
1Scientific Reports |          (2019) 9:2009  | https://doi.org/10.1038/s41598-019-38652-1

www.nature.com/scientificreports

Simultaneous Improvement in 
the Strength and Formability of 
Commercially Pure Titanium via 
Twinning-induced Crystallographic 
Texture Control
Jong Woo Won1, Chan Hee Park1, Jaekeun Hong   1, Chong Soo Lee   2 & Seong-Gu Hong3,4

The rolling texture formed in the conventional cold rolling process of commercially pure titanium (CP-Ti) 
for producing a metal sheet significantly limits the potential applications of CP-Ti sheets in various 
industrial sectors by impairing the formability. Here, we report that by exploiting a twinning-induced 
crystallographic texture modification, the rolling texture can be weakened and dispersed effectively, 
leading to a simultaneous improvement in the formability and yield strength. A two-stage cold rolling 
process was designed with intermediate annealing at a late stage of the conventional cold rolling 
process to generate deformation twins. The intermediate annealing drove the activation of {1122} twin 
and {1122} – {1012} double twin in the second stage of the rolling process by removing the internal 
reaction stress developed in the first stage of the rolling process through recrystallization, and the 
crystallographic feature of the {1122} twinned region, i.e., {1122} twin texture, was effective for <a> 
type slips and {1012} twinning to accommodate a through-thickness strain as well as for reducing the 
planar anisotropy. This enhanced thinning capability and reduced planar anisotropy in the {1122} twin 
texture led to an improvement of the formability. We demonstrated the feasibility of the suggested 
two-stage cold rolling process with ASTM grade 2 CP-Ti.

Because of the superior corrosion resistance, high specific strength, good weldability, and biocompatibility, com-
mercially pure titanium (CP-Ti) is now being widely used in various industrial fields including power genera-
tion, water desalinization, petrochemical, chemical, and biomedical industries1. One of its major applications is 
the manufacture of heat exchangers, in which it is used in a form of a thin sheet with complex wave patterns to 
enhance the heat transfer efficiency. Therefore, it is essential that it has a good stretch formability1,2. However, 
the rolling texture formed in the conventional cold rolling (CCR) process for producing a CP-Ti sheet has a 
specific crystallographic feature with most of the c-axes of the hexagonal close-packed (HCP) lattice inclined at 
±(25°–35°) from the normal direction (ND) toward the transverse direction (TD), i.e., a TD split basal texture3–5, 
and this increases the difficulty for <a> type slips to accommodate a through-thickness strain, reducing the 
thinning capability and consequently leading to a poor formability6–9. Thus, generally, high-purity CP-Ti sheets 
with a good deformation capability are used2. High-purity CP-Ti sheets, however, have an inferior mechanical 
strength owing to the low content of impurities, requiring the use of thicker sheets. Moreover, high-purity CP-Ti 
sheets have a higher manufacturing cost. It is known that the mechanical strength of CP-Ti sheets markedly 
improves with the increasing content of the impurities (e.g., oxygen and iron)10–12. Therefore, if the formability of 
low-purity CP-Ti sheets could be improved by the rolling process, then desirable CP-Ti sheets having a combina-
tion of high strength and superior formability could be achieved. This would strengthen the competitiveness of 
CP-Ti sheets not only by allowing the use of thinner sheets owing to the enhanced mechanical strength, thereby 
saving Ti raw material and improving the heat transfer efficiency, but also by lowering the manufacturing cost.
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Recently, a crystallographic texture control using deformation twins was found to be effective for improving 
the formability of rolled Mg alloys8,13–15. The formation of deformation twins can induce a rapid and large-scale 
modification of the crystallographic orientation, thereby weakening and dispersing the rolling texture effec-
tively16,17. However, the most important issue that should be solved for its application in the sheet manufacturing 
process is finding a method for generating deformation twins during the rolling process. We have noted that the 
typical rolling texture (the TD split basal texture) already develops in a late stage of the CCR process for produc-
ing a CP-Ti sheet3–5, with a crystallographic orientation favorable for the activation of the {1122} twin and {1122}
–{1012} double twin during the remaining CCR process18–20. The CP-Ti material is under a compressive loading 
condition along the ND during the CCR. However, despite the favorable crystallographic lattice orientation for 
deformation twins, the twinning activity is thoroughly suppressed at this late stage of the CCR because of an 
increase in the internal reaction stress. The latter is a result of the grain refinement realized through the formation 
of elongated grain structures and twin boundaries as well as the increase in dislocations. Because the resolved 
shear stress required for activating a deformation twin (i.e., twinning stress) is a combination of the single-crystal 
critical-resolved shear stress and internal reaction stress, accounting for the current state of hardening21, the 
twinning stress increases with the increasing thickness reduction during the CCR, making the activation of the 
deformation twins difficult. The only approach for restoring the twinning activity is the removal of the micro-
structural factors generating the internal reaction stresses, and this can be realized by recrystallization.

