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Abstract. Continuum constitutive descriptions of plasticity suitable for finite element 
simulations of sheet forming processes are succinctly discussed.  Although multi-scale 
approaches allow for a more explicit representation of the physical deformation mechanisms 
occurring at microscopic scales, they are usually not suitable for industrial applications because 
of the quick turnaround time needed for process design simulations.  Therefore, advances in 
classical concepts such as plastic anisotropy and strain hardening are still very much in 
demand.  This article describes possible ways to make use of multi-scale results for application 
to sheet metal forming simulations.  

1.  Background 
The results of finite element (FE) simulations involving large plastic deformation such as in sheet 
forming depend on a large number of parameters.  Beside numerical parameters, physical input such 
as boundary condition, contact and interface, and material behavior are playing a key role.  This article 
deals only with the latter, more precisely, the influence of the constitutive description on forming 
simulation results.  For instance, an accurate prediction of springback in U-draw bending for a simple 
rectangular blank made of advanced high strength steel is difficult to achieve [1].  Better results are 
usually obtained if an advanced constitutive model is employed.  First, this requires the use of an 
elastic cord modulus that is a function of the accumulated plastic strain.  Second, the plasticity model 
should consist of a non-quadratic anisotropic yield condition and an anisotropic hardening approach.  
The former is necessary because of plastic anisotropy and an accurate prediction of the plane strain 
flow stress, and the latter because of the forward-reverse loading occurring when the material flows 
over a die corner.  It is well known that strain hardening with a large transient effect occurs during 
non-linear loading.  Of course, this type of constitutive description requires the measurement of 
mechanical properties in different directions and for various stress states.  Moreover, it should include 
a few cycles in a forward-reversal mode of deformation, as well as two-step type of experiments near 
cross-loading as, for instance, tension in the rolling direction (RD) followed by plane strain tension in 
the transverse direction (TD).  All these tests require proper equipment with well-defined operation 
procedures.   

Other simple but challenging simulations include cup drawing of a circular blank, indentation of a 
pre-stretched panel and expansion of a circular hole.  In the case of cup drawing, the prediction of the 
earing profile, that is, the strain field in the product, requires a precise description of the material 
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behavior in stress states that are close to those encountered in the flange of a cup [2].  These states 
fluctuate between pure shear and uniaxial compression, in which the thickness strain variation is 
limited.  For this purpose, assuming tension-compression symmetry, uniaxial tension tests are the 
easiest to conduct but a large number of loading directions should be considered, typically, every 15° 
from rolling.  Even with an advanced anisotropic yield condition, some discrepancies with 
experimental results are expected if hardening is assumed to be isotropic because the material flowing 
near a die radius experiences a forward-reverse deformations cycle.  In addition, if the material already 
possesses a dislocation structure from prior thermomechanical processing of the sheet, as usual for 
rigid container materials, the cup drawing process itself can be considered as a second step and 
involve additional anisotropic hardening effects.  The indentation of a pre-stretched panel requires the 
use of an advanced constitutive model as well because the pre-strain and indentation correspond 
usually to two different stress states [3].  In addition, the variation of the elastic modulus must be 
characterized for a balanced biaxial stress state.  Finally, for the flat hole expansion (HE) test, the 
radial thickness strain profile from the hole radius towards the specimen edge is highly sensitive to the 
selected constitutive model and the corresponding coefficients [4].  

2.  Advanced constitutive descriptions 
For metal forming simulations at an industrial scale, the constitutive models must be continuum with 
coefficients measurable with mechanical testing equipment. Lower scale models such as, for instance, 
crystal plasticity allow the introduction of microstructural features.  However, these models are two 
slow in large scale problems and the forming analysts who are performing the numerical forming 
simulations are usually not trained for this type of approaches.  In addition, a microstructure is very 
complex and would require too many variables and coefficients to achieve a sufficient accuracy.  For 
instance, crystal plasticity account for crystal structure, crystallographic texture and, more recently, 
dislocation mechanics. Yet, a material contains precipitates, dispersoids or other types of particles, and 
other features that are difficult to account for.  Moreover, these features are very often not distributed 
homogeneously in the material, which adds to the complexity of lower scale descriptions. The 
advantage of continuum approaches is that the associated coefficients are obtained from the results of 
mechanical tests, which provide an average response of the entire microstructure.    

Lower scale models can be very convenient to generate virtual experimental data that can be 
employed for the identification of a continuum model.  This is particularly interesting when the 
experiments are difficult to conduct but this still requires the characterization of the microstructure.  
Perhaps, the best method to include microstructure information is to build features in the continuum 
model that closely or more loosely reproduce the general trends obtained with lower scale modeling. 
For instance, crystal plasticity demonstrates that, at first order, the yield condition for metal should be 
convex and that flow is associative, two features that are already widely accepted.  Crystal plasticity 
also indicates that yield functions should be non-quadratic with a degree that depends on the crystal 
structure. Another example is provided in the next section.   

