
This version is available at https://doi.org/10.14279/depositonce-8378

© © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for
all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

Terms of Use

Döpmann, Christoph; Rust, Sebastian; Tschorsch, Florian (2018). Exploring Deployment Strategies for the
Tor Network. 2018 IEEE 43rd Conference on Local Computer Networks (LCN).
https://doi.org/10.1109/lcn.2018.8638043

Christoph Döpmann; Sebastian Rust; Florian Tschorsch

Exploring Deployment Strategies for the
Tor Network

Accepted manuscript (Postprint)Conference paper |

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DepositOnce

https://core.ac.uk/display/196296188?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Exploring Deployment Strategies
for the Tor Network

Christoph Döpmann
Distributed Security Infrastructures

Technische Universität Berlin
christoph.doepmann@campus.tu-berlin.de

Sebastian Rust
Institut für Informatik

Humboldt-Universität zu Berlin
rustseba@informatik.hu-berlin.de

Florian Tschorsch
Distributed Security Infrastructures

Technische Universität Berlin
florian.tschorsch@tu-berlin.de

Abstract—In response to upcoming performance and security
challenges of anonymity networks like Tor, it will be of crucial
importance to be able to develop and deploy performance im-
provements and state-of-the-art countermeasures. In this paper,
we therefore explore different deployment strategies and review
their applicability, impact, and risks to the Tor network. In a
simulation-based evaluation, which leverages historical data of
Tor, we show that the deployment strategies can practically be
applied to realize significant protocol changes in Tor. Our results,
however, also indicate that during the transitional phase a certain
degradation of anonymity is unavoidable.

Keywords—Internet security, overlay networks

I. INTRODUCTION

Anonymous communication networks (ACNs) such as
Tor [1] face a series of challenges, including performance and
security challenges. In order to keep up with current and future
requirements, it is of decisive importance to carry out active
research in this field. Great technological advances will fail to
reach practical importance, though, if they cannot actually be
deployed in a safe and practical manner. Yet, this is an aspect
that is oftentimes neglected in research.

With ACNs in general, deployment of system changes
becomes an especially difficult task due to their inherent sys-
tem properties, i. e., preserving users’ anonymity and network
access. ACNs are oftentimes highly decentralized systems,
usually with many autonomous entities. Incremental upgrades
might easily result in a network split or otherwise harm the
anonymity set that is essential to protect its users.

The main focus of this paper lies on the deployment of
changes that affect Tor’s network communication or infras-
tructure. Examples that may be desirable to adopt in the future
include fundamental changes to connection handling [2], con-
gestion control [3], or even the transport protocol [4], [5]. Such
protocol changes can have tremendous, inherently backwards-
incompatible consequences.

In this paper, we first investigate how flag day transitions
can be applied in the context of Tor. Pointing at the deficiencies
associated with this approach, we also consider coexistence-
based approaches like dual stack, translation and tunneling,
analyzing their strengths and drawbacks and relating them to
real proposed network changes. We validate their applicability
by carrying out a simulation-based evaluation. An extended
version of this paper, with additional results, is available in [6].
Our work indicates that certain network changes possibly

cannot be deployed without some degradation of anonymity
during the transitional phase.

Our contributions include: After reviewing related work
(Section II), we give an overview of deployment challenges in
Tor and identify existing mechanisms that can be leveraged to
deploy small, compatible changes (Section III). We investigate
strategies suitable for deploying more fundamental changes
to the Tor protocol and juxtapose their advantages and indi-
vidual risks regarding security and anonymity (Section IV).
Furthermore, we evaluate the proposed approaches’ impact on
the network (Section V) and emphasize in our conclusion the
importance of carefully choosing an appropriate deployment
strategy during development (Section VI).

II. RELATED WORK

The deployment of network protocols has often enough
proven to be cumbersome. As a prime example, we refer to
the still ongoing transition from IPv4 to IPv6, which, to some
extent, inspired the strategies proposed in this work. However,
we focus on anonymous communication networks in general
and the Tor network in particular, which induce additional
requirements regarding security and anonymity.

