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ABSTRACT: To better understand diffusion phenomena in
highly nonideal ternary liquid mixtures, cyclohexane−toluene−
methanol is studied by equilibrium molecular dynamics (EMD)
simulation. Intradiffusion and Maxwell−Stefan (MS) diffusion
coefficients, being strictly kinetic properties, are predicted by
EMD over the entire composition range at ambient condi-
tions. The thermodynamic contribution to the Fick diffusion
coefficients is studied with an excess Gibbs energy model. Pre-
dictive results from the combination of these two approaches
are in convincing agreement with experimental Fick diffusion coefficient data. Different aspects determining the composition
dependence of diffusion coefficients, such as their behavior at the binary limits, hydrogen bonding, and stability criteria, are
discussed. While the intradiffusion coefficients exhibit only a weak composition dependence, the MS diffusion coefficients are
strongly affected by the nonideality of the present mixture. Fick diffusion coefficients reveal pronounced diffusive coupling
effects and are mainly governed by the thermodynamic contribution, especially in the vicinity of the miscibility gap.

■ INTRODUCTION

The knowledge of composition-dependent diffusion coefficients
is essential for understanding and modeling various mass-
transfer processes, like absorption, evaporation, or liquid−liquid
extraction.1−5 An extensive amount of research was conducted
on the estimation, interpretation, and prediction of diffusion
coefficients for binary liquid mixtures.6−11 However, most
mixtures appearing in nature and technical applications are
multicomponent. Little experimental data are available for
ternary or higher mixtures because of their much more com-
plex diffusion behavior compared to binary mixtures.12−15 One
reason are coupled diffusion effects where a gradient of one
species induces a diffusive flux of another species. The lack of a
broad experimental database impedes the development and
verification of predictive equations or correlations for multi-
component mixtures.16,17

Molecular modeling and simulation was successfully applied
by our group to predict diffusion coefficients of binary10,11,18

and ternary19−21 liquid mixtures. In this work, equilibrium
molecular dynamics (EMD) simulation was used to investigate
different diffusion coefficients, i.e., intradiffusion, Maxwell−
Stefan (MS) and Fick diffusion coefficients, of a highly nonideal
ternary mixture: cyclohexane−toluene−methanol. It appears
particularly interesting because (1) it exhibits a miscibility gap
at ambient conditions; (2) a large experimental database on
the Fick diffusion coefficients is available in the literature;22−24

(3) it is composed of small molecules, which can be modeled
without internal degrees of freedom, limiting the computational
effort; (4) it was investigated by the Diffusion Coefficients in
Mixtures (DCMIX) project, for which experiments were con-
ducted aboard the International Space Station.25,26

The aims of this study are to clarify the composition-
dependent behavior of isothermal−isobaric diffusion coefficients
of a ternary mixture with a miscibility gap and to further validate
the capabilities of EMD simulation for predicting diffusion
coefficients of multicomponent mixtures. Furthermore, the
interrelations between intradiffusion, MS and Fick diffusion
coefficients are discussed together with constraints and limi-
tations of the Fick diffusion coefficient matrix, resulting from
the liquid−liquid equilibrium (LLE) phase separation and the
binary subsystems. For this purpose, the entire composition
range of the ternary mixture was studied, cf. Figure 1.

■ DIFFUSION COEFFICIENTS

Three types of diffusion coefficients are nowadays usually
discussed in the literature and used for scientific and
engineering calculations, i.e., intradiffusion (often also called
self-diffusion) coefficients, MS diffusion coefficients, and Fick
diffusion coefficients.
The microscopic description of intradiffusion coefficients

originated in Einstein’s formulation of Brownian motion,28

which assumes the random motion of particles suspended in a
fluid is a consequence of interactions with the molecules of the
fluid. This concept can be transferred to the molecules of a
pure fluid or mixture to describe their mobility in the absence
of diffusive driving force gradients. This mobility is quantified
by the intradiffusion coefficient Di of species i which is related
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to the mean squared displacement of single molecules in terms
of the elapsed time

D
r

t6i
i
2

=
⟨Δ ⟩

Δ (1)