In this study, we developed a two-stage cold rolling (TCR) process with intermediate annealing at a late stage 
of the CCR, which enabled the activation of deformation twins in the second stage of the rolling. This enablement 
was realized by removing the internal reaction stress generated in the first stage of the rolling process through 
recrystallization, thereby allowing an effective control of the crystallographic texture. The feasibility of the sug-
gested TCR process was demonstrated with ASTM grade 2 CP-Ti, which has limited use owing to the low forma-
bility despite the ~60% higher yield strength than ASTM grade 1 CP-Ti. The underlying mechanisms for 
improved yield strength and formability were explored in terms of the twinning-induced crystallographic lattice 
reorientation and its effect on the activities of <a> type slips and {1012} twinning. Moreover, an optimized TCR 
process was discussed based on the result.

Results and Discussion
Two-stage cold rolling process.  A two-stage cold rolling process with intermediate annealing was 
designed considering the following factors. First, to produce a 1.8 mm thick CP-Ti sheet from an 18 mm thick 
CP-Ti plate, a total thickness reduction of 16.2 mm is imposed in the TCR, which is equal to that in the CCR 
process. Second, intermediate annealing is employed at a late stage of the CCR when the rolling texture is suffi-
ciently developed so that the crystallographic lattice orientation is favorable for deformation twins. Third, {1122} 
twin and {1122}–{1012} double twin can form during the second stage of the rolling, and they have a completely 
different effect on the crystallographic lattice reorientation19. The amount of thickness reduction in the second 
stage of the rolling is varied, thereby controlling the activity of both the twin systems, so that the optimized con-
dition for improving the yield strength and formability is explored. Figure 1 shows the schematics of the CCR and 
designed TCR processes. Both the rolling processes comprise 17 rolling passes with a total thickness reduction of 
16.2 mm. In the CCR (Fig. 1a), a thickness reduction of 16 mm is imposed during the first 16 passes with a rate of 
1 mm/pass, and a remaining 0.2 mm thickness reduction is imposed in the 17th pass. In contrast, in the TCR 
(Fig. 1b), a thickness reduction of 15 mm is imposed during the first 15 passes with a rate of 1 mm/pass, and then 
the remaining 1.2 mm thickness reduction is imposed in the 16th and 17th passes. Intermediate annealing is 
employed after the 16th pass at 700 °C for 1 h. Four different TCR processes are designed by varying the extent of 
the thickness reduction in the 17th pass (i.e., the second stage of the rolling). Note that the percent thickness 
reduction in the second stage of the rolling varies from 10% to 36% (Table 1). A final recrystallization annealing 
at 700 °C for 1 h is employed in both the CCR and TCR processes.

Microstructural characteristics.  The electron backscatter diffraction (EBSD) inverse pole figure maps and 
(0001) pole figures showing the microstructural evolution during the TCR processes are presented in Fig. 2; refer 
to the data of the CP-Ti sheet produced by the CCR process in Figure S1 in the Supplementary Information for 
comparison. In the intermediate annealed state, because the thickness reduction imposed in the first stage of the 
rolling is similar for all the four TCR processes (89% for TCR #1, 88% for TCR #2, 86% for TCR #3, and 84% for 
TCR #4), there is no difference in the microstructural characteristics. All the specimens are fully recrystallized 
and have an equiaxed grain structure with a similar grain size (36 μm for TCR #1, 40 μm for TCR #2, 34 μm for 
TCR #3, and 33 μm for TCR #4 on average) and a TD split basal texture with most of the c-axes inclined at 
±(25°–35°) from the ND toward the TD. However, in the second stage of the rolled state, significantly different 
microstructures develop depending on the thickness reduction in the second stage of the rolling. In TCR #1, with 
a low thickness reduction of 10%, mostly {1122} twins with a misorientation angle of 64.4° are observed and a new 

Rolling pass TCR #1 TCR #2 TCR #3 TCR #4

1st stage rolling
1st to 15th passes 15 15 15 15

16th pass 1 0.8 0.5 0.2

2nd stage rolling 17th pass 0.2 (10%)* 0.4 (18%) 0.7 (28%) 1 (36%)

Table 1.  Thickness reduction in four designed TCR processes (unit: mm). *Numbers in parentheses indicate 
the percent thickness reductions in the 17th pass.

https://doi.org/10.1038/s41598-019-38652-1


www.nature.com/scientificreports/

3Scientific Reports |          (2019) 9:2009  | https://doi.org/10.1038/s41598-019-38652-1

texture component with the c-axis distributed widely in the rolling direction (RD)–TD plane appears. When the 
thickness reduction is increased to 18% (TCR #2), profuse {1122} twins are formed and some {1122}–{1012} dou-
ble twins with a misorientation angle of 85° are observed. The new texture component is intensified and another 
new texture component with the c-axis aligned parallel to the ND starts to develop. With further increase in the 
thickness reduction (28% for TCR #3 and 36% for TCR # 4), {1122} twins and {1122}–{1012} double twins are 
formed more profusely, and the texture component with the c-axis aligned parallel to the ND is intensified, 
whereas the texture component with the c-axis distributed widely in the RD–TD plane is weakened. It is noted 
that the TD split basal texture is gradually weakened with increasing thickness reduction. In the final annealed 
state, all the materials were fully recrystallized, leading to an equiaxed grain structure with similar average grain 
sizes of 34–39 μm. Interestingly, the main features of the crystallographic textures developed in the second stage 
of the rolling remain almost unchanged, indicating that the crystallographic lattice reorientation caused by the 
deformation twins is so stable that it can be maintained after recrystallization although the deformation twins 
disappear. These results clearly support that the suggested TCR process is capable of weakening and dispersing 
the TD split basal texture effectively by enabling the activation of the deformation twins.