In the context of Tor, [7] constitutes a concise survey of
proposed extensions to the Tor protocol. It provides a useful
overview of what kinds of changes we have to take into
account when constructing a deployment scheme for Tor.

The challenge of deploying changes to the Tor network has
barely been covered by previous research, though. [8] reports
on challenges of deploying a low-latency anonymity network,
but mostly deals with general challenges, including the social
challenges, and not specifically to changing an existing system.
To the best of our knowledge, [9] is the only work that
covers how a specific incremental update to the Tor software
was realized. In contrast, our work has a strong focus on
the technical point of view of deployment strategies and
strives to explore generic solutions to realize complex protocol
evolvement in Tor.

III. THE TOR ECOSYSTEM

We give a concise overview of Tor, including its components
and the network’s current ability to deploy new features.

directory

onion
proxy

entry

middle

exit server

Fig. 1. The Tor network. Each onion symbol represents a relay. The list of
all relays is provided by the directory. Clients typically select three relays to
construct a circuit. Onion routing ensures anonymity of the transmitted data.

Onion Routing: Tor is based on the concept of onion
routing [10]. The main idea consists in building a multi-
hop tunnel that is used to carry the payload over a series of
intermediate onion routers, casually referred to as relays. In
Tor, such a cryptographically secured tunnel, which is called
a circuit, typically consists of three relays as illustrated in
Figure 1. A circuit is constructed by extending each hop
incrementally, like a telescope, where each relay removes or
adds one layer of encryption. The onion routing ensures that
each relay in a circuit only knows its immediate predecessor
and successor, which eventually provides anonymity. For boot-
strapping communication as well as for authenticating relays,
Tor relies on a directory service, which provides cryptographic
keys and other meta information, published by the relays.

Data Transport: Data transport is realized in Tor by passing
so-called cells along the circuit, carrying payload as well as
control signals. Relays multiplex circuits over TLS-secured
TCP connections. For anonymity reasons, cells generally have
a fixed size. They consist of three parts: the circuit ID; the
command denoting the cell type, thus defining how the cell
should be handled; and the payload, which contains command-
specific data, e. g., parameters. Tor defines numerous different
cell types [11]. RELAY cells are particularly interesting be-
cause their payload is “onion encrypted”, which means that
only the endpoints of a circuit are able to decipher it.

Protocol Versions in Tor: The Tor protocol [11] can be re-
garded as a suite of different subprotocols that describe differ-
ent aspects of the Tor network. Among these, the subprotocols
that define the network-level communication between relays
(Link and Relay) are especially subject to improvements.

Tor provides basic mechanisms to support the evolution of
these subprotocols. The subprotocol versions that are sup-
ported by each relay are published in the directory data,
together with a span of minimum recommended and min-
imum required supported version. However, Tor relays do
not generally rely on this data for normal operation. Instead,
the protocol versions are engineered in a way that enables
seamless interaction, agreeing on a common version when
necessary. For example, at the time of writing, the Link
protocol version is chosen by exchanging VERSIONS cells,
but was previously determined through subtle, compatible
differences in the handshake. In general, Tor offers two ways
of rolling out protocol changes in a backwards-compatible

way. Firstly, new cell types and RELAY cell subcommands can
easily be introduced. Unknown cell types will be ignored by
legacy nodes1. Secondly, support for specific protocol versions
can be signaled through the relay descriptors in the directory.

Participants: Nodes participating in the Tor network take
one of two general roles. If they provide access to the network
for an end-user, they are commonly called clients. On the
other hand, the relays form the backbone of the Tor network.
Clients choose relays for constructing their circuits through
the network, based on information from the directory.

Moreover, it is important to note that relays can take differ-
ent roles, too. Non-exit relays purely act within the network,
carrying data between other relays. In contrast, exit relays are
the circuits’ endpoint, facing the Internet. The heterogeneity of
relays and the different roles make deployments challenging.

IV. DEPLOYMENT STRATEGIES

In this section, we develop general approaches towards
deploying changes to the Tor network and relate them to
existing Tor research, serving as examples. Communication
through Tor constitutes a multi-hop scenario, which denotes
a major challenge. Far-reaching changes to the Tor protocol
may require all relays on a circuit (or even the whole network)
to support the new feature. A situation in which some relays
can no longer communicate with each other is to be avoided
under all circumstances as it would effectively result in a
network split, heavily reducing the users’ anonymity set. In
the following, we consider two main strategies, flag day and
co-existence.

A. Flag Day: Building a Global Switch

The flag day strategy consists in incrementally rolling out
a software update but keeping it disabled until coordinated,
simultaneous activation. This way, any change to the network
can be deployed, with no backwards compatibility required.
While implementing a reliable flag day is far from trivial, it
may have to be considered for large, breaking system changes.

Note, however, that a flag day transition may break client
compatibility. In contrast to relays, clients do not publish
version information. Therefore, we realize that carrying out
a flag day without putting an unknown number of end users
to the risk of being excluded from the Tor network, is currently
infeasible. This could, however, change in the future with the
advent of privacy-preserving collection of user statistics [12].

B. Co-existence: Implementing Interoperability

In contrast to the previous all-or-nothing approach, co-
existence strategies allow relays of different versions or feature
sets to interoperate, which is desirable as it mitigates the risk
of a network split. For any circuit, choosing a co-existence
scheme may be done either for the whole circuit based on
global information from the directory, or locally on a hop-by-
hop basis. We here present different approaches that enable
backwards-incompatible protocol changes to co-exist with the
legacy protocol.

1We call relays that have not (yet) upgraded legacy nodes.

Dual Stack: For the dual stack strategy, we assume that
upgraded nodes can still use the legacy protocol selectively.
This way, a circuit can make use of the newest supported
protocol version that all relays support. As a consequence,
single circuits may already benefit from the newly deployed
technology, while circuits with legacy relays stick to the
previous behavior until upgraded. A dual stack approach can
be used to deploy a wide range of complex changes to the
network, at the expense of only slowly spreading use of the
new feature. We will quantify this delay in our evaluation.

Moreover, this strategy might lead to weakened anonymity.
An attacker may be able to deduce from local observations
information about other relays in the circuit, reducing the
anonymity set. For example, consider the case of replacing
TCP with UDP as the underlay transport protocol. By observ-
ing which variant is used for a specific circuit, an attacker can
infer a set of relays which cannot be part of the circuit.

Candidates for being deployed with a dual stack approach
are for example DefenestraTor [3] and BackTap [5]. Both aim
at improving Tor’s congestion control, requiring the interaction
of every relay on the circuit in order to work properly.

Translation: If the relays in a circuit differ in their fea-
ture sets, translation between the protocol versions may be
applied. Improvements that do not require the whole circuit
to participate can thus partially become active earlier. If
compatibility can be achieved by converting between cell
types, the translation scheme may be trivial, unless non-local
information is required for this translation step. For example,
TCP-over-DTLS [4], which proposes to use a TCP connection
per circuit and to encapsulate the respective TCP segments in
UDP, might be deployable via translation.

Tunneling: If multiple non-consecutive relays in a circuit
have upgraded, one may also tunnel new protocol data through
legacy nodes. For instance, information could be carried end-
to-end without interaction by intermediate legacy nodes.

Tunneling schemes may leverage Tor’s RELAY cells to
exchange data between circuit endpoints. Embedding opaque
information into other legacy cells may also be an alternative.

Tunneling could, for instance, be applied to proposals like
UDP-OR [13] that rely on an end-to-end semantics for im-
proving performance but can be built to tolerate single legacy
relays in the circuit.

V. EVALUATION

We now aim at quantifying the impact of each of the basic
conceptual ideas we have discussed, generating insight on their
individual benefits and drawbacks.

In order to compare against a realistic model of relays’
upgrade behavior, we base our evaluation on historical data of
software version distribution within the Tor network. Thus, we
make use of data collected by the Tor Metrics project [14]. We
consider a time span from March 2013 to January 2018, over
which we track the share of relays that have upgraded to Tor
version 0.2.5 or higher, which was released at the beginning
of this time span. We chose to analyze the deployment of
this particular Tor version because its predecessor has been

0

0.2

0.4

0.6

0.8

1

07
/20

13

01
/20

14

07
/20

14

01
/20

15

07
/20

15

01
/20

16

07
/20

16

01
/20

17

07
/20

17

01
/20

18

sh
ar

e
of

up
gr

ad
ed

ne
tw

or
k

re
so

ur
ce

s

bandwidth
nodes

Fig. 2. Share of Tor network resources retained after a flag day, over time.

0

0.2

0.4

0.6

0.8

1

07
/20

13

01
/20

14

07
/20

14

01
/20

15

07
/20

15

01
/20

16

07
/20

16

01
/20

17

07
/20

17

01
/20

18

sh
ar

e
of

ci
rc

ui
ts

su
pp

or
te

d
by

co
-e

xi
st

en
ce

sc
he

m
e

Dual Stack
Translation
Tunnelling

Fig. 3. Share of circuits that support the respective co-existence scheme.

exceptionally prevalent in the Tor network, which virtually
constitutes a worst case scenario for deployment. Moreover,
we assume the client software to be up to date. The study thus
investigates to what degree a modern client can benefit from
technological progress as it is rolled out in the Tor network
over time.

A. Flag day

For analyzing the impact of a flag day strategy, we take a
general evaluation approach that allows us to quantify a flag
day’s impact independently of a specific protocol change. For
any given point in time, we evaluate which network relays
have upgraded. These are the relays that would keep working
if a flag day was carried out at that time. From this set, we
calculate both the share of relays and the share of bandwidth
that are retained (in comparison to the overall network).

Figure 2 shows the results of evaluating the historical data
for the introduction of Tor version 0.2.5. As this version was
deliberately chosen as a worst case scenario, our results show
that the upgrade progress is slow over the network. After one
year, less than 10% of the relays have upgraded, accounting
for approximately 20% of the network bandwidth. Despite the
initially slow upgrade behavior, a clear rise can be observed
approximately one and a half years after version 0.2.5 was
initially published. The upgrade process continues slowly, the
90% landmark of upgraded relays is reached four years after
the initial release (March 2017). Also, note that there is a
temporary decline in upgrade progress around April 2014.
This is due to the Heartbleed vulnerability which required to
remove a number of newer vulnerable relays from the network.

These statistics reveal that it can take a long time until a
sufficient amount of relays have applied software upgrades.
However, for far-reaching changes to the network, a flag day

TABLE I
APPLICABILITY OF CO-EXISTENCE SCHEMES.

Circuit configuration Applicable schemes
(entry-middle-exit) Dual Stack Translation Tunneling

7 7 7

7 7 3

7 7 7

7 3 3

7 3 7

7 3 3

7 3 7

3 3 3

upgraded legacy

may still constitute a conceivable strategy. This, however, does
not tackle the issue of client compatibility mentioned before.

B. Co-existence

We now evaluate to what extent deployment schemes based
on co-existence enable the use of the novel protocol extension
during the transition phase, at which circuits may comprise
both, legacy and upgraded relays.

This evaluation requires to operate on a more fine-grained,
circuit-level scale. Since the effectiveness of these strategies is
highly dependent on the configuration of every single circuit,
we simulate circuit selection using the Tor Path Simulator
(TorPS) [15]. Given the historical Tor network data, it allows
us to gather aggregate data on specific properties of historical
circuits. In order to measure the applicability of each of the co-
existence strategies for given circuit configurations, we assume
the proposals we provided as examples in Section IV as mental
templates and derive a compatibility matrix, shown in Table I.

Figure 3 presents our results, depicting how well each of
the co-existence schemes can enable the partial activation of
the protocol change during the transition phase. We note that
translation and tunneling are considerably more effective than
dual stack because they can apply the protocol change at least
to parts of the circuit much earlier. For example, after one and
a half years, already 60% of the circuits could have applied a
translation or tunneling scheme. At the same time, dual stack
would only be used in approximately 10% of the circuits.
We conclude that incrementally deploying changes via co-
existence schemes can, in fact, ease the deployment process.

VI. LESSONS LEARNED AND CONCLUSION

In this work, we explored the problem of deploying changes
to the Tor network. We find that, through its directory service
and the extensible cell structure, Tor can in principle be
extended to feature novel functionalities. Evolving the protocol
at its core networking routines is a particularly challenging
task, though. When altering its behavior at the link and
transport layer, special care must be taken to maintain maxi-
mum possible compatibility with legacy nodes. Otherwise, the
consequences on anonymity may be severe.

We firstly evaluate the use of flag days, finding that they
may be used for deploying fundamental changes, but are not
currently practically applicable in Tor due to various risks
and weaknesses, including network splits, Sybil attacks, and
abandoning clients.

We then develop a class of co-existence schemes, which
allow a new protocol version to co-exist with the legacy
system. In this regard, we introduce the notions of dual stack,
translation, and tunneling. We generally observe the transi-
tional phase to be rather long in Tor. With our deployment
strategies, though, a significant number of users might be able
to benefit already from upgrades during that period.

However, our research also suggests that, with currently
available techniques, one cannot always realize incremental
deployment without partly sacrificing some of Tor’s anonymity
promises during the transitional phase. In essence, this is due
to the risk of unintentionally making circuits distinguishable.

With our work, we also hope to raise awareness of the
issue among the research community, motivating to integrate
suitable deployment strategies directly into their Tor research.

ACKNOWLEDGMENT

Christoph Döpmann was supported by HU Berlin within the
Excellence Initiative of the states and the federal government.

REFERENCES

[1] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-
generation onion router,” in USENIX Security ’04, 2004.

[2] M. AlSabah and I. Goldberg, “PCTCP: per-circuit TCP-over-IPsec
transport for anonymous communication overlay networks,” in CCS ’13,
2013.

[3] M. AlSabah, K. Bauer, I. Goldberg, D. Grunwald, D. McCoy, S. Savage,
and G. Voelker, “DefenestraTor: Throwing out windows in Tor,” in
PETS ’11, 2011.

[4] J. Reardon and I. Goldberg, “Improving Tor using a TCP-over-DTLS
tunnel,” in USENIX Security ’09, 2009.

[5] F. Tschorsch and B. Scheuermann, “Mind the gap: Towards a
backpressure-based transport protocol for the Tor network,” in NSDI ’16,
2016.

[6] C. Döpmann, S. Rust, and F. Tschorsch, “Exploring deployment strate-
gies for the Tor network,” Cryptology ePrint Archive, Report 2018/661,
2018, https://eprint.iacr.org/2018/661.

[7] M. AlSabah and I. Goldberg, “Performance and security improvements
for Tor: A survey,” ACM Computing Surveys (CSUR), vol. 49, no. 2,
2016.

[8] R. Dingledine, N. Mathewson, and P. Syverson, “Challenges in deploy-
ing low-latency anonymity,” Tech. Rep., 2005.

[9] R. Jansen and M. Traudt, “Tor’s been KIST: A case study of
transitioning Tor research to practice,” arXiv e-print arXiv:1709.01044,
2017. [Online]. Available: http://arxiv.org/abs/1709.01044

[10] D. M. Goldschlag, M. G. Reed, and P. F. Syverson, “Hiding Routing
Information,” in IHW ’01.

[11] R. Dingledine and N. Mathewson, “Tor protocol specification.” [Online].
Available: https://gitweb.torproject.org/torspec.git/tree/tor-spec.txt

[12] N. Mathewson, T. Wilson-Brown, and A. Johnson, “Tor proposal 288:
Privacy-preserving statistics with Privcount in Tor (Shamir version),”
2017. [Online]. Available: https://gitweb.torproject.org/torspec.git/tree/
proposals/288-privcount-with-shamir.txt

[13] C. Viecco, “UDP-OR: A fair onion transport design,” in HotPETS ’08,
2008.

[14] The Tor Project, “Tor Metrics Portal.” [Online]. Available: https:
//metrics.torproject.org/

[15] A. Johnson, C. Wacek, R. Jansen, M. Sherr, and P. F. Syverson, “Users
get routed: traffic correlation on tor by realistic adversaries,” in CCS ’13,
2013.

