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Abstract 

Digitalization is about data and how they are used. This has always been a key topic in applied 

thermodynamics. In the present work, the influence of the current wave of digitalization on 

thermodynamics is analyzed. Thermodynamic modeling and simulation is changing as large amounts 

of data of different nature and quality become easily available. The power and complexity of 

thermodynamic models and simulation techniques is rapidly increasing, and new routes become 

viable to link them to the data. Machine learning opens new perspectives, when it is suitably 

combined with classical thermodynamic theory. Illustrated by examples, different aspects of 

digitalization in thermodynamics are discussed: strengths and weaknesses, as well as opportunities 

and threats.  

Keywords: digitalization, thermodynamic models, Pareto optimization, uncertainty propagation, 

machine learning.  

1. Introduction  

Digitalization has a rapidly increasing impact on our economies and societies [1], [2]. It started with 

the advent of digital computers in the 1950s and has had an important influence in many fields since 

then. But it was not until recently that a comprehensive connectivity between fields like process 

design, process control, accounting, and marketing, has become feasible and is being developed at a 

high pace. The consequences are disruptive and this phase of digitalization has therefore been labeled 

as digital revolution, fourth industrial revolution, or industry 4.0. Digitalization potentially merges 

physical, biological, and social realms with those of mathematics and computer science, impacting all 

disciplines [3]. Paving the way for such a digital transition still requires much effort. Neither the route 

nor the outcome is fixed, and they will be shaped by those who engage in the endeavor.  
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Digitalization has had an important impact on chemical engineering and thermodynamics since 

computers became broadly available in that field in the 1960s. The impact the introduction of 

digitalization had can be described as disruptive: design of equipment could now be done computer-

based, multicomponent mixtures could be simulated, relying on improved thermodynamic models, 

and powerful group contribution methods could be developed.  

 

The role of computers in chemical engineering and thermodynamics has always been acknowledged 

and appreciated. In 1977, the Elsevier Journal “Computers and Chemical Engineering” was launched. 

In the early 1980s books were published with titles like: “Computer calculations of multicomponent 

vapor-liquid and liquid-liquid equilibria” [4]. Especially molecular thermodynamics was revolutioni-

zed by computer simulations, the first ones being carried out already in the 1950s [5]. Neural 

networks have been used in thermodynamics since the 1990s [6]. Moreover, machine learning is 

closely related to adjusting model parameters, which is a core business of thermodynamicists.  

 

So, one can ask: what is new in the current digitalization hype? Our answer is the same for 

digitalization in thermodynamics as it is for digitalization in general: it is not so much the progress in 

the individual domains but the fast-paced merge between them. This creates a special momentum 

which might well turn out to be disruptive, also in thermodynamics.  

 

In the present paper, we discuss different topics of digitalization in thermodynamics, focusing on new 

developments. Examples are given that stand for more general points, hoping that their sum offers a 

broad view of the field, without, however, striving for completeness. The paper is organized as 

follows: in Section 2, the stage is prepared by some remarks on reality, classical experiments, models, 

and computer experiments. In Section 3, new routes in thermodynamic modeling are discussed and 

new challenges are highlighted in Section 4. Experimental data are the topic of Section 5. Section 6 

addresses the problem of dealing with those parts of a problem on which only insufficient knowledge 

is available. Finally, we take a preliminary look into machine learning in thermodynamics in Section 

7, before conclusions are drawn in Section 8.     

 

2. Reality and classical experiments, models and computer experiments   

An overview of computer-based model development is given in Figure 1. It is general and holds in 

particular also for the development of thermodynamic models. Let the goal be to develop a 

mathematical model for some property of a real substance xreal. The corresponding property described 

by the model is designated as xmod here. As a result of digitalization, current models are generally so 

complex that computer simulations are needed for their evaluation. Algorithms have to be selected 
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and code has to be written and implemented on some computer before the simulation can be carried 

out. The result of the computer simulation is xsim. The number for xsim can be compared to a 

corresponding experimental result xexp, and a feedback loop can be closed in which the model is 

adapted such that the deviations between xexp and xsim are minimized. This can be done either by 

structural changes in the model or by suitable parameterization.  

Classical experiments and computer simulations have much in common, which is why the latter are 

often called computer experiments. In the classical experiment the reality is studied, in the computer 

simulation a model of the reality. Both the classical experiment and the computer simulation are prone 

to errors. In general, only the results of the experiment xexp are known, but not the true value of the 

corresponding real-world property xreal. The same holds for the simulation: in general, only the 

simulation result xsim is known, but not the true value of the property of the model xmod.  