As evidenced by the microstructural characteristics, the crystallographic texture evolution in the second stage 
of the rolling process arises from the formation of deformation twins. To understand the twinning characteristics 
and their role in the crystallographic lattice reorientation, crystallographic orientation analysis was conducted on 
the parent grain and twins in grain A, indicated in the inverse pole figure map of the second stage of the rolled 
state in Fig. 2b. As shown in Fig. 3, first, {1122} twins are generated in the parent grain, i.e., there is primary {1122} 
twinning, which is followed by {1012} twin ({1122}–{1012} double twins) appearance in the preformed {1122} 
twins, i.e., there is secondary {1012} twinning. It is known that for α-Ti, the {1122} contraction twin and {1012} 
extension twin are the most common twin systems at room temperature19,22,23, and their activation relies on which 
type of strain is developed along the c-axis of the HCP lattice19,24. {1122} and {1012} twins are activated when 
compressive and tensile strains are developed along the c-axis, respectively19,24. Considering the crystallographic 
orientation of the TD split basal texture in which the c-axis is inclined at ~30° from the ND toward the TD, the 
loading condition of the compression along the ND, which it experiences during the second stage of the rolling, 
introduces a compressive strain along the c-axis of the parent grain, and therefore, {1122} twinning occurs. The 
crystallographic lattice rotation of 64.4° caused by {1122} twinning makes the c-axis of the {1122} twinned region 
almost parallel to the RD–TD plane (Fig. 3c). This crystallographic orientation undergoes a compression 

Figure 1.  Schematics of (a) the CCR and (b) TCR processes. Both cold rolling processes comprise 17 rolling 
passes with a total thickness reduction of 16.2 mm.
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perpendicular to the c-axis during the remaining second stage of the rolling process, causing a tensile strain along 
the c-axis of the {1122} twinned region, which is favorable for {1012} twinning. Therefore, a {1012} twin is formed 
in the preformed {1122} twin. The {1012} twinning induced crystallographic lattice rotation of 85° makes the 
c-axis of the {1012} twinned region almost parallel to the ND (Fig. 3c).

Another important factor that affects the twinning-induced crystallographic texture modification is a variant 
selection mechanism during twinning. Because of the unique crystallography of the HCP lattice structure, there 
are six crystallographically equivalent variants in both the {1122} and {1012} twin systems, and thus, the variants 
that are active among these six variants are critical for modifying the crystallographic lattice orientation. To 
understand a variant selection mechanism during the primary {1122} twinning and secondary {1012} twinning, 

Figure 2.  Inverse pole figure maps and (0001) pole figures showing the microstructural evolution during the 
TCR processes. (a) TCR #1, (b) TCR #2, (c) TCR #3, and (d) TCR #4.

Figure 3.  Crystallographic characterization of the parent grain and twins in grain A, indicated in the inverse 
pole figure map of the second stage of the rolled state in Fig. 2b. (a) Inverse pole figure map. (b) Crystallographic 
relationships between the parent grain, primary {1122} twins, and secondary {1012} twins. (c) (0001) pole figure.
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we conducted a Schmid factor (SF) analysis of the parent grain and twins in grain A (Table 2). For the conveni-
ence of describing the crystallographic orientation, Euler angles (ϕ1, Φ, ϕ2) with reference to the HCP crystal 
coordinates of the RD = [1100], TD = [2110], and ND = [0001] were used. Cij and Tij (i = 1, 2, 3; j = a, b; a and b 
indicate the twin variant pair) in Fig. 3 and Table 2 represent the six crystallographically equivalent {1122} and 
{1012} twin variants, respectively, and are defined as C1a = (1212)[1213], C1b = (1212)[1213], C2a = (1122)[1123], 
C 2b =  (1122)[1123],  C 3a =  (2112)[2113],  C 3b =  (2112)[2113],  T 1a =  (1102)[1101],  T 1b =  (1102)[1101], 
T2a = (1012)[1011], T2b = (1012)[1011], T3a = (0112)[0111], and T3b = (0112)[0111]. The result shows that three 
primary {1122} twin variants, C1a, C2a, and C3a, have a high SF of ~0.4 and they are all active, indicating that the 
variant selection during the primary {1122} twinning is governed by the Schmid law. For the secondary {1012} 
twinning, two variants T3a and T3b in primary {1122} variant C1a, four variants T1a, T1b, T3a, and T3b in primary 
{1122} variant C2a, and two variants T3a and T3b in primary {1122} variant C3a have a high SF of >~0.3, and only 
variant T3a with the highest SF of 0.5 is active in primary {1122} variant C1a, indicating that the Schmid law is still 
valid. Therefore, we can conclude that the variant selection during the primary {1122} twinning and secondary 
{1012} twinning obeys the Schmid law.

