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P2KMV: A Privacy-preserving Counting Sketch
for Efficient and Accurate Set Intersection Cardinality
Estimations

HAGEN SPARKA, Humboldt University of Berlin

FLORIAN TSCHORSCH, Technical University of Berlin

BJÖRN SCHEUERMANN, Humboldt University of Berlin

In this paper, we propose P2KMV, a novel privacy-preserving counting sketch, based on the k minimum

values algorithm. With P2KMV, we offer a versatile privacy-enhanced technology for obtaining statistics,

following the principle of data minimization, and aiming for the sweet spot between privacy, accuracy, and

computational efficiency. As our main contribution, we develop methods to perform set operations, which

facilitate cardinality estimates under strong privacy requirements. Most notably, we propose an efficient,

privacy-preserving algorithm to estimate the set intersection cardinality. P2KMV provides plausible deniability

for all data items contained in the sketch. We discuss the algorithm’s privacy guarantees as well as the accuracy

of the obtained estimates. An experimental evaluation confirms our analytical expectations and provides

insights regarding parameter choices.

1 INTRODUCTION
In this paper, we investigate how to obtain privacy-preserving user statistics. We consider the

scenario of a central service or application which—in one way or the other—obtains personal

identifiable information from its users. This service aims to calculate statistics from these data,

across users. Examples might be how many distinct users accessed the service using software

version X, or how many distinct users issued requests of type Y, or how many distinct users satisfy

both these criteria.

However, the service that we consider also aims to not store all the personal details for answering
such questions to protect its users from potential data leaks or breaches. The storage of data, which

can be associated with individual users, poses a privacy risk in itself. Anyone with access to the

data, be it an attacker gaining illegitimate access to the system or a government agency requesting

data, can (mis-)use this information.

A centralized system as outlined above reflects today’s (and most likely tomorrow’s) common

practice. However, it unfortunately makes approaches such as multi-party computation based on

secret sharing [30, 34, 39] or homomorphic encryption [26, 28] inapplicable. Likewise, advanced

differential privacy approaches [10, 33] do not provide a solution to this scenario. In case of a

subpoena, for example, encrypted data sets can be recovered. Even in a distributed setting with

multiple independent entities the data remains recoverable, if the entities cooperate.

The key question considered here is therefore how statistics can be collected in a central place—

without storing detailed information on individual users or operations. Most notably, we consider

estimating the size of set intersections in a privacy-preserving manner. This can be used, for

instance, to determine correlations and overlaps between groups of users.

Probabilistic counting sketches have recently been identified to serve as a privacy-enhancing

technology (PET) for obtaining statistics [30, 32, 40]. While calculating unions using counting

sketches is often straightforward, we argue that none of the existing solutions is well suited for

estimating set intersection cardinalities. Estimating intersection cardinalities is a challenge because



it typically requires combining many individual estimates, so that the results tend to have poor

accuracy due to error propagation.

In this paper, we contribute a novel algorithm, P2KMV, and demonstrate that accurate statistics

and good privacy are—even in a centralized setting—not mutually exclusive. With P2KMV, we take

the idea of data minimization, i. e., collecting as little personal data as possible, a step forward: we

show how to obtain certain aggregate statistics, while storing a small data sample only. In order to

protect all users, including identifiable information in the data samples, we additionally generate

provable plausible deniability.
To this end, we build upon the so-called k minimum values (KMV) counting sketch [3] and design

a privacy extension that retains the full feature set of the original KMV sketch. While we use a

data perturbation technique, which adds random noise to KMV sketches to protect privacy, our

approach is able to produce accurate set intersection cardinality estimates, even when intersecting

many sets. Therefore, P2KMV complements the set of PETs and provides a missing feature for

practical deployment.

To show P2KMV’s merits, we evaluate it in a controlled deterministic simulation environment

and compare P2KMV to related approaches—namely, probabilistic counting with stochastic aver-

aging (PCSA) as in [20], privacy-enhanced PCSA as in [40], and a Bloom filter-based approach as

introduced in [30]. Our evaluations show that significantly higher accuracy is achievable especially

for larger numbers of intersected sets. P2KMV inherits the high accuracy and efficiency of KMV

when estimating set intersection cardinalities, and at the same time guarantees enhanced privacy,

even against an adversary with pre-knowledge.

The contributions of our paper are summarized as follows:

• We consider a realistic and strong threat model in Section 2, which goes beyond a typical

honest-but-curious adversary and includes state-level and external adversaries.

• We identify KMV sketches as a basis for efficient cardinality estimates and set operations,

particularly for set intersection cardinality estimation. As we argue in Section 3, the latter is

necessary for elaborate statistics but can become computationally expensive.

• We propose P2KMV in Section 4. We formally derive how P2KMV can provide enhanced

privacy as well as accurate estimates. We also evaluate the influence of an adversary’s pre-

knowledge on P2KMV’s privacy and prove that P2KMV provides plausible deniability for

every user.

• We analyze P2KMV’s accuracy in Section 5. We compare it to related approaches, and show

that P2KMV’s set intersection cardinality estimation is computationally efficient. As a result

from our in-depth evaluation, we derive guidelines to chose suitable parameter values for

P2KMV.

These ideas offer a versatile PET that can be applied to many use cases. Section 6 discusses related

work and emphasizes the novelty of the approach. In summary, P2KMV balances the trade-off

between accuracy, efficiency, and privacy.

2 SYSTEM AND THREAT MODEL
In this section, we outline our system and threat model. In particular, we define the involved entities

and classify the adversary’s capabilities. The specific implementation details are subject of the

following sections.

Our system model consists of a set of users and a service provider. Figure 1 illustrates these

entities and their relation in our system. On a high level, users contact a service or use an application

and generate data to be collected. We assume that every user has a personal ID. The service provider

learns the respective user ID with each user access. For example, a user could use a messaging

2



id1 id2 id3 id2 id1 id2 id3

t

Fig. 1. In our system model, recurring users access a centralized service; the service provider collects and
analyzes user data.

service to communicate with other users. In this case, the ID could be the user’s cell phone number

or email address. It could also be an IP address or any other unique identifier. The messaging service

provider, who forwards messages, learns the ID and can link data items to this ID.

The service provider is a central data collector and data analyst at the same time. Statistics,

which might be of interest for the service provider, include but are not limited to the usage share of

operating systems or the adoption of a software update. For example, the service provider might

want to answer the question “how many distinct users use software version X on system Y?” As

consequence, any statistical framework should provide means of data associations.