The schematic shown in Figure 1 represents the situation that has developed as a result of the first 

wave of digitalization. It is now changing: the borders between the blocks begin to fade. 

((Figure 1)) 

3. New routes in thermodynamic modeling 

3.1. Multi-criteria optimization  

As a result of digitalization, paradigms in model development change. Routes become feasible that 

were inaccessible in the past. Assume that the task is to develop a thermodynamic model, e.g. an 

equation of state for a given real fluid. Traditionally, the outcome of the model development 

feedback-loop shown in Figure 1 is a certain set of parameters, which is found from an optimization 

with a single objective function. Often different data sets of different nature are used for the fit, which 

are lumped together in the objective function. However, the different data sets can generally not be 

represented equally well with the model. Hence, there are conflicting objectives. Such optimization 

tasks should instead be solved by multi-criteria optimization (MCO). 

MCO permits finding sets of best compromises for a problem with conflicting objectives. The 

solutions to the MCO problem are known as Pareto-optimal solutions and represent points in the 

objective space for which an improvement of any of the objectives is not possible without 

deteriorating at least one other objective. The set of Pareto-optimal solutions (the so-called Pareto set) 

is often also referred to as Pareto front of the MCO problem. Efficient adaptive algorithms are 

available for finding the Pareto-set of a given problem [7].  

 

A number of recent studies demonstrate the applicability and advantages of MCO for the development 

of thermodynamic models. They cover the most important types of thermodynamic models, namely 
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equations of state [8], models of the excess Gibbs energy of mixtures (GE-models) [9], and molecular 

models (force fields) [10]–[12]. The knowledge of the Pareto front gives a comprehensive overview 

of what can be achieved with a given model regarding the description of the considered data sets. This 

is a big advantage compared to having only the information on a single optimal point supplied by the 

traditional single-objective approach. The MCO approach is general and has also been used in product 

and process design [13]–[18] and in optimal design of experiments [19]. 

 

The shape of the Pareto front provides the decision-maker with an overview of the trade-offs between 

the different objectives. In a two-dimensional problem, the trade-off is the deterioration that needs to 

be accepted in the value of one objective for a given improvement in the other one. An example is 

shown in Figure 2. The optimization problem studied in Figure 2 is the development of PC(P)-SAFT 

[20]–[22] models for water, details are reported in [8]. The conflicting objectives are the average 

deviation between model and experiments in the vapor pressure and the saturated liquid density, 

respectively. The trade-off between these two objectives is quantified for different PC(P)-SAFT 

versions. Particularly attractive solutions, if interest is in the simultaneous description of both 

objectives, are found in the so-called “Pareto knee”. It is sharp for two of the three model versions, cf. 

Figure 2. The model versions differ in the way the polarity is accounted for. The first model is the 

non-polar original PC-SAFT equation of state [20], [21], in the two other models, the polarity is taken 

into account by using PCP-SAFT [22]. They differ in the way, the magnitude of the dipole moment 

was determined. In one case, it is simply adopted from the literature [23], in the other it is used as an 

additional adjustable parameter. In Figure 2 it is shown in a comprehensive manner how well the 

experimental data can be described by these three variants of the model. In the traditional approach, 

usually only three points in that diagram would have been available for a comparison, representing 

three “best” individual parameterizations of each model.  From Figure 1 it is clear that the polar 

version with fixed dipole moment generally gives an improvement over the non-polar version, even 

though the number of adjustable parameters is the same.  The exception is, however, one point in the 

Pareto knee, where both types of model yield similar results. As expected, the polar version with the 

adjusted dipole moment leads to an improved description. It is also interesting to compare the pictures 

of the Pareto fronts in the parameters space. For the sake of brevity, the reader is referred to [8] for 

this discussion.  

 

In a final step, the decision-maker must select a model from the Pareto set, which is most suited for 

his application. Non-trivial questions are connected to reporting the results from such MCO 

optimizations: while in the traditional approach, only a single parameter set had to be specified, and 

detailed results for it could be reported, in the MCO approach, the result is the Pareto front, which 

includes in principle an infinite number of models. Furthermore, the Pareto front has to be 

distinguished from its numerical approximations that are supplied by the MCO algorithms.  
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     ((Figure 2)) 

3.2. Combining results from classical and computer experiments to hybrid data sets  

The development and parameterization of high-quality equations of state for describing real fluids 

requires a large amount of thermodynamic data. Usually, such data are exclusively generated by 

experimental studies, which are time-consuming and expensive. Furthermore, the range in which 

experimental data can be sampled may be limited by decomposition, hazards, etc. These difficulties 

are reflected in the limited number of substances for which high-quality equations of state are 

available. Molecular modeling and simulation has evolved in the last decades into a viable alternative 

to generate thermodynamic data of fluids. Molecular models are known to have powerful predictive 

capabilities, and simulation data can generally be generated much easier than experimental data. The 

quality of the simulation data depends, however, on the quality of the underlying molecular force 

field. It has recently been shown that it is attractive to combine molecular simulation data and 

experimental data for the development of high-quality equations of state:  Equations of state for 

ethylene oxide [24], hexamethyldisiloxane [25], octamethylcyclotetrasiloxane [26] and dichloroethane 

[27] have been developed in this way. In all cases, scarce experimental data were supplemented by 

molecular simulation data to yield a hybrid data base.  

 

An efficient method to generate independent thermodynamic data for this purpose is given by the 

statistical-mechanical formalism proposed by Lustig [28], [29] that has been integrated into the 

molecular simulation tool ms2 [30], [31]. With this formalism, any derivative of the Helmholtz energy 

can be obtained by a single canonical ensemble simulation at a given state point.  

 

Developing an equation of state for Ethylene oxide is an excellent example to illustrate the benefits of 

using a hybrid data base. Although it is an important intermediate in the production of many 

chemicals, only few experimental thermodynamic data are available in the literature because of its 

hazardous nature. A very accurate molecular force field, which won the fourth industrial fluid 

property challenge [32], is available for this substance [33]. In this case, molecular simulation data are 

mainly used to supplement experimental data in the homogeneous liquid and supercritical region. As a 

result, the range of validity of the new hybrid equation of state is doubled in terms of the absolute 

temperature and increased seventyfold in terms of pressure [24]. 

Another example for the applications of hybrid data sets is the development of an equation of state for 

hexamethyldisiloxane (HMDS), a working fluid for organic Rankine cycles that is described in [25]. 

An equation of state for HMDS by Colonna et al. [34] showed significant deviations from new 

experimental data for the speed of sound, as well as from molecular simulation data. The molecular 

model of HDMS was developed based on a limited amount of experimental vapor-liquid equilibrium 
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data. The deficiencies of the equation of state of Colonna [34] were attributed to the fact that the 

experimental data base for HMDS is too narrow. To extend that data base, systematic molecular 

simulations were performed and used together with the existing thermodynamic data for developing 

an improved equation of state. To illustrate the results, data for the speed of sound of HMDS that 

were obtained from experiments, molecular simulations, and from the new equation of state are 

shown in Figure 3. For comparison, also results from the equation of state of Colonna are displayed. 

The molecular simulation data agree with the experimental data within their statistical uncertainty, 

and the new equation of state [25] describes these data well, whereas the predictions with the equation 

of state of Colonna et al. [34] deviate significantly from the other data sets for all temperatures except 

for 573 K. 

((Figure 3)) 

 

It could even be considered to use only simulated data for the development of an equation of state. 

This could be particularly interesting when no or hardly any experiments are available, the time-to-

solution is critical, and a simple equation of state is sufficient. 

Developing equations of state was considered to be a tedious task. There are many PhD theses in 

which only one equation of state for a single fluid was developed. Digitalization enables automation 

of many parts of this process. This has been examined in a recent study on phosgene [35]. In a first 

step, every task in the creation of the equation of state that requires considerable manual effort or 

expertise was identified. Such tasks were then simplified and automatized, wherever this was 

possible. As a result, a cloud-based workflow with a graphical user interface was developed which 

reduces the complex task of fitting equations of state to a few clicks [36]. 

4. Challenges in thermodynamic modeling and simulation 

4.1 Proliferation of model variants and epistemic value of models 

Increasing computing power and improved algorithms make more complex thermodynamic models 

feasible. On the other hand, the easiness to develop and modify such models has led to a plethora of 

models that serve similar purposes and differ only in details. Some of them are solely used by the 

group by which they were developed. This is obviously a problem as there is no independent testing. 

It would be desirable to embank this flood. Concentrating the efforts of the thermodynamic comm-

unity on a few particularly promising thermodynamic models and pushing them forward together 

would be highly attractive both from a practical and a scientific standpoint.  

The easiness with which model parameters can be adjusted has also encouraged over-parameterization 

and moving from physical models to correlations. Here, we define a “model” as carrying epistemic 
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value (i.e. giving insight), whereas a “correlation” does not carry such value (apart from the fact that it 

can be plugged into the framework of thermodynamic theory). In general, digitalization may have 

different effects on the borderline between models and correlations. Digitalization can shift the scales 

in the direction of increasing epistemic value, as more sophisticated models may become feasible. But 

the easiness of parameterization can also produce the reverse effect. Machine learning in its pure form 

is an extreme example of correlating data, as discussed in more detail in Section 7. 

4.2 Simulation errors 

Molecular simulation data are often considered to be “exact” [37], [38], as opposed to results from  

theories which are always based on some approximations in their derivations. Here, the term “theory” 

refers e.g. to theories for some model substance, e.g. the hard-body fluid or classes of processes like 

nano-scale flow. The approximations on which such theories are based can be checked by comparison 

with computer simulation data.  

The existence of statistical errors is accepted for computer simulations and they are regularly 

quantified and reported. On the contrary, systematic errors, which are a well-known second type of 

uncertainty in classical experiments [39], are not generally accepted in computer simulation and 

sometimes considered to be simply a result of avoidable faults [40]. Systematic errors are hard to 

assess. A well-known strategy from the field of experimental work is to carry out round-robin studies 

in which different laboratories solve the same task with different equipment. This approach can also 

be used for computer experiments.   

In a recent round-robin study [41], a comparison of molecular simulation results that were obtained by 

five research groups which worked independently is presented. Eight different well-established 

molecular simulation codes were used.  All groups were given identical simulation tasks. They 

consisted in determining the density and the potential energy of four simple alkanes on a given 

temperature-pressure grid. Three different types of molecular models with internal degrees of freedom 

were considered.  

The deviations between the results from the different groups were found to exceed the statistical 

uncertainty of the individual results, in many cases to a large extent. This even holds for the case 

when the same simulation code was used by different groups. An example is shown in Figure 4 for the 

determination of the density of i-butane at 41 MPa using the OPLS force field. The results obtained 

are depicted in terms of their relative deviation from their arithmetic mean. The arithmetic mean is 

interpreted here as a guess for the true value. The deviations from that mean are as large as 0.8 % for 

the lowest temperature. Also in most other cases, they exceed the statistical uncertainty of the 

individual results, which is often below 0.05%.  
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Undoubtedly, avoiding systematic errors in simulations should always be the goal. The study 

emphasizes the challenges that have to be met in trying to achieve that goal. Much can be learnt here 

from experimentalists, e.g. carrying out tests of the equipment that is used by comparisons with 

accepted benchmarks. The present study also supplies such benchmark data.  

      ((Figure 4)) 

5. New types of experimental data  

5.1 Ubiquitously available data 

One of the most popular narratives in discussion on digitalization is about ubiquitously available data, 

i.e. masses of data which only wait to be analyzed to turn the knowledge into gold. Let us briefly 

discuss this for the field of industrial chemical processes. It is true that there are plenty of data from 

such processes that are barely used. With the advent of cheap sensors, the amount of such data will 

rapidly grow in the future. For the present discussion, the question is, if and how such data can be 

used in the context of thermodynamic modeling or process modeling. The fact that plenty of data are 

available does not mean that they represent a large range of states. The operators of a chemical plant 

usually try to keep the plant at the same operating point, so that there are lots of data for a very small 

range of conditions. Data outside that range, e.g. from start-up or shut-down may be difficult to use 

for the above-mentioned purposes. Furthermore, the quality of the data may be questionable. E.g., 

data that are only taken for assessing stationarity or stability need not be accurate.  

The discussion basically comes down to the question what the model that is to be developed should 

accomplish. If it is there to describe the existing operation, data on that operation will prove highly 

valuable. If it is needed to make predictions, the data on the operation point may be welcome as add-

on, but other types of data will be needed for the modeling, and physical models are preferred as 

compared to mere correlations, cf. also the discussion in Section 4.1.  

5.2 New sensors 

New sensors are being developed, some of which give new insights in chemical processes. We only 

discuss medium field NMR spectroscopy as an example here, which is likely to be introduced in the 

process industry in the coming years [42]. NMR spectroscopy is an analytical tool with a wide range 

of applications in chemistry, biology, and chemical engineering [43]. It has a high chemical resolution 

and enables to resolve even chemically similar substances. As it is a non-invasive analysis method, 

complex fluid mixtures can be investigated without having to take samples. A main advantage over 

other spectroscopic methods is that NMR spectra can be evaluated quantitatively without prior 

calibration [44]. Thus, NMR spectroscopy is a particularly attractive method to elucidate and monitor 

reactions and processes [45]–[49].  
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In the recent years, medium field NMR spectrometers (also called bench-top NMR spectrometers) 

have become commercially available. They employ small permanent magnets rather than the 

superconducting magnets cooled by liquid helium that are used in high-field NMR spectrometers. The 

medium field NMR spectrometers are therefore compact, robust, comparatively inexpensive, and 

suited for routine applications in laboratories and production. They also can be used for on-line 

process monitoring. An example is given in Figure 5, which shows results of a single-stage batch 

distillation in which the composition of the residue was continuously monitored with medium field 

NMR spectroscopy [50]. The mixture that was separated was acetonitrile + ethyl formate + dimethyl 

sulfoxide.  The distillation was carried out at 0.1 MPa. The analytical results are plotted in Figure 5 as 

a function of the temperature, which is also measured. For comparison, also results from a 

conventional off-line gas chromatographic analysis are shown. After a period of heating-up, the 

evaporation starts and the concentration of the residue changes. The residue composition measured by 

on-line NMR spectroscopy is in good agreement with the results obtained from off-line gas 

chromatography. The new technique lends itself for automated studies of residue curve maps and can 

be used also in cases where only small amounts of material are available. This opens new perspectives 

for conceptual process design.  

New methods have become available not only for carrying out the NMR experiments but also for the 

evaluation of the spectra. They include applications of Bayesian statistics [51] and indirect hard 

modeling [52]. Spectra from series of experiments as the one shown in Figure 5 need to be evaluated 

automatically. Techniques are presently being developed that make use of the fact that the spectra of 

the series stem from the same experiment and are hence connected. This shows how the classical 

experiment and its modeling and simulation merge.   

((Figure 5)) 

6. Handling the unknown 

6.1. Uncertainties in the thermodynamic model  

The quality of process simulation depends on the quality of the underlying thermodynamic model. 

The quality of the thermodynamic model, in turn, depends on the quality of experimental data to 

which the model was fitted. The propagation of the uncertainty of the thermodynamic model into the 

process model has been discussed by many authors in the literature and many approaches have been 

described for its assessment, some examples are [53]–[55]. In most approaches the sensitivity is 

calculated from a variation of the parameters of the thermodynamic model (e.g. the binary interaction 

parameters of a GE-model). From a practical standpoint, it is more attractive to base the sensitivity 

analysis on a variation of measurable thermo-physical properties of which uncertainties are known as 

it has been described in [56], [57]. These authors use approaches based on perturbation schemes that 
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can be implemented in commercial process simulation software in a straightforward manner. The 

method presented in [57] has been implemented in CHEMASIM, the process simulation software 

from BASF, as a part of a larger effort by the capabilities of that software were extended regarding 

sensitivity studies [16] and optimization under uncertainties [17], [18]. An example for the application 

of this approach is given in Figure 6 in which results for a process are shown, in which CO2 is 

removed from flue gas by physical absorption with methanol [57]. The gas solubility is modeled with 

the SRK equation of state [58], cf. Figure 6, left.  Neither the experimental data nor their description 

with the model are perfect. This is taken into account in the process simulation by perturbing the 

liquid fugacity coefficient of CO2, in the example shown in Figure 6, left, by ±10%. The impact of the 

uncertainty of the data and the thermodynamic model on the performance of the absorption process 

can thereby be assessed, cf. Figure 6, right. This example shows that the analysis of the influence of 

uncertainties of the thermodynamic model on process simulation results can be routinely considered 

in the practical process design workflow.  

     ((Figure 6)) 

 

6.2. Poor specifications  

In process design it is usually assumed that the composition of the mixtures in the process is fully 

specified. Side components are either included in this scheme or neglected and treated only 

qualitatively. However, this paradigm has limits. It is for example practically impossible to fully 

specify crude oil and the same holds for many mixtures in biotechnological and polymer processes. 

Methods have been developed to handle this challenge, the most prominent of which is to use pseudo 

components, see e.g. [59]–[62]. In some cases also continuous thermodynamics can be applied, see 

e.g. [60], [63]. Machine learning has also been used in this field [64]–[73].  

 

In the following, a new approach in this field is briefly described which is called NEAT (NMR 

spectroscopy for Estimation of the Activity of Target components) [74]. It solves the problem of 

calculating the activity of a known species in a mixture with an arbitrary number of unknown species. 

NMR spectroscopy is used to quantify the groups that are present in the mixture. Hereby, it is not 

necessary to identify the unknown species. The group composition that is determined by NMR 

spectroscopy is mapped to UNIFAC groups and the activity of the target component is calculated.  

The method has been successfully tested on many mixtures [74]. Some examples are presented in 

Figure 7, where results are shown for three test systems consisting of a target component (ethanol), 

water and an additional component that is treated as unspecified within NEAT (i.e. no a priori 

information on the third component was used). NEAT predicts the influence of the unknown 

components on the activity coefficient of the target component in the mixtures very well. For more 

examples, see [74]. 
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 ((Figure 7)) 

 

The approach can be extended: other spectroscopic methods can be used for determining the group 

composition, and it can be coupled to other thermodynamic group-contribution methods. It is attra-

ctive to use NEAT with medium field NMR spectroscopy, cf. Section 5.2. Combined with these 

instruments, NEAT could also be applied in process analytics. This is another example for how 

experiments, modeling and simulation merge. 

 

7. A preliminary look into machine learning 

In machine learning, computers are given access to data from which they “learn” in such a way that 

they acquire the ability to answer questions regarding situations that resemble those that were studied 

when taking the data used for the training. Questions that can be answered by machine learning 

include pattern recognition, classifications, and quantitative statements on outcomes of experiments. 

There is no clear borderline between training a machine learning algorithm for carrying out 

quantitative predictions and the fitting of parameters of a flexible correlation. In its pure form, 

machine learning is entirely mathematical. Hence, adapting the definition given in Section 4.1, it can 

be considered as a way of developing a correlation, not a model. Still, even establishing such a 

mathematical correlation of physical facts requires a great deal of physical knowledge: Input and 

output variables need to be defined, training sets need to be selected, physical data may have to be 

processed before they can be used in the training set, and the outcome of the training needs to be 

evaluated.  

Neural networks have been applied to thermodynamic problems for more than 20 years [6]. The 

success was limited, and the initially high interest declined temporarily before surging again after 

about 2010. Recent applications of machine learning in thermodynamics include solubility or phase 

equilibrium [75]–[87], thermal (pvT) properties [88], [89], caloric properties [90], [91], transport 

properties [90], [92]–[97], and surface tension [98]–[100], to cite only a few. A substantial part of the 

recent work is dedicated to properties of ionic liquids [82], [86], [96], [97], [99], [101] that are hard to 

describe otherwise. Machine learning has also been used for describing the properties of crude oil, 

asphaltene and natural gas [64], [65], [68]–[70], [72], [83], [93], [102], [103].  

In typical successful applications of machine learning, e.g. for pattern recognition, the number of data 

points that are available for training is extremely large compared to the number of input variables. 

That ratio is much less favorable for typical thermodynamic problems. Furthermore, thermodynamic 

models should enable predictions, far beyond the range in which the model was trained. Consider 

simple GE-models like NRTL or UNIQUAC:  they can be regarded as mere correlation tools when 

they are only applied for describing binary phase equilibria of data sets to which they were fitted. But 
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they enable predictions, e.g. of multi-component phase equilibria, without any further input. These 

predictions turn out to be astonishingly good in many cases. This is a major achievement and a 

consequence of the physical background of the models. Machine learning could not accomplish this. 

It would need training with multi-component data. The realm of machine learning is interpolation, not 

extrapolation. Is machine learning, hence, doomed in thermodynamics? We think that it is not, but it 

needs to be combined in a suitable way with the theory of thermodynamics, i.e. with the physical 

knowledge that we have acquired over generations. Machine learning should be used where physical 

modeling cannot go. It should complement physical modeling, not replace it. It may, for instance, be 

attractive to analyze the deviations between a physical model and experimental data (which arise by 

definition from effects that are not accounted for by the physical model) with machine learning to 

discern trends.  

Furthermore, applications of machine learning to thermodynamic problems can be driven by 

computational issues. Finding stationary solutions of complex process flowsheets means solving a 

large system of coupled non-linear equations. Often the feasible domain of the design variables is not 

known explicitly. This means that it can be difficult to decide whether the reason for non-convergence 

is due to numerical difficulties (e.g., starting point far away from the unknown solution) or due to the 

fact that no solution with the specified design variables exists for physical reasons. Machine-learning 

methods can help to quantify the feasible domain in the design space, thus avoiding time-consuming 

manual trial-and-error calculations. To this end an adaptive design-of-experiments scheme has been 

developed to run the simulations, making the method computationally efficient [104].  

We discuss only a simple example here, which is taken from [104]: a partial evaporator, cf. Figure 8a. 

A binary mixture of ethanol and water with 0.1 mol/mol ethanol enters the evaporator with a molar 

feed flow rate of 150 kmol/h. The temperature and the pressure in the evaporator are chosen as design 

variables. The feasible operating range of the evaporator is the area between the dew and bubble 

curves in the p,T-diagram, in which two phases co-exist. The task is to determine this operating range. 

There are different ways to solve this task by classical process simulation. E.g., for each value of T 

two flash calculations can be carried out, one with a gas-to-feed ratio close to 0 (resulting in pboil) and 

a second one in which that ratio is close to 1 (resulting in pdew).  Any chosen value of p  can then be 

compared to pboil and pdew, respectively. This has to be repeated for different values of T, e.g. from a 

grid. All this is perfectly feasible for the evaporator that is studied here. In more complex situations 

corresponding algorithms could be more difficult to devise and their execution could suffer from 

convergence problems. As an example for machine learning, an adaptive exploration scheme was 

applied in [104] to learn this feasible range successively from simulations. The procedure commences 

with a small number of initial design points, as shown in Figure 8b, which are labeled according to the 

corresponding simulation outcome as either a solution or no-solution. Next, a support vector machine 

classifier is trained to predict the boundary between the feasible and the infeasible range, cf. Figure 
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8c. According to this prediction, new design points are placed in regions with high prediction 

uncertainty, typically at the estimated feasibility range boundary, cf. Figure 8d. The sampling 

procedure terminates once the progress in learning the boundary satisfies a stopping criterion; the 

final result for the case considered here is shown in Figure 8e. It can be seen in Figure 8f that the 

average distance between the learned and the true boundary decreases rapidly, so that for this example 

not more than 100 simulation points are needed to obtain a reasonable accuracy. The main advantage 

of the method becomes apparent when comparing it to a uniform sampling scheme where the design 

points are placed on a uniform grid in the p-T-plane. At least 400 points would be needed to obtain a 

comparable accuracy with such a grid.  

((Figure 8))     

8. Conclusions 

Digitalization has affected thermodynamics ever since computers became available and computational 

power has opened many new routes in thermodynamics, e.g. in molecular modeling and simulation. 

The key topic of digitalization is data and how data are used in modeling and simulation. This is also 

a key topic in thermodynamics and the currently high momentum in digitalization affects thermo-

dynamics in many ways. This does not concern thermodynamic theory, which stands like a rock, but 

the ways in which that theory is used in modeling, simulation, and experiments. New connections 

between these domains are established by digitalization and borders that were once clear begin to 

vanish. Data from computer simulations can be combined with experimental data into hybrid data sets 

and used for the development of models of thermodynamic properties of real substances. Conflicting 

objectives in the development of thermodynamic models can be handled with multi-criteria 

optimization. New sensors yield new types and increasing amounts of experimental data that can be 

stored and used. The uncertainty of the experimental data can be considered routinely not only in the 

development of thermodynamic models but also in their application in process simulation.  

Generally, much more data than in the past will be available in the future. But quantity is only one 

aspect, if it is too high, it may even cause problems. The quality of the data and its usefulness for 

solving the studied problem are as essential as they always were.  

As a consequence of the rapidly growing complexity and interconnectivity of modeling, simulation, 

and experiments, many tasks in process design can no longer be accomplished by generalists. 

Specialists will be needed to exploit the new opportunities. They must receive training, which opens 

new opportunities for industrial – academic co-operations. The complexity also leads to opacity. Even 

today, it is often practically impossible to fully understand how certain simulation results were 

obtained. This opacity impedes the assessment of the results and, as a consequence, their application. 

Such problems will grow in the future. Furthermore, with increasing complexity, the problem of 
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simulation errors increases. We will have to learn to assess and mitigate them - as we have learned to 

handle experimental errors.  

Machine learning has so far mainly been used in thermodynamics to establish correlations between 

thermodynamic input and output data sets. As such, it is closely related to parameter fitting, albeit 

with very flexible functional forms that are parameterized. In most thermodynamic applications the 

number of data points that are available for training machine-learning algorithms is comparatively 

small, which limits their success. Machine learning is about interpolating data, not about 

extrapolating. It is therefore highly attractive to combine machine learning techniques with 

thermodynamic models with proven predictive capabilities. Machine learning could e.g. help 

analyzing residues between such models and experimental data for influences that cannot be 

accounted for by the physical model. We should continue using the broad and deep thermodynamic 

knowledge that was acquired over centuries and has been used so successfully in physical modeling. 

But new ways of tackling the unknown with data-driven approaches of machine learning emerge. It 

will be interesting to see how they can be combined with physical modeling. 
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Symbols used 

δp [%]  deviation in vapor pressure from experimental data 

δρ [%]  deviation in saturated liquid density from experimental data 

Δρ        [%]                  deviation in density from arithmetic mean value  

T [K]  absolute temperature 

xi [mol/mol] mole fraction of component i 

p [MPa]  absolute pressure  

γT [-]  activity coefficient of component T 

w [m/s]  speed of sound 

 

Abbreviations 

GC    gas chromatography 

GE   excess Gibbs energy 

MCO   multi-criteria optimization 

NEAT NMR spectroscopic method for estimating activity coefficients of known 

target components in poorly specified mixtures 

NMR   nuclear magnetic resonance 
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NRTL   non-random two liquid 

SRK   Soave-Redlich-Kwong 

PC(P)-SAFT  perturbed-chain (polar) statistical associating fluid theory 

UNIFAC  universal quasi-chemical functional group activity coefficient 

UNIQUAC  universal quasi-chemical  
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Figure 1: Classical picture of relations between reality and models, simulation and experiments. The 

feedback loop of model development is also shown. All blocks are affected by the current wave of 

digitalization and the borders between the blocks become blurred. Adopted from [105]. 

Figure 2: Example for the application of multi-criteria optimization (MCO) for developing 

thermodynamic models [8]: Pareto fronts for three different versions of a PC(P)-SAFT equation for 

water. The two conflicting objectives are deviations between the model results for the vapor pressure 

δp and the saturated liquid density δρ. The Pareto fronts are represented by symbols (Pareto-optimal 

solutions) connected by linear splines. The different symbols represent the different PC(P)-SAFT 

versions. Squares: non-polar; circles: polar with fixed dipole moment from the literature; triangles: 

polar with dipole moment adjusted.  

Figure 3: Example for the application of hybrid data sets for the development of equations of state 

[25]: speed of sound of hexamethyldisiloxane (HDMS) along four isotherms. Open circles: molecular 

simulation data; filled symbols: experimental data; solid line: equation of state, based hybrid data set 

from experiments and computer simulations; dotted line: equation of state of Colonna et al. [34]; 

dashed line: vapor pressure curve.  

Figure 4: Example from results of a round-robin study [41] that confirms the existence of systematic 

errors in complex simulations (adapted from [41]). The studied property is the density of i-butane at 

41 MPa described by the using the OPLS force field. The symbols correspond to data from different 

groups obtained with different codes (for details, see [41]). Not the primary data are shown but their 

deviation from the arithmetic mean of all results for a given temperature. They exceed the statistical 

uncertainties of the individual simulation results which are often below 0.05%.  

Figure 5: Example for the application of medium field NMR spectroscopy as new sensor for process 

monitoring [50]: Left: results for the composition of the residue in a single-stage batch distillation of a 

mixture of acetonitrile, ethyl formate, and dimethyl sulfoxide (DMSO) at p = 0.1 MPa plotted as a 

function of the temperature. The symbols correspond to experimental data. Open symbols: on-line 

NMR; filled symbols: off-line GC. Triangles: acetonitrile; squares: ethyl formate; diamonds: dimethyl 

sulfoxide. Right: typical medium field 1H NMR spectrum with peak assignment for the studied 

mixture.  

Figure 6: Example for handling uncertainties in experimental data and thermodynamic models using 

a perturbation scheme: Application to the absorption of CO2 from flue gas using methanol as solvent. 

Left: Overall pressure versus solubility of CO2 in methanol for 298 K (circles) and 318 K (squares). 

The solid lines correspond to the nominal model, the dashed lines to the perturbed model. Right: 

trade-off between the number of stages and the solvent flow rate needed to remove 99% of the CO2. 
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The solid line corresponds to the nominal model; the dashed line corresponds to the results from the 

perturbed model. For details, see [58]. 

Figure 7: Example for handling poor specifications using the NEAT method [74]: Activity coefficient 

of a target component (T = ethanol) versus mole fraction of an unspecified component (U = acetic 

acid, methyl acetate or 2-butanone) in ternary mixtures with water at T = 298 K and p = 0.1 MPa for a 

fixed molar ratio of ethanol to water. The lines correspond to the results from UNIFAC for the 

completely specified mixture (dashed: acetic acid; dash-dotted: methyl acetate; dotted: 2-butanone). 

The symbols are predictions with the NEAT method for the unspecified mixture, i.e., using no 

information on component U (triangles: acetic acid; circles: methyl acetate; squares: 2-butanone). 

Figure 8: Example for the application of machine learning to solving thermodynamic tasks in process 

simulation [104]: determination of the feasible operating range of a partial evaporator. a: Sketch of the 

evaporator; b: initial set of design points to start the exploration of the feasible range; c-e: successive 

exploration of the feasible domain; f: average distance between the true and the learned boundaries 

separating the feasible domain (i.e. two-phase coexistence) from the infeasible (single phase) 

domains. In plots b-e the dashed lines are the true dew and bubble curves; red points encode design 

choices resulting in a solution whereas for blue points no solution could be found. 

Table of contents: 

The influence of the current wave of digitalization on thermodynamics is analyzed. Large amounts of 

data become easily available. The power and complexity of thermodynamic models and simulation 

techniques is rapidly increasing, and new routes become viable to link them to the data. Machine 

learning opens new perspectives. 
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Fig. 7 
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Fig. 8 

 

 


