es and Eu.

Definition 7. Let α > 0 and ϵ > 0 be the two computable real numbers defined in (5) and t0, 0 < t0 < α, the computable
real number satisfying (7) and (8), and letφt0(x̃) = x(t0, x̃) be the solution to the initial-value problem ẋ = f (x) and x(0) = x̃
at t = t0. Let Ỹ , Z̃ : B(0, ϵ) → Rn be two functions defined as follows: for x ∈ B(0, ϵ),

Ỹ (x) = PSφt0(x) − Bx, Z̃(x) = PUφt0(x) − Cx.

Using the notations introduced in Remark 5, the two functions may also be written in the form Ỹ (x) = Ỹ (y, z) =

y(t0, y, z) − By and Z̃(x) = Z̃(y, z) = z(t0, y, z) − Cz. Moreover, it follows from Lemma 4 that PS ◦ Ỹ = Ỹ and PU ◦ Z̃ = Z̃ .

The functions Ỹ and Z̃ represent the feedbacks of the nonlinear problem ẋ = f (x) at time t0 on B(0, ϵ) in Es and Eu,
respectively. Combining Lemma 2 and the fact that B, C , PS , and PU as well as their derivatives are computable from f , it
follows that the functions Ỹ , Z̃ , DỸ , and DZ̃ are all computable from f . Moreover, Ỹ (0) = Z̃(0) = DỸ (0) = DZ̃(0) = 0.
(We note that Ỹ (0) = y(t0, 0, 0) − 0 = y(t0, 0, 0) and Z̃(0) = z(t0, 0, 0) − 0 = z(t0, 0, 0). But since x0 = 0 is a hyperbolic
fixed point, x(t, 0) ≡ 0 for all t , and so y(t0, 0, 0) = PSx(t0, 0) = 0 and z(t0, 0, 0) = PUx(t0, 0) = 0. On the other hand,
since 0 ∈ Rn is an equilibrium point of f , i.e., f (0) = 0, Dx(t0, 0) = eDf (0)t0 = eAt0 = B + C (see, e.g., Section 2.3 of [15]).
Thus D(Ỹ + Z̃)(0) = Dx(t0, 0) − (B + C) = (B + C) − (B + C) = 0, which implies that DỸ (0) = 0 and DZ̃(0) = 0.) Thus
the following lemma holds.

Lemma 8. There exists a function η : (0, 1) → (0, ∞) computable from f such that for any a ∈ (0, 1),

|DỸ (x)| = |DỸ (y, z)| ≤ a/KA and |DZ̃(x)| = |DZ̃(y, z)| ≤ a/KA

on |x| = |y + z| ≤ η(a). Without loss of generality we assume that 0 < η(a) < min{a, ϵ}.

The above lemma confirms that the feedbacks are not only weak near the hyperbolic equilibrium point 0 at the (fixed)
time t0, but also change slowly. Now let us fix an a ∈ (0, 1) such that

2aKA(∥B−1
∥ + ∥C∥) < 1. (9)

For technical reasons, in the next lemma, we extend the functions Ỹ and Z̃ from B(0, η(a)/2) to the whole space Rn in
such a way that the extensions are smooth with bounded derivatives.

Lemma 9. (1) There are two differentiable functions Y̆ , Z̆ : Rn
→ Rn satisfying the following conditions

Y̆ (x) =


Ỹ (x) |x| < η(a)/2
0 |x| ≥ η(a)

Z̆(x) =


Z̃(x) |x| < η(a)/2
0 |x| ≥ η(a).

Moreover, |DY̆ (x)| ≤ a/KA and |DZ̆(x)| ≤ a/KA for every x ∈ Rn, and the functions Y̆ , Z̆ , DY̆ , and DZ̆ are all computable
from f .

(2) Let Y = PS ◦ Y̆ and Z = PU ◦ Z̆ . Then Y , Z , and their derivatives are computable from f . Moreover, Y (x) = Ỹ (x) and
Z(x) = Z̃(x) for |x| < η(a)/2, |DY (x)| ≤ a and |DZ(x)| ≤ a for all x ∈ Rn.
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Proof. (1) See Lemma 3.1 in Section 9.3 of [8] or Lemma 7.6 in Section 5.7.1 of [19] for the construction of Y̆ and Z̆ . From the
construction and the fact that Ỹ , Z̃ , DỸ , DZ̃ , and η(a) are all computable from f , it follows that Y̆ , Z̆ and their derivatives
are computable from f .