Intradiffusion coefficients of multicomponent mixtures, in
contrast to mutual diffusion coefficients, can be measured
straightforwardly,29 for example by nuclear magnetic resonance
(NMR) or with the help of labeled tracers of one species.30

The latter method relies on the fact that the intradiffusion
coefficient of a strongly diluted (or tracer) species is equal to a
mutual diffusion coefficient, describing diffusion due to a
concentration gradient.31 This relation is also frequently used
to model transport diffusion processes only on the basis of intra-
diffusion coefficients, which raises the question up to which
concentration a species can be treated as a diluted one.
According to the theory of irreversible thermodynamics, dif-

fusive fluxes are defined on the basis of the entropy production
rate so that isothermal−isobaric transport diffusion is driven by
chemical potential gradients.32 A common model for the descrip-
tion of multicomponent diffusive transport is the MS
approach.33,34 Here, the driving force is expressed in accordance
with irreversible thermodynamics by the chemical potential
gradients ∇μi, which lead to a relative velocity between two
components (ui − uj). For a ternary mixture, the MS approach
provides three equations
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with gas constant R, temperature T, and three independent MS
diffusion coefficients Đij. The MS diffusion coefficients are, in
contrast to the Fick diffusion coefficients, symmetric Đij = Đji,
which is a consequence of the Onsager reciprocal relations

(ORR).35 Knowledge of the composition-dependent MS diffu-
sion coefficients is essential when MS equations are used, for
example to calculate the mass transfer with rate-based
approaches.36 Because these coefficients can not be obtained
experimentally, effort is being made to develop models which
relate MS to intradiffusion coefficients.37−40 EMD simulation
is a particularly promising method for the prediction of MS
diffusion coefficients.
In experimental work on mutual diffusion coefficients,

changes of concentrations are usually measured with optical
methods, for example, employing a differential refractometer,
Gouy interferometer, or Mach−Zehnder interferometer.41

Thus, the generalized form of Fick’s law is used for analysis,
which relates molar fluxes to concentration gradients. In the
case of a ternary mixture, two molar fluxes Ji

v are defined in the
volume reference frame (v) by

J D C D C

J D C D C
1
v

11
v

1 12
v

2

2
v

21
v

1 22
v

2

= − ∇ − ∇
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with four Fick diffusion coefficients Dij
v and two molar concen-

tration gradients ∇Ci. Here, the molar fluxes are defined
relative to a volume-averaged velocity uv = ∑ϕiui, which is
usually assumed to be zero if the excess molar volume is
negligible. The flux of the third (reference) component J3

v then
results from the closure∑ v̅iJi

v = 0, with partial molar volumes v̅i.
From these equations, it is evident that Fick diffusion coef-
ficients depend on the order of components, which can compli-
cate the comparison of diffusion coefficients of different mixtures.
From a theoretical point of view, it is often more convenient

to work with fluxes relative to a molar-averaged velocity u =
∑xiui and assuming mole fraction gradients ∇xi as driving
forces. In this case, the Fick diffusion coefficients Dij are
defined in the molar reference frame, which differ from the
coefficients in the volume reference frame Dij

v given in eq 3.
Fick diffusion coefficients can be transformed from one refer-
ence frame to another; the equations are given in the Supporting
Information.
The driving forces are the main difference between the MS

and Fick approaches. Gradients of the chemical potentials can
be transformed to mole fraction gradients by means of partial
derivatives of chemical potentials with respect to mole frac-
tions (∂μi/∂xj)T,p, which constitute the thermodynamic factor
matrix Γ. Thus, MS and Fick diffusion coefficients can also be
related to each other through35
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The elements of matrix B result from a transformation of the
MS eqs 2 to a form of the molar flux equations in the molar
reference frame, cf. the Supporting Information eq S9. Thus,
they are related to the MS diffusion coefficients by
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where n is the number of components and also stands for the
reference component.