2.1.  Lower scale modeling 
Classical crystal plasticity is concerned only with the infinitesimal shear produced by slip and the flow 
stress increases after dislocations glide and get trapped in the microstructure.  The strength increase is 
usually provided through an evolution of the critical resolved shear stress in an analytical form or 
based on dislocation density evolution such as Kocks [5] and Mecking [6], which is strain path 
independent.  The influence of strain path was considered only recently in crystal plasticity, based on 
the dislocation density evolution proposed by Rauch et al. [7]. In this approach called RGVB, the 
dislocation density is divided in two populations, forward and reverse, one that get trapped during 
forward loading and the other that leads to reverse slip.  The forward population evolves according to 
the classical Kocks-Mecking model with an accumulation term and a recovery term while the second 
population tends to disappear due dislocation interactions and annihilation.  The net effect is that, 
during load reversal, a fluctuating strain hardening is predicted.  This approach was implemented by 
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Kitayama et al. [8] in the visco-plastic self-consistent crystal plasticity (VPSC) model initially 
developed by Lebensohn and Tomé [9]. Thus, it is possible to capture the Bauschinger effect and 
transient strain hardening effects during load reversal.  Rauch et al. [10] also introduced in the RGVB 
model a third population of dislocation density, so-called latent, to describe the stress-strain behavior 
when the strain path change is close to cross-loading.  While load reversal is characterized as a change 
in which all the slip systems remain identical but slip is reversed, cross-loading correspond to a change 
in which dislocation glide occurs on newly activated systems only.  However, this extension of the 
RGVB model has not been implemented in crystal plasticity yet.   

 

 
 (a) (b) 

 
Fig. 1: Yield surface evolution observed in 𝜋 −plane during uniaxial tension in RD; (a) 

isotropic texture and; (b) low carbon steel texture 
 
 

    
 (a) (b) 

 
Fig. 2: VPSC-RGVB yield surface evolution for initial low carbon steel texture observed 

in 𝜋 −plane during uniaxial tension in RD followed by second strain path: (a) stress 
reversal (uniaxial compression); (b) uniaxial tension in TD 
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Jeong et al. [11], conducted a series of simulations on isotropic and textured materials with the 
VPSC-RGVB model and observed a number of effects, in particular that, although a back-stress is 
introduced at the slip system level, a distortion occurs at the macroscopic scale of the yield surface 
during monotonic loading (Fig. 1).  This distortion does not occur when the VPSC model only is used.  
Another observation is that the yield surface flattens in a direction that is orthogonal to the strain 
increment direction (yield surface normal at loading), not to the stress deviator.  For load reversal (Fig. 
2a) or for orthogonal tension (tension in RD then in TD), the yield surface flattening tends to occurs in 
a direction orthogonal to the strain increment of the last loading mode (TD tension) and the memory of 
the prestrain tends to disappear, as observed by microscopic observations.    

2.2.  Continuum scale modeling 
Under isotropic hardening, when a material is subjected to plastic deformation, the yield condition is 
described by the following relationship 
 

	 𝜙(𝐬) = 𝜎)(𝜀)̅
 

(1) 
 
where 𝐬 is the stress deviator.  The yield function 𝜙(𝐬), isotropic or anisotropic, is a homogenous 
function of first degree with respect to the stress.  This means that in Eq. (1), 𝜙(𝐬) is an effective (or 
equivalent) stress and 𝜎)(𝜀)̅ is the reference stress-strain curve, in which 𝜀 ̅is the effective strain based 
on the equivalence of plastic work 𝜙𝑑𝜀̅ = 𝛔 ∶ 𝑑𝛆.  Anisotropic yield conditions under isotropic 
hardening have been widely used in the simulations of sheet metal forming. Many studies have shown 
that a proper choice of 𝜙 leads to better accuracy in the simulation results.  Therefore, it is assumed in 
this work that the description of plasticity in Eq. (1) should remain the basis for an extension to 
anisotropic hardening.  

A distortional plasticity model, so-called HAH, provides such a framework, extending Eq. (1) and 
allowing the modeling of the Bauschinger and other anisotropic hardening effects [12, 13].  The yield 
condition is expressed as 
 

	 𝜎0(𝐬, 𝑓3, 𝑓4, 𝐡6 ) = 7𝜉(𝐬)9 + 𝜙;<𝐬, 𝑓3, 𝑓4, 𝐡6 =>
?
9 = 𝜎)(𝜀)̅

 
(2) 

 
In the simplest case, 𝜉(𝒔) is equal to 𝜙(𝒔) in Eq. (1), the effective stress associated with the 

selected anisotropic yield function and, if 𝜙; = 0, Eq. (2) reduces to Eq. (1).  However, more 
generally, 𝜉(𝒔) is a slight modification of 𝜙(𝒔) allowing the introduction of cross-loading and latent 
hardening effects. Because both 𝜉 and 𝜙;  are homogeneous functions of first degree with respect to 
the stress, 𝜎0 is an effective stress. 𝜙;  distorts the anisotropic yield condition 𝜉(𝒔) = 𝜎)(𝜀)̅ in order to 
provide a description of the Bauschinger effect.  In the original model [12], denoted HAHD, it is 
assumed that 𝜙; = 𝜙;? with 