In order to derive meaningful statistics, the service provider needs to collect some data. A

common approach is to store all available information. However, storing personal identifiable

information poses a privacy risk. While encrypting the data somewhat improves the situation, it

cannot eliminate the privacy risk completely: the data can still be recovered. An external adversary

gaining access to the system and the cryptographic key material can decrypt the data. Likewise, a

state-level adversary can force the service provider to reveal the data. To our best knowledge, there

is no cryptographic primitive that mitigates such a threat.

Signal, a secure instant messaging service, experienced a comparable situation [35]. The develop-

ers received a subpoena requesting to provide information about two Signal users. Signal, however,

minimized the retained data about its users; the only information they could provide was the date

and time of registration and the last date of a user’s connectivity to the Signal service. From a pri-

vacy perspective storing virtually no data at all provides the strongest privacy. Nevertheless, there

are good reasons for obtaining user statistics. One might resort to producing highly aggregated

statistics only, without actually storing any raw data. This approach comes with heavy limitations,

though. For instance, aggregated statistics would lead to gross overestimation as it is not possible

to count distinct users only.
In our system model, we also refrain from assuming user interaction in the process of data

collection and opt for a more general approach. While user interaction, as in the case of randomized

response schemes [17, 43], leads to strong privacy guarantees, it is sometimes not practical nor

feasible. Metadata, e.g., a software version, are relevant sources for statistics but are often an

inherent part of a communication protocol. Thus, they can be considered immutable by the user,

which makes it infeasible to assume that a user can add “noise” to the data collection by altering

values. Instead, we assume a passive/implicit data collection.

In order to allow more sophisticated statistics without the need to store fine-grained personal

data, we aim for a data minimization technique that reduces the amount of stored data and still
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provides meaningful statistics. To this end, we use a probabilistic data structure which discards

the majority of data items and stores a small data sample only. Despite this fact, the estimates

remain accurate. This significantly reduces the amount of personal identifiable information. The

data samples can, however, still be linked to users. We assume that a user’s absence, e. g., not using

a service, is of no concern and hence concentrate on preventing an adversary from being able to

infer whether a certain user is part of a statistic. We therefore extend our approach and propose a

solution that uses data perturbation to guarantee plausible deniability for every user.

Our threat model assumes an adversary that does not manipulate the data, but is able to gain

access to the data—either by entering the system or by issuing an order. The threat model, therefore,

includes external, internal, and state-level adversaries alike. We explicitly exclude the service

provider from our threat model, though, because the service provider could tap the data anyway.

Therefore, we have to trust the service provider. We further assume that the adversary is able to

retrieve snapshots of the data only and is not able to monitor the service over a longer period.

Otherwise, the adversary would take a similar role as the service provider, i. e., being able to tap

the raw data. Our adversary, therefore, shares similar characteristics with a covert attacker, who

usually aims for transferring/extracting data but at the same time wants to remain hidden.

With our approach, personal identifiable information is stored in a way that it cannot be recovered.

All sensitive material, e. g., the perturbation, which helps to protect privacy, are designed to be

completely volatile. In summary, we envisage a privacy-enhancing technology for user statistics

that thwarts linking users on the basis of stored data in the presence of external and even state-level

adversaries.

3 USER STATISTICS WITH KMV
In this section, we argue that KMV [3]—the basis for our own algorithm P2KMV—can be used to

combine data minimization with accurate and efficient set operations. Here, we first recapitulate

a number of properties which directly emerge from KMV’s design. In particular, we generalize

the Jaccard similarity coefficient for estimating set intersection cardinalities with KMV. This will

subsequently lead to the specific algorithmic tools and choices for P2KMV, and therefore to our

main contributions.

3.1 Data Minimization with KMV
KMV was originally devised to efficiently estimate the cardinality of elements in a data stream. The

algorithm belongs to the family of probabilistic counting sketches. For the cardinality estimation of

a data set a succinct representation—the KMV sketch—is constructed by hashing each element and

storing the k smallest distinct hash values only. We also say that an element has been sampled by

the sketch. In the following, we will denote the set of the k smallest hash values as K .
Retaining only the k smallest hash values already reduces the amount of personal identifiable

information that is stored and thus increases privacy—though, as we will see, this is still far from

perfect.

The hash values can be either chosen uniformly from (0, 1) as in [3] or from the integers in [1,N ]

as in [6]. In the remainder of this paper, we use the latter approach and define N as nID, the size of
set I, which contains all IDs in the system. The hash values are calculated using a hash function

H , with the following properties (a) H : I → [1,nID] uniformly maps each ID in the system to an

integer in [1,nID], (b) all hash values are chosen independently, and (c) H is injective. In practice,

such a hash function, which actually is a special type of permutation, can be constructed using

a cryptographic hash function, such as SHA-256: According to [6], when using a hash function

f whose codomain is much larger than its domain, e. g., a codomain whose size is the square of
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Fig. 2. KMV sketch and union visualization (k = 4).

the domain’s size, this function already satisfies (b) and (c) with high probability. We then can use

f to generate a hash function which also satisfies (a) by hashing all IDs and using the order of

their hash values as follows: let (h1,h2, . . . ,hnID
) be the sorted tuple of hash values generated by

applying f to all IDs in I. Then we define H as the function mapping each ID x to the index i of
the hash value hi in (h1,h2, . . . ,hnID

), where hi = f (x).

3.2 Statistics with Counting Sketches
Counting sketches can be used to collect statistics on categorical variables by having each sketch

represent a certain category. For instance, categorical values could be a software version or an

operating system. A service provider asking “how many distinct users run software version X”

needs to know the cardinality of X’s user set. To learn this, they may hash each user’s ID into a

KMV sketch maintained for this software version. Note that, if the same users with software version

X accesses the service again, the user will not be counted twice, because adding the respective ID

twice does not change the KMV data structure.

This duplicate insensitivity is an inherent feature of counting sketches that makes them also

suitable to collect population and distribution statistics. Collecting the software version distribution,

for example, would require an individual sketch for each possible software version. Basically,

everything that can be enumerated can be counted with sketches. Since sketches follow the idea of

data minimization, their storage demand is reasonable, also for very large number of sets.

As we show in the following, counting sketches are representatives of a set and therefore obey

the algebra of sets. In particular, they satisfy the fundamental binary operations of set union and

intersection. For instance, this can be used to aggregate individual observations of a variable into

groups.

3.3 Set Cardinality Estimation
The number of unique elements in a setM can be estimated by taking K , the k smallest hash values,

into consideration. If there are less than k unique elements inM , the cardinality is exactly |K |. For

sets with more unique elements, let max(K) be the largest hash value in K . Note that max(K) will
typically decrease with an increasing number of distinct elements added to the sketch, because

only the smallest hash values are maintained. Since H maps the IDs uniformly to its codomain, the

interval [1,max(K)] can be used as a representative for the whole codomain. The set cardinality

can therefore be estimated as
ˆϑ |M | by

ˆϑ |M | =
k

max(K)
· nID. (1)

So, by evaluating the sketch, an estimate for the number of distinct users can be obtained. In

order to count many statistics at once, the service provider holds multiple sketches in parallel, each

representing a category of interest.
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3.4 Set Union Cardinality Estimation
Along similar lines, the cardinality of a union of sets can be estimated. Let k1,k2, . . . ,kn be the maxi-

mum numbers of hash values stored by the KMV sketches S1, S2, . . . , Sn that use the same hash func-

tionH . In order to estimate the union, we construct a KMV sketch Su with ku = min(k1,k2, . . . ,kn).
The new sketch stores the ku smallest hash values from K1,K2, . . . ,Kn . As a consequence, Su
contains the very same smallest ku values that would have been stored if all IDs were sampled

directly by Su . We denote this set of Su ’s ku smallest hash values as Ku . Note that the construction

of Su ensures that for each hash value h in Ku , h ≤ max(Ki ) where i ∈ {1, 2, . . . ,n}, holds. Figure 2
illustrates this process for two KMV sketches S1 and S2. Evaluating Su yields a set union cardinality

estimate.

3.5 Set Intersection Cardinality
Set intersection cardinalities can be used to calculate associations between items, e. g. [22]. For

instance, a service provider may be interested in learning associations such as “how many distinct

users use software version X on system Y?”. If we know that we are interested in this kind of statistic

in advance and are able to observe X and Y at the same time, we could instantiate a dedicated sketch,

which we use to count users matching both characteristics. Even if we are able to determine all

kinds of relevant statistics in advance, though, X and Y might be in separate requests or messages,

which prevents us from associating these characteristics on the fly. We, therefore, argue that this

approach is neither flexible nor practical. Thus, intersections complement the necessary set of

primitives to produce meaningful statistics.

3.5.1 Principle of Inclusion-Exclusion. Most counting sketches inherently allow to estimate

cardinalities of sets and their unions only. However, the size of the set intersection can—in general—

be estimated by using the inclusion-exclusion principle. In its simplest instance the principle states

that for two setsM1 andM2 the size of their intersection is |M1∩M2 | = |M1 |+ |M2 |− |M1∪M2 |. It can

be generalized to higher numbers of sets. For n setsM1,M2, . . . ,Mn , the general inclusion-exclusion

principle [18] can be used to define the set intersection cardinality recursively as����� n⋂
i=1

Mi

����� = (−1)n+1

����� n⋃
j=1

Mj

����� − n−1∑
k=1

(−1)n+k
∑

Z ⊆{1,2, ...,n }
|Z |=k

�����⋂
l ∈Z

Ml

����� .
For n = 2, the formula stated before follows.

For increasing n, however, the inclusion-exclusion principle quickly becomes prohibitively

expensive in terms of computation effort. In general, for n sets all intersection cardinalities of the

n subsets with size n − 1 are necessary. Since these n intersection cardinalities are not known

in advance, they all have to be calculated accordingly. Therefore, virtually all set intersection

cardinalities in the power set of {M1,M2, . . . ,Mn} need to be calculated, resulting in computation

times that grow exponentially with n. Moreover, errors of individual estimates tend to sum up,

resulting in low accuracy.

3.5.2 Jaccard Similarity Coefficient. One big strength of KMV, compared to other counting

sketches, is its ability to estimate set intersection cardinalities efficiently and accurately without

the need to rely on the inclusion-exclusion principle, thereby circumventing the problem described

above. Beyer et al. [6] used an alternative approach to the inclusion-exclusion principle to estimate

the intersection cardinality of two KMV sketches. They observed: if two KMV sketches S1 and S2
use the same hash function H , the ratio between the intersection size and the union size of their k
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smallest hash values is (approximately) the same as the respective ratio in the underlying sets. This

ratio is called the Jaccard index or Jaccard similarity coefficient.
Assume for example two sets |M1 | = 800 and |M2 | = 1300 with |M1∩M2 | = 100 and consequently

|M1 ∪M2 | = 2000. Let S1, S2, and Su denote KMV sketches forM1,M2, andM1 ∪M2, respectively.

Further let ku be 400. Ku , the set of the ku smallest hash values in Su , will then hold about 20 hash

values that correspond to IDs inM1 ∩M2. This subset of Ku is called C0. Given S1, S2 and Su one

can directly derive C0. Then, the intersection cardinality can be estimated by multiplying |C0 |/ku
with |M1 ∪M2 |, i. e., 20/400 · 2000 = 100. The fraction |C0 |/ku is the (estimated) Jaccard index.

Here, we generalize Beyer et al.’s approach for n > 2 sets. Just like for two sets, the Jaccard

index J for the sets M1,M2, . . . ,Mn describes the ratio between the sets’ intersection and union

cardinality. It is defined as

J (M1,M2, . . . ,Mn) =

����� n⋂
i=1

Mi

����� /
����� n⋃
i=1

Mi

����� .
In order to estimate the cardinality of the intersection the following steps must be taken:

first, calculate Su from S1, S2, . . . , Sn as described above. Second, determine |C0 | by counting the

number of distinct hash values that are stored in S1, S2, . . . , Sn , and Su . Third, the Jaccard index

J (M1,M2, . . . ,Mn) can be estimated by

ˆϑ J =
|C0 |

ku
.

Finally, given
ˆϑ J and the set union cardinality estimate

ˆϑ |U | (obtained by evaluating Su ), the set
intersection cardinality can be estimated by

ˆϑ |I | = ˆϑ J · ˆϑ |U | . (2)

Note that, unlike with the inclusion-exclusion principle, there is no exponential cost explosion

associated with increasing the number of sets that are intersected.

This—so far admittedly rather simple—generalization paves the ground for turning towards

further measures for privacy protection, and therefore for our main contributions, in the next

section. As will become clear, set intersection estimates based on the Jaccard index will remain

possible and accurate, but the details will become significantly more intricate.

4 PRIVACY-PRESERVING KMV
As shown so far, KMV is a well-suited basis for estimating the cardinality of set intersections.

Unmodified KMV significantly reduces the amount of stored personal identifiable information by

keeping only the k smallest hash values. These, however, can still be linked to specific IDs by an

adversary. Consequently, privacy is preserved for most users—but compromised for the subset of

users with the smallest hash values.

To improve on this, we first formally discuss how much information an adversary can gain about

individual IDs by investigating a KMV sketch. As outlined in our threat model, we assume that

an adversary gained access to the counting sketch and can investigate the k smallest values. We

further assume that an adversary knows the algorithm specifications, particularly the hash function

H , the hash salt, and the set of candidate IDs (so that their hash values can be enumerated). We

want to prevent an adversary from concluding that a certain ID is part of a data set. Our model

also captures that adversaries bring previous knowledge; in particular, they can already quantify a

probability that a certain ID is part of the set.
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The challenge here is, while protecting privacy, to still be able to produce accurate estimates.

In the end, we aim for a solution that balances the trade-off between computational efficiency,

accuracy, and privacy.

4.1 Privacy Extension
As stated above, unmodified KMV leaks private data: an adversary might be able to link the k
smallest hash values to IDs. To solve this problem, we introduce a perturbation technique, leading to

a new privacy-preserving counting sketch, namely Privacy-Preserving KMV (P2KMV). It is related

in spirit to what has been proposed for PCSA in [40]; however, the technique proposed here is not

only based on a different type of sketch, but it also allows for Jaccard-index-based intersection

estimates.

P2KMV obfuscates the k smallest hash values by adding dummy hash values. During the ini-

tialization phase, each hash value is chosen independently with probability p ∈ [0, 1] as a dummy

element and added to the sketch. The k smallest dummy hash values are used as the sketch’s initial

k smallest hash values. By doing so, P2KMV also protects the IDs that are mapped to the k smallest

values: each of these hash values could be either a dummy element or originate from a sampled ID.

We can improve on this process by taken the following property into account: since each hash

value will be chosen as a dummy independently with probability p, the distance between these

values follows a geometric distribution with an expected value of p−1. It will therefore suffice to

randomly draw k distances d1,d2, . . . ,dk from a geometric distribution and choose the dummies

accordingly.

Since the probability p determines the degree of obfuscation, we call it the privacy level. This
privacy level allows us to guarantee plausible deniability for each ID sampled by a P2KMV sketch.

There are different conflicting definitions of plausible deniability in literature, e. g. [2, 7]. Here,

we say that a data structure provides plausible deniability, if some uncertainty about the fact that

a specific ID x has the property analyzed by this data structure, i. e. x ∈ M , will remain after

inspection of the data structure.

We use the concept of pre- and post-knowledge, to further formalize this notion of plausible

deniability: letM be the set of IDs that were sampled by the P2KMV sketch, and let x ∈ M be the

adversary’s ID of interest. We assume that the adversary has some pre-knowledge on how likely

x ∈ M is and that he wants to confirm that x ∈ M holds. We denote the adversary’s pre-knowledge

as the a-priori probability Prpre(x). Accordingly, we denote the adversary’s post-knowledge as
the a-posteriori probability Prpost(x), i. e., the adversary’s knowledge on how likely x ∈ M is after
analyzing the sketch. With these notions we define plausible deniability as follows.

Definition 4.1 (Plausible Deniability). We state that a data structure provides (γ )-plausible
deniability, if there is a γ > 0 such that for any setM of IDs sampled by the data structure

1 − Prpost(x)

1 − Prpre(x)
≥ γ ,

holds for all x ∈ M and all Prpre(x) < 1.

This definition is centered around the question, how well the data structure keeps an adversary

from concluding that an ID x is in M as a function of the adversary’s pre-knowledge. By using

the lower bound of the fraction between the remaining uncertainty after and before analyzing the

data structure for all IDs sampled by the data structure and all possible levels of pre-knowledge, γ
constitutes a very robust privacy metric. Note, that if the attacker can obtain complete certainty

(Prpost(x) = 1) for any combination of pre-knowledge and ID x ∈ M , no γ > 0 can be found and

there will be no plausible deniability by our definition.
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Theorem 4.1 (plausible deniability of P2KMV). A P2KMV sketch provides (γ )-plausible denia-
bility, where γ is its privacy level p.

Proof. First, note that the adversary has a knowledge gain only if H (x) ≤ max(K), i. e., the
hash value of x is one of the k smallest hash values. If H (x) > max(K), then the sketches with

and without x being sampled do not differ, so that no information can be gained, resulting in the

adversary learning nothing about x . In this case Prpost(x) = Prpre(x) holds.
Due to the dummy values, however, the adversary cannot be sure if H (x) is indicative of x ’s

presence inM , even if H (x) ∈ K holds. In this case, Prpost(x) is equal to the probability that x ∈ M
given H (x) ∈ K . That is, Prpost(x) = Pr(x ∈ M |H (x) ∈ K).
Using Bayes’ theorem, we can re-write Prpost(x) as

Prpost(x) =
Pr(H (x) ∈ K |x ∈ M) · Pr(x ∈ M)

Pr(H (x) ∈ K)
. (3)

As stated above, x is only vulnerable when H (x) is among the k smallest values; then, Pr(H (x) ∈
K |x ∈ M) becomes one. Moreover, Pr(x ∈ M) is the adversary’s pre-knowledge, i. e., equal to

Prpre(x). Applying the law of total probability yields

Pr(x ∈ K) = Pr(H (x) ∈ K |x ∈ M) · Pr(x ∈ M)

+ Pr(H (x) ∈ K |x < M) · Pr(x < M).

Note that the first product is identical to the enumerator in Equation (3). The second product

consists of Pr(x < M), which simply is 1 − Prpre(x), and Pr(H (x) ∈ K |x < M). The latter describes

the probability that x ’s hash value is one of the k smallest values, given that x is not inM . This can

only happen if x is chosen as a dummy element, i. e., with probability p. Combining all insights

yields

Prpost(x) =
Prpre(x)

p + (1 − p) · Prpre(x)

as the worst case post-knowledge of an adversary analyzing a P2KMV sketch. Thus

1 − Prpost(x)

1 − Prpre(x)
≥

p

p + (1 − p) · Prpre(x)

holds for every x ∈ M . The right part of this inequality decreases monotonically when the adver-

sary’s pre-knowledge increases. Since

lim

Prpre(x )→1

p

p + (1 − p) · Prpre(x)
= p

for every x ∈ M , we can conclude that

1 − Prpost(x)

1 − Prpre(x)
≥ p.

Therefore a P2KMV sketch provides (γ )-plausible deniability with γ = p. □

Note that plausible deniability does not protect against an adversary whose goal is to find out,

if x < M , i. e., an ID does not have the monitored property. We conclude that P2KMV is resistant

against an adversary with access to the sketch by combining data minimization with perturbation.

This way, P2KMV provides provable plausible deniability for all personal identifiable information.
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4.2 Set Cardinality Estimation
While P2KMV effectively protects privacy, it is no longer possible to use KMV’s estimations as

presented earlier: the dummy elements would lead to gross overestimation. In the following,

we derive new methodologies for estimating the set cardinality, set union cardinality, and set

intersection cardinality using P2KMV. These estimation algorithms belong to themain contributions

of this paper.

During the initialization of P2KMV, on average p ·nID hash values are chosen as dummy elements.

However, one cannot tell which of the k smallest hash values are dummy elements. This is at the

heart of the algorithm’s privacy protection. To correctly estimate the set cardinality, though, we

have to remove the dummies’ influence on the estimation.

Let S be a P2KMV sketch with privacy level p. Further, let D be the inserted dummy hash

values, H (M) the set of hash values of the IDs sampled by S and K the set of the k smallest hash

values. Because H is injective, |M | = |H (M)| holds. According to Equation (1), we can use S to

estimate |H (M)∪D |. A naive way to estimateH (M)’s cardinality is to subtract |D | from the estimate

ˆϑ |H (M )∪D | . However, this yields an unbiased estimate only if H (M) ∩ D = ∅. Since there might be

“collisions”, i. e., hash values of sampled IDs which had also been inserted as dummy elements, we

have to assume that H (M) ∩ D is, in general, not empty.

The problem can be modeled as an urn problem with |D | black and nID − |D | white marbles,

which are drawn without replacement. The black marbles represent the initially inserted dummy

elements. |H (M)| marbles are drawn from the urn. The number of drawn white marbles X follows

a hypergeometric distribution; the expected number of white marbles is given by

E[X ] = |H (M)| ·
nID − |D |

nID
≈ |H (M)| · (1 − p),

when using p · nID to approximate |D |.

Since the expected number of drawn white marbles is an estimation for |H (M) \ D |, we can set

E[X ] = ˆϑ |H (M )\D | , where

ˆϑ |H (M )\D | = ˆϑ |H (M )∪D | − p · nID

is used to estimate |H (M) \ D | = |H (M) ∪ D | − |D |.

Solving the resulting formula for |H (M)| yields our estimator
ˆϑ |M | for |M |:

ˆϑ |M | =
ˆϑ |H (M )\D |

(1 − p)
=

ˆϑ |H (M )∪D | − p · nID

(1 − p)
.

Combining the estimates for
ˆϑ |M | ,

ˆϑ |M\D | and
ˆϑ |M∪D | (see Equation (1)) finally yields

ˆϑ |M | =
nID · (k − p ·max(K))

(1 − p) ·max(K)
. (4)

This provides a way to estimate set cardinalities for single P2KMV sketches. We now extend this

to set operations for P2KMV—first unions, then intersections.

4.3 Set Union Cardinality Estimation
Perturbation has an impact on combining multiple sketches as well. For sketches without dummies

(p = 0), all hash values in Ku are by definition elements of the union. As seen before, estimating

Su ’s cardinality is, in this case, straightforward (see Section 3.4). For P2KMV sketches (p > 0), there

is a chance, though, that a hash value in Ku does not correspond to an ID sampled by any sketch,

i. e., it is actually not in the union.
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Fig. 3. Illustrating Fi , Ci , and Li , which are relevant for the intersection cardinality estimation. The relation
between the subsetsV andT serves as an example for our main idea of removing the real dummies’ influence.

However, we can use the perturbation probabilities pi of the P2KMV sketches Si to calculate

Su ’s perturbation probability pu . We assume that the dummies are chosen independently for the

individual sketches. Let pu denote the probability that a specific ID was chosen as a dummy in at

least one of the S1, S2, . . . , Sn sketches. Then, pu equals

pu = 1 −

n∏
i=1

(1 − pi ).

Assuming all Si use the same privacy level p, pu is simply given by 1 − (1 − p)n .
The set union cardinality of perturbed P2KMV sketches can thus be estimated by evaluating the

union sketch Su according to Equation (4) using pu as the privacy level.

4.4 Set Intersection Cardinality Estimation
As we have seen before, set intersection cardinality estimation is a challenge even without perturba-

tion. Adding perturbation makes estimations even more challenging. Without special consideration,

the dummy elements would cause massive estimation errors. So, we finally come to the main

question tackled in this work: how to obtain unbiased intersection estimates from P2KMV sketches?

We start with an intuitive explanation with two sets, which shows the general approach. In par-

ticular, we show how to infer the Jaccard index in the presence of perturbation through dummy

elements. Subsequently, we, more formally, consider the general case of n sets. Like in the case

of set union cardinality estimations it would be possible to formulate all equations for individual

per-sketch privacy levels. However, as this would greatly reduce the possibility to simplify the

resulting equations, we only consider set intersection cardinality estimations using sketches with

identical privacy levels.

4.4.1 The case n = 2. LetM1 andM2 be two sets, S1 and S2 the corresponding P2KMV sketches

with (identical) privacy level p, and Su the respective union sketch holding ku hash values. Further

let H (M1) and H (M2) be the sets of hash values corresponding to the IDs inM1 andM2. Recall, our

goal for estimating |M1 ∩M2 | efficiently is to find an estimate
ˆϑ |U | of the union cardinality and an

estimate
ˆϑ J of the Jaccard index.

To this end, let I be the (finite) set of possible IDs. Let Di ⊆ {1, 2, . . . ,nID} be the (unknown)
subset of all hash values that were chosen as dummy elements for Si and let RDi = Di \ H (Mi ) be

the set of “real” dummies for Si , i. e., all dummy hash values that do not correspond to an ID inMi .

Finally, by Ki we denote the set of Si ’s ki smallest hash values.
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In order to estimate the Jaccard index, the first step is to determine |C0 |, the number of hash

values that are in K1,K2, and Ku , which is given by

C0 = {h ∈ Ku : h ∈ (H (M1) ∪ RD1) ∩ (H (M2) ∪ RD2)} .

Since P2KMV sketches are obfuscated by dummy elements, however, |C0 | per se can merely be

used to give an upper-bound estimation of the true intersection size. For our two-set example, we

can identify four cases, illustrated in Figure 3, that have an impact on C0: (a) h corresponds to an

ID x that has been sampled by S1 and S2 ( , ), (b) h = H (x) is a real dummy in S1 but x has been

sampled by S2 ( , ), (c) h corresponds to an ID x that has been sampled by S1 but H (x) is a real
dummy in S2 ( , ), and (d) h is a real dummy in S1 and S2 ( , ).

Let Fi denote the set of hash values that are real dummies in exactly i sketches and correspond

to sampled IDs in the remaining sketches. We show the four cases and the respective sets Fi in the

lower part of Figure 3. We can now decompose c0 = |C0 | by

c0 = |F0 | + |F1 | + |F2 |. (5)

For the Jaccard index estimation, we need to find the ratio between hash values that correspond to

sampled IDs in all P2KMV sketches and the number of hash values in Ku corresponding to sampled

IDs in any of the P2KMV sketches. Here the hash values in Ku corresponding to sampled IDs in any
of the P2KMV sketches, i. e. ( , ), ( , /-), and ( /-, )—where /- translates to real dummy or none
—are representatives of the union. The hash values that were sampled by all P2KMV sketches, i. e.

( , ), however, represent elements in the intersection. Consequently, we need to determine |F0 |, i. e.,
the number of hash values that correspond to IDs sampled by every sketch ( , ). The perturbation

prevents us from individually distinguishing hash values of sampled IDs from dummies, though.

However, we can still estimate the set size |F0 |. To this end, we start from Equation (5). In order

to obtain |F0 | from this equation, we need additional information. Instead of only considering the

hash values that are present in both P2KMV sketches (h ∈ K1 and h ∈ K2, i. e., h ∈ C0), we also take

into account the hash values that are only in exactly one P2KMV sketch (either h ∈ K1 or h ∈ K2).

Let Ci with i ∈ {0, 1, ...,n − 1} be the hash values in Ku that are present in exactly n − i P2KMV

sketches, either as a hash value of a sampled ID or as a real dummy, and let ci = |Ci |. For two sets,

only C0 and C1 are defined. C0, containing ( / , / ) as used before, already satisfies this definition.

C1, containing ( / , -) and (-, / ), provides the additional information necessary to estimate the

cardinality of F0. The composition of both sets is depicted in Figure 3.

We now show howC1 helps to estimate |F1 | and |F2 |. To this end, we define two subsetsV andT
as an example to explain the general approach. Let V consists of all h ∈ Ku that were neither real

dummies nor hashes of sampled IDs in S1, i. e., h < K1, but corresponding to IDs sampled by S2 (-, ).
Let T , in contrast, consists of all hash values in Ku that were real dummies in S1 and correspond to

sampled IDs in S2 ( , ). The upper part of Figure 3 illustrates the relation between V and T .
One possible approach to understand the connection between V and T is the following: Due

to the initial perturbation, about a fraction of p of all hash values that are not hash values of IDs

sampled by S1, i. e. h < H (M1), will be chosen as dummy values resulting in real dummies, i. e.

h ∈ RD1. All hash values neither chosen as dummies nor corresponding to a sampled ID will be

absent from S1 and thus h < K1. Thus, V ’s and T ’s cardinalities can be approximated by

|V | = |{h ∈ Ku : h < K1 ∧ h ∈ H (M2)}|

≈ (1 − p) · |{h ∈ Ku : h < H (M1) ∧ h ∈ H (M2)}|,

|T | = |{h ∈ Ku : h ∈ RD1 ∧ h ∈ H (M2)}|

≈ p · |{h ∈ Ku : h < H (M1) ∧ h ∈ H (M2)}|.
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The cardinalities of T and V are therefore related (as indicated in Figure 3) by

|T | ≈
p

1 − p
· |V |.

Following this line of thought, |F1 | can be estimated by

ˆϑ |F1 | =
p

1 − p
· (c1 − |L1 |) , (6)

where Li is the set of hash values in Ku that are real dummies in exactly n− i sketches but absent in
the remaining sketches. For two sets there are exactly two Li : L0 containing ( , ) and L1 containing
(-, ) as well as ( ,-). Since

|L0 | = |{h ∈ Ku : h ∈ RD1 ∧ h ∈ RD2}|,

|L1 | = |{h ∈ Ku : h ∈ RD1 ∧ h < K2}|

+ |{h ∈ Ku : h < K1 ∧ h ∈ RD2}|,

the expected value of their cardinalities E
[
X |L0 |

]
and E

[
X |L1 |

]
can be written as

E
[
X |L0 |

]
= p2 · |{h ∈ Ku : h < H (M1) ∧ h < H (M2)}|,

E
[
X |L1 |

]
= 2p · (1 − p) · |{h ∈ Ku : h < H (M1) ∧ h < H (M2)}|.

Given an estimate
ˆϑ |L0 | of |L0 |, we can estimate |L1 | by

ˆϑ |L1 | = 2
ˆϑ |L0 | ·

1 − p

p
. (7)

We can obtain an estimate for |L0 | by considering d , the number of real dummies in Ku . For two

sets, h ∈ {1, 2, . . . ,nID} is a real dummy in Su iff h ∈ L0 or h ∈ L1, i. e., d = |L0 | + |L1 |. Thus, we can

estimate
ˆϑ |L0 | using Equation (7) by

ˆϑ |L0 | =
ˆϑd

1 + 2 ·
1−p
p

.

Apart from estimating the size of other Li , ˆϑ |L0 | can be used to estimate |F2 |. For two sets, F2 contains
all h ∈ Ku that are real dummies in both sketches ( , ). Hence, L0 = F2 holds. The only missing

component
ˆϑd (the estimate for the total number of real dummies in Ku ) can be derived easily as

follows.

Note that no hash value corresponding to a sampled ID in Su can be a real dummy. Each of the

remaining hash values is chosen with probability pu as a dummy. Since every dummy thus chosen

will be a real dummy we can now estimate
ˆϑ |RD | the number of IDs chosen as dummies for Su that

are real dummies. To this end, we will use the expected number of hash values chosen as dummies

among all hash values that are not in H (Mu ), i. e. do not correspond to IDs sampled by Su . Using

the set cardinality estimation for the union
ˆϑ |U | as in Equation (4) we can express

ˆϑ |RD | by

ˆϑ |RD | = pu ·

(
nID − ˆϑ |U |

)
.

Now we can estimate RRD , the number of Su ’s real dummies in proportion to |H (M1)∪H (M2)∪Du |,

by

RRD =
ˆϑ |RD |

ˆϑ |RD | + ˆϑ |U |

.
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This finally yields an estimate
ˆϑd via the expected number of real dummies in Ku given RRD :

ˆϑd = ku · RRD .

Since we can derive c0 and c1 directly from S1 and S2, we can use
ˆϑ |L0 | to estimate |F2 | and |L1 | (see

Equation (7)), which allows us to estimate |F1 | (see Equation (6)) and finally |F0 | (see Equation (5)).

To estimate the Jaccard index, we determine the number of hash values in Ku that correspond to

sampled IDs in any sketch, which is given by

ku − ˆϑd = ku · (1 − RRD ).

Bringing it all together, we can estimate
ˆϑ J the Jaccard index ofM1 andM2 as

ˆϑ J =
ˆϑ |F0 |

ku · (1 − RRD )
, (8)

and the cardinality of the set intersection ofM1 andM2 by

ˆϑ |M1∩M2 | =
ˆϑ J · ˆϑ |U | . (9)

Following the described approach, we can obtain estimates for |Fi | based on c j for an arbitrary

number of sets.

4.4.2 Generalization to n sets. The approach introduced above can be extended to allow the

estimation of set intersection cardinalities forn sets. Let S1, S2, . . . , Sn be these sets’ P2KMV sketches

with privacy level p. We will continue to use Fi , c j , d , and Lt as defined above with i ∈ {0, 1, . . . ,n}
and j, t ∈ {0, 1, . . . ,n − 1}. Observe that for n sets, n different c j can be obtained from S1, S2, . . . , Sn .

While c j and RRD can be calculated as before, the remaining equations have to be adapted for n
sets. Estimating |Lt | is still possible using the expected value of |L0 |. To this end, one can make

use of the fact that every Lt is a union of

(n
t

)
disjoint subsets. These only differ in which sets their

elements are real dummies in. Hence, |Lt |’s expected value E
[
X |Lt |

]
can be calculated by

E
[
X |Lt |

]
=

(
1 − p

p

)t
·

(
n

t

)
· E

[
X |L0 |

]
.

Estimating
ˆϑd as before, we can estimate |L0 | by

ˆϑ |L0 | =
ˆϑd∑n−1

t=0

(
1−p
p

)t
·

(
n

t

) = ˆϑd(
1

p

)n
−

(
1−p
p

)n , (10)

and |Lt | using

ˆϑ |Lt | =

(
1 − p

p

)t
·

(
n

t

)
·

ˆϑd(
1

p

)n
−

(
1−p
p

)n .
Further, for n sets |Fn | = |L0 | holds, enabling us to estimate |Fn | using ˆϑ |L0 | .

In general, the connection between c j and Fi is more intricate. First we note, c0 remains un-

changed:

c0 =
n∑
i=0

|Fi |. (11)
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Input: P2KMV sketches S1, S2, . . . , Sn
and privacy level p

calculate

union sketch Su
calculate

|C0 | to |Cn−1 |
estimate |Fn |
using Eq. (10)

estimate

|F1 | to |Fn−1 |
by solving Eq. (13)

estimate |F0 |
using Eq. (11)

calculate

Jaccard index

using Eq. (8)

estimate

set intersection

cardinality

using Eq. (9)

construct

matrix G

procedure to

estimate |F0 |

initialization (only once)

Output:
ˆϑ |S

1
∩S

2
∩···∩Sn |

Fig. 4. Estimating intersection cardinality for n sets.

By following the approach introduced for n = 2, a general formula for the connection between c j
and |Fi | can be obtained (for details see Appendix A):

c j

(
p

1 − p

) j
−

(
n

j

)
·

ˆϑd(
1

p

)n
−

(
1−p
p

)n = n−j∑
k=1

(
n − k

j

)
|Fn−k |. (12)

Let G ∈ R(n−1)×(n−1)
be the matrix with coefficients

дi, j =

{(n−j
i−j

)
, if i ≥ j

0 , else.

Then f = (|F1 |, |F2 |, ..., |Fn−1 |)
T
can be estimated by solving the following system of linear equa-

tions:

G · f =

©­­­­­«
cn−1

(
p

1−p

)n−1
−

( n
n−1

)
·

ˆϑd
( 1p )

n−(
1−p
p )n

...

c1
(

p
1−p

)
1

−
(n
1

)
·

ˆϑd
( 1p )

n−(
1−p
p )n

ª®®®®®¬
. (13)

Because now estimates for |F1 |, |F2 |, ..., |Fn | are known, |F0 | can be estimated using c0 and Equa-

tion (11). This allows the estimation of the Jaccard index using Equation (8), which in turn yields

an estimate for the set intersections cardinality.

Figure 4 concludes this section and summarizes the necessary steps to estimate the set intersection

cardinality for n P2KMV sketches.
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Fig. 5. Influence of the privacy level on the adversary’s post-knowledge, showing that standard KMV (p = 0)
cannot protect the privacy of all users. P2KMV (p > 0) instead effectively limits the knowledge gain and
provides plausible deniability.

5 EVALUATION
In this section, we evaluate P2KMV and provide an in-depth parameter study. In particular, we

take a look on the influence of various parameters on the privacy, accuracy, and on the runtime

complexity. Moreover, we provide guidelines on parameter selection and, finally, discuss our findings

and P2KMV’s limitations.

5.1 Privacy Analysis
We have introduced the notion of pre- and post-knowledge, which provides a well-defined and

formally tractable basis for analysis. We also elaborated on this understanding and prooved plausible

deiniability for our approach. From Theorem 4.1, it becomes clear that if we choose a privacy level

p > 0, we gain plausible deniability. That is, an uncertainty remains and the adversary’s post-

knowledge will effectively be limited.

In Figure 5, we plot the attacker’s change in knowledge for varying privacy levels. We compare

the adversary’s pre-knowledge (x axis) to the adversary’s post-knowledge (y axis). For p = 0 the

adversary is able to link the k smallest hash values with certainty to an ID. For p = 1 the adversary

is unable to learn any new information. At the same time, though, we cannot extract any useful

statistics either. Thus, a privacy level between these two extremes is desirable.

Considering that an increase in the privacy level reduces the accuracy of subsequent estimations,

a use-case specific sweet spot between privacy and accuracy has to be found. In the following, we

will therefore focus on the accuracy.

5.2 Methodology
We have implemented a deterministic simulation to evaluate the accuracy our approach. In our

simulation environment, we know the ground truth of sampled IDs, and are therefore able to assess

the achieved accuracy.

To this end, we generated (pseudo) random sets that follow a discrete uniform distribution on

the integers in [1,nID]. We paid particular attention to the set generation, which we designed to

yield a controlled set intersection size: we first randomly generated the intersection and used it as

a basis for each set. In a second step, we complemented the individual sets with distinct random

values, as long as they did not expand the set intersection. This way of set generation gives us total
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control of the resulting set intersection cardinality, but otherwise imposes little restrictions on the

resulting sets.

For P2KMV, the generated random numbers in the set were directly used as hash values, because

they already fulfilled our specification of H . Each simulation was repeated ten times independently

by changing the random seed, which resulted in different sets and perturbation patterns.

In our evaluation, we compare our approach to PCSA [19] and to a Bloom filter-based ap-

proach [30]. PCSA stands for probabilistic counting with stochastic averaging and is based on a

so-called FM sketch: values are hashed into binary sketches. The resulting bit-pattern serves as

an indicator for the number of distinct values. The estimate is then improved by using stochastic

averaging, which combinesm trials into a better estimate. Estimating set intersection cardinalities

with PCSA is possible using the inclusion-exclusion principle.

Bloom filters can also be used to estimate set intersection cardinalities: every set is represented by

a Bloom filter B1,B2, . . . ,Bn . These Bloom filters are combined into a new filter B∧ by calculating the

bit-wise logical AND of B1,B2, . . . ,Bn . Because of the nature of Bloom filters, B∧ may contain 1-bits

that do not belong to any element in the set intersection. Many et al. [30] provide a methodology

to correct these false positives, and Papapetrou et al. [36] provide a cardinality estimation. We refer

the reader to Many et al.’s paper for more details.

Unlike for privacy-enhanced PCSA [40] and P2KMV, to our best knowledge, there is no Bloom

filter-based approach that provides equivalent privacy guarantees. We therefore focus on PCSA

and P2KMV when it comes to comparing privacy-preserving approaches.

In fact, both, privacy-enhanced PCSA and P2KMV, have comparable privacy properties when

choosing the parameters correctly. When we look at the hash values that could be linked to

IDs without perturbation, an adversaries’ worst case knowledge-gain is identical for P2KMV and

privacy-enhanced PCSA, if both use the same privacy level p. For privacy-enhanced PCSA about

one ID per row in the PCSA matrix needs to be protected through obfuscation. Therefore, privacy-

enhanced PCSA with k rows and P2KMV (storing k hash values) will have identical worst case

privacy properties, if they use the same privacy level p. Thus, the results are directly comparable.

We, therefore, choose our simulation parameters accordingly: in order to demonstrate the

applicability in large settings, we chose a simulation scenario with nID = 10
7
IDs and individual

sets with a cardinality s of 219 IDs, but varying intersection sizes. If not specified otherwise, we

use seven sets and k = 0.01 · s = 5243, which equals one percent of the total set size. We use the

same number k for the number of rows in a PCSA matrix. By default, we also use the same privacy

level, i. e., p = 0.1, for both approaches, PCSA and P2KMV. In all our evaluation results, we capped

negative estimates to zero, since negative cardinalities do not make sense. We show the arithmetic

means of ten simulation runs. Error bars indicate the standard error of the mean.

5.3 Baseline Accuracy (p = 0)
Here, we provide a baseline evaluation, i. e., without any additional privacy protection. We compare

our approach to PCSA using the inclusion-exclusion principle and to the Bloomfilter-based approach

mentioned before.

Each of the three approaches has one or more parameters, which greatly influence their accuracy.

In order to make the three different approaches comparable, we choose the parameters to yield a

similar worst-case privacy, i. e., approximately the same number of IDs that can be revealed from

the data structure.

In Figure 6, we compare the accuracy for varying intersection cardinalities. The ground truth

cardinality is plotted along the x axis, the estimated set intersection cardinality along the y axis.

We informally refer to the resolution limit as the lower bound where the respective approach starts
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Fig. 6. Baseline accuracy (k = 0.01 · s , p = 0, 7 sets).

to provide accurate results. For PCSA and Bloom filter the resolution limit is approximately 2
14

and 2
12
elements, respectively. In contrast, our P2KMV approach has a resolution limit of 2

8
, i. e., it

already yields accurate results for intersection sizes that are significantly smaller. Note that the

error bars, showing the standard error of the mean, appear to have a downward overhang due to

the logarithmic scale of the plot. In fact, they are symmetric around the mean.

The data points prior to the resolution limit provide a deeper insight into the respective ap-

proaches and are therefore noteworthy as well. The quality of the set intersection cardinality

estimation with P2KMV depends on a representative number of elements in the intersection being

hashed to the sketch’s smallest values. For very small intersection sizes, there is a high probability

that no elements of the intersection are among the k smallest hash values. Thus, due to the limited

number of samples, the resulting estimate is too small. For PCSA and the Bloom filter, in contrast,

the estimation procedure is quite noisy and starts producing accurate results when the signal (the

set intersection cardinality) is significantly stronger than this noise (the inherent variance of the

estimation process).

5.4 Accuracy for p > 0

Now, let us turn to the accuracy of perturbed sketches. Since there is no Bloom filter-based approach

that provides equivalent privacy guarantees, we focus on privacy-enhanced PCSA and P2KMV in

the remainder.

In Figure 7, we start by examining how the number of sets influences accuracy. The figures

show simulation results for varