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Abstract

Predicate-based communication allows components of a system to send messages and
requests to ensembles of components that are determined at execution time through the
evaluation of a predicate, in a multicast fashion. Predicate-based communication can
greatly simplify the programming of autonomous and adaptive systems. We present a
stochastically timed extension of the Software Component Ensemble Language (SCEL)
that was introduced in previous work. Such an extension raises a number of non-trivial
design and formal semantics issues with different options as possible solutions at different
levels of abstraction. We discuss four of these options. We provide formal semantics and
an illustration of the use of the language modeling a variant of a bike sharing system,
together with some preliminary analysis of the system performance.

1 Introduction

SCEL (Software Component Ensemble Language) [6], is a kernel language that is equipped
with programming abstractions for the specification of system models within the framework of
the autonomic computing paradigm, and for programming such systems. These abstractions
are specifically designed for representing behaviours, knowledge, and aggregations accord-
ing to specific policies, and to support programming context-awareness, self-awareness, and
adaptation. SCEL is parametric with respect to some syntactic categories, namely Knowl-
edge, Policies, Templates, and Items (Templates and Items determine the part of
Knowledge to be retrieved/removed or added, respectively).

The main focus of the SCEL language is on supporting the development of autonomous,
loosely-coupled, component-based software systems. For this purpose, a number of under-
lying assumptions are made on the kind of peculiarities of these software systems, among
which adaptivity, open-endedness, ensemble-orientedness, high ability of reconfiguration, and
support for heterogeneity. Two novel key aspects of SCEL, that distinguish it from other
languages, are designed to support these peculiarities: predicate-based communication and
the role of the component knowledge-base. Predicate-based communication allows to send
messages to ensembles of components that are not predetermined at modeling time, but are
defined at execution time, depending on how the communication predicate evaluates w.r.t.
the receiver interface. The component knowledge-base allows to realize various adaptation
patterns, by explicit separation of adaptation data in the spirit of [4], and to model com-
ponents view on (and awareness of) the environment. In the first three years of the AS-
CENS project SCEL has been used to specify many scenarios related to the project Case
Studies [13, 11, 16, 15]. These specifications witness how SCEL primitives simplify the pro-
gramming of autonomous and adaptive systems. In these systems, the emerging behavior is
realized through the coordination of the components activities.

In this paper we address the problem of enriching SCEL with information about action
durations, by providing a stochastic semantics for the language. There exist various frame-
works that support the systematic development of stochastic languages, such as [8]. However,
the main challenge in developing a stochastic semantics for SCEL is in making appropriate
modeling choices, both taking into account the specific application needs and allowing to
manage model complexity and size. Our contribution in this work is the proposal of four
variants of StocS, a Markovian extension of a significant fragment of SCEL, that can be
used to support quantitative analysis of adaptive systems composed of ensembles of coop-
erating components. These variants adopt the same language syntax of SCEL but denote
different underlying stochastic models, having a different level of granularity. The choices we
make will be motivated via examples and considerations on the model complexity and size.
Of course one could encode these four semantics in an expressive language like Bio-PEPA [5]
or HYPE [1], thus obtaining four fragments of Bio-PEPA/HYPE, one for each semantics.
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Instead, what we do in this paper is to develop a single language and define four possible
semantics for it, allowing to describe models at a different level of detail (by simply modifying
labels and relations used to construct the LTS). From a software engineering point of view,
this is a more pragmatic and flexible solution.

In summary, StocS is essentially a modeling language which inherits the purpose and focus
of SCEL. StocS extends SCEL by modeling the average time duration of state-permanence
and by replacing non-determinism by a probability distribution over outgoing transitions,
thus adopting a CTMC-based operational semantics [7]. In the current preliminary phase of
the design of StocS, we deliberately omit to incorporate certain advanced features of SCEL,
such as the presence and role of policies. Certain other features, such as the possibility of
attaching components a unique identity, are discussed and evaluated for their impact on
StocS (See Section 2). A further issue of discussion is whether StocS actions should have
an atomic semantics or not (See Section 2.2) and the physical meaning of these assumptions.

Finally, an important aspect in a modeling language concerns the need of devising an
appropriate syntax to express the environment model. In StocS and SCEL the only point of
contact with the environment is the knowledge base, which contains both internal information
and externally-sensed events. In our approach, the knowledge is the most appropriate part
of the language to specify environment models.

The outline of the present report is as follows. Section 2 discusses the trade-offs between
four stochastic variants of SCEL, followed by the presentation of their formal semantics in
Sections 4, 5, 6, and 7, after some preliminary definitions are recalled in Section 3. Section 8
introduces a case study to illustrate various aspects of the use of the design language in the
context of a smart bike sharing system. Concluding remarks and lines for possible future
research are presented in Section 9.

Note: The material presented in Section 6 has been originally developed in the context of
the EU project ASCENS (nr.257414) and is reported on in [12]. We included it in the present
report for completeness and self-containment reasons.

2 StocS: a Stochastic extension of SCEL

In this section we present the main features of StocS. We start by illustrating its main
syntactic ingredients. Then, we discuss possible choices for its timed semantics.

2.1 Syntax

The syntax of StocS is presented in Table 1, where the syntactic categories of the language
are defined. The basic category defines Processes that are used to specify the order in which
Actions can be performed. Sets of processes are used to define the behavior of Components,
that in turn are used to define Systems. Actions operate on local or remote knowledge-
bases and have a Target to determine which other components are involved in the action.
As we mentioned in the Introduction, for the sake of simplicity, in this version of StocS
we do not include Policies, whereas, like SCEL, StocS is parametric w.r.t. Knowledge,
Templates and Items.

We define the following domains for variables and for defining functions signature: A is
the set of attribute names (which include the constant id used to indicate the component
identifier), V is the set of values, K is the set of possible knowledge states, I is the set of
knowledge items, T is the set of knowledge templates. So, in Table 1, a ∈ A, v ∈ V, K ∈ K,
t ∈ I, T ∈ T.

QUANTICOL 3 Feb 5, 2014



StocS (Revision: 0.0; Feb 5, 2014) Feb 5, 2014

Systems: S ::= C
∣∣ S ‖ S

Components: C ::= I [K, P ]

Processes: P ::= nil
∣∣ a.P

∣∣ P + P
∣∣ P | P

∣∣ X
∣∣ A(p̄)

Actions: a ::= get(T )@c
∣∣ qry(T )@c

∣∣ put(t)@c

Targets: c ::= self
∣∣ p

Ensemble Predicates: p ::= tt
∣∣ e ./ e

∣∣ ¬p
∣∣ p ∧ p with ./∈ {<,≤, >,≥}

Expressions: e ::= v
∣∣ x

∣∣ a
∣∣ . . .

Table 1: StocS syntax (Knowledge K, Templates T , and Items t are parameters)

Example 1 (Items and Templates as Tuples and Patterns). Consider a signature (V,F)
where V is a set of variables and F is a set of function symbols with arity (we indicate by
f/n a function symbol f with arity n) such that 〈〉/i ∈ F for i = 0, 1, 2, .... We denote
by Terms(V,F) the set of all possible finite terms on the given signature (i.e. the terms
with variables, constructed respecting function symbols arities) and by Terms(F) the set of
all possible finite ground terms. A pattern is a term of the form 〈t1, . . . , tn〉, with ti ∈
Terms(V,F) for i = 1, . . . , n. A tuple is a term of the form 〈t1, . . . , tn〉, with ti ∈ Terms(F)
for i = 1, . . . , n. In this example we have defined the set of Templates T as the set of patterns
and the set of Items I as the set of tuples.

Systems and components

We let Sys denote the set of systems defined by the Syntax in Table 1 and S, S1,. . . ,
S′. . . variables ranging over Sys . A system S consists of an aggregation of components
obtained via the (parallel) composition operator ‖ . A component I [K, P ] consists of:

1. An interface, which is a function I in the set K → (A → V) used for publishing
information about the component state in the form of attribute values. In detail, an
interface defines a (partial) function from a pair knowledge-base and attribute-name
to a domain of values. Among the possible attributes, id is mandatory and is bound
to the name of the component. Component names are not required to be unique, so
that replicated service components can be modeled. The evaluation of an interface I
in a knowledge state K is denoted as I(K). The set of possible interface evaluations is
denoted as E.

2. A knowledge repository K, managing both application data and awareness data (follow-
ing the approach of [4]), together with the specific handling mechanism.

3. A process P , together with a set of process definitions. Processes may execute local
computations, coordinate local and remote interaction with a knowledge repository, or
perform adaptation and reconfiguration.

Processes

Processes are the active computational units. Each process is built up from the inert process
nil via action prefixing (a.P ), nondeterministic choice (P1+P2), parallel composition (P1|P2),
process variable (X), and parameterised process invocation (A(p̄)). We feel free to omit trailing
occurrences of nil, writing e.g. a instead of a.nil, whenever there is no confusion arising.

Process variables can support higher-order communication, namely the capability to ex-
change (the code of) a process, and possibly execute it, by first adding an item containing the
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process to a knowledge repository and then retrieving/withdrawing this item while binding
the process to a process variable. We assume that A ranges over a set of parameterised process
identifiers that are used in recursive process definitions. We also assume that each process
identifier A has a single definition of the form A(f̄) , P where all free variables in P are
contained in f̄ and all occurrences of process identifiers in P are within the scope of an action
prefixing. p̄ and f̄ denote lists of actual and formal parameters, respectively. In the sequel
we will use Proc to denote the set of processes, ranged over by variables P , Q,. . . , P1,Q1.. . . ,
P ′,Q′,. . . .

Actions and targets

Processes can perform three different kinds of Actions: get(T )@c, qry(T )@c and put(t)@c,
used to act over shared knowledge repositories by, respectively, withdrawing, retrieving, and
adding information items from/to the knowledge repository identified by c.

These actions exploit templates T as patterns to select knowledge items t in the reposito-
ries. The precise syntax of templates and knowledge items depends on the specific instance
of knowledge repository that is used. Indeed, in Example 1 we provided the syntax for items
(I) and templates (T) for one possible instance of the repository. In the next section we show
how StocS is in fact parametric with respect to different types of knowledge repository.

In the following, we identify the component executing an action as the source, and the
component (whose knowledge state is) affected by the action as the destination. In order
for this synchronization to occur, the output action (performed on the source side) has a
corresponding input action (performed on the destination side). In terms of action labels,
they are denoted by α and α, respectively, while their synchronization is denoted by ←→α .

For the sake of simplicity, in this report we restrict targets c to the distinguished vari-
able self, that is used by processes to refer to the component hosting it, and to component
predicates p, i.e. formulas on component attributes. A component I [K, P ] is identified by
a predicate p if I(K) |= p, that is, the interpretation defined by the evaluation of I in the
knowledge state K is a model of the formula p. Note that here we are assuming a fixed in-
terpretation for functions and predicate symbols that are not within the attributes (A). E.g.
battery < 3 is a possible predicate, where < and 3 have a fixed interpretation, while the value
of battery depends on the specific component addressed.

The informal, abstract, semantics of the actions is the following:

• put(t)@c is non-blocking, its execution causes knowledge item t be added to the knowl-
edge repository of all the components (the interface of which is) identified by c, if any;

• get(T )@c (qry(T )@c, respectively) is blocking, it causes a knowledge item t matching
pattern T be withdrawn (retrieved, respectively) from the knowledge repository of any
of the components (the interface of which is) identified by c, if any. If no such com-
ponent/item is available, the process executing it is blocked in a waiting state. The
two actions differ for the fact that get removes the requested item from the knowledge
repository while qry leaves the target repository unchanged.

The set of components satisfying a given target c of a communication action can be
considered as the ensemble with which the process performing the action intends to interact.

Knowledge behavior

Since StocS is parametric w.r.t. the specific knowledge repository used in a specification,
we provide no specific syntax/semantics for knowledge repositories. We only require that a
knowledge repository type is completely described by a tuple (K, I,T,⊕,	,`) where K is the
set of possible knowledge states (the variables K, K1, . . . , K ′, . . . range over K), I is the set
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of knowledge items (the variables t, t1,. . . ,t′,. . . range over I) and T is the set of knowledge
templates (the variables T , T1,. . . , T ′,. . . range over T). Knowledge items have no variable,
while knowledge templates have. We assume to have a partial function match : T × I →
Subst(I) (where Subst(X) is the set of substitutions with range in X) and we denote as
match(T, t) = ϑ the substitution obtained by matching the pattern T against the item t,
if any. By a small abuse of notation, we write ¬match(T, t) to denote that match(T, t) is
undefined.

The operators ⊕, 	, ` are used to add, withdraw, and infer knowledge items to/from
knowledge repositories in K, respectively. These functions have the following signature, where
Dist(X) denotes the class of probability distributions on set X with finite support:

• ⊕ : K× I→ Dist(K).

• 	 : K× T ↪→ Dist(K× I);

• `: K× T ↪→ Dist(I);

Function ⊕ is total and defines how a knowledge item can be inserted into a knowledge
repository: K ⊕ t = π is the probability distribution over knowledge states obtained as the
effect of adding t. If the item addition operation is modeled in a deterministic way, then the
distribution π is a Dirac function. One advantage of allowing a probabilistic item addition
operation is, for example, the ability of modeling possible failures in the item addition. We
will make use of this feature in the stochastic semantics of StocS.

Function 	 is partial and computes the result of withdrawing a template from a knowledge
state in terms of a probability distribution K 	 T over the set of pairs (K, t) ∈ (K× I) such
that the item t matches the template T . Intuitively, if K 	 T = π and π(K ′, t) = p then,
when one tries to remove an item matching template T from K, with probability p item t
is obtained and the resulting knowledge state is K ′. If a tuple matching template T is not
found in K then K 	 T is undefined, which is indicated by K 	 T = ⊥.

Function ` is partial and computes (similarly to 	) a probability distribution over the
possible knowledge items matching template T that can be inferred from K. Thus, if K `
T = π and π(t) = p then the probability of inferring t when one tries to infer from K a tuple
matching T is p. If no tuple matching T can be inferred from K then K ` T is undefined,
which is indicated by K ` T = ⊥.

Example 2 (K as a tuple store). Consider the sets I of items and T of templates defined
in Example 1. A knowledge state K is a multi-set over a set M ⊆ I, that is a pair 〈M,fK〉,
where fK : M → N is the so-called characteristic function of K. Given two multisets A and
B, the functions A ]B (B/A) denote the addition (resp. removal) of the elements of A and
(resp. from) B. The restriction M |T of a multiset M to a pattern T is the sub-multiset of M
of those t that match T , that is: M |T = {{t | t∈M ∧∧ ∃ϑ. match(T, t) = ϑ}}. In the following
we assume that [x1 7→ y1, . . . , xn 7→ yn] is the function mapping xi to yi for i = 1, . . . , n.
Furthermore, we use standard conditional notation to specify yi. Finally, given to functions
f and g, we let (f + g)x = fx+ gx. For any t ∈ I, T ∈ T and knowledge state K:

K ⊕ t = [K ] {t} 7→ 1]

K ⊕p t = [K ] {t} 7→ p, K 7→ 1−p]

K 	 T =
∑

t∈I [ (K/{t}, t) 7→

{
0 if ¬match(T, t)
fK(t)

card(M |T ) otherwise
]

K ` T =
∑

t∈I [ t 7→

{
0 if ¬match(T, t)
fK(t)

card(M |T ) otherwise
]
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Concerning 	 and `, one can choose a different probability distribution over matching items
that the one presented in this example (which is a uniform distribution over multi-set ele-
ments), depending on the specific modeling domain.

2.2 Informal Timed Semantics - Four Variants

The semantics of SCEL does not consider any time related aspect of computation. More
specifically, the execution of an action of the form act(T )@c . P (for put/get/qry actions)
is described by a single transition of the underlying SCEL LTS semantics. In the system
state reached by such a transition it is guaranteed that the process which executed the action
is in its local state P and that the knowledge repositories of all components involved in the
action execution have been modified accordingly. In particular, SCEL abstracts away details
concerning:

1. when the execution of the action starts;

2. if c is a predicate p, when the possible destination components are required to satisfy p;

3. when the process executing the action resumes execution (i.e. becomes P );

and their consequent time relationship. If we want to extend SCEL with an explicit notion
of (stochastic) time, we need to take into account the time-related issues mentioned above.
These issues can be addressed at different levels of abstraction, reflecting a different choice
of details that are considered in modeling SCEL actions. In this section, we discuss and
motivate several choices we take in the design of StocS and we also discuss alternative
ones. In order to obtain an underlying CTMC semantics, we model state residence times
in a Markovian way. Therefore, in the following, whenever we indicate that an action has
rate λ, roughly speaking we mean that the duration of the action (or, equivalently, the state
residence time before action execution) is modeled by a random variable (RV, in the sequel)
with negative exponential distribution having rate λ. Strictly speaking, the actual residence-
time depends also on other conflicting actions the process may be engaged in, and the resulting
race-condition.

Concerning point (1) above, since actions may involve one or more components (except
those executing on self), it is reasonable to distinguish the period in which the source com-
ponent determines the set of target components (observation) from the period in which these
target components are involved (action realization).

Point (2), in the case c is the predicate p, requires to define when a component satisfies p
with respect to a process executing an action, when time and possibly space are taken into
consideration. We assume that source components are not aware of which are the components
satisfying predicate p. Therefore, we define the notion of observation of the component by the
process, the result of which allows to establish whether the component satisfies the predicate
or not. In the context of distributed systems this is very often realized by means of a message
sent by the process to the component. According to this view, the check whether a component
satisfies predicate p is performed when the message reaches it. This means that a StocS
action may require broadcast communication to be executed, even if its effect involves a few
(and possibly no) components. In distributed systems different components may have different
response times depending on different network conditions and one can model explicitly the
message delivery, taking into account the time required to reach the component.

Finally, point (3) raises the issue on when source component execution is to be resumed. In
particular, it is necessary to identify how the source component is made aware that its role in
the communication has been completed. Get/query actions are blocking and they terminate
when the source receives a knowledge item from any component. A reasonable choice is that
further responses received are ignored. We assume appropriate mechanisms that ensure no

QUANTICOL 7 Feb 5, 2014



StocS (Revision: 0.0; Feb 5, 2014) Feb 5, 2014

confusion arises between distinct actions and corresponding messages. Put actions are non-
blocking, so it is sufficient that the source component is aware that all reachable components
have been involved in the evaluation of the predicate. A possible choice is to set-up the
transmission of one request of predicate evaluation for each component and then terminate
the execution on the source side immediately. On the target side, it is necessary to model
the reception time as well as subsequent evaluation and corresponding knowledge repository
modification.

Depending on the degree of detail in modeling these aspects, we will define four different
semantics, that we call: network-oriented (net-or), action-oriented (act-or), interaction-
oriented (int-or), and activity-oriented (activ-or). These semantics have an increasing
level of abstraction, which allows us to manage the complexity of the model according to
the application of interest. In the remaining part of this section we informally describe these
four variants of the stochastic semantics and their motivations. Then, in Sections 6, 4, 5,
and 7, we provide the corresponding operational semantics. The sections containing the
operational semantics are ordered with the purpose of presenting the simpler semantics first
(which is the action-oriented one), and then the others in an incremental way, as refinements
or modifications of the previous ones.

2.2.1 Network-oriented Semantics

This semantics takes into account all of the assumptions and observations described previ-
ously, which entails that actions are non-atomic. Indeed, they are executed through several
intermediate steps, each of which requires appropriate time duration modeling. In particular,
put actions are realized in two steps: (1) an envelope preparation and shipping (one for each
component in the system, other than the source), (2) envelope delivery, with its own delivery
time, test of the truth value of the communication predicate, and update of the knowledge-
state. The actions get/qry are realized in two steps: (1) initiation of the item retrieval by
a source component by entering in a waiting state, (2) synchronization with a destination
component and exchange of the retrieved item. Since actions are not executed atomically,
their execution is interleaved with that of other actions executed in parallel. This kind of se-
mantics is appropriate for models with spatial aspects, where distribution is a sensible aspect
influencing the duration of communications on the basis of the location of components. A
reasonable assumption is that rates of locally executed actions are rather high, if compared to
rates of remote actions. If the rates of local and remote actions differ orders of magnitudes,
this may lead to the so-called “stiff” Markov models. An efficient analysis of such models
may require a multi-scale (in time) analysis approach.

In Section 6 we provide an operational semantics for this variant of the language.

2.2.2 Action-oriented

In this simplified semantics, an action of the form act(T )@c (for put/get/qry actions)
is described by a single transition and has a state residence time provided by a function
R that takes into account the source component, the target component, the cost of re-
trieved/transmitted knowledge item, and possibly other parameters. Thus, we can expect
this rate to (partially) take into account different locations and thus different response times
of components. Upon item retrieval (by a get/qry action), eligible components (in terms
of predicate satisfaction and availability of requested item) are in a race for response, with
rate assigned component-wise. The underlying stochastic semantics drives the outcome of
the race, with appropriate weighting depending on the rates. Even if this semantics does not
consider the realistic aspects of predicate-based communication, it is simpler and can be used
in all of those scenarios where the average execution time of actions does not depend on the
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number of components involved in the communication.
In Section 4 we define an operational semantics based on these ideas.

2.2.3 Interaction-oriented

This is based on the action-oriented semantics and distinguishes local and remote actions,
by assuming that local actions are executed instantaneously. In some scenarios, local actions
happen in a time-scale which is very different (usually much smaller) from that of remote
actions. In these situations it is reasonable to consider as instantaneous the execution of
local actions, which is the idea we realize in the definition of the int-or semantics. As a
useful side effect of ignoring the duration of local actions, we obtain more concise models.
This approximation in the modeling can be considered as an approach to reducing multi-
scale models to single-scale models. In these single-scale models, the macro-scale of inter-
component communication drives the execution of macro-actions. A similar idea is explored
for Bio-PEPA models in [9] and used to abstract away from fast reactions in biochemical
networks. There, under the so-called Quasi-Steady-State Assumption of the system, it is also
defined a form of bisimilarity between the abstract and the concrete model.

The assumption we make for defining this semantics is that each remote (timed) action
is followed by a (possibly empty) sequence of local (probabilistic) actions. We ensure this
assumption is satisfied by imposing syntactic restrictions on processes. Then, by realizing a
form of maximal progress [10] we execute a timed action and all of its subsequent probabilistic
actions in a single transition of the StocS LTS. Note that, similarly to the net-or semantics,
also in this semantics we assume an error probability (called perr) modeling failed delivery of
the put action.

In Section 5 we define an operational semantics based on these ideas.

2.2.4 Activity-oriented

This semantics is very abstract and allows to explicitly declare as atomic an entire sequence of
actions, by assigning to it an execution rate that models the duration of the entire sequence.
Since the execution of the sequence of actions is atomic, it allows no interleaving of other
actions. As an interesting consequence of this, we have a significant reduction in the state-
space of the system.

This variant of the semantics is motivated by the fact that StocS only provides primitives
for asynchronous communication. Synchronization, if needed, has to be encoded through a
protocol using asynchronous communication primitives [14]. Whatever is the adopted se-
mantics among the previous ones (for example, the Action-oriented semantics), the protocol
execution for the synchronization action is interleaved with the execution of other actions.
This leads to have unclear dependencies of protocol execution times from the environment.
Therefore, the Activity-oriented semantics allows us to declare as atomic an entire sequence
of actions and to assign a rate to it. More in general, the purpose of this semantics is to have
a very high-level abstraction of the interaction mechanisms. Of course, this must be han-
dled with care as potentially relevant system behaviors (and interleavings) may be no longer
present in the model. Therefore, properties of the model are not necessarily satisfied also
by the system. Also in this semantics we assume an error probability (called perr) modeling
failed delivery of the put action.

3 Preliminary Definitions for Operational Semantics

In this section we provide preliminary notions to support the presentation of the four stochas-
tic semantics of StocS formalizing the ideas described in the previous section. The semantics
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definition is given in the FuTSs style [8] and, in particular, using its Rate Transition Systems
(RTS) instantiation [7].

3.1 Preliminaries

In RTSs a transition is a triple of the form (P, α,P), the first and second components of
which are the source state and the transition label, as usual, and the third component P
is the continuation function that associates a real non-negative value with each state P ′.
A non-zero value represents the rate of the exponential distribution characterizing the time
needed for the execution of the action represented by α, necessary to reach P ′ from P via the
transition. Whenever P(P ′) = 0, this means that P ′ is not reachable from P via α. RTS
continuation functions are equipped with a rich set of operations that help to define these
functions over sets of processes, components, and systems. Below we show the definition of
those functions that we use in this paper, after having recalled some basic notation, and we
define them in an abstract way, with respect to a generic set X.

Let TF(X,R≥0) denote the set of total functions from X to R≥0, and F ,P,Q,R, . . .
range over it. We define FTF(X,R≥0) as the subset of TF(X,R≥0) containing only functions
with finite support: function F is an element of FTF(X,R≥0) if and only if there exist
{d1, . . . , dm} ⊆ X, the support of F , such that F di 6= 0 for i = 1 . . .m and F d = 0 for all
d ∈ X\{d1, . . . , dm}. We equip FTF(X,R≥0) with the operators defined below. The resulting
algebraic structure of the set of finite support functions will be crucial for the compositional
features of our approach.

Def. 3.1. Let X be a set, and d, d1, . . . , dm be distinct elements of X, γ1, . . . , γm ∈ R≥0, let
furthermore • : X ×X → X be an injective binary operator, F1 and F2 in FTF(X,R≥0):

1. [d1 7→ γ1, . . . , dm 7→ γm] denotes the following function:

[d1 7→ γ1, . . . , dm 7→ γm] d =def

{
γi if d = di ∈ {d1, . . . , dm},
0 otherwise.

the 0 constant function in FTF(X,R≥0) is denoted by [];

2. Function + is defined as (F1 + F2) d =def (F1 d) + (F2 d);

3. We lift operator • to FTF(X,R≥0) as follows (with a bit of overloading):

(F1 • F2)s =def

{
(F1 d1) · (F2 d2) if ∃d1, d2 ∈ X . d = d1 • d2,
0 otherwise.

4. The characteristic function X : X → FTF(X,R≥0) with X d =def [d 7→ 1].

Def. 3.2. An A-labelled Rate Transition System (RTS) is a tuple (S,A,R≥0,�) where
S and A are countable, non-empty, sets of states and transition labels, respectively, and
�⊆ S ×A× FTF(S,R≥0) is the A-labelled transition relation.

In order to distinguish and identify the rules of the semantics definition, we label them by
unique names. Note that a rule with name r may have one or more associated blocking rules
rB which have the role of allowing the execution of no actions other than those explicitly
allowed by existing inference rules. These b-rules will not be further commented in the
following sections.

QUANTICOL 10 Feb 5, 2014



StocS (Revision: 0.0; Feb 5, 2014) Feb 5, 2014

4 Action-oriented Operational Semantics

To facilitate the presentation of the StocS variants, we start with the semantics called Action-
oriented (abbreviated to act-or), associating a single transition to each StocS action. The
more complex semantics, presented in Sections 5, 6, and 7, will be described as modifications
of this simpler one.

Before discussing the semantics in detail, we want to discuss the role of interface evalua-
tions. We have explained, in Sec. 2, that interface evaluations are used to establish the truth
value of predicates. Now we want to discuss how they are also used to compute appropriate
action rates. Indeed, interface evaluations are included within the transition labels to ex-
change information about source/destination components in a synchronization action, as we
now explain.

Interface evaluations (i.e. the values of the component attributes at a given time) are used
within a rate function R : E × Act × E → R≥0, which takes the interface evaluation of the
source, an action in the set of labels

Act = {put(t)@c, get(T : t)@c, qry(T : t)@c | t ∈ I and T ∈ T and c ∈ Target}

and the interface evaluation of the destination, and returns a value in R≥0, which is the rate of
execution of the given action with counterparts having those interface evaluations. Note that
get/qry actions argument has been set to T : t (rather than T as in Table 1) because the labels
of get/qry transition will contain also the matching/retrieved term t. We do not explicitly
give the definition of this function, as it is a parameter of the language1. Considering interface
evaluations in the rate functions, together with the executed action, allow us to keep into
account, in the computation of the action rate, various aspects depending on the component
state such as the position/distance, as well as other time-dependent (i.e. knowledge state
dependent) parameters such as the load of the component.

We also assume to have an error function ferr : E×Act ×E→ [0, 1] that, similarly to the
function R, computes the probability of an error in the delivery of messages. Also for this
function we do not explicitly give the definition, as it is a parameter of the language, but we
expect it to be defined through an appropriate syntax.

Interface evaluations, the rate function R, and the error function ferr have the roles de-
scribed above also in the other semantics, presented in Sections 5, 6, and 7, so we avoid to
mention and explain them again in those sections.

A further clarification we want to make in this premise concerns synchronization of input
and output actions. As mentioned in Sec. 2, an input action α and an output action α syn-
chronize into a ←→α action. These synchronizations can happen within a component, for local
actions (@self), between a source and a destination component, in remote get/qry actions
(@p), and between a source component and all the remaining components, in remote put ac-
tions (@p). In the case of get/qry actions, the interface transmitted in the synchronization
label will be that of the destination, which allows to have a different rate for each possible
destination. In the case of put action, the interface transmitted in the synchronization label
will be that of the source, since there are many possible destinations which are all involved
(at once) in the computation. Therefore, for the put action, we abstract from the actual
destinations and we compute the rate only on the basis of the source.

Finally, to simplify the synchronization of input and output actions, we force input actions
to be probabilistic, and output actions to be stochastic. Therefore their composition can be
performed through a simple multiplication.

1We plan, however, to extend the language with an appropriate syntax for defining the rate function in
terms of sender/receiver component attributes and sent messages.
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Inactive process:

nil
α−⇁ []

(nil)

Actions (where, gq∈{get,qry} and c is a Target):

λ = R(σ,put(t)@c, )

put(t)@c . P
put(t)@c−−−−−⇁σ [P 7→ λ]

(put) α 6= put(t)@c

put(t)@c.P
α−⇁ []

(putB)

match(T, t) = ϑ λ = R(σ,gq(T : t)@c, δ)

gq(T )@c . P
δ:gq(T :t)@c−−−−−−−⇁σ [Pϑ 7→ λ]

(gq)

¬match(T, t)

gq(T )@c . P
:gq(T :t)@c−−−−−−−⇁ []

(gqB1) α 6= : gq(T : t)@c

gq(T )@c . P
α−⇁ []

(gqB2)

Choice, definition, and parallel composition:

P
α−⇁e P Q

α−⇁e Q

P +Q
α−⇁e P + Q

(cho)
A(−→x )

def
= P P [−→v /−→x ]

α−⇁e P

A(−→v )
α−⇁e P

(def)

P
α−⇁e P Q

α−⇁e Q

P | Q α−⇁e P | (X Q) + (X P ) | Q
(par)

Table 2: Operational semantics of StocS processes (act-or).

4.1 Operational semantics of processes

The act-or semantics of StocS processes is the RTS (Proc ,ActProc ,R≥0,−⇁e) where Proc
is the set of process terms defined according to the syntax of StocS given in Table 1. The
set ActProc of labels is defined according to the grammar below (where e′ is the evaluation of
an interface, t ∈ I, T ∈ T, and c is a Target) and it is ranged over by α, α′, . . . :

ActProc ::= put(t)@c
∣∣ e′ : get(T : t)@c

∣∣ e′ : qry(T : t)@c

and −⇁e⊆ Proc×ActProc×FTF(Proc ,R≥0) is the least relation satisfying the rules of Table 2,
which we describe in the rest of this section (−⇁e is parameterized by an interface evaluation e:
we feel free to omit the parameter if unnecessary).

(nil) nil is the terminated process, since no process is reachable from it via any action.

(put) allows a process to execute an action put over the knowledge state of a target c with
rate λ, which is computed by the rate function R. The execution of a put(t)@c action
depends on the source component and all the other componens in the system, which are
involved as potential destinations. Consequently, the execution rate λ can be seen as
a function of the action and of the source component only (whose interface evaluation
is obtained as a parameter of the −⇁ relation); in particular, the action rate does not
depend on (the interface evaluation of) a specific (destination) component (since the
destination is not unique because put is a broadcast action); this is represented by using
the symbol in the destination argument of R.

(gq) allows a process to execute a get/qry action over the knowledge state of a target c
with rate λ, computed by the function R considering (i) the interface evaluation σ of
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the source component (obtained as a parameter of the −⇁ relation), (ii) the interface
evaluation δ of the destination (received in the synchronization label), and (iii) the sent
template T and the retrieved item t. The transition is labeled δ : gq(T : t)@c, which
indicates a request for a knowledge item t matching template T from a component
identified by c. Note that, in the case of gq(T )@c the execution rate depends also on
the destination interface evaluation because only one destination will be involved in the
completion of the execution of the action.

(cho) accumulates the relevant rates by the application of the sum operator + on the con-
tinuation P of P and Q of Q, according to the race condition principle of CTMCs;

(def) allows the instantiation of a process definition;

(par) realizes process parallel composition P | Q and uses Def. 3.1, item (3) applied to the
process parallel composition syntactic constructor | (which is obviously injective).

Concerning the rule (par), given two functions R1 and R2, the function R1 | R2 applied
to process term R returns the product (R1R1) · (R2R2), whenever R is of the form R1 | R2,
for some terms R1 and R2, and 0 otherwise. In the rule, also the characteristic function X
is used. Function P | (XQ) applied to R returns P R′ if R = R′ | Q for some R′ and 0
otherwise; i.e. the function behaves as the continuation P of P for terms where Q does not
progress (for one step). In conclusion, P | (X Q) + (X P ) | Q correctly represents process
interleaving, keeping track of the relevant rates.

4.2 Operational semantics of components and systems

The act-or semantics of StocS systems is the RTS (Sys ,ActSys ,R≥0,−→) where Sys is the
set of system terms defined according to the syntax of StocS given in Table 1. The set
ActSys of labels is defined according to the grammar below (where gq∈{get,qry}, e′ is the
evaluation of an interface, t ∈ I, T ∈ T, and p is a Predicate):

ActSys ::= e′ : put(t)@p
∣∣ e′ : gq(T : t)@p

∣∣ (input actions)

e′ : put(t)@p
∣∣ e′ : gq(T : t)@p

∣∣ (output actions)

←−−−−−−−−−→
e′ : put(t)@self

∣∣ ←−−−−−−−−−→
e′ : gq(T : t)@c (synchronizations)

and −→⊆ Sys × ActSys × FTF(Sys ,R≥0) is the least relation satisfying the rules of Tables 3
and 4, where the process relation ⇁e defined in Table 2 is also used.

In Table 3, rules for components are grouped by action type:

(c-putl) allows a local process P to execute a local put action. Let I [K, P ] be a com-
ponent; this rule states that P executes action put(t)@self with local interface evalua-
tion σ = I(K) and evolves to P, then a local execution of the action can occur and the

entire component evolves with label
←−−−−−−−−−→
σ : put(t)@self to I[π,P], where π = K ⊕ t is a

probability distribution over the possible knowledge states obtained from K by adding
the knowledge item t, while I[π,P] is the function which maps any term of the form
I [K, P ] to (πK) · (PP ) and any other term to 0.

(c-puto) is used when the target of a put is not self but a predicate p. This rule simply lifts
an output put action from the process level to the component level and transmits to
its counterpart its current interface evaluation σ by including it in the transition label
(which will be used in rule (c-puti) to compute the communication error probability).
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put actions:

σ = I(K) P
put(t)@self−−−−−−−⇁σ P K ⊕ t = π

I [K, P ]
←−−−−−−−−→
σ:put(t)@self−−−−−−−−→ I[π,P]

(c-putl)

σ = I(K) P
put(t)@p−−−−−−⇁σ P

I [K, P ]
σ :put(t)@p−−−−−−−−→ I[(XK),P]

(c-puto)

δ = I(K) δ |= p K ⊕ t = π perr = ferr(σ,put(t)@p, δ)

I [K, P ]
σ :put(t)@p−−−−−−−−→ [ I [K, P ] 7→ perr ] + I[π, (XP )] · (1− perr)

(c-puti)

I(K) 6|= p

I [K, P ]
σ :put(t)@p−−−−−−−−→ [ I [K, P ] 7→ 1 ]

(c-putir)

get/qry actions (where, gq∈{get,qry}):

σ = I(K) P
σ : get(T :t)@self−−−−−−−−−−⇁σ P K 	 T = π

I [K, P ]
←−−−−−−−−−−→
σ : get(T :t)@self−−−−−−−−−−→ I[π(t),P]

(c-getl)
K 	 T = ⊥

I [K, P ]
←−−−−−−−−−−→
σ : get(T :t)@self−−−−−−−−−−→ []

(c-getlB)

σ = I(K) P
σ :qry(T :t)@self−−−−−−−−−−⇁σ P K ` T = π

I [K, P ]
←−−−−−−−−−−→
σ :qry(T :t)@self−−−−−−−−−−→ I[(XK) · π(t),P]

(c-qryl) K ` T = ⊥

I [K, P ]
←−−−−−−−−−−→
σ :qry(T :t)@self−−−−−−−−−−→ []

(c-qrylB)

σ = I(K) P
δ : gq(T :t)@p−−−−−−−−⇁σ P

I [K, P ]
δ : gq(T :t)@p−−−−−−−−→ I[K,P]

(c-gqo)

δ = I(K) δ |= p K 	 T = π

I [K, P ]
δ : get(T :t)@p−−−−−−−−−→ I[π(t), (XP )]

(c-geti)
δ 6= I(K) ∨ I(K) 6|= p ∨ K 	 T = ⊥

I [K, P ]
δ : get(T :t)@p−−−−−−−−−→ []

(c-getiB)

δ = I(K) δ |= p K ` T = π

I [K, P ]
δ :qry(T :t)@p−−−−−−−−−→ [I [K, P ] 7→ π(t)]

(c-qryi)
δ 6= I(K) ∨ I(K) 6|= p ∨ K ` T = ⊥

I [K, P ]
δ :qry(T :t)@p−−−−−−−−−→ []

(c-qryiB)

Table 3: Operational semantics of StocS components (act-or).

(c-puti) models a component accepting a put. The rule is applied when the component sat-
isfies the predicate p. When predicate p is satisfied by I(K) and K ⊕ t = π, component
I [K, P ] evolves to [ I [K, P ] 7→ perr ] + I[π, (XP )] · (1− perr). The first term, that is
selected with probability perr, models a failure in the action execution, for instance due
to a communication error. Value perr is computed by the function ferr taking into ac-
count the source, the action performed, and the destination. The second term identifies
the different configurations the component can reach when knowledge item t is added
to the knowledge repository K.

(c-putir) accepts an input put action producing no effect, under the assumption that the
predicate p is not satisfied (the component allows synchronization as required by the
broadcast scheme).

(c-getl)/(c-qryl) realize the local get (qry) action retrieving an item t ∈ I matching the
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pattern T , if possible, in the execution of process P (in the label of the process action
we include the item t and we include the interface evaluation σ of the component for
computing the action rate) and, since the get (qry) action may result in several dis-
tinct knowledge bases, these need to be summed together considering all possibilities:
π is a distribution over pairs (knowledge base and knowledge item) and the possible
components in the continuation are weighted by using π;

(c-gqo) lifts a get/qry output action to the level of the component, similarly to (c-puto),
and produces a continuation computed by the ⇁ relation (in rule gq) using the source
interface evaluation (σ) and the destination interface evaluation (δ, taken from the syn-
chronization label);

(c-geti)/(c-qryi) under the condition that a component satisfies the predicate p, allow
the component to accept an input get (qry) action (respectively), by computing the
continuation on the basis of the distribution π over possible pairs of knowledge state and
retrieved item (retrieved item, respectively), computed by using the 	 (`, respectively)
operator, but they do not compute any rate as this is computed on the source side by
rules (gq/c-gqo); notice that the component communicates its interface evaluation δ
(destination) in the synchronization label.

It is worth noting that rules (c-puti) and (c-putir) deal with probability only. In fact,
the actual rate of the action is the one which will result from system synchronization (Rules
(s-po) and (s-pi) in Table 4) on the basis of the rates settled by the rule (put) of Table 2.

Concerning (c-putl), (c-puti), (c-getl), and (c-geti), put/get actions may result
in several distinct knowledge states and the rate functions need to be summed together
considering all possible knowledge states. This is addressed by using Def. 3.1, item (3)
applied to the component syntactic constructor I[ · , · ], which is obviously injective. Thus,
for π ∈ Dist(K) and P ∈ FTF(Proc ,R≥0), function I[π,P] ∈ FTF(Sys ,R≥0) returns
(P P )·π(K) on systems I [K, P ], for any P , and 0 on any other system term. On the contrary,
when we consider rules (c-qryl) and (c-qryi), even though qry may return several retrieved
knowledge items, the actual transition fixes a precise item t, whose retrieval probability π(t)
is combined with the component continuation.

Let us now consider systems of components: similarly to | in the case of components, also
the definition of the semantics of system parallel composition S1 ‖ S2 uses Def. 3.1, item (3)
applied to the system parallel composition syntactic constructor ‖, which is obviously injec-
tive. As usual, interleaving is modeled as a combination of lifted ‖, + on functions and the
characteristic function. In Table 4 we give the rules for systems, grouped by action type:

(s-po)/(s-pi) realize the broadcast communication of put: (s-po) ensures that if any subsys-
tem executes an output put action (i.e. it executes a σ : put(t)@p labeled transition),
then the remaining subsystem must execute the corresponding input put action (i.e.
it should execute a σ : put(t)@p labeled transition). the composed system does not
exhibit a synchronization label, but it rather propagates the output σ : put(t)@p to
allow further synchronization with all the other components in parallel; in the computa-
tion of the final rate it is necessary to consider output on the left sub-system and input
on the right as well as the symmetric case. Rule (s-pi) ensures that all subcomponents
of a system synchronize, all together, on a (specific) input put action, completing the
broadcast communication. Note that each component is constantly enabled on the in-
put label for any put action (rules (c-puti) and (c-putir).

(s-gqs) realizes one-to-one synchronization of get/qry actions (which are not broadcast),

denoted by a
←−−−−−−−−−→
e : gq(T : t)@p label, and performs aggregation of: (1) the synchroniza-

tion rate of the left (right) sub-system, with the right (resp. left) subsystem that must
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put synchronization:

S1
σ :put(t)@p−−−−−−−→ S o

1 S1
σ :put(t)@p−−−−−−−→ S i

1 S2
σ :put(t)@p−−−−−−−→ S o

2 S2
σ :put(t)@p−−−−−−−→ S i

2

S1 ‖ S2
σ :put(t)@p−−−−−−−→ S o

1 ‖ S i
2 + S i

1 ‖ S o
2

(s-po)

S1
σ :put(t)@p−−−−−−−→ S1 S2

σ :put(t)@p−−−−−−−→ S2

S1 ‖ S2
σ :put(t)@p−−−−−−−→ S1 ‖ S2

(s-pi)

get/qry synchronization (gq∈{get,qry}):

S1

←−−−−−−−−→
δ :gq(T :t)@p−−−−−−−−→ S s

1 S1
δ :gq(T :t)@p−−−−−−−−→ S o

1 S1
δ :gq(T :t)@p−−−−−−−−→ S i

1

S2

←−−−−−−−−→
δ :gq(T :t)@p−−−−−−−−→ S s

2 S2
δ :gq(T :t)@p−−−−−−−−→ S o

2 S2
δ :gq(T :t)@p−−−−−−−−→ S i

2

S1 ‖ S2
←−−−−−−−−→
δ :gq(T :t)@p−−−−−−−−→ S s

1 ‖ (X S2) + S o
1 ‖ S i

2 + S i
1 ‖ S o

2 + (X S1) ‖ S s
2

(s-gqs)

S1
δ :gq(T :t)@p−−−−−−−−→ S1 S2

δ :gq(T :t)@p−−−−−−−−→ S2

S1 ‖ S2
δ :gq(T :t)@p−−−−−−−−→ S1 ‖ (X S2) + (X S1) ‖ S2

(s-gqi)

Internal actions (gq∈{get,qry}):

S1

←−−−−−−−−→
e :put(t)@self−−−−−−−−→ S1 S2

←−−−−−−−−→
e :put(t)@self−−−−−−−−→ S2

S1 ‖ S2
←−−−−−−−−→
e :put(t)@self−−−−−−−−→ S1 ‖ (X S2) + (X S1) ‖ S2

(s-spl)

S1

←−−−−−−−−−→
e :gq(T :t)@self−−−−−−−−−→ S1 S2

←−−−−−−−−−→
e :gq(T :t)@self−−−−−−−−−→ S2

S1 ‖ S2
←−−−−−−−−−→
e :gq(T :t)@self−−−−−−−−−→ S1 ‖ (X S2) + (X S1) ‖ S2

(s-sgql)

Table 4: Operational semantics of StocS systems (act-or).

not progress (this is realized using the X characteristic function), and (2) output rates
of the left sub-system and input rates of the right subsystem (as well as the symmetric
case), combined with the ‖ operator.

(s-gqi) realizes the input get (resp. qry) action for systems in which one component, among
those satisfying the target predicate and having a matching knowledge item, can answer.

(s-spl/s-sgql) allow a system to execute a local put/get/qry action and exposes the label
denoting the type of action to allow appropriate aggregation of the observed rates.

As a final observation, we want to underline that the interleaving semantics for concurrency
is realized, for put actions, by rule (s-po) and, for get/qry actions, by rule (s-gqs).

5 Interaction-oriented Operational Semantics

In this section we illustrate the Interaction-oriented semantics (abbreviated to int-or), which
is based on the idea of having different semantics for local and remote actions (as defined in
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Section 4). In particular, remote actions maintain their stochastic semantics defined in act-
or, while local actions are instantaneous and their non-determinism is resolved by relying on
probability distributions computed by applying the knowledge base operators ⊕, 	, and `.
Since we are interested in obtaining a CTMC semantics also for this variant of StocS, we
require that the execution of a remote action αR by a component C includes the execution of
all the subsequent local actions αL1 · · ·αLn in the behavior of C, until a new remote action or
a nil is found, by applying a sort of maximal execution [10]. As a consequence, we consider
as atomic the execution of αRαL1 · · ·αLn by the component C. To this end, we impose
restrictions on process syntax that avoid the possibility of realizing infinite sequences of local
actions. That is, sequences of local actions are always finite and either terminate in a nil or in
a remote action. The stochastic semantics of the (atomic) sequence αRαL1 · · ·αLn of actions
is obtained by appropriate composition of the act-or stochastic semantics of αR with the
probabilistic semantics of αL1 · · ·αLn , which we shall define in the rest of this section. For this
purpose, we will use the notion of convolution.

Convolution. Given a relation ◦ ⊆ X × FTF(X,R≥0), we define the convolution
◦cv ⊆ FTF(X,R≥0)× FTF(X,R≥0) as follows:

δ1 ◦cv δ2 iff ∀x∈X ∃δx∈SubDist(X) ( x ◦ δx ∧∧ δ2 =
∑
y∈X

δx · δ1(y) )

Example 3. Consider a sub-probability distribution δ1 = [a 7→ 0.2, b 7→ 0.3, c 7→ 0.5] and a
relation ◦ = {(a, [a 7→ 0.4, b 7→ 0.6]), (b, [b 7→ 0.5, c 7→ 0.5]), (b, [a 7→ 0.3, b 7→ 0.7]), (c, [a 7→ 0.8, c 7→
0.2])} on a set X = {a, b, c}. Then, δ1 ◦cv δ2 for δ2 = [a 7→ 0.48, b 7→ 0.27, c 7→ 0.25] and also
δ1 ◦cv δ3 for δ3 = [a 7→ 0.57, b 7→ 0.33, c 7→ 0.1].

Before describing the details of the semantics, let us now introduce informally a bit of
notation concerning transition relations. We distinguish between (i) remote-enabled process
states, that have only remote (@p) actions activated, if any, and (ii) local-enabled process
states that consist of a non-empty sequence of local actions (@self) followed by a remote-
enabled process state. At the process level, we change the act-or transition relation −⇁e

as follows. First, we limit the applicability of the process relation −⇁e to labels pertaining
to remote actions, so that it applies only to remote-enabled process states. Then, we define
an additional transition relation −⇁l for executing local actions (@self). At the component

level, the −→ relation is modified as follows: (1) −→ is restricted to remote actions, (2) input
remote actions remain as in act-or while output remote actions semantics is changed, and
(3) local actions are not allowed by −→. In order to execute local actions, we introduce
a transition relation −→l , which essentially lifts the relation −⇁l to the level of components.

For realizing the maximal execution of the αL1 · · ·αLn action sequence, we introduce the
relation −→sl which concatenates local transitions, executed by using −→l , until no local action

remains to be executed. In this concatenation, the convolution operator ·cv is used to lift −→sl
from a component-to-rate-function relation to a rate-function-to-rate-function relation −→sl

cv.

We discuss this aspect in more details in the rest of this section. The final step to define
the new semantics of the −→ relation for components is that each sequence αRαL1 · · ·αLn is
executed by appropriate composition of the stochastic transition relation−⇁e, for the execution
of the remote action αR, and the probabilistic transition relation −→sl , for the execution of the

sequence αL1 · · ·αLn of local actions. Note that if any of the αLi cannot be executed, then
the entire sequence αRαL1 · · ·αLn is not executed.

To complete this informal introduction to the ideas underlying the int-or semantics we
mention that the new −→ relation for components is designed to be applied only to compo-
nents with a remote-enabled process state. The effect of its application is to obtain a new
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component with a remote-enabled process state (so it is remote-enabled-preserving). A se-
quence αRαL1 · · ·αLn is, therefore, executed entirely in an atomic way, and the label of −→
will be just the remote action αR, thus hiding the sequence of local actions performed.

In the rest of this section we formalize these ideas. For the sake of conciseness, we show
only the modifications to the Action-oriented semantics that are necessary to implement the
Interaction-oriented semantics. In particular, in Table 6 we omit the rules that are unchanged
w.r.t Table 3 and we just mention their labels. Tables 2 and 4 are unchanged so we omit
them.

5.1 Operational semantics of processes

We refine the syntactic category of processes provided in Table 1 by imposing constraints
on process syntax. In particular, the syntactic category R below defines the remote-enabled
process states, that have only remote (@p) actions activated, if any, and include nil. The
syntactic category L below defines the local-enabled process states, that are made of a non-
empty sequence of local (@self) actions followed by a remote-enabled process state. We also
consider the category of mixed processes (M), constructed by parallel composition of local-
and remote-enabled processes. This is a syntactic category that will appear in computations
as an intermediate product of the semantics. We do not allow to directly specify components
behavior using mixed processes. In particular we require that, for the int-or semantics,
components have their processes specified according to the remote syntactic category only.

In this section we put special attention on the use of names for variables ranging on
processes. In particular, R,R1,. . . ,R′,. . . are variables ranging over remote-enabled processes,
L,L1,. . . ,L′,. . . are variables ranging over local-enabled processes, and M ,M1,. . . ,M ′,. . . are
variables ranging over mixed processes.

R ::= nil
∣∣ act(T )@p.L

∣∣ act(T )@p.R
∣∣ R + R

∣∣ R | R
∣∣ X

∣∣ A(p̄)

L ::= act(T )@self.L
∣∣ act(T )@self.R

M ::= L
∣∣ R

∣∣ M |M

Furthermore, process definitions must use remote-enabled processes on their right-hand sides.

The int-or semantics of StocS processes is the RTS (Proc ,ActProc ,R≥0,−⇁e ∪ −⇁l ),

where Proc is the set of process terms defined according to the syntax of StocS given in
Table 1 with the above syntactic restrictions. The set ActProc of process actions labels is
partitioned into the two sets ActRProc and ActLProc of remote and local process action labels,
respectively. Those two sets are defined according to the grammar below (where t ∈ I, T ∈ T,
c is a Target, p is a Predicate, and e is the evaluation of an interface):

ActRProc ::= e : put(t)@p
∣∣ e : get(T : t)@p

∣∣ e : qry(T : t)@p

ActLProc ::= put(t)@self
∣∣ get(T )@self

∣∣ qry(T )@self
∣∣ √

The transition relation −⇁e⊆ Proc ×ActRProc ×FTF(Proc ,R≥0) is the least relation satisfying
the rules of Table 2 (note that here we restrict the action labels to disallow actions @self on
−⇁e). It uses the auxiliary relation −⇁l ⊆ Proc × ActLProc × FTF(Proc ,R≥0), which is the the

least relation satisfying the rules of Table 5 discussed in the following:

(tput/tgq/tcho/tparl) execute the
√

action that has the role of allowing local-enabled
processes to progress in parallel with remote-enabled and mixed ones, within the (tpar)
rule;

(putl/gql) allow local-enabled processes to execute local actions with rate 1;
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Tick (
√

is the tick label, gq∈{get,qry}, and p is a Predicate):

put(t)@p . P
√
−⇁l [put(t)@p . P 7→ 1]

(tput) α 6=
√

put(t)@p . P
α−⇁l []

(tputB)

gq(T )@p . P
√
−⇁l [gq(T )@p . P 7→ 1]

(tgq) α 6=
√

gq(T )@p . P
α−⇁l []

(tgqB)

R1 + R2

√
−⇁l [R1 + R2 7→ 1]

(tcho) α 6=
√

R1 + R2
α−⇁l []

(tchoB)

R1

√
−⇁l R1 R2

√
−⇁l R2

R1 | R2

√
−⇁l R1 | R2

(tparl)

Actions (where, gq∈{get,qry}, c is a Target, and p is a Predicate):

put(t)@self . P
put(t)@self−−−−−−−⇁l [P 7→ 1]

(putl) α 6= put(t)@self

put(t)@self . P
α−⇁l []

(putlB)

gq(T )@self . P
gq(T :t)@self−−−−−−−−⇁l [P 7→ 1]

(gql) α 6= gq(T : t)@self

gq(T )@self . P
α−⇁l []

(gqlB)

Choice, definition, and parallel composition:

M1
α−⇁l M1 M1

√
−⇁l M

√

1 M2
α−⇁l M2 M2

√
−⇁l M

√

2 α 6=
√

M1 |M2
α−⇁l M1 |M

√

2 + M
√

1 |M2

(tpar)

Table 5: Operational semantics of StocS processes (int-or), −⇁l relation only.

(tpar) applies to mixed processes and is used to postpone the execution of remote-enabled
processes by allowing only the execution of local non-

√
actions, indeed

√
actions are

used to keep non-local processes unchanged while local ones progress (recall that −⇁l is

defined on ActLProc actions).

5.2 Operational semantics of components and systems

The int-or semantics of StocS systems is the RTS (Sys ,ActSys ,R≥0,−→) where Sys is the
set of system terms defined according to the syntax of StocS given in Table 1. The set
ActSys of labels is partitioned into the two sets ActLSys and ActRSys , defined according to the
grammar below (where gq∈{get,qry}, e′ is the evaluation of an interface, t ∈ I, T ∈ T, and
p is a Predicate) and it is ranged over by α, α′, . . . :

ActRSys ::= e′ : put(t)@p
∣∣ e′ : gq(T : t)@p

∣∣ (input actions)

e′ : put(t)@p
∣∣ e′ : gq(T : t)@p

∣∣ (output actions)

←−−−−−−−−−→
e′ : gq(T : t)@p (synchronizations)
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put actions (R is a remote-enabled process):

σ = I(K) R
put(t)@p−−−−−−⇁σ R I[K,R] −→sl C

I[K,R]
σ :put(t)@p−−−−−−−→ C

(c-puto)

(c-puti, Table 3) (c-putir, Table 3)

get/qry actions (R is a remote-enabled process):

σ = I(K) R
δ :gq(T :t)@p−−−−−−−−⇁σ R I[K,R] −→sl C

I[K,R]
δ :gq(T :t)@p−−−−−−−−→ C

(c-gqo)

(c-geti, Table 3) (c-getiB, Table 3) (c-qryi, Table 3) (c-qryiB, Table 3)

Table 6: Operational semantics of StocS components (int-or).
put local actions (M is a mixed process):

M
put(t)@self−−−−−−−⇁l M K ⊕ t = π

I[K,M ]
put(t)@self−−−−−−−→l I[π,M ]

(c-putl)

get/qry local actions (M is a mixed process):

M
get(T )@self−−−−−−−⇁l M K 	 T = π

I[K,M ]
get(T )@self−−−−−−−→l

∑
t∈{t |match(T,t)=ϑ} I[π(t),Mϑ]

(c-getl)

M
qry(T )@self−−−−−−−⇁l M K ` T = π

I[K,M ]
qry(T )@self−−−−−−−→l

∑
t∈{t |match(T,t)=ϑ} I[(XK) · π(t),Mϑ]

(c-qryl)

K 	 T = ⊥

I[K,M ]
get(T )@self−−−−−−−→l []

(c-getlB)
K ` T = ⊥

I[K,M ]
qry(T )@self−−−−−−−→l []

(c-qrylB)

Maximal execution of local actions:

I[K,R] −→sl [I[K,R] 7→ 1]
(c-rmt) R is a remote-enabled process

I[K,M ]
α−→l C C −→sl

cv D

I[K,M ] −→sl D
(c-mxt)

M is a mixed process, α ∈ ActLSys ,
and
−→sl

cv is the convolution of −→sl

Table 7: Operational semantics of StocS components (int-or), −→l and −→sl transition rela-

tions.

ActLSys ::= put(t)@self
∣∣ get(T )@self

∣∣ qry(T )@self
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The transition relation −→⊆ Sys × ActRSys × FTF(Sys ,R≥0) for components is the least re-
lation satisfying the rules of Tables 6 and 4. Note that it does not allow to execute local
actions. Indeed, these are executed during the execution of a remote action in an atomic
way, according to the idea discussed at the beginning of this section. The process transition
relation −⇁e⊆ Proc ×ActRProc ×FTF(Proc ,R≥0) is defined in Table 2 and, again, only allows
the execution of remote actions. The transition relation −→sl ⊆ Comp ×Dist(Comp) is defined

only on the components syntactic category Comp and on the set of local actions ActLSys by
rules (c-rmt/c-mxt) in Table 7 and it allows the maximal execution of local actions within
a component with mixed process state. Let us now discuss the rules in Table 6.

(c-puto) applies to a remote-enabled process (R) and realizes maximal execution of a re-
mote put operation by: (i) applying a stochastic put transition by using the −⇁ rela-
tion, (ii) applying local transitions as much as possible by using the −→sl relation, and

(iii) sending the interface evaluation σ of the source component (itself) in the synchro-

nization label, all this within the atomic component transition
σ :put(t)@p−−−−−−−→, note that

for maximal execution of local actions we consider the entire component, rather than
only the behavior process, because we need to take into account also the knowledge state;

(c-gqo) applies to a remote-enabled process (R) and realizes maximal execution of a remote
get/qry action by: (i) applying a stochastic get/qry transition by using the −⇁ rela-
tion, (ii) applying local transitions as much as possible by using the −→sl relation, and

(iii) receiving the interface evaluation δ of the destination component in the synchro-

nization label, all this within an atomic component transition
δ :gq(T :t)@p−−−−−−−−→, note that

similarly to the previous rule for maximal execution of local actions we consider the
entire component, for the same reasons.

Now we discuss the transition relation −→sl ⊆ Comp × Dist(Comp), defined in Table 7 by

rules (c-rmt/c-mxt) in a recursive way. This relation realizes maximal executions of the
local actions by iterating the application of the component transition relation −→l ⊆ Comp ×
ActLSys × Dist(Comp) for local actions. This relation is defined only on the components

syntactic category Comp and on the set of local actions ActLSys . The relation −→l is defined in

Table 7 by rules (c-putl/c-getl/c-qryl). Let us now discuss the rules.

(c-rmt) is the base case of the definition of −→sl , it applies to a remote-enabled process (R),

and, since there is no local action to perform, it returns the same component state with
rate 1;

(c-mxt) is the inductive case of the definition, it applies to a mixed process (M) and it
executes local actions as much as possible by: (1) applying one local action (−→l ), thus

obtaining a continuation C which is a probability distribution over possible compo-
nents, and (2) applying the convolution −→sl

cv⊆ Dist(Comp) × Dist(Comp) of the rela-

tion −→sl ⊆ Comp × Dist(Comp) to the continuation C ;

(c-putl) applies to mixed processes (M) and allows to execute a local put action, by using
the ⊕ operator to add the item t to the local knowledge state and obtaining a prob-
ability distribution π on possible new knowledge states which is combined with the
continuation M of the process M , which is simply a Dirac distribution (see Table 5);

(c-getl)/(c-qryl) apply to mixed processes (M) and realize the local get/qry actions,
by using the ` operator to remove/deduce an item t matching the template T from
the local knowledge state and combining the resulting probability distribution with the
continuation M of the process M , which is again a Dirac distribution.
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The rules for systems are the same as those of the act-or semantics and can be found in
Table 4.

6 Network-oriented Operational Semantics

For the sake of conciseness, in this section we illustrate only the modifications to the Action-
oriented semantics necessary to model the Network-oriented semantics. In particular, in
Tables 8, 9, and 10 we omit the rules that are unchanged w.r.t Tables 2, 3, and 4 and we just
leave their label, as usual.

In order to realize this semantics we extend the set of labels of actions performed by
processes and systems as described in the following.

6.1 Explanatory example

In the following we illustrate this variant of the semantics through a couple of examples and
we point out issues that lead us to necessary simplifications and further design choices.

Let us consider a process P , of the form put(v)@p . Q, and the execution of action
put(v)@p, as illustrated in Figure 1. The execution begins with the creation of one spe-
cial message for each component of the system. These messages play the role of observers:
each of them travels in the system and reaches the component it is associated with. The
special message creation and message-component association phase has rate λ: this value is
computed as a function of several factors, among which (the size of) t. After message creation,
P can proceed—since put actions are non-blocking—behaving like Q. Each special message
has to reach its destination component, which checks if its interface satisfies p, and if so, it
delivers t in the knowledge repository of the component. Observer delivery is performed with
rate µ, which may depend on t and other parameters like the distance between the component
where P resides and the target component. Therefore, a distinct rate µ is associated to each
target

In practice, one can be interested in modeling also the event of failed delivery of the ob-
servers. This is interesting both for producing more realistic models (with unreliable network
communication), and for allowing the application of advanced analysis techniques based on
fluid approximation [3], such as fluid model-checking [2]. Therefore, we add an error proba-
bility to the observers delivery, which we indicate as perr (or simply err, in the figure). This
more detailed semantics of the put(v)@p action is illustrated in Fig. 3 and described below
in more detail.

We consider three components: C1 = I1 [K1, P1 ], C2 = I2 [K2, P2 ], and C3 = I3 [K3, P3 ]
and we assume process P1 is defined as put(v)@p . Q as described above. Note that different
components may be in different locations. The interaction we illustrate starts with process
P1 executing the first phase of put(v)@p, i.e. creating two2 copies of the special message
{v@p}, one for component C2 and one for component C3, and sending these messages. The
time required for this phase (denoted in blue in the figure) is modeled by a RV with rate
λ. The time for the two messages to arrive at components C2 and C3 is modeled by RVs
with rates µ2 and µ3 (in the figure this is illustrated by two arrows). The delivery of the two
messages fails with probability err2 and err3, respectively, and succeeds with their complement.
The execution of component C1 restarts as soon as the copies of the messages are sent, without
waiting for their arrival at the destination components (the red stripe in the figure illustrates
the resumed execution of C1). The evaluation of predicate p is performed when the message
arrives at the corresponding component so, for example, it may happen that C2 satisfies p

2For the sake of notational simplicity, in the present report we assume that predicate p in process actions
implicitly refers only to the other components, excluding the one where the process is in execution.
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at the time the message arrives (so K2 is updated accordingly), while C3 does not satisfy p
(thus leaving K3 unchanged).

Let us now consider the execution of a process P of the form get(T )@p.Q (or, equivalently,
qry(T )@p.Q), as illustrated in Fig. 2. Similarly to the execution of put(v)@p, the first
operation performed consists in the creation of a special request message, which is delivered
to every component. Since the get (resp. qry) action is blocking, the process moves into
a waiting state after creation of this message. Each copy of the message is delivered to the
corresponding component. Upon message arrival, every component satisfying predicate p
and having in its knowledge an item t matching the template T , is eligible to answer the
request with item t. Message preparation, message delivery, as well as response delivery are
events that take time (e.g. depending on the size of the item t or the distance of the involved
component) and have rates λ, βj , and µj , respectively. Concerning response delivery, there is
a race condition and only one component succeeds in providing the item t. Once the item has
been delivered, process P can restart its execution from Qϑ, with a suitable variable binding
match(T, t) = ϑ.

In order to simplify the semantics of the get/qry actions and to make it more similar to
the two-steps semantics of the put action, we decided to model the two phases of delivery and
response as a single one. So, on message creation, the sender is blocked on waiting for some
receiver to synchronize with it on the exchange of the retrieved item t matching the template
T , as illustrated in Fig. 4. During this synchronization, the predicate p is also checked, on
the side of the receiver, and the knowledge is changed accordingly. In terms of the underlying
stochastic model, we are replacing an Erlang RV by an Exponential RV. This choice is also
convenient for simplifying the definition of the formal semantics, since it avoids the need of
giving a unique id to observer messages, to be used in the subsequent response phase.

In Fig. 4, we illustrate an example of execution of a get/qry action. Here we consider four
components: C1 = I1 [K1, P1 ], C2 = I2 [K2, P2 ], C3 = I3 [K3, P3 ], and C4 = I4 [K4, P4 ]
and we assume process P1 is defined as get(T )@p . Q. The interaction we illustrate starts
with process P1 creating the observer messages with rate λ (denoted in blue in the figure).
The waiting state of C1, after the creation of the messages, is denoted by a dashed line. The
messages are delivered to C2, C3, and C4. Upon arrival, components check for satisfaction of
predicate p and availability of an item matching T . Let us assume that C2 and C3 satisfy p
and have matching knowledge items t2 and t3, respectively, whereas C4 either does not satisfy
p or has no matching knowledge item. Therefore, C2 and C3 are the only components that
can synchronize with C1: they perform this synchronization with rates µ2 and µ3, respectively
(depending, for example, on the size of t2 and t3, and on their locations). In the figure, this
is represented by arrows from C2 and C3 to C1. In the Markovian semantics, this is realized
by a race condition in which just one of the two synchronizations is actually executed. In the
figure, it is assumed that component C2 wins the race, and synchronizes on an item t2. Then,
the execution of C1 restarts (the red stripe in the figure illustrates the resumed execution of
C1). The synchronization attempt of C3 is simply lost. Here we need to be careful in how
to handle these message deliveries. If we are considering a get action, the retrieving of a
knowledge item from a component requires the item to be removed from the knowledge. In
the case illustrated in the figure, then, the knowledge K2 needs to be updated removing t2,
while the knowledge K3 must remain unchanged.

6.2 Operational semantics of processes

The net-or semantics of StocS processes is the RTS (Proc ,ActProc ,R≥0,−⇁e), where Proc
is the set of process terms defined according to the syntax of StocS given in Table 1 and
the set ActProc of labels is defined according to the grammar below (where t ∈ I, T ∈ T,
gq∈{get,qry}, c is a Target, and e is the evaluation of an interface) and it is ranged over
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Figure 1: Dynamics of the put action.
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Figure 2: Dynamics of the get/qry ac-
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Figure 3: Actual model of put.
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Figure 4: Actual model of get/qry.

by α, α′, . . . :

ActProc ::= τ
∣∣ {t@p}

∣∣ e : put(t)@c
∣∣ e : gq(T : t)@c

and −⇁⊆ Proc ×ActProc ×FTF(Proc ,R≥0) is the least relation satisfying the rules of Table 8
(like in the act-or semantics, −⇁e is parametrized by e, which is the interface evaluation of
the component in which the process resides: we feel free to omit the parameter, if not used
in the rule).

We now briefly illustrate the rules of Table 8. We assume to have additional syntac-
tical terms (not available at the user syntax level) which we call envelopes. They are of
the form {t@p}µ, can be put in parallel with processes, and denote messages that are cur-
rently traveling towards targets. A second syntactical construct we introduce is {get(T )@p}
({qry(T )@p}, respectively) which denotes a waiting state of the process and it is treated as
an action.

(env) allows to complete envelope delivery within a duration parametrized by µ;

(put) allows a process to issue a put action at a target c with rate 1;

(gql) allows a process to issue a get (qry, respectively) action over the local knowledge
repository (i.e. with target self). The rule models the execution of action get(T )@self
(qry(T )@self, respectively) by process get(T )@self.P (qry(T )@self.P , respectively).
The duration of this action is described by a rate λ computed using the function R
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Inactive process and envelopes:

(nil, Table 2) {t@p}µ
{t@p}−−−−⇁ [nil 7→ µ]

(env) α 6= {t@p}
{t@p}µ

α−⇁ []
(envB)

Actions (where, gq∈{get,qry}, c is a Target, and p is a Predicate):

(put, Table 2) (putB, Table 2)

match(T, t) = ϑ λ = R(σ,gq(T : t)@self, )

gq(T )@self.P
σ :gq(T :t)@self−−−−−−−−−⇁σ [Pϑ 7→ λ]

(gql)

¬match(T, t)

gq(T )@self.P
:gq(T :t)@self−−−−−−−−−⇁ []

(gqlB1) α 6= : gq(T : t)@self

gq(T )@self.P
α−⇁ []

(gqlB2)

λ = R(σ,gq(T : )@p, )

gq(T )@p.P
τ−⇁σ [{gq(T )@p}.P 7→ λ]

(gqw)
α 6= τ

gq(T )@p.P
α−⇁ []

(gqwB)

match(T, t) = ϑ β = R(σ, {gq(T : t)@p}, δ)

{gq(T )@p}.P δ:{gq(T :t)@p}−−−−−−−−−⇁σ [Pϑ 7→ β]

(gqd)

¬match(T, t)

{gq(T )@p}.P :{gq(T :t)@p}−−−−−−−−−⇁ []

(gqdB1) α 6= : {gq(T : t)@p}
{gq(T )@p}.P α−⇁ []

(gqdB2)

Choice, definition, and parallel composition:

(cho, Table 2) (def, Table 2) (par, Table 2)

Table 8: Operational semantics of StocS processes (net-or).

depending on the interface evaluation of the source σ (i.e. the container component)
and on the action;

(gqw) realizes the first step of a get (qry, respectively) action over a remote knowledge in a
component satisfying a predicate p, which consists in preparing an envelope {get(T )@p}
({qry(T )@p}, respectively), which takes a time interval exponentially distributed with
rate λ, and brings process P to a wait state {get(T )@p}.P ({qry(T )@p}.P , respec-
tively). Recall that get/qry actions are blocking and the execution of P is resumed
only when a counterpart satisfying p has a knowledge item t matching T available and
the delivery of t is completed. The duration of this first step is described by a rate
λ computed using the function R depending only on the interface evaluation of the
source σ (i.e. the container component) and the sent template T ;

(gqd) realizes the second step of a get (qry, respectively) action, which consists in the
delivery of the knowledge item t matching T and has a duration described by a rate
β computed by the function R. Note that in this case the function R is computed
considering interface evaluation of the source σ and the destination δ, as well as the
sent item t, which means that this rate can be made dependent (for example) on the
distance of the two parties.
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put actions:
(c-putl, Table 3) (c-puto, Table 3)

δ = I(K) µ = R(σ, {t@p}, δ) perr = ferr(σ, {t@p}, δ)

I [K, P ]
σ :put(t)@p−−−−−−−−→ [ I [K, P ] 7→ perr, I[K,P |{t@p}µ] 7→ (1− perr) ]

(c-puti)

P
{t@p}−−−−⇁ P I(K) |= p K ⊕ t = π

I [K, P ]
{t@p}−−−−→ I[π,P]

(c-enva)
P
{t@p}−−−−⇁ P I(K) 6|= p

I [K, P ]
{t@p}−−−−→ I[(XK),P]

(c-envr)

get/qry actions (where, gq∈{get,qry}):

(c-getl, Table 3) (c-qryl, Table 3) (c-getlB, Table 3) (c-getlB, Table 3)

σ = I(K) P
δ : {gq(T :t)@p}−−−−−−−−−−⇁σ P

I [K, P ]
δ : {gq(T :t)@p}−−−−−−−−−−→ I[(XK),P]

(c-gqo)

δ = I(K) δ |= p K 	 T = π

I [K, P ]
δ : {get(T :t)@p}−−−−−−−−−−→ I[π(t), (XP )]

(c-geti)

δ 6= I(K) ∨ I(K) 6|= p ∨ K 	 T = ⊥

I [K, P ]
: {get(T :t)@p}−−−−−−−−−−→ []

(c-getiB)

δ = I(K) δ |= p K ` T = π

I [K, P ]
δ : {qry(T :t)@p}−−−−−−−−−−→ [I [K, P ] 7→ π(t)]

(c-qryi)

δ 6= I(K) ∨ I(K) 6|= p ∨ K ` T = ⊥

I [K, P ]
: {qry(T :t)@p}−−−−−−−−−−→ []

(c-qryiB)

τ actions: ρ = I(K) P
τ−⇁ρ P

I [K, P ]
τ−→ I[(XK),P]

(c-tau)

Table 9: Operational semantics of StocS components (net-or).

6.3 Operational semantics of components and systems

The net-or semantics of StocS systems is the RTS (Sys ,ActSys ,R≥0,−→), where Sys is the
set of system terms defined according to the syntax of StocS given in Table 1 and the set
ActSys of labels is defined according to the grammar below (where gq ∈ {get,qry}, t ∈ I,
T ∈ T, p is a Predicate, and e is the evaluation of an interface):

ActSys ::= e : put(t)@p
∣∣ e : {gq(T : t)@p}

∣∣ (input actions)

e : put(t)@p
∣∣ e : {gq(T : t)@p}

∣∣ (output actions)

τ
∣∣ ←−−−−−−−−−−−→

e : {gq(T : t)@p}
∣∣ (synchronizations)

{t@p} (envelopes)

and −→⊆ Sys × ActSys × FTF(Sys ,R≥0) is the least relation satisfying the rules of Tables 9
and 10, where the process relation defined in Table 8 is also used.
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put synchronization:
(s-po, Table 4) (s-pi, Table 4)

get/qry synchronization (gq∈{get,qry}):

S1

←−−−−−−−−−→
δ:{gq(T :t)@p}−−−−−−−−−→ S s

1 S1
δ:{gq(T :t)@p}−−−−−−−−−→ S o

1 S1
δ:{gq(T :t)@p}−−−−−−−−−→ S i

1

S2

←−−−−−−−−−→
δ:{gq(T :t)@p}−−−−−−−−−→ S s

2 S2
δ:{gq(T :t)@p}−−−−−−−−−→ S o

2 S2
δ:{gq(T :t)@p}−−−−−−−−−→ S i

2

S1 ‖ S2
←−−−−−−−−−→
δ:{gq(T :t)@p}−−−−−−−−−→ S s

1 ‖ (X S2) + S o
1 ‖ S i

2 + S i
1 ‖ S o

2 + (X S1) ‖ S s
2

(s-gqs)

S1
δ:{gq(T :t)@p}−−−−−−−−−→ S1 S2

δ:{gq(T :t)@p}−−−−−−−−−→ S2

S1 ‖ S2
δ:{gq(T :t)@p}−−−−−−−−−→ S1 ‖ (X S2) + (X S1) ‖ S2

(s-gqi)

Internal actions, for α ∈ { τ,
←−−−−−−−−−→
e : put(t)@self,

←−−−−−−−−−−−→
e : gq(T : t)@self, {t@p} } :

S1
α−→ S1 S2

α−→ S2

S1 ‖ S2
α−→ S1 ‖ (X S2) + (X S1) ‖ S2

(s-spl)

Table 10: Operational semantics of StocS systems (net-or).

The definition of the semantics of system parallel composition S1 ‖ S2 uses Def. 3.1,
item (3) applied to the system parallel composition constructor ‖, which is injective. As usual,
interleaving is modelled as a combination of lifted ‖, + on functions and the characteristic
function. In the rules, we also use Def. 3.1, item (3) applied to the component syntactic
constructors I[ ·, · ], which is injective.

In Table 9, rules are grouped to illustrate how the various action types are realized.

(c-puti) models the initiation of the execution of action put(t)@c, which requires several
steps to complete, it allows the reception of a put action, and it is responsible for the
creation of the envelope (carrying the incoming message) in parallel to the local process
of a component, thus modeling its travel towards that component in terms of the time
necessary to reach it, parametrized by rate µ (the fact that the envelope is in parallel
with the process of the potential receiver component by no means should be interpreted
as the representation of the fact that the message reached the component; simply, the
association between the message and the component is represented by means of a par-
allel composition term; in other words, the fact that a specific message is ‘addressed’
to a component is represented syntactically by such a parallel composition); this action
is executed with rate λ, computed using the function R depending on the interface
evaluation of the source σ (i.e. the container component) and the sent item t; this
is postulated by the rule (put) and realized at system level by the broadcast rules of
Table 4.

(c-enva)/(c-envr) realize envelope delivery by specifying the conditions under which a
component accepts or refuses, respectively, an arriving envelope;

(c-gqo) realizes an output get/qry action as in the act-or semantics, but with a different
label ({. . .}) which denotes the synchronization on a waiting state;

(c-geti)/(c-qryi) realize an input get/qry action, again as in the act-or semantics, but
with a different label ({. . .});

(c-tau) allows a component to make a τ whenever its process makes such an action.
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7 Activity-oriented Operational Semantics

In this section we illustrate the Activity-oriented semantics (abbreviated to activ-or), which
is essentially based on the act-or syntax and semantics. The main novelty w.r.t. that
semantics is the replacement of StocS actions by a new syntactic constructor 〈 seq 〉λ that
allows a user to specify a sequence seq of StocS actions to be executed atomically and with
overall exponential rate λ. The execution rate λ is not influenced by the actions performed,
but specified by the user (possibly through a function of the state of the system). In the case
of the empty sequence of actions (〈 〉λ) this constructor can be also used to specify delays
with rate λ having no effect on local/remote knowledge states.

The motivation for this semantics, as already discussed in Section 2.2, is to have the
possibility of specifying, at a high-level of abstraction, interaction mechanisms which we call
activities, that are modeled atomically. Such an abstraction provides a significant reduction of
the state-space of the system, since the execution of actions within sequences is not interleaved
with that of other processes in parallel.

Recall that in act-or local and output actions are stochastic, while input actions are prob-
abilistic. They are composed together into a timed synchronization. In activ-or, in order to
execute action sequences atomically and with a given rate λ, we give a time-abstract semantics
for local and output actions of components (defining the transition relation −→ta ), a stochastic

semantics for sequences of actions of components (defining the transition relation −→t ), and

we maintain the probabilistic semantics for input actions of components (implemented by the
transition relation −→pr ). To obtain a time-abstract semantics it is enough to redefine output

and local actions in a time-abstract way (i.e. probabilistically). As a simple consequence, the
synchronization of output actions and input actions will be itself time-abstract. Then, when
the execution of the sequence of actions is terminated, we perform a stochastic delay λ and
compose it with the probability distribution obtained by time-abstract execution. In par-

ticular, an action sequence 〈α1. · · · .αn 〉λ is rewritten, by a sequence initiation action
init s−−−⇁ta

into a new sequence α1. · · · .αn.end s.delay(λ). Then, using the transition relation −→ta , the

sequence α1. · · · .αn is executed in a time-abstract fashion (taking only the probabilistic as-
pect of αi and combining them by using the convolution operator ·cv), and terminated by a

sequence termination action
end s−−−⇁ta . The remaining delay(λ) is executed using the stochastic

transition
delay−−−⇁. At the system level, then, the stochastic and probabilistic semantics (−→t

and −→pr , respectively) are composed together by the transition relation −→.

7.1 Operational semantics of processes

The stochastic activ-or semantics of StocS processes is the RTS (ExtProc ,ActProc ,R≥0,−⇁)
where ExtProc is the set of process terms defined by the following syntax, starting from the
symbol EP :

EP ::= Seq .end s.delay(λ).P
∣∣ P

P ::= nil
∣∣ 〈Seq 〉λ.P

∣∣ P + P
∣∣ P | P ∣∣ X ∣∣ A(p̄)

Seq ::= ε
∣∣ a.Seq

The set Proc modifies the syntax of StocS processes given in Table 1 by replacing actions
with sequences 〈 . . . 〉λ of actions (where ε denotes the empty sequence of actions and 〈 ε 〉≡〈 〉).
The set ExtProc is introduced only for internal purposes of the time-abstract semantics and it
extends the set Proc , defined by the above grammar starting from the symbol P , by allowing
the prefix Seq .end s.delay(λ) of Processes, made of an (un-parenthesized) time-abstract action
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Time-Abstract actions (where, gq∈{get,qry} and c is a Target):

〈 〉λ. P
〈 〉−⇁ [ P 7→ λ ]

(eseq)
delay(λ). P

delay−−−⇁ [ P 7→ λ ]
(delay)

α ∈ OneActProc ∪ {init s, end s}
P

α−⇁ []
(time-abstractB)

Choice, definition, and parallel composition:

P
α−⇁ P Q

α−⇁ Q

P +Q
α−⇁ P + Q

(cho)
A(−→x )

def
= P P [−→v /−→x ]

α−⇁ P

A(−→v )
α−⇁ P

(def)

P
α−⇁ P Q

α−⇁ Q

P | Q α−⇁ P | (X Q) + (X P ) | Q
(par)

Table 11: Operational sem. of StocS processes (activ-or), −⇁ transition relation.
Time-Abstract actions (where, gq∈{get,qry} and c is a Target):

put(t)@c . P
put(t)@c−−−−−⇁ta [ P 7→ 1 ]

(put-ta) α 6= put(t)@c

put(t)@c . P
α−⇁ta []

(put-taB)

gq(T )@c . P
gq(T )@c−−−−−⇁ta [ P 7→ 1 ]

(gq-ta) α 6= gq(T )@c

gq(T )@c . P
α−⇁ta []

(gq-taB)

seq = a1. · · ·. an for n ≥ 1

〈 seq 〉λ. P
init s−−−⇁ta [ seq.end s.delay(λ).P 7→ 1 ]

(init-ta)
end s. P

end s−−−⇁ta [ P 7→ 1 ]
(end-ta)

α ∈ {〈 〉, delay}
α. P

α−⇁ta []
(timed-taB)

Choice, definition, and parallel composition:

P
α−⇁ta P Q

α−⇁ta Q

P +Q
α−⇁ta P + Q

(cho-ta)
A(−→x )

def
= P P [−→v /−→x ]

α−⇁ta P

A(−→v )
α−⇁ta P

(def-ta)

P
α−⇁ta P Q

α−⇁ta Q

P | Q α−⇁ta P | (X Q) + (X P ) | Q
(par-ta)

Table 12: Operational sem. of StocS processes (activ-or), −⇁ta transition relation.

sequence, a time-abstract sequence terminator end s, and a stochastic action delay(λ).
The set ActProc of labels is defined according to the grammar below (where t ∈ I, T ∈ T, and
c is a Target) and it is ranged over by α, α′, . . . :

ActProc ::= init s
∣∣ end s

∣∣ delay(λ)
∣∣ 〈 〉 ∣∣ OneActProc

OneActProc ::= put(t)@c
∣∣ get(T : t)@c

∣∣ qry(T : t)@c

The transition relation −⇁⊆ ExtProc ×ActProc × FTF(Proc ,R≥0) is the least relation satis-
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Sequence synchronization
(where C1,. . . ,Cn are components and seq a non-empty sequence of actions):

Ci
〈 〉−→t Ci C1 ‖ . . .‖ Ci−1 ‖Ci+1 ‖ . . .‖Cn

〈 〉−→pr Si for i = 1, . . . , n

C1 ‖ . . . ‖ Cn
←→
〈 〉−→

∑n
i=1 Ci ‖ Si

(s-delay)

Ci
〈 seq 〉−−−→t Ci C1 ‖ . . .‖ Ci−1 ‖Ci+1 ‖ . . .‖Cn

〈 seq 〉−−−→pr Si for i = 1, . . . , n

C1 ‖ . . . ‖ Cn
←−−→
〈 seq 〉−−−→

∑n
i=1 Ci ‖ Si

(s-ssync)

Table 13: Operational semantics of StocS systems (activ-or), −→ relation.

fying the rules of Table 11. Note that −⇁ always produces processes in the set Proc .
The time-abstract activ-or semantics of StocS processes is the RTS (ExtProc ,ActProc ,

R≥0,−⇁ta ) where the transition relation −⇁ta ⊆ ExtProc ×ActProc ×Dist(ExtProc), is the least

relation satisfying the rules of Table 12

7.2 Operational semantics of components and systems

The activ-or semantics of StocS systems is the RTS (Sys ,ActSys ,R≥0,−→) where Sys is
the set of system terms defined according to the syntax of StocS given in Table 1, with the
exception of processes, that are taken from the set Proc defined in the previous sub-section.

The set ActSys of labels is defined according to the grammar below (where gq∈{get,qry},
e is the evaluation of an interface, t ∈ I, T ∈ T, and p is a Predicate):

ActSys ::=
←−−−−→
〈SeqSys 〉

SeqSys ::= ε
∣∣ OneActProc . SeqSys

and −→⊆ Sys ×ActSys ×FTF(Sys ,R≥0) is the least relation satisfying the rules of Table 13.

The −→ transition relation combines the stochastic execution of 〈SeqSys 〉 output/local action
sequences, performed by using the −→t , and the probabilistic execution of 〈SeqSys 〉 input

action sequences.
In particular, the −→t ⊆ Comp × ActtSys × FTF(Comp ,R≥0) transition relation is defined

by the rules of Table 14, where the set ActtSys is defined as follows:

ActtSys ::= 〈SeqSys 〉

The −→t transition relation concatenates the probabilistic sequence initiation action
init s−−−⇁ta , the

probabilistic maximal execution of the action sequence performed by transition relation −→ta
(terminated by the probabilistic sequence termination action

end s−−−⇁ta ), and the final delay ac-

tion
delay−−−⇁ cv (performed using the lifting −⇁ cv ⊆ Dist(ExtProc)×ActProc ×FTF(Proc ,R≥0)

of −⇁ to probability distributions over extended processes). The transition relation −→ta ⊆
ExtComp ×ActtaSys ×Dist(ExtComp) as well as its variant −→ta

cv ⊆ Dist(ExtComp)×ActtaSys ×
Dist(ExtComp), lifted to probability distributions over components, are defined in Table 14.
The set ActtaSys of actions is defined as follows:

ActtaSys ::= OneActProc
∣∣ 〈SeqSys 〉

The counterpart of −→t is the probabilistic transition relation −→pr ⊆ Comp × ActprSys ×
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put actions:

P
put(t)@self−−−−−−−⇁ta P K ⊕ t = π

I[K,P ]
put(t)@self−−−−−−−→ta I[π,P]

(c-putl-ta)
P

put(t)@p−−−−−−⇁ta P

I[K,P ]
put(t)@p−−−−−−→ta I[(XK),P]

(c-puto-ta)

get/qry actions (where, gq∈{get,qry}):

P
get(T )@self−−−−−−−⇁ta P K 	 T = π

I[K,P ]
get(T )@self−−−−−−−→ta

∑
t∈{t∈I |match(T,t)=ϑ} I[π(t),Pϑ]

(c-getl-ta)

P
qry(T )@self−−−−−−−⇁ta P K ` T = π

I[K,P ]
qry(T )@self−−−−−−−→ta

∑
t∈{t∈I |match(T,t)=ϑ} I[(XK) · π(t),Pϑ]

(c-qryl-ta)

K 	 T = ⊥

I [K, P ]
get(T )@self−−−−−−−→ta []

(c-getl-taB)
K ` T = ⊥

I [K, P ]
qry(T )@self−−−−−−−→ta []

(c-qryl-taB)

P
gq(T )@p−−−−−⇁ta P match(T, t) = ϑ

I[K,P ]
gq(T :t)@p−−−−−−→ta I[(XK),Pϑ]

(c-gqo-ta)
P

gq(T )@p−−−−−⇁ta P ¬match(T, t)

I[K,P ]
gq(T :t)@p−−−−−−→ta []

(c-gqo-taB)

Time-abstract sequences of actions:

P
end s−−−⇁ta P

I [K, P ]
〈 〉−−→ta I[K,P]

(c-base-ta)
α ∈ OneActProc I [K, P ]

α−→ta C C
〈 seq 〉−−−−→ta

cv D

I [K, P ]
〈α.seq 〉−−−−−→ta D

(c-rec-ta)

Timed sequences of actions:

P
〈 〉−−⇁ Q

I [K, P ]
〈 〉−−→t I[(XK),Q]

(c-eseq-t)

P
init s−−−⇁ta [ Q 7→ 1 ] I[K,Q]

〈 seq 〉−−−−→ta I[K ,Q] Q
delay−−−⇁ cv R

I [K, P ]
〈 seq 〉−−−−→t I[K ,R]

(c-seq-t)

Table 14: Operational sem. of StocS components (activ-or), −→ta and −→t transition rela-

tions.

Dist(Comp) which is defined by the rules in Table 15 and uses its lifting −→pr
cv ⊆ Dist(Comp)×

ActprSys ×Dist(Comp) to probability distributions over components. The set ActprSys of actions
is defined as follows:

ActprSys ::= OneActProc
∣∣ 〈SeqSys 〉
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I(K) |= p K ⊕ t = π

I [K, P ]
put(t)@p−−−−−−→pr I[π, (XP )]

(c-puti-pr)
I(K) 6|= p

I [K, P ]
put(t)@p−−−−−−→pr [ I [K, P ] 7→ 1 ]

(c-putir-pr)

I(K) |= p K 	 T = π

I [K, P ]
get(T :t)@p−−−−−−−→pr I[π(t), (XP )]

(c-geti-pr)
I(K) 6|= p ∨ K 	 T = ⊥

I [K, P ]
get(T :t)@p−−−−−−−→pr []

(c-geti-prB)

I(K) |= p K ` T = π

I [K, P ]
qry(T :t)@p−−−−−−−→pr [I [K, P ] 7→ π(t)]

(c-qryi-pr)
I(K) 6|= p ∨ K ` T = ⊥

I [K, P ]
qry(T :t)@p−−−−−−−→pr []

(c-qryi-prB)

S1
put(t)@p−−−−−−→pr S1 S2

put(t)@p−−−−−−→pr S2

S1 ‖ S2
put(t)@p−−−−−−→pr S1 ‖ S2

(s-pi-pr)

S1
gq(T :t)@p−−−−−−→pr S1 S2

gq(T :t)@p−−−−−−→pr S2

S1 ‖ S2
gq(T :t)@p−−−−−−→pr S1 ‖ (X S2) + (X S1) ‖ S2

(s-gqi-pr)

Sequences of actions:

S
〈 〉−−→pr [S 7→ 1]

(s-base-pr)
α ∈ OneActProc S

α−−→pr S S
〈 seq 〉−−−−→pr

cv T

S
〈α . seq 〉−−−−−→pr T

(s-rep-pr)

Table 15: Operational sem. of StocS systems and components (activ-or), −→pr transition

relation.

8 Case Study

We develop a model of a bike sharing service, where we assume a city with m parking stations,
each one with his location `i ∈ Loc = {`1, . . . , `m}, a number of available bikes bi, and a
number of available parking slots si (for i = 1, . . . ,m). Parking stations are in one-to-one
correspondence with the set of possible locations, which should be considered as (disjoint)
areas of influence in the city. We also assume to have n users of the bike sharing service: at
any time, each user is positioned in one location and can be in one of the two states Pedestrian
and Biker. In each of the two states, the user moves around the city (with speed depending
on the state) according to its preferences, modeled by two probability transition matrices Qb

and Qp of size m × m for the biker and the pedestrian state, respectively. Then, the user
becomes a Biker or a Pedestrian, using transitions named Borrow and Return.

In our model we identify two components: parking stations (containing slots and bikes)
and users (that may or may not have a bike), whose population can vary. By relying on the
distinguishing features of the StocS language, we model bike/slot retrieval from stations in a
distributed and adaptive way (avoiding a central server being aware of bikes/slots availability
for each parking). A user in a location ` can borrow (or return) a bike by issuing a request
(e.g. by means of a mobile phone application) to the bike sharing system for a parking with
an available bike (or slot) within a neighborhood of `. The bike sharing system answers with
the location of a parking station having an available bike or an available parking slot, within
a neighborhood of ` specified by a neighborhood condition ϕn(`, `′) (modeling, for example,
that a parking station `′ is easily reachable from `). This flexibility on the choice allows some
control on which parking station is selected among those that are in the neighborhood of the
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Pu , Pedestrian

Pedestrian , get(p next, L)@self.
Borrow

Biker , get(b next, L)@self.
Return

Borrow , qry(loc,L)@self.
get(bike res, ID)@near(L).
put(go, ID)@self.
get(bike)@loc(ID).
put(b)@self.
Biker

Return , qry(loc,L)@self.
get(slot res, ID)@near(L).
put(go, ID)@self.
put(bike)@loc(ID).
put(p)@self.
Pedestrian

Figure 5: User behavior as a StocS process.

current user location (including itself), which can be used to re-balance slot/bike availability
by redirecting users to parking station that have many available bikes (or slots).

In our model, parking stations are themselves in charge of answering to bike/slot requests.
This distributed solution is more efficient, robust, and compositional (i.e. the service can scale
without changing the infrastructure) than the centralized one. A further advantage is that we
can easily model a control over bike redistribution to minimize the cost of bike reallocation
by means of trucks. In particular, the choice between parking stations is realized by using
different response rates of parking stations: those that have more bikes available will have
higher response rates to bikes requests. Similarly, parking stations that have more slots
available will have higher response rates to slots requests. By using a get action, we put
these responses into a race and, on average, users will be redirected to those services that
need bike or slot re-balancing. We will discuss this and other features of the model in the
rest of the document. In this example we consider the act-or semantics and we assume that
message transmission is free of errors, that is ferr(σ, α, δ) = 0 for any interface evaluations
σ, δ and action α.

We first describe the behavior of the user, given in Figure 5. Then we describe the
knowledge operators, defined by rules in Figure 6, and the actions rates, defined by cases in
Figure 7, both for the user and the parking station components. The parking stations have
no behavior, i.e. they are passive components.

A single user is represented as a component Iu [Ku, Pu ], whose knowledge state Ku is an
element 〈s, `〉 in {b, p}×Loc denoting the user state (i.e. either being a pedestrian or a biker)
and the user location, and whose interface Iu, which defines the predicates biker, pedestrian,
and loc(`) as follows: Iu(〈b, `〉) |= biker, Iu(〈p, `〉) |= pedestrian, and Iu(〈s, `〉) |= loc(`), for
every ` ∈ Loc and s ∈ {b, p}. Let us summarize the role of the user knowledge operators,
defined in Figure 6. The ⊕ operator allows: to change state by ⊕(b) (change to biker state)
and by ⊕(p) (change to pedestrian state), and to move to a specified location `′ by ⊕(go, `′).
The 	 operator allows to move to a location according to the average user behavior in the
pedestrian state, by 	(p next, L), and in the biker state, by 	(b next, L). Finally, the `
operator allows to retrieve the current user location.

The users behaviour is given in Figure 5. Each user starts in the state Pedestrian, where
movement is possible through a local get of the item p next. The choice of the location is
resolved internally using the probability matrix Qp, as shown in the knowledge rule kru4 . The
effect of the action is the change of location of the user into `j , which is also returned as
a binding for the variable L. Note that the template is T = (p next, L) and the retrieved
item is t = (p next, `j). The location `j is used to compute the rate of the action (i.e. of
the movement), as shown in the definition rru3 , specifying the rate function for this specific
action.
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User:

kru1 : 〈s, `i〉
⊕(b)−−−→ [ 〈b, `i〉 7→ 1 ]

kru2 : 〈s, `i〉
⊕(p)−−−→ [ 〈p, `i〉 7→ 1 ]

kru3 : 〈s, `i〉
⊕(go,`′)−−−−−→ [ 〈s, `′〉 7→ 1 ]

kru4 : 〈s, `i〉
	(p next,L)−−−−−−−→

∑m
j=1 [ (〈s, `j〉, (p next, `j)) 7→ Qp(i, j) ]

kru5 : 〈s, `i〉
	(b next,L)−−−−−−−→

∑m
j=1 [ (〈s, `j〉, (p next, `j)) 7→ Qb(i, j) ]

kru6 : 〈s, `i〉
`(loc,L)−−−−−→ [ (loc, `i) 7→ 1 ]

Parking Station:

krp1 : 〈ba, br, sa, sr, `i〉
⊕(bike)−−−−−→ [ 〈ba + 1, br, sa, sr − 1, `i〉 7→ 1 ] if sr > 0

krp2 : 〈ba, br, sa, sr, `i〉
	(bike res,L)−−−−−−−−−→ [ (〈ba − 1, br + 1, sa, sr, `i〉, (bike res, `i)) 7→ 1 ] if ba > 0

krp3 : 〈ba, br, sa, sr, `i〉
	(slot res,L)−−−−−−−−−→ [ (〈ba, br, sa − 1, sr + 1, `i〉, (slot res, `i)) 7→ 1 ] if sa > 0

krp4 : 〈ba, br, sa, sr, `i〉
	(bike)−−−−−→ [ (〈ba, br − 1, sa + 1, sr, `i〉, bike) 7→ 1 ] if br > 0

Figure 6: Knowledge behavior (User/Parking Station). For s ∈ {b, p}, i = 1, . . . ,m, `′ ∈ Loc,
and ba, br, sa, sr ∈ N.

Local actions:

rru1 : R(σ,put(go, `′)@self, σ) =

{
λb · fdist(`, `′) if σ |= biker ∧∧ loc(`)

λp · fdist(`, `′) if σ |= pedestrian ∧∧ loc(`)

rru2 : R(σ,put(p)@self, σ) = R(σ,put(b)@, σ) = λfast

rru3 : R(σ,get((p next, L) : (p next, `′))@self, σ) = λp · fdistance(`, `′) if σ |= loc(`)

rru4 : R(σ,get((b next, L) : (p next, `′))@self, σ) = λb · fdistance(`, `′) if σ |= loc(`)

rru5 : R(σ,qry((loc,L) : (loc, `′))@self, σ) = λfast

Remote actions:

rru6 : R(σ,put(bike)@loc(`), δ) = R(σ,get(bike)@loc(`), δ) = λpark

rru7 : R(σ,get((bike res,L) : (bike res, `′))@near(`), δ) = ba
ba+sa

if δ |= (bikes = ba) ∧∧ (slots = sa)

rru8 : R(σ,get((slot res,L) : (slot res, `′))@near(`), δ) = sa
ba+sa

if δ |= (bikes = ba) ∧∧ (slots = sa)

Figure 7: Rate Function, for any `, `′ ∈ Loc and ba, sa ∈ N.

We distinguish the movement of the pedestrians from that of the bikers (p next/b next)
to allow the more realistic assumption that bikers moves more quickly than pedestrians (in
definitions rru3 and rru4 , as well as the two cases of definition rru1 , we use different rates λp
and λb). The role of the information made available in the interfaces is important not only
for the evaluation of the predicates, but also for the computation of the rates, as shown in
Figure 7.

The process Borrow first retrieves the current location L (using rule kru6 and a rate given
by rru5). Then, it performs a bike reservation (bike res) from a parking station ID satisfying
predicate near(L): this triggers on the side of the parking station a knowledge action that
decrements the number of available bikes, increments the number of reserved bikes, and
returns the id of the selected parking station (by using rule krp2 and with rate rru7). Here the
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Figure 8: Simulation of bike sharing service.

template is T = (bike res,L) and the retrieved item is t = (bike res, `i), which produces
the binding L 7→ `i. Note that the actual rate of this action depends on available bikes:
the higher is the number of available bikes, the higher is the execution rate. As an effect
of this race condition, the ID of the near station containing more bikes is received by the
user with a higher probability than a near station with fewer bikes, causing a more balanced
distribution of bikes in the system. When the parking lot is reserved, the user moves towards
the parking station (which modifies the knowledge state according to kru3). The rate of
this action depends on the distance between the user and the parking station and on the
pedestrian/biker state of the user (according to rru1). After moving, the user takes a bike:
this operation is performed via a get action whose effect on the parking knowledge state is
given by rule krp4, that decrements the bikes available and increments the slots available (the
action has rate given by rru6). Finally, the user status is updated to biker (using kru1 and
with rate rru2).

Bikers move around the city and, then, leave their bikes in a parking station by executing
the process Return. Their behavior is similar to that of pedestrians, except for the fact that
they perform complementary operations: they use a local get of the item b next for moving
(see rule kru5 and definition rru4) instead of p next, they perform a slot reservation slot res

(using rule krp3 and definition rru8) instead of a bike reservation bike next, and they return
a bike to a parking station using a put action, rather than a get action (using rule krp1
and definition rrp6). After these actions, they return in state Pedestrian (using kru2 and with
rate rru2).

A parking station is represented as a component Ip[Kp,nil] that has no behavior (it is
passive). Its knowledge state is a vector 〈ba, br, sa, sr, `〉 ∈ N4 × Loc denoting the num-
ber of available bikes (ba), of reserved bikes (br), of available parking slots (sa), and of
reserved parking slots (sr), as well as the parking location `. The parking station inter-
face Ip defines the predicates loc(`) and near(`) as follows: Ip(〈ba, br, sa, sr, `〉) |= loc(`) and
Ip(〈ba, br, sa, sr, `〉) |= near(`′) if ϕn(`, `′) holds, for every `, `′ ∈ Loc and ba, br, sa, sr ∈ N.

An initial state of this model is a term

‖mi=1 ( (Iu[〈`i, p〉, Pu])[ki] ‖ Ip[〈bi, 0, si, 0, `i〉,nil] )

which denotes, for i = 1, . . . ,m: (i) ki pedestrians in locations `i, and (ii) bi available bikes
and si available parking slots in parking station at location `i. Note that the number of
reserved bikes as well as the number of reserved slots is set to zero at the initial state of the
system in every parking station. The overall number of bikes in the system is preserved by
the knowledge-update rules. Furthermore, each parking station has a slot+bike capacity set
initially by the value bi + si which is never exceeded, again thanks to the rules above.

A fully specified model is obtained by fixing the parameters (all of them in R≥0): λfast
denoting a fast rate for internal update actions, λpark denoting a (uniform) interaction rate
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with the parking (e.g. locking/unlocking the bike), λp denoting the rate of movement of a
pedestrian, and λb denoting the rate of movement of a biker, and also a distance function fdist :
Loc × Loc → R≥0 that encodes the connection topology of the locations. By giving concrete
values to those parameters, to populations, and to bikes/slots in the initial state we obtain a
finite state CTMC model for the described system.

Preliminary simulation analyses of the considered system have been performed with jRESP 3.
These simulations compare the case where rates of bikes and slots reservations depend on the
number of available resources and the case where these rates are constant, and show that
the average number of available bikes/slots per parking station is the same, while variance is
lower. That is, when the bikes/slots reservation rate depends on the available resources, the
bikes are more evenly distributed over the different parking stations.

9 Conclusions and Future Work

We have introduced StocS, a stochastic extension of SCEL, for the modeling and analysis
of performance aspects of ensemble based autonomous systems. One of the original features
of the language is the use of stochastic predicate based multi-cast communication which poses
particular challenges concerning stochastically timed semantics. Four variants of the seman-
tics, considering different levels of abstraction, have been presented and their main aspects
of the formal semantics have been provided. A case study concerning shared bikes systems
was presented to illustrate the use of the various language primitives of StocS. The devel-
opment of both numeric and statistical model-checking tools for StocS is in progress. In
particular, (act-or) and (int-or) semantics are well suited for formal analysis techniques
(e.g. probabilistic model-checking), while the more detailed and complex (net-or) can be
used for simulation-based techniques (e.g. statistical model-checking). The formal relation-
ship between the different semantics is a non trivial issue and it is left for future work, as
well as the development of fluid semantics and verification techniques to address large scale
collective systems along the lines of work in [2, 3].
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