(2) It is clear that Y , Z , and their derivatives are computable from f . For |x| < η(a)/2, by Definition 7, we have Y (x) =

PS ◦ Y̆ (x) = PS ◦ Ỹ (x) = Ỹ (x). Similarly Z(x) = Z̃(x) for |x| < η(a)/2. Now for all x ∈ Rn satisfying |x| ≤ η(a) (recall
that η(a) < ϵ from Lemma 8), since |DY (x)| = |D(PS ◦ Y̆ )(x)| ≤ ∥PS∥ · |Y̆ (x)| · |DY̆ (x)| ≤ KA|Y̆ (x) − Y̆ (0)| · a/KA ≤

a(a/KA)|x − 0| ≤ aη(a) < a (recall η(a) < a < 1 and KA > 1). On the other hand, for all x ∈ Rn satisfying |x| ≥ η(a),
|DY (x)| = 0. Thus |DY (x)| ≤ a for all x ∈ Rn. Similarly, |DZ(x)| ≤ a for all x ∈ Rn. �

Corollary 10. The functions Y , Z : Rn
→ Rn are bounded by aη(a), i.e., |Y (x)| ≤ aη(a) and |Z(x)| ≤ aη(a) for all x ∈ Rn.

Proof. It suffices to show that Y is bounded by aη(a). For any x ∈ Rn, if |x| ≥ η(a), then Y (x) = 0 by Lemma 9. On the other
hand, if |x| < η(a), then it follows from Lemma 9 and the mean value theorem that |Y (x)| = |Y (x) − Y (0)| ≤ a|x| < aη(a).
Thus |Y (x)| ≤ aη(a) holds for all x ∈ Rn. �

The next result shows that if an invertible linear map is perturbed slightly, then the resulting nonlinear map is still
invertible. In other words, if the feedback is weak, then the nonlinear map is invertible provided its linearization is.

Lemma 11. Let C(Rn
; Rn) be the set of all continuous functions from Rn to Rn, V the set of all pairs (V , g) such that V , g :

Rn
→ Rn, V is linear and invertible, and g is Lipschitz continuous with Lipschitz constant θg satisfying 0 < ∥V−1

∥θg < 1, and
let S = {S ∈ C(Rn

; Rn) : S(x) = Vx + g(x), (V , g) ∈ V}. Then the function χ : S → C(Rn
; Rn), S → S−1, is computable.

Proof. Apart from computability, the proof is an imitation of the proof of Lemma 8.2 of Chapter IX in [8], which shows the
existence of the function χ . For completeness we include it here.

First notice that for any (V , g) ∈ V , since V is nonsingular, the maps V → V−1 and V → ∥V−1
∥ are computable.

Thus if one can show that V−1S → (V−1S)−1, S(x) = Vx + g(x), (V , g) ∈ V , is computable from input (V , g), then
S−1

= S−1VV−1
= (V−1S)−1V−1 is computable from input (V , g). (As beforewe abbreviate P◦Q by PQ for P,Q : Rn

→ Rn.)
Let us denote y = V−1S(x) = V−1(Vx + g(x)) = x + V−1g(x), x ∈ Rn. Then to compute (V−1S)−1 is to solve the equation
y = x + V−1g(x) for x, or equivalently, to solve x = y − V−1g(x) for x. We solve the equation by way of successive
approximations. Define

x0 = 0
xn = y − V−1g(xn−1). (10)

We observe that for n ≥ 2,

∥xn − xn−1∥ = ∥V−1(g(xn−1) − g(xn−2))∥

≤ ∥V−1
∥θf ∥xn−1 − xn−2∥.

By induction

∥xn − xn−1∥ ≤

∥V−1

∥θg
n−1

· ∥x1 − x0∥.

Since 0 < ∥V−1
∥θg < 1, the sequence x0, x1, x2, . . . is effectively convergent to x̃. Consequently, taking the limit of Eq. (10)

shows that x̃ is the solution of the equation x = y − V−1g(x). This shows that the equation x = y − V−1g(x) has a unique
solution for every given y and, moreover, the solution is computable from V−1, g , and y. This proves that V−1S is invertible
and its inverse (V−1S)−1 is computable from (V , g). �

Now we define two functions L, T : Rn
→ Rn, where for x = (PSx, PUx) = (y, z) ∈ Rn,

L(x) = L(y, z) = (B + C)x = By + Cz = (By, Cz) (11)

and

T (x) = T (y, z) = (By + Y (y, z), Cz + Z(y, z)). (12)

Since the maps B, C , Y , and Z are all computable from f , so are the functions L and T .

Remark 12. (1) It is clear that L(x) = eAt0x. Moreover L is invertible on Rn with inverse L−1
= e−At0 = B−1

+ C−1 (see the
proof of Lemma 6).

(2) We also note that T (x) = φt0(x) on B(0, η(a)/2) by Definition 7 and Lemma 9. Since T (x) = (B + C)x + (Y + Z)(x),
B + C = eAt0 is an invertible linear map with inverse e−At0 , ∥e−At0∥ = ∥AS(−t0) + AU(−t0)∥ = ∥B−1

+ C−1
∥ ≤

∥B−1
∥ + ∥C−1

∥ ≤ ∥B−1
∥ + ∥C∥ (recall that ∥C−1

∥ < ∥C∥), |D(Y + Z)(x)| ≤ |DY (x)| + |DZ(x)| ≤ 2a for all x ∈ Rn

(Lemma 9(2)), and 2aKA(∥B−1
∥ + ∥C−1

∥) < 2aKA(∥B−1
∥ + ∥C∥) < 1 by (9), it follows that (B + C, Y + Z) ∈ V , and

thus Lemma 11 implies that T is invertible on Rn and its inverse T−1 is computable from f , as is T . Moreover, if we set
y1 = By0 + Y (y0, z0) and z1 = Cz0 + Z(y0, z0), then (y0, z0) = T−1(y1, z1) = (B−1y1 + Y1(y1, z1), C−1z1 + Z1(y1, z1)),
where Y1(y1, z1) = −B−1Y (T−1(y1, z1)) and Z1(y1, z1) = −C−1Z(T−1(y1, z1)).



D.S. Graça et al. / Theoretical Computer Science 457 (2012) 101–110 107

Lemma 13. Let L, T : Rn
→ Rn be the two maps defined by (11) and (12). For any map H : Rn

→ Rn, let H1 = PS ◦ H and
H2 = PU ◦ H. Then H ◦ T = L ◦ H if and only if H1 and H2 satisfy the following two equations:

H1(By + Y (y, z), Cz + Z(y, z)) = B(H1(y, z)) (13)

and

H2(By + Y (y, z), Cz + Z(y, z)) = C(H2(y, z)). (14)

We recall that PS + PU is the identity map on Rn, thus H = (PS + PU) ◦ H = H1 + H2.

Proof. It follows from the definitions of L, T , H1, and H2 that

H ◦ T (y, z) = (H1(By + Y (y, z), Cz + C(y, z)),H2(By + Y (y, z), Cz + C(y, z)))

and

L ◦ H(y, z) = (B(H1(y, z),H2(y, z)), C(H1(y, z),H2(y, z))) .

Since B is a linear map, (H1(y, z),H2(y, z)) = H1(y, z) + H2(y, z) = PSH(y, z) + PUH(y, z), and BPU = 0, one obtains that
B(H1(y, z),H2(y, z)) = BH1(y, z). Similarly, C(H1(y, z),H2(y, z)) = CH2(y, z). Therefore, it follows from (13) and (14) that
H ◦ T = (H1(By + Y (y, z), Cz + C(y, z)),H2(By + Y (y, z), Cz + C(y, z))) = (B(H1(y, z)), C(H2(y, z))) = L ◦ H .

On the other hand, if H ◦ T = L ◦ H , then it follows from Lemma 4 that

H1(By + Y (y, z), Cz + Z(y, z)) = PS(H(T (y, z)))
= PS(L(H(y, z)))
= [PS(B + C)](H1(y, z) + H2(y, z))
= B(H1(y, z)).

Thus Eq. (13) is satisfied. The same argument applies to establish Eq. (14). �

Lemma 14. There is an algorithm that computes from f a unique homeomorphism H : Rn
→ Rn and its inverse H−1 such

that H = id + H̃, id is the identity map on Rn, H̃ : Rn
→ Rn is continuous and bounded with respect to the sup norm

(i.e. ∥H̃∥∞ = sup(y,z)∈Rn |H̃(y, z)| < ∞), and

H ◦ T = L ◦ H.

Proof. The proof follows the idea of the proof of Lemma 8.3 in Chapter IX of [8]. From Lemma 13, it suffices to construct an
algorithm that computes H1 and H2 from T and Lwhich satisfy Eqs. (13) and (14). Let us first compute H2 = z + H̃2. Clearly
it suffices to compute H̃2. From Eq. (14) it follows that

Cz + Z(y, z) + H̃2(By + Y (y, z), Cz + Z(y, z)) = C(z + H̃2(y, z)),

which in turn implies that

H̃2(y, z) = C−1(Z(y, z) + H̃2(By + Y (y, z), Cz + Z(y, z))). (15)

We can then compute H̃2 using successive approximations on Eq. (15). Define

H̃0
2 (y, z) = 0

H̃k+1
2 (y, z) = C−1(Z(y, z) + H̃k

2(By + Y (y, z), Cz + Z(y, z)), k ≥ 1. (16)

Thus H̃k
2 are defined and continuous for all (y, z) ∈ Rn. They are also bounded because H̃0

2 is bounded and |Z(y, z)| ≤ aη(a)
for all (y, z) ∈ Rn by Corollary 10. Now since

∥H̃k
2 − H̃k−1

2 ∥∞ = sup
(y,z)∈Rn

|C−1(Z(y, z) + H̃k−1(By + Y (y, z), Cz + Z(y, z))) − H̃k−1
2 (y, z)|

= sup
(y,z)∈Rn

|C−1(H̃k−1(By + Y (y, z), Cz + Z(y, z)) − H̃k−2
2 (By + Y (y, z), Cz + Z(y, z)))|

≤ ∥C−1
∥∥H̃k−1

2 − H̃k−2
2 ∥∞

≤ ∥C−1
∥
k−1

∥H̃1
2 − H̃0

2∥∞ = ∥C−1
∥
k−1

∥H̃1
2∥∞

and

∥H̃1
2∥∞ = sup

(y,z)∈Rn
|C−1(Z(y, z) + H̃0

2 (By + Y (y, z), Cz + Z(y, z)))|

= sup
(y,z)∈Rn

|C−1(Z(y, z))| ≤ ∥C−1
∥aη(a),
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it follows that ∥H̃k
2 − H̃k−1

2 ∥∞ ≤ ∥C−1
∥
kaη(a). Since C−1

= AU(−t0), ∥C−1
∥ < 1/(KA+1) < 1 by (7); consequently, the H̃k

2 ’s
are uniformly and effectively convergent to a continuous, bounded, and computable function H̃2 on Rn as k → ∞. Taking
limits in Eq. (16) shows that H̃2 satisfies Eq. (15). The uniqueness of H̃2 follows from the fact that H̃2 is bounded onRn. If there
is another continuous and bounded function G̃2 : Rn

→ Rn such that G̃2(y, z) = C−1(Z(y, z)+G̃2(By+Y (y, z), Cz+Z(y, z)))
but G̃2 ≠ H̃2, thenwe can choose a positive number δ > 0 such that∥H̃2−G̃2∥∞−δ > 0 and0 < δ < (1−∥C−1

∥)∥H̃2−G̃2∥∞.
Now let us pick (y0, z0) ∈ Rn such that

|H̃2(y0, z0) − G̃2(y0, z0)| > ∥H̃2 − G̃2∥∞ − δ.

But from Eq. (15) it follows that

|H̃2(y0, z0) − G̃2(y0, z0)| = |C−1(H̃2(By0 + Y (y0, z0), Cz0 + Z(y0, z0)) − G̃2(By0 + Y (y0, z0), Cz0 + Z(y0, z0)))|

≤ ∥C−1
∥ · ∥H̃2 − G̃2∥∞ < ∥H̃2 − G̃2∥∞ − δ.

This is a contradiction. The uniqueness of H̃2, thus H2 as well, is established.
To compute H1 we use the same argument on the equation H1T−1

= B−1H1, which is a variation of Eq. (13). Note that
T−1 exists and is computable by Remark 12.

It remains to show that H−1 is also computable from T and L. For this purpose we interchange the roles of T and L and
make use of the same construction to compute functions G1 and G2 such that T ◦ G = G ◦ L, where G = G1 + G2. Since
H ◦ T = L ◦ H and T ◦ G = G ◦ L, it follows that (H ◦ G) ◦ H ◦ T = H ◦ G ◦ L ◦ H = H ◦ T ◦ G ◦ H = L ◦ H ◦ (G ◦ H), we
have H ◦ G = G ◦ H = id by virtue of uniqueness. Thus H is a homeomorphism on Rn and H−1

= G is computable from T
and L. �

Finally we come to the Proof of Theorem 1. We need to show that two open subsets U, V ∈ O, a function µ : U → R+,
and a homeomorphism H : U → V can be computed from f such that for any x̃ ∈ U and −µ(x̃) < t < µ(x̃),
H(φt(x̃)) = eAtH(x̃).

First we recall that α = αf and ϵ = ϵf (see (5)), it then follows from Lemma 2 that the unique solution x(t, x̃) = φt(x̃) to
the initial value problem ẋ = f (x) and x(0) = x̃ is defined, computable, and continuously differentiable on (−α, α)×B(0, ϵ).
We also recall that A = Df (0), L = eAt0 , and T (x̃) = φt0(x̃) for all x̃ ∈ B(0, η(a)/2), where 0 < η(a) < ϵ and 0 < t0 < α

(see (8)). Now for any 0 < t < α − t0, since T ◦ φt = φt0 ◦ φt = φt0+t = φt ◦ φt0 = φt ◦ T and, similarly, L ◦ e−At
= e−At

◦ L
(φt0+t is well defined since 0 < t0 + t < α), it follows that

(e−At
◦ H ◦ φt) ◦ T = e−At

◦ H ◦ T ◦ φt

= e−At
◦ L ◦ H ◦ φt

= L ◦ (e−At
◦ H ◦ φt),

whereH : Rn
→ Rn is the homeomorphism supplied by Lemma 14. By virtue of uniqueness and linearity of L, e−At

◦H ◦φt =

H; in other words, H(φt(x̃)) = eAtH(x̃) for all x̃ ∈ B(0, η(a)/2) and 0 < t < α − t0.
Next we show that there is a function µ : B(0, η(a)/2) → (0, α) computable from f such that φt(x̃) ∈ B(0, η(a)/2) for

x̃ ∈ B(0, η(a)/2) and −µ(x̃) < t < µ(x̃), where 0 < η(a) < 1 is defined in Lemma 8. From the previous paragraph, we
must ensure µ(x̃) < α − t0 on B(0, η(a)/2). We also note that, since B(0, η(a)) ⊂ B(0, ϵ) and B(0, ϵ) is contained in the
domain of f by Lemma 2, it follows that N = maxx̃∈B(0,η(a)/2){|f (x̃)|, |Df (x̃)|} is well defined and computable from (any C1

name of) f , where B(0, η(a)/2) denotes the closure of B(0, η(a)/2). Next, we observe that the function

δ : B(0, η(a)/2) → (0, η(a)/2), x̃ →
(η(a)/2) − |x̃|

2
(17)

is computable from f and satisfies |x̃|+δ(x̃) < η(a)/2 on B(0, η(a)/2). Nowwe come to the definition of the desired function
µ : B(0, η(a)/2) → (0, α): for any x̃ ∈ B(0, η(a)/2),

µ(x̃) = min


α − t0
2

,
(η(a)/2) − |x̃| − δ(x̃)

2N


. (18)

It is clear thatµ is computable from f andµ(x̃) < α−t0 on B(0, η(a)/2). It remains to show that, for any x̃ ∈ B(0, η(a)/2) and
−µ(x̃) < t < µ(x̃), φt(x̃) ∈ B(0, η(a)/2). For this purpose wemake use of the Picardmethod of successive approximations;
the method is based on the fact that x(t) = x(t, x̃) = φt(x̃) = φt is the solution to the initial value problem ẋ = f (x) and
x(0) = x̃ if and only if x(t) is a continuous function satisfying the integral equation

x(t) = x̃ +

 t

0
f (x(s))ds.

Define a sequence of functions

u0(t) = x̃, uk+1(t) = x̃ +

 t

0
f (uk(s))ds, k ≥ 0. (19)
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It is clear that for any x̃ ∈ B(0, η(a)/2), |u0(t)| = |x̃| <
η(a)
2 − δ(x̃). Assume now that max[−µ(x̃),µ(x̃)] |uk(t)| <

η(a)
2 − δ(x̃).

Then for −µ(x̃) < t < µ(x̃),

|uk+1(t)| ≤ |x̃| +

 t

0
f (uk(s))ds

 ≤ |x̃| + Nµ(x̃),

which implies that

max
|t|<µ(x̃)

|uk+1(t)| <
η(a)
2

− δ(x̃). (20)

It is well known from the classical proofs of the fundamental existence and uniqueness theorem for the nonlinear system
ẋ = f (x) that if |t| ≤ 1/N , then the sequence (19) is contracting and converges to the unique solution φt(x̃) of the
problem ẋ = f (x) and x(0) = x̃ (see, e.g., Section 2.2 of [15]). In particular, it follows from (20) that max|t|<µ(x̃) |φt(x̃)| ≤

(η(a)/2) − δ(x̃) < η(a)/2. This shows that µ has the desired property.
Finally, let U = B(0, η(a)/2) and V = H(U). Since η(a) is computable from f (see Lemma 8 and Eq. (9)), so is the open

subset U . By Theorem 6.2.4 of [20] the map (g,O) → g−1(O) (for g ∈ C(Rn
; Rn) and open subset O of Rn) is computable

from g and O; it then follows that V = H(U) = (H−1)−1(U) is computable from H−1 and U . Since both H−1 and U are
computable from f , V is also computable from f . The proof of Theorem 1 is complete. �

Theorem 1 can be generalized in a uniform way to include the case where the hyperbolic equilibrium points are not
necessarily 0. Let U be the set of all open subsets of Rn.

Theorem 15. There is a computable map Θ : C(Rn
; Rn) × Rn

→ U × U × C(Rn
; R) × C(Rn

; Rn), (f , p) → (U, V , µ,H),
where p is a hyperbolic equilibrium point of f (i.e. f (p) = 0 and Df (p) ∈ AH ), such that the following holds true:

(a) p ∈ U, p ∈ V , and H : U → V is a homeomorphism;
(b) the unique solution x(t, x̃) to the initial value problem ẋ = f (x) and x(0) = x̃ is defined on (−µ(x̃), µ(x̃)) × U; moreover,

x(t, x̃) ∈ U for all x̃ ∈ U and −µ(x̃) < t < µ(x̃);
(c) H(x(t, x̃)) = eDf (p)tH(x̃) for all x̃ ∈ U and −µ(x̃) < t < µ(x̃).

The proof of Theorem 1 can be extended straightforwardly to prove Theorem 15.

4. An open problem

As a problem for further investigation, it would be interesting to determine the computational complexity of the com-
putable homeomorphism H . For a nonlinear problem ẋ = f (x) and x(0) = 0, the solution L to its linearization is obvi-
ously polynomial-time computable; on the other hand it was shown recently that there exists a polynomial-time (global)
Lipschitz computable function f such that the solution to the nonlinear problem ẋ = f (x) and x(0) = 0 is polynomial-
space hard (see [12,13]). Yet we note that the conjugacy H applies near a hyperbolic equilibrium point, and it is known that
hyperbolicity may help to reduce computational complexity. For instance, although many Julia sets are non-computable,
hyperbolic Julia sets are not only computable but polynomial-time computable (see, for example, [1,2,18,21]).
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