To obtain a more general insight on how the variant selection during the twinning affects the twinning-induced 
crystallographic lattice reorientation, we assumed a perfect TD split basal texture with the randomly oriented 
a-axis, i.e., ϕ1 = 0° or 180°, Φ = 30°, and 0° ≤ ϕ2 ≤ 60°, and conducted a SF analysis on the primary {1122} and 
secondary {1012} twin systems. Note that the SF values at both ϕ2 and 60°–ϕ2 are equal because of the unique 
angle relationship between the three a-axes of the HCP lattice. According to the result (Fig. 4), the three primary 
{1122} twin variants from the three different twin variant pairs (two twin variants from two different twin variant 
pairs at ϕ2 = 30°) have a high SF of >~0.38, which varies with angle ϕ2. The physical meaning of ϕ2 is the rotation 
of the HCP lattice with respect to the c-axis so that it is related to the angle relationship between the a-axis and 
loading axis. The basal pole locations, predicted by the activation of such high SF variants (i.e., conforming to the 
Schmid law), are shown in the right panel of Fig. 4 and they are consistent with the texture component, with the 
c-axis distributed widely in the RD–TD plane, observed in the second stage of the rolled state. Because the sec-
ondary {1012} twinning can occur in multiple primary {1122} twin variants with a high SF of >~0.38, all the 
possible cases were considered in the analysis. The result for the specific case in which the secondary {1012} twin-
ning occurs in primary {1122} twin variant C2a (ϕ1 = 124°, Φ = 84°, ϕ2 = 35°) is presented in Fig. 4. Two {1012} 
twin variants T3a and T3b from a single twin variant pair have a high SF of ~0.5 and their basal poles are located 
around the ND. Considering all the possible cases of the secondary {1012} twinning in which the variants with a 
high SF of >0.4 are assumed to be active by obeying the Schmid law, the basal pole locations of the active second-
ary {1012} twin variants are predicted to be located around the ND (the right panel of Fig. 4). These are in agree-
ment with the texture component, with the c-axis aligned parallel to the ND, observed in the second stage of the 
rolled state. This agreement in the crystallographic textures from the predictions and experiments clearly sup-
ports that the Schmid law governs the variant selection during the primary {1122} twinning and secondary {1012} 
twinning, thereby controlling the twinning-induced crystallographic texture modification. The result further 
confirms that the two texture components with the c-axis distributed widely in the RD–TD plane and with the 

PTV

SF

STV

SF

Matrix C1a
a C2a

a C3a
a

C1a 0.395* T1a 0.130 0.328 0.097

C1b 0.167 T1b 0.133 0.350 0.102

C2a 0.392* T2a 0.115 0.011 0.141

C2b 0.006 T2b 0.118 0.010 0.148

C3a 0.382* T3a 0.500* 0.400 0.498

C3b 0.225 T3b 0.494 0.357 0.486

Table 2.  SF analysis on the primary {1122} twin variants (PTV) and secondary {1012} twin variants (STV) of 
grain A (ϕ1 = 189°, Φ = 32°, ϕ2 = 54°), indicated in the inverse pole figure map of the second stage of the rolled 
state in Fig. 2b. aC1a [ϕ1 = 235°, Φ = 88°, ϕ2 = 29°], C2a [ϕ1 = 5°, Φ = 81.4°, ϕ2 = 2°], and C3a [ϕ1 = 133°, Φ = 86°, 
ϕ2 = 33°]. *Active twin variant.

Rolling 
process

YS (MPa) UTS (MPa) EL (%) r

RD 45° TD RD 45° TD RD 45° TD RD 45° TD ra Δrb

CCR 169 201 230 338 312 297 58.2 61.5 47.6 1.22 2.71 3.55 2.55 0.16

TCR #1 178 212 229 334 295 298 61.8 60.0 50.3 1.29 2.46 3.02 2.31 0.14

TCR #2 196 220 234 322 308 307 60.6 64.1 51.6 1.40 1.89 2.04 1.81 0.09

TCR #3 188 210 227 324 294 302 61.2 62.1 52.3 1.44 2.28 2.64 2.16 0.12

TCR #4 183 216 227 326 297 295 59.4 59.7 54.0 1.33 2.30 2.87 2.20 0.11

Table 3.  Tensile properties and Lankford value r of the final sheets produced by the CCR and four designed 
TCR processes, and their loading direction dependence; yield strength (YS), ultimate tensile strength (UTS), 
and elongation (EL). aAverage r-value, r  = (rRD + 2r45° + rTD)/4. bPlanar r-value, Δr = (rRD − 2r45° + rTD)/4.
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c-axis aligned parallel to the ND (hereafter referred to as the primary {1122} twin texture and secondary {1012} 
twin texture, respectively) originate from the primary {1122} twinning and secondary {1012} twinning, respec-
tively. It is noted that the {1012} twin is generated in the preformed {1122} twin, consuming the {1122} twin, so 
that with increasing thickness reduction in the second stage of the rolling, the primary {1122} twin texture 
becomes weak whereas the secondary {1012} twin texture intensifies (TCR #3 and #4).

Mechanical properties and formability.  The tensile properties and Lankford value r, defined as the ratio 
of the strains in the width and thickness directions, of the final sheets produced by the CCR and TCR processes 
are listed in Table 3. There is no relevant change in the ultimate tensile strength and elongation between the CCR 
and TCR processes. However, the yield strength is improved by the TCR process, and the improvement level 
depends on the loading direction (higher in the RD, whereas almost negligible in the TD) as well as the thickness 
reduction in the second stage of the rolling process. TCR #2 sheet offers the highest yield strength, which increases 
by 16% in the RD, 10% in the 45° direction, and 2% in the TD. The yield anisotropy is also reduced by the TCR 
process, and the lowest level is achieved for TCR #2 sheet. Lankford value r is significantly reduced in the 45° 
direction and TD, indicating that the thinning capability improves in both the directions, whereas it somewhat 
increases in the RD. It is known that the average r-value (r  = [rRD + 2r45° + rTD]/4) and planar r-value (Δr = (rRD 
− 2r45° + rTD)/4) are the measures of the thinning capability and planar (in-plane) anisotropy of a rolled sheet 
metal, respectively. Our result shows that the TCR process significantly increases the thinning capability and 
reduces the planar anisotropy of the CP-Ti sheets (Table 3). Maximum improvement is achieved in TCR #2 sheet 
with a 29% reduction in the average r-value and a 44% reduction in the planar r-value.

Figure 5 compares the formability (Erichsen value, IE) of the CCR and TCR sheets. The formability is evi-
dently improved by the TCR process, but the improvement level is not in proportion to the thickness reduction 
in the second stage of the rolling (Fig. 5a). It increases with increasing thickness reduction, reaching a maximum 
improvement of 20% for TCR #2, but decreases with further increasing thickness reduction (TCR #3 and 4). 
This implies that the thickness reduction in the second stage of the rolling is not a decisive factor dominating the 
formability improvement. When the formability is plotted as a function of the average r-value (Fig. 5b) or planar 
r-value (Fig. 5c), a negative linear relationship is exhibited, indicating that the formability is closely associated 
with the thinning capability and planar anisotropy. A high thinning capability (low average r-value) and low pla-
nar anisotropy (low planar r-value) are beneficial for the formability improvement.

These results clearly support that the TCR process is able to improve the yield strength and formability simul-
taneously, and the improvement level is governed by two factors, the thinning capability and planar anisotropy, 
which are closely related to the thickness reduction in the second stage of the rolling. Considering that ASTM 
grade 1 CP-Ti generally has ~30% higher formability25 and ~60% lower yield strength1 than ASTM grade 2 CP-Ti 
(the material used in the present study), the 20% formability improvement of TCR #2 sheet suggests a possi-
bility of replacing ASTM grade 1 CP-Ti with ASTM grade 2 CP-Ti in various industrial applications including 
heat exchangers (note that more improvement in the formability can be expected by optimizing the thickness 
reduction in the second stage of the rolling). In addition, the 16% enhanced yield strength in TCR #2 further 
allows the use of thinner sheets, saving Ti raw material and improving the heat transfer efficiency. Moreover, the 
suggested TCR process can be implemented simply by employing intermediate annealing at a late stage of the 

Figure 4.  SF analysis on the primary {1122} and secondary {1012} twin systems under the rolling condition, i.e., 
the compression along the ND. Here, the parent grain is assumed to have a perfect TD split basal texture with a 
randomly oriented a-axis, i.e., ϕ1 = 180°, Φ = 30°, and 0° ≤ ϕ2 ≤60°, and the secondary {1012} twinning is 
assumed to occur in primary twin variant C2a (ϕ1 = 124°, Φ = 84°, ϕ2 = 35°). (0001) pole figure showing the 
locations of the high SF variants is presented in the right panel; the primary {1122} twin variants with a SF of 
>~0.38 (black circle) and secondary {1012} twin variants with a SF of >0.4 (red circle).
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CCR process so that it can be easily deployed on a commercial scale. These advantageous features of the TCR 
process strengthen the competitiveness of the CP-Ti sheets in terms of the improved performance as well as low 
manufacturing cost.