 
	 𝜙;?<𝐬, 𝑓3, 𝑓4, 𝐡6 = = 𝑓39 E𝐡6 ∶ 𝐬 − F𝐡6 ∶ 𝐬FE

9
+ 𝑓4

9 E𝐡6 ∶ 𝐬 − F𝐡6 ∶ 𝐬FE
9
		(HAHD model)

 
(3) 

 
𝑓3 and 𝑓4 are two state variables that control the Bauschinger effect.  The so-called microstructure 
deviator 𝐡6  is a normalized stress-like deviator variable that controls the location of the distortion.  The 
initial microstructure deviator 𝐡6  takes the value of the normalized stress deviator 𝐬H corresponding to 
the first strain increment.  During deformation, 𝐡6  always tends to align itself with the current stress 
deviator to mimic the microstructure evolution.  The state variables 𝑓4 and 𝑓3 can be expressed as a 
function of another set of state variables 𝑔4 and 𝑔3 (with 𝜔 ≡ +	or	−), namely 
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𝑓N = O3

8
R
1
𝑔N
9 − 1T

?
9

 
(4) 

 
𝑔N represents two state variables that vary between 0 and 1.  The most important in this expression is 
that 0 ≤ 𝑔N ≤ 1 and 𝑓N → 0 when 𝑔N → 1.  Other state variables are defined in the model as 
discussed in [12] and [13].   

In the original HAH model in Eq. (3), the flattening of the yield surface tends to be is orthogonal to 
𝐡6 .  However, the crystal plasticity calculations discussed in Section 2 indicate that flattening of the 
yield surface should be orthogonal to the strain increment.  Therefore, the following modification of 
the original Eq. (3) suggested in [11] was assumed by setting 𝜙; = 𝜙;W with 
 
	

𝜙;W<𝐬, 𝑓3, 𝑓4, 𝐡6 = = 𝑓39 X
𝛆̇Z; ∶ 𝐬 − F𝛆̇Z; ∶ 𝐬F

𝛆̇Z; ∶ 𝐡6
X
9

+ 𝑓4
9 X
𝛆̇Z; ∶ 𝐬 + F𝛆̇Z; ∶ 𝐬F

𝛆̇Z; ∶ 𝐡6
X
9

		(HAH[	model)
 

(5) 

 
resulting in a model called HAH[.  Essentially, this change produces a flattening of the yield surface in 
a direction orthogonal to 	𝛆̇Z; , the normal to the corresponding yield surface defined in Eq. (1).  Note 
that for proportional loading, the material response for both formulations, HAHD and HAH[, is 
identical to that corresponding to isotropic hardening in Eq. (1), even if reverse loading, cross-loading 
and latent hardening effects are activated.   
 
 

    
 (a) (b) 

 
Fig. 3: HAH yield surface evolution observed in 𝜋 −plane for textured material similar to 

that in Fig. 1(b); (a) during uniaxial tension in RD with HAHD and HAH[ models; (b) 
during uniaxial TD tension after pre-strain in RD tension with HAH[ model 

 
 

As an illustration, Fig. 3a represents, in the 𝜋 −plane, an example of yield surface evolution of a 
textured material similar to that of Figs. 1 and 2.  These yield surfaces were predicted with HAHD and 
HAH[ after RD uniaxial tension for a true strain of 0.08 and subsequent reloading up to a total 
accumulated strain of 0.16.  In addition to plastic anisotropy, only the parameters controlling the 
Bauschinger effect were activated in this example (Fig. 3a).  Fig. 3b represents the yield surface 
evolution predicted with the HAH[ model corresponding to RD uniaxial tension for 0.08 followed by 
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uniaxial tension in the TD for the same amount of strain.  In this example, the options for permanent 
softening and cross-loading contraction were also activated for illustration purpose but the trends 
regarding the flattening of the yield surface are consistent with those obtained with crystal plasticity in 
Fig. 2.   

3.  Discussion  
The previous section indicates that the results of crystal plasticity combined with a dislocation density 
evolution model is a good guide to develop continuum approaches.  It is likely that other features will 
emerge from multi-scale simulations and will be transferred to the continuum scale in similar ways. 
However, lower-scale models can be very useful for other purposes.  In the HAHD and HAH[ models, 
the identification of all the coefficients can be done sequentially for groups of parameters at a time, 
i.e., 1) isotropic hardening; 2) anisotropic yield function; 3) reverse loading and; 4) cross-loading.   
Five coefficients must be optimized to describe the case of reverse loading with Bauschinger effect 
and permanent softening.  This number increases to 10 coefficients when other HAH features are turn 
on, i.e., the cross-loading effects.  However, even the optimization of five coefficients can be a 
challenge.  The optimization is solely done on the mathematical basis of an objective function, which 
is built with a limited number of stress-strain curves measured on a limited strain range for non-
proportional loading.  Moreover, the minimization of the objective function usually requires bounds 
for the coefficients within which the solution is assumed to occur. Therefore, the extrapolation space is 
limitless and a proper solution has a sense only if guided by physical considerations, hence by multi-
scale modeling.  The HAH distortional plasticity approach described in this article was selected to 
facilitate and illustrate the present discussion.  However, these remarks are applicable to any other 
continuum plasticity model.   
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