Figure 1. Compositions of cyclohexane (1)−toluene (2)−methanol
(3) for which experimental diffusion coefficients are available,22−24

state points studied in this work (white bullets, intradiffusion and MS
coefficients; gray bullets, only intradiffusion coefficients), as well as
experimental LLE compositions27 and modified Wilson gE model at
298.15 K and 0.1 MPa.
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The elements of the thermodynamic factor matrix are
defined by42

x
RT x

x
x
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with activity coefficients γi. The symbol ∑ indicates a con-
straint derivative; that is, it must be carried out while keeping
constant the mole fractions of all other species, except for the
nth, such that the mole fractions of all species sum up to unity.
Different constraints are imposed on the Fick diffusion

coefficient matrix and can be used to assess the consistency of
data. First, all ternary diffusion coefficients in the vicinity of the
binary limits must be consistent with the diffusion coefficients
of the binary subsystems.15,22,23 These limiting values do not
depend on the reference frame. If one of the first two com-
ponents is infinitely diluted (e.g., x1 → 0), its own main Fick
diffusion coefficient must be the same as its intradiffusion coef-
ficient (D11 = D1

∞), the cross coefficient must approach zero
(D12 = 0), and the second main Fick diffusion coefficient is
equivalent with the binary Fick diffusion coefficient between
the other two components (D22 = D23

bin). Analogous relations
hold for the second component (x2 → 0), and further relations
apply for the third component (x3 → 0), which can be derived
from a change of the order of components, cf. the Supporting
Information.
Another important restriction is imposed on the Fick dif-

fusion coefficient matrix by the thermodynamic stability
requirement, which can be expressed through the partial
derivatives of the chemical potentials.43,44 For thermodynamic
phase stability, the determinant of the thermodynamic factor
matrix must be positive; consequently, both eigenvalues must
be positive. Note that the eigenvalues of the Fick diffusion
matrix are independent of the reference frame. It follows from
this constraint that also the Fick diffusion coefficient matrix D
must have real and positive eigenvalues.45,46 At the spinodal, at
least one eigenvalue D̂i is zero, i.e., det(D) = D̂1D̂2 = 0.3

A further constraint is imposed on the Fick diffusion coefficient
matrix by the ORR,47 which are a consequence of the invariance
of the microscopic equations of motion under time reversal.32

Details on the resulting relation between the four Fick diffusion
coefficients are given in the Supporting Information.

■ COMPUTATION DETAILS
Molecular Models and Simulation. In the present EMD

simulation work, rigid, united-atom type force field models were
used, describing the intermolecular interactions with Lennard-
Jones (LJ) potentials, point charges, or point quadrupoles. Their
parameters were taken from preceding work on cyclohexane,48

toluene11 and methanol.49 No binary or ternary force field
parameters were introduced, specifying the unlike LJ inter-
actions with the Lorentz−Berthelot combining rules, such that
all mixture data on kinetic properties are strictly predictive.
The molar density, self-diffusion coefficient, and shear

viscosity from the pure component models listed in Table 1
are in adequate agreement with experimental data. The
diffusion coefficients of all three binary subsystems were
successfully predicted in previous work.10,11

Diffusion coefficients were sampled in this work with the
Green−Kubo formalism, through which transport coefficients
are related to the time integrals of correlation functions of the
associated fluxes. The intradiffusion coefficient of species i was

calculated from the time integral of the velocity autocorrelation
function of single molecules averaged over all Ni molecules that
belong to that species55
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Therein, vi
k(t) is the center of mass velocity vector of molecule

k of species i at some time t, and the brackets ⟨···⟩ denote the
ensemble average.
Transport diffusion is related to the collective motion of

molecules and can thus be described by phenomenological
transport diffusion coefficients which were calculated from the
net velocity correlation functions of species i and j56
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where N is the total number of molecules. For a ternary
mixture, there are nine phenomenological coefficients that are
constrained by λij = λji (ORR) and ∑iMiλij = 0, resulting from
dependent molar fluxes in the mass reference frame ∑MiJi

m = 0,
where Mi stands for molar mass of species i. The latter con-
dition is fulfilled during the EMD simulations within machine
error because the net momentum is set to zero at the begin-
ning of a simulation. Concerning the ORR, an average devia-
tion of 11% between λij and λji was determined. Consequently,
for further calculations, a mean value of the coefficients was
used, i.e., (λij + λji)/2. Consequently, the phenomenological
coefficients can be transformed to only three independent MS
diffusion coefficients with eq 5 and56
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This relation results from the transformation of the different
flux equations, which are given in the Supporting Information
as eq S10 and S13.
All EMD simulation runs were carried out with the program

ms2.57−59 A cubic volume was assumed with periodic boundary
conditions containing 4000 molecules. Intermolecular inter-
actions were explicitly evaluated within 17.5 Å, considering the
LJ long-range corrections analytically beyond the cutoff radius
with the angle-averaging method of Lustig60 and the long-
range electrostatic interactions by means of the reaction field
method.61 Simulations were conducted in the canonic (NVT)
ensemble, where the temperature was controlled by velocity

Table 1. Pure Component Molar Density, Self-Diffusion
Coefficient, and Shear Viscosity of the Utilized Force Field
Models Obtained from EMD Simulation (This Work) Com-
pared with Experimental Data at 298.15 K and 0.1 MPaa

ρ (mol l−1) D0 (10−9 m2 s−1) η (10−4 Pa s) ref

cyclohexane 9.218 (2) 1.561 (3) 7.3 (4) MD
9.195 1.47 8.98 50, 51

toluene 9.344 (2) 2.379 (5) 4.8 (3) MD
9.358 2.267 5.67 51, 52

methanol 24.541 (6) 2.444 (6) 5.5 (4) MD
24.551 2.13 5.52 53, 54

aThe number in parentheses indicates the statistical uncertainty of the
simulation data in the last digit.
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scaling.55 The simulations were first equilibrated over 4 ×
105 time steps, followed by production runs of 4−5 × 107 time
steps. Newton’s equations of motion were solved with a fifth-
order Gear predictor-corrector numerical integrator and an
integration time step of ∼1 fs. The intradiffusion as well as the
phenomenological diffusion coefficients were calculated by
evaluating the center of mass velocities of the molecules every
fifth time step and by averaging up to 4.9 × 105 independent
time origins of the correlation functions with a sampling length
of 10 ps for the individual correlation functions.
To obtain reliable simulation results for diffusion coef-

ficients, it is important to carefully consider the system size as
well as the length of the correlation functions.62,63 Exemplary
integrated correlation functions considering these two aspects
are discussed in the Supporting Information.
Excess Gibbs Energy Model. The thermodynamic factor

was calculated in this work with a modified Wilson excess
Gibbs energy (gE) model,64 which in contrast to the original
Wilson model is capable of describing a miscibility gap. It was
already discussed for the binary subsystem cyclohexane−
methanol that the predicted Fick diffusion coefficients are very
sensitive to the utilized gE model as well as to its parameters.10

For the binary subsystem with LLE phase separation,
i.e., cyclohexane−methanol, none of the considered models
(Van Laar, Margules, NRTL, UNIQUAC, or modified Wilson)
were capable of correctly describing the composition depend-
ence of the activity coefficients, i.e., activity coefficients at
infinite dilution (ACID), binodal and spinodal compositions,
while the modified Wilson model showed the best results.10

The modified Wilson model64 defines the dimensionless
excess Gibbs energy Q = gE/(RT) by

Q x
x

x v v
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comprising ternary parameters Λi and binary parameters
v

v
a Texp( / )ij
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i
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(11)

with molar volume vi of the pure component i and binary
interaction parameters aij.
The elements of the thermodynamic factor matrix can be

calculated from second-order partial derivatives of Q with
respect to the mole fractions xi from

42
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Note that these are unconstrained partial derivatives, which
have to be evaluated while keeping the mole fractions of all
other components constant, i.e., not using the constraint∑xi = 1.

For the two fully miscible subsystems cyclohexane−toluene
and toluene−methanol, model parameters were fitted to
experimental vapor−liquid equilibrium (VLE) data.64 For the
subsystem cyclohexane−methanol, two different parameter
sets were tested, fitted either to binary LLE data or ACID.10

Figure 2. Intradiffusion coefficients Di (in 10−9 m2 s−1) of cyclo-
hexane (top), toluene (center), and methanol (bottom) in their
ternary mixture at 298.15 K and 0.1 MPa.

Table 2. Modified Wilson gE Model Parameters

comp. i comp. j aij/K aji/K ref.

cyclohexane toluene 61.62 89.17 VLE fit64

toluene methanol −150.95 938.03 VLE fit64

cyclohexane methanol 58.403 1019.7 LLE fit65

ternary parameters: Λi = 0
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Ternary parameters were either taken from the LLE fit (Λ1 =
0.4926, Λ2 = 0.3695, and Λ3 = 0.1569)64 or set to zero. All
parameters were fitted to experimental data at about 298.15 K
and thus are expected to be valid only close to this
temperature. Because no pressure dependence is contained
in the gE model, the parameters are valid only for low
pressures. Pure fluid experimental data were taken for the
required molar volumes, cf. Table 1.
For the binary subsystem cyclohexane−methanol, the ACID

fit had the best performance to predict the Fick diffusion
coefficient in combination with EMD simulation results.10

In the case of the ternary mixture, the best agreement with experi-
mental Fick diffusion coefficient data was obtained with the LLE
fit for cyclohexane−methanol and with ternary parameters set
to zero. Thus, these parameters were used in this work and are
listed in Table 2. Exemplary results with different parameter
sets are given in the Supporting Information.

■ RESULTS AND DISCUSSION

Intradiffusion. Intradiffusion coefficients can be inter-
preted as the mobility of molecules of a given species in a mix-
ture in the absence of diffusive driving force gradients. Simu-
lation results for the three intradiffusion coefficients of
cyclohexane (1)−toluene (2)−methanol (3) at ambient condi-
tions are shown in Figure 2. All components have similar
intradiffusion coefficients of 2.0−2.5 × 10−9 m2 s−1 in most of
the composition range. The intradiffusion coefficient of cyclo-
hexane exhibits the lowest values of ∼1.5 × 10−9 m2 s−1 at high
cyclohexane concentrations. This is not surprising because
cyclohexane has the lowest self-diffusion coefficient as a pure
fluid, cf. Table 1. Almost no composition dependence was
observed for the intradiffusion coefficient of toluene; these
molecules are slightly slower only at high cyclohexane content.
The notably smaller methanol molecules have a similar
intradiffusion coefficient as toluene or cyclohexane over a
wide composition range. This phenomenon can be related to
the hydrogen-bonding behavior of methanol molecules, which
mostly propagate in associated assemblies and are thus on
average slower than methanol monomers. At low methanol
mole fractions, fewer methanol molecules have hydrogen-
bonded partners and do propagate as monomers so that the
intradiffusion coefficient of methanol is significantly higher in
this composition range. This interrelation was confirmed by
hydrogen-bonding statistics for methanol, which were also
sampled by EMD simulation; results are given in the
Supporting Information. Another notable observation is that
the intradiffusion coefficients of all three components are not
affected by the strong thermodynamic nonideality of the
present mixture and show no special behavior in the vicinity of
the miscibility gap or consolute point.

Binary Subsystems. Before discussing ternary mutual
diffusion coefficients, it is instructive to review the binary sub-
systems. Their binary MS diffusion coefficient, thermodynamic
factor, and Fick diffusion coefficient are shown in Figure 3.
Cyclohexane−toluene is an almost ideal mixture; because its

thermodynamic factor is close to unity. Here, also the MS
diffusion coefficient shows only a weak composition depend-
ence and can accurately be predicted on the basis of intra-
diffusion coefficients with the Darken69 or Vignes70 relations,
which is not the case for the two other subsystems. Toluene−
methanol is highly nonideal, and its thermodynamic factor
reaches values close to zero, which is accompanied by a
strongly composition-dependent MS coefficient. This coinci-
dence was observed for many binary mixtures of an alcohol
and a weakly polar component11 and can be explained with the
clustering behavior of the alcohol molecules, causing strong
thermodynamic nonideality and significant deviations of the
MS coefficient from the Darken relation through correlated
molecular motion.10 The same phenomenon appears even
more pronounced for cyclohexane−methanol so that the
thermodynamic factor becomes negative within the miscibility
gap. For such binary mixtures with LLE phase separation, a
similar composition dependence of the MS diffusion coefficients

Figure 3. Binary subsystems cyclohexane−toluene (black), toluene−
methanol (green), and cyclohexane−methanol (red): MS diffusion
coefficient from MD simulation (top), thermodynamic factor from
modified Wilson gE model (center), and resulting Fick diffusion
coefficient D = ĐΓ (bottom) are compared with experimental
literature data (crosses).8,20,66−68

Table 3. Parameters of Equation 14 Fitted to Present Simulation Data Together with Average Relative Deviations

a b c d e f ARD

Đ12 4.140 15.25 18.85 0 0 0 4%
Đ13 −3.227 41.30 82.45 131.22 133.05 505.79 18%
Đ23 6.077 25.70 72.03 −13.458 143.04 218.22 9%
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as obtained by EMD simulation is also predicted by local
composition models.71,72

Maxwell−Stefan Diffusion Coefficients. Ternary MS
coefficients were sampled over the entire composition range
as indicated in Figure 1, but not at very dilute states xi <
0.05 mol mol−1 because the phenomenological coefficients were
accompanied by too large statistical uncertainties under such con-
ditions. Numerical results are given in the Supporting Information.
To obtain a good impression of the composition depend-

ence of the three MS coefficients, not perturbed by scattered
simulation data, the following polynomial was fitted to
simulation data for the ternary mixture and its binary subsys-
tems

Đ a bx cx dx x ex x fx xij 1 2 1 2 2 3 1 3= + + + + + (14)

where a, b, c, d, e, and f are empirical parameters. These
parameters are listed in Table 3, and the resulting MS
coefficients are shown in Figure 4. Note that the scale for each
of the MS coefficients is different in Figure 4.
In the binary limit xn → 0, the ternary MS coefficient Đij

must coincide with the binary MS coefficient Đij
bin. This

requirement is fulfilled by the ternary simulation results and
correlation 14, as can be seen when comparing the ternary Đij
in the binary limit (indicated by a bold line in Figure 4) with
the binary MS coefficients in Figure 3. An additional figure of
ternary MS coefficients Đij near that limit at xn = 0.1 mol mol−1

in comparison with binary MS coefficients is presented in the
Supporting Information.
In the case of a binary system in the infinite dilution limit

xi → 0, Đij
bin coincides with the intradiffusion coefficient Di of the

diluted component. Such an unambiguous assignment can not
be made for the behavior of ternary Đij data in the limit xi → 0
and xj → 0, i.e., xn → 1. MS coefficient Đ12 is most reliable to
be considered toward this limit because it has the lowest statis-
tical uncertainties, which are a consequence of nearly ideal
mixture behavior of cyclohexane−toluene. Values for Đ12 in
the limit x3 →1 are below 10−9 m2 s−1, which is notably smaller
than all three intradiffusion coefficients in this composition
range. It can be supposed that such limiting values for MS
coefficients can not be obtained from intradiffusion coefficients
as discussed, for example, by Liu et al.73

The other two MS coefficients Đ13 and Đ23 are accompanied
by strong nonidealities and consequently strong fluctuations
during molecular dynamics sampling, leading to large statistical
uncertainties. Here, the smallest values of ∼2 × 10−9 m2 s−1

also occur in the limit x3 → 1, which is in agreement with the
limiting values of the binary subsystems and intradiffusion
coefficients. The highest values of the ternary MS coefficients
are given near the binary subsystems at the same compositions
for which the binary coefficients exhibit a maximum, i.e. for Đ13
at x1 ∼ 0.5 mol mol−1 and for Đ23 at x1 ∼ 0.25 mol mol−1.
In the limit opposite to the binary subsystem ij (xn → 1),
both coefficients Đ13 and Đ23 are ∼6 × 10−9 m2 s−1, still show
strong nonidealities, and have approximately twice the
magnitude of the largest intradiffusion coefficient in this region.
The knowledge of such nonideal behavior of MS coefficients
is important when mass-transfer processes are described with the
MS approach.
Like for the binary subsystems, it is evident that the com-

position dependence of ternary MS coefficients can not be
predicted with the well-known Darken model. This short-
coming was already discussed by Liu et al.74 for the nonideal
mixture chloroform−acetone−methanol.

Furthermore, it was observed that the elements of matrices
Δ and Γ exhibit an opposing composition dependence; that is,
where Δij have a maximum, Γij have a minimum. Ternary plots
are given in the Supporting Information. This coincidence is in

Figure 4. MS diffusion coefficients Đ12 (top), Đ13 (center), and Đ23
(bottom) (in 10−9 m2 s−1) of the ternary mixture cyclohexane (1)−
toluene (2)−methanol (3). Bold lines indicate the binary limit (xn → 0)
for Đij.
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agreement with the behavior observed for thermodynamic
factor and MS coefficient of the binary subsystems. It can be
related to the microscopic structure of the mixture, i.e., cluster
formation, which causes thermodynamic nonideality as well as
kinetic nonideality through correlated molecular motion.
Allie-Ebrahim et al.40 recently proposed a local mole fraction

model for the prediction of multicomponent MS coefficients of
highly nonideal ternary systems. This model was tested for the
present mixture, but it was found that it is not able to predict
the strong nonideality of the MS coefficients. Exemplary results
are shown in the Supporting Information. Nevertheless, the
model of Allie-Ebrahim et al.40 together with the thermodynamic
factor gives overall reasonable results for the Fick diffusion
coefficients, which are mainly governed by the thermodynamic
contribution, if appropriate gE model parameters are used.

Fick Diffusion Coefficients. Fick diffusion coefficients
are a composite of kinetic and thermodynamic contributions,
cf. eq 4. The kinetic part results from velocity correlation
functions, i.e., the MS diffusion coefficients. The thermody-
namic part, i.e., thermodynamic factor, was calculated with the
modified Wilson gE model. For highly nonideal ternary
mixtures, the composition dependence of Fick coefficients is
mainly governed by the thermodynamic contribution; thus, an
appropriate combination of model and parameters is essential.
Parameters fitted only to binary VLE and LLE data showed the
best results and were used to predict ternary Fick diffusion
coefficients. Results in the volume reference frame along com-
position paths with a constant toluene mole fraction together
with experimental data from the literature are shown in Figure 5.
Average relative deviations between predicted and experimental

Figure 5. Fick diffusion coefficients (volume reference frame) of cyclohexane (1)−toluene (2)−methanol (3) at a constant mole fraction of toluene
x2 = 0.6 mol mol−1 (first row), x2 = 0.4 mol mol−1 (second row), x2 = 0.2 mol mol−1 (third row), and x2 = 0.1 mol mol−1 (fourth row). Simulation
data (circles) and binary limiting values from simulation (squares) are compared with experimental data22,23 (triangles).

Industrial & Engineering Chemistry Research Article

DOI: 10.1021/acs.iecr.8b04385
Ind. Eng. Chem. Res. 2018, 57, 16508−16517

16514

http://pubs.acs.org/doi/suppl/10.1021/acs.iecr.8b04385/suppl_file/ie8b04385_si_001.pdf
http://dx.doi.org/10.1021/acs.iecr.8b04385
http://pubs.acs.org/action/showImage?doi=10.1021/acs.iecr.8b04385&iName=master.img-006.jpg&w=341&h=476


Fick diffusion coefficients are 0.48, 0.4, 0.36, and 0.37 ×
10−9 m2 s−1 for D11, D12, D21, and D22, respectively.
The main Fick diffusion coefficient of cyclohexane D11

v

exhibits a nearly ideal behavior at compositions far from the
miscibility gap (x2 = 0.6 mol mol−1), where it has only a weak
composition dependence, and becomes more nonideal toward
the miscibility gap (x2 → 0.1 mol mol−1). Here, the negative
values of D11 at x2 = 0.1 mol mol−1 are within the calculated
miscibility gap; that is, they are accompanied by a negative
eigenvalue D̂2 < 0. This behavior is in agreement with the
asymptotic limit for x2 → 0, where D11

v must coincide with the
binary Fick diffusion coefficient D13

bin. The same trend applies to
the cross coefficient D12

v , which is almost zero for high toluene
content and exhibits large negative values near the miscibility
gap; here, cyclohexane diffuses against the concentration
gradient of toluene. The sign of the cross coefficients is a result
of the order of components; i.e., when the order of com-
ponents is changed, for example, to cyclohexane−methanol−
toluene, the coefficient D12

v becomes positive, cf. the Support-
ing Information.
The composition dependence is converse for toluene. Its

main coefficient D22
v and cross coefficient D21

v are most ideal
near the miscibility gap and become nonideal at compositions
away from it. At x2 = 0.1 mol mol−1, the cross coefficient D21

v is
almost zero, which is in agreement with its requirement to
vanish at x2 → 0. It is interesting to note that main and cross
coefficients of one component exhibit the same composition
dependence in the present case. The asymptotic ternary coef-
ficients are in agreement with the values given by the binary
limits, cf. Figure 5. Limiting values at x3 → 0 were also inves-
tigated by means of a change of order of components, as
presented in the Supporting Information.
To investigate the LLE stability condition toward the misci-

bility gap, eigenvalues of the Fick diffusion coefficient matrix
were calculated along two composition paths at a constant
mole fraction of cyclohexane x1 = 0.3 mol mol−1 and methanol
x3 = 0.3 mol mol−1, cf. Figure 6. Consistent with the stability
requirement, both eigenvalues are real and positive outside the
miscibility gap. While the first eigenvalue exhibits no notable
composition dependence along these composition paths, the
second eigenvalue approaches zero toward the miscibility gap.
This asymptotic behavior of the predicted Fick diffusion coef-
ficient matrix is governed by the thermodynamic factor matrix,
for which the determinant must be zero at the spinodal.
Because the utilized gE model parameters provide a too wide
miscibility gap, the predicted second eigenvalue of the Fick
diffusion matrix for x3 = 0.3 mol mol−1 becomes already zero
slightly outside of the experimental miscibility gap.

■ CONCLUSION
Different diffusion coefficient types of the highly nonideal
ternary mixture cyclohexane−toluene−methanol were studied.
The intradiffusion and Maxwell−Stefan diffusion coefficients
were sampled over the entire composition range by equilib-
rium molecular dynamics simulation. It was found that the
intradiffusion coefficients show only a weak composition
dependence and are not affected by the nonideality of the
present mixture. The intradiffusion coefficient of methanol can
be related to the hydrogen-bonding behavior of this species.
The Maxwell−Stefan diffusion coefficients exhibit a pro-

nounced composition dependence. The strongest nonidealities
occur for Đ13 and Đ23 in the limit of the according binary sub-
systems. In the limits xn → 0, all three sampled ternary

coefficients Đij are in good agreement with the binary coeffi-
cients Đij

bin. It was found that none of the available models,
which relate MS coefficients to intradiffusion coefficients, are
capable of covering the strongly nonideal behavior of MS
coefficients as predicted by present EMD simulation work.
In the next step, the thermodynamic factor was obtained

from a modified Wilson gE model to predict Fick diffusion
coefficients. Here, the results are very sensitive to the utilized
model and its parameters. With gE model parameters fitted
only to binary VLE and LLE data, Fick diffusion coefficients
were predicted, which are in excellent agreement with
experimental literature data. These coefficients were found to
satisfy all restrictions imposed by the asymptotic behavior
toward the binary limits as well as the stability criterion.
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Figure 6. Eigenvalues of the Fick diffusion coefficient matrix of
cyclohexane (1)−toluene (2)−methanol (3) at a constant mole
fraction of cyclohexane x1 = 0.3 mol mol−1 (a) and at a constant mole
fraction of methanol x3 = 0.3 mol mol−1 (b). The dashed line delimits
the experimental miscibility gap. Simulation results (circles) are
compared with experimental data (triangles).
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