Mechanisms for improved yield strength and formability.  As described earlier, the improvement of 
the yield strength and formability by the TCR process is attributed to the crystallographic texture modification 
caused by the formation of deformation twins in the second stage of the rolling. The change in the crystallo-
graphic lattice orientation will alter the activities of the plastic deformation mechanisms, consequently affecting 
the deformation behavior, mechanical properties, and formability. We analyzed the activities of four important 
deformation mechanisms, prismatic <a> slip, basal <a> slip, {1122} twinning, and {1012} twinning, by examin-
ing their activation stresses in the three texture components, the TD split basal texture, primary {1122} twin tex-
ture, and secondary {1012} twin texture. In the analysis, the perfect TD split basal texture with the randomly 
oriented a-axis (ϕ1 = 0° or 180°, Φ = 30°, and 0° ≤ ϕ2 ≤ 60°) together with the primary {1122} and secondary 
{1012} twin textures, predicted by obeying the SF law, were used for simplicity. The primary {1122} twin texture 
with the c-axis aligned parallel to the RD–TD plane and distributed within ±60° from the TD toward the RD and 
the secondary {1012} twin texture with the c-axis aligned parallel to the ND (Fig. 4) were considered. A SF analy-
sis was first conducted and then the activation stress for each deformation mode (i.e., stress required to activate 
each deformation mode) was calculated by combining the SF and critical resolved shear stress (CRSS) (=CRSS/
SF). The CRSSs used in the calculation were 78 MPa for prismatic <a> slip26, 125 MPa for basal <a> slip26, 
186 MPa for {1122} twinning27, and 99 MPa for {1012} twinning28.

According to previous studies20,26, prismatic <a> slip dominates the in-plane yielding of a rolled CP-Ti, and 
the variation in its SF with the loading direction results in a yield strength anisotropy. Therefore, the improvement 
in the yield strength by the TCR process can be understood by examining how the twinning-induced crystallo-
graphic lattice reorientation influences the SF of the prismatic <a> slip. Figure 6 shows the variation in the SF of 
the prismatic <a> slip with the loading direction in the three texture components; for the convenience of under-
standing, three representative loading directions, RD, 45° direction, and TD, are exemplified. The SF is mainly 
determined by angle θ between the c-axis and loading axis, and at a given θ, it also slightly varies with angle α 
between the a-axis and loading axis under the condition that the loading axis is projected onto the basal plane 
(refer to the inset of Fig. 6). For the TD split basal texture, θ ranges from 60° (TD) to 90° (RD), and the SF gradu-
ally increases with increasing θ, having a minimum of ~0.33 in the TD (θ = 60°, α = 0°, 30°) and a maximum of 
0.5 in the RD (θ = 90°, α = 15°). These high SF values are indicative of the importance of the prismatic <a> slip 

Figure 5.  Comparison in the formability of the final sheets produced by the CCR and TCR processes. (a) 
Erichsen value as a function of thickness reduction in the second stage of the rolling process; the numbers in 
parentheses indicate the improvement of the formability with respect to the CCR. Erichsen value as a function 
of (b) average r-value and (c) planar r-value. Error bar indicates the standard deviation.
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in the deformation, supporting that the yield of the CCR sheet is dominated by the prismatic <a> slip. The rela-
tively low SF values in the TD and 45° direction, compared to the RD, will increase the yield strength in both the 
directions, causing a yielding anisotropy, and this corresponds with the experimental result (Table 3). For the 
primary {1122} twin texture, θ is widely distributed, ranging from 0° to 90°, and low SF values of <0.3 can be 
easily achieved at θ values of <~50°, making the activation of the prismatic <a> slip difficult. Such a hard crys-
tallographic orientation for the prismatic <a> slip will increase the in-plane yield strength. For the secondary 
{1012} twin texture, θ is typically 90° in any direction in the RD–TD plane, and this gives a SF of 0.5, facilitating 
the operation of the prismatic <a> slip and thereby decreasing the in-plane yield strength. Based on this result, 
we can speculate that to achieve the best improvement of the yield strength, the primary {1122} twin texture 
should be maximized while suppressing the secondary {1012} twin texture. This corresponds to TCR #2 in which 
the primary {1122} twin texture is most intensified and the maximum yield strengths are achieved (Table 3). It is 
noted that the yield strength improvement is reduced for TCR #3 and #4, in which the primary {1122} twin tex-
ture is weakened whereas the secondary {1012} twin texture is intensified.

The formability improvement by the TCR process was associated with the enhanced thinning capability and 
reduced planar anisotropy. Therefore, the responsible mechanisms for improving the formability can be under-
stood by analyzing how the twinning-induced crystallographic lattice reorientation affects the thinning capability 
and planar anisotropy. Figure 7 displays the activation stresses of the four important plastic deformation mecha-
nisms as a function of θ, where possible θ values in the three texture components are indicated in the three repre-
sentative directions, RD, 45° direction, and TD. At a given θ, the deformation mode with the lowest activation 
stress is expected to be active and dominate the deformation. It is noted that because biaxial stresses with the same 
magnitude, radial stress σ1 and circumferential stress σ2, develop during the Erichsen test, the activation of each 
deformation mode is considered with these two stresses: θ1 and θ2 corresponding to θ, relating to σ1 and σ2, 
respectively. For the TD split basal texture, both θ1 and θ2 vary in the range of 60° to 90°, and the prismatic <a> 
slip has the lowest activation stress in this range, predicting its importance in the deformation. The activation 
stress of the prismatic <a> slip gradually decreases from 208 MPa (θ1 = 60° in the TD or θ2 = 60° in the RD) to 
155 MPa (θ1 = 90° in the RD or θ2 = 90° in the TD) with increasing θ. However, in terms of the thinning capability, 
the prismatic <a> slip is not effective for accommodating a through-thickness strain because the 1120< > slip 
direction has a high angle relation of 60°–90° with the thickness direction (i.e., ND). Therefore, its contribution is 

Figure 6.  Maximum and minimum SF values of the prismatic <a> slip as a function of θ; the variation of θ in 
the three texture components with the three loading directions, RD, 45° direction and TD, is presented in the 
bottom panel. Here, θ is the angle between the c-axis and loading axis, and α is the angle between the a-axis and 
loading axis under the condition that the loading axis is projected onto the basal plane (refer to the inset).
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mostly confined to the in-plane deformation. Such a deficiency in the deformation mechanisms that are able to 
accommodate the through-thickness strain reduces the thinning capability and consequently leads to a low form-
ability, as evidenced in the CCR sheet. For the primary {1122} twin texture, θ (θ1 and/or θ2) is widely distributed 
covering a broad range of 0°–90° so that three different deformation modes, {1012} twinning, basal <a> slip, and 
prismatic <a> slip, can be active concurrently in any direction in the RD–TD plane. It is predicted that the {1012} 
twinning will be active for 0° ≤ θ ≤ ~32°, basal <a> slip for ~32° ≤ θ ≤ ~51°, and prismatic <a> slip for ~51° ≤ 
θ ≤ 90°. Therefore, the combined effects of these three competing deformation mechanisms are expected to dom-
inate the deformation behavior during the Erichsen test. The interesting point here is that unlike the case of the 
TD split basal texture, both the basal <a> slip and prismatic <a> slip can accommodate a through-thickness 
strain effectively, thereby enhancing the thinning capability, as the 1120< > slip direction makes a low angle rela-
tion of 0°–30° with the thickness direction. In addition, when the {1012} twinning occurs, the HCP lattice extends 
along the c-axis and concurrently contracts in the direction perpendicular to the c-axis29. Thus, the {1012} twin-
ning can accommodate a through-thickness strain as well as an in-plane strain. However, as maximum achievable 
twinning strain εtwin (the strain accommodation by {1012} twinning) is estimated at less than ~5%, its contribu-
tion to the thinning capability improvement appears to be limited. f(1/ 2 )twin twin twinε γ= ⋅ ⋅ 30,31, where γtwin is 
the characteristic twinning shear (0.176 for {1012} twin24) and ftwin is the volume fraction of the {1012} twin (the 
maximum achievable volume fraction of the {1122} twin is less than ~40%32). Moreover, the wide distribution of 
the c-axis in the RD–TD plane improves the in-plane crystallographic symmetry, and thus, is beneficial for reduc-
ing the planar anisotropy. For the secondary {1012} twin texture, both θ1 and θ2 are typically 90° in any direction 
in the RD–TD plane, and only the prismatic <a> slip is predicted to be active. Similar to the case of the TD split 
basal texture, the prismatic <a> slip is not effective for accommodating a through-thickness strain and its con-
tribution is confined to the in-plane deformation, causing a low thinning capability and consequently leading to 
a poor formability because the < >1120  slip direction is perpendicular to the sheet thickness direction. However, 
the in-plane symmetric nature of the crystallographic orientation is expected to be beneficial for reducing the 
planar anisotropy. Based on these results, we attribute the formability improvement by the TCR process to the 
combined effects of the enhanced thinning capability through the operation of the prismatic <a> slip, basal <a> 
slip, and {1012} twinning and the reduced planar anisotropy caused by the in-plane symmetric nature of the crys-
tallographic orientation in the primary {1122} twin texture. This is consistent with the experimental results where 
TCR #2 sheet with the most intense {1122} twin texture exhibits the maximum improvement of the formability.

Our results reveal that the primary {1122} twin texture is advantageous for the improvement of the yield 
strength and formability, whereas the secondary {1012} twin texture impairs both the properties. To achieve the 
best improvement in both the properties, it is, therefore, suggested that the primary {1122} twin texture be maxi-
mized while suppressing the secondary {1012} twin texture. We can realize this by optimizing the thickness reduc-
tion in the second stage of the rolling, which is a major factor controlling the volume fractions (intensities) of the 
primary {1122} twin and secondary {1012} twin. Given that twinning activity is also affected by other factors 
including grain size, temperature, and deformation rate, the rolling parameters such as intermediate annealing 
temperature and time, rolling temperature, and rolling speed should be optimized33–35. It is noted that the opti-
mizing process should be carefully conducted by considering the following two aspects: (1) the intricate relation 

Figure 7.  Activation stresses of the prismatic <a> slip, basal <a> slip, {1122} contraction twinning, and {1012} 
extension twinning as a function of θ. Here, σ1 is the radial stress, θ1 is the angle between the c-axis and σ1, σ2 is 
the circumferential stress, θ2 is the angle between the c-axis and σ2, β is the angle between σ1 and TD, and γ is 
the angle between the c-axis and TD.
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between the volume fractions of the primary {1122} twin and secondary {1012} twin because the latter is gener-
ated in the former, thereby consuming it. (2) the crystallographic textures developed in the second stage of the 
rolled state are slightly changed by the intermediate annealing, although the main features remain almost 
unchanged (Fig. 2).

Conclusions
In this study, a TCR process with intermediate annealing at a late stage of the CCR process was developed to con-
trol the crystallographic texture of a CP-Ti sheet. The intermediate annealing restored the twinning activity by 
eliminating the internal reaction stress developed in the first stage of the rolling through recrystallization. 
Consequently, the primary {1122} twin and secondary {1012} twin could be generated in the second stage of the 
rolling, which weakened and dispersed the TD split basal texture effectively. The crystallographic orientation of 
the primary {1122} twin texture was found to be effective for the basal <a> slip, prismatic <a> slip, and {1012} 
twinning to accommodate a through-thickness strain, thereby improving the thinning capability, as well as for 
reducing the planar anisotropy due to the in-plane crystallographic symmetry. These combined effects of the 
enhanced thinning capability and reduced planar anisotropy in the primary {1122} twin texture led to an 
improvement of the formability. In terms of the yield strength, the primary {1122} twin texture was barely ori-
ented for the prismatic <a> slip, decreasing the SF and thereby increasing the in-plane yield strength. Therefore, 
the best improvement of both the yield strength and formability was achieved by maximizing the primary {1122} 
twin texture while suppressing the secondary {1012} twin texture. We demonstrated the feasibility of the devel-
oped two-stage cold rolling process with ASTM grade 2 CP-Ti, which showed a marked formability improvement 
by 20% comparable to the formability of ASTM grade 1 CP-Ti and a 16% yield strength improvement.

Methods
Material.  The material used in this study was a hot-rolled and mill-annealed polycrystalline CP-Ti plate with 
18 mm thickness. The interstitial solute composition was O–0.20, C–0.007, N–0.006, H–0.004, and Fe−0.04 
(wt%), corresponding to ASTM grade 2 CP-Ti level. It had a twin-free equiaxed grain structure with an average 
grain size of 32 μm and a TD split basal texture with most of the c-axes inclined at angles of ±(25°–35°) from the 
ND toward the TD and with a randomly oriented a-axis in terms of the rotation of the HCP lattice with respect to 
the c-axis (Figure S1 in the Supplementary Information).

Tensile and formability tests.  Quasi-static uniaxial tensile tests were conducted along the featured 
three directions, i.e., RD, 45° direction in the RD–TD plane, and TD, by using an Instron 8801 testing machine 
(Instron, USA) at room temperature and a strain rate of 10−3 s−1 to measure the mechanical properties of the 
CP-Ti sheets produced by the CCR and TCR processes. Dogbone-shaped specimens with a gauge section of 
25 mm × 6 mm × 1.8 mm (length × width × thickness) were machined from the CP-Ti sheets, in which the length 
directions (i.e., the loading axes) were aligned parallel to the RD, 45° direction in the RD–TD plane, and TD, 
respectively. Tensile tests of some of the specimens were interrupted at a strain of 12% to measure Lankford value 
r (=εwidth/εthickness). To measure the formability, the CP-Ti sheets were machined into disc-shaped specimens 
with 50 mm diameter and 1.0 mm thickness, and Erichsen tests were conducted by using a hemispherical-shaped 
punch with 20 mm diameter at a punch speed of 10 mm/min. The Erichsen value (IE), formability index, is 
defined as the depth of the impression at the fracture initiation. For a reliable analysis, all the tests were repeated 
more than thrice under each test condition.

Crystallographic characterization.  For crystallographic characterization, EBSD measurements were 
performed inside a scanning electron microscope (Helios NanoLabTM 600, FEI Co., USA) operating at an accel-
eration voltage of 30 kV and a step size of 1 μm. The specimens were taken from the central region of the CP-Ti 
sheets, and their surface was mechanically polished and then electropolished with a solution of 410 mL methanol, 
245 mL 2-butoxy ethanol, and 40 mL HClO4 60%) using LectroPol-5 (STRUERS, USA) at a voltage of 22 V for 
22 s. The measurement area was ~1.6 mm2, including ~1050 grains, and EBSD data with a confidence index of 
>0.1 were analyzed via the Orientation Imaging Microscopy 7.0 software (Edax, Inc., USA).

Data Availability
All data generated or analyzed during this study are included in this published article (and its Supplementary 
Information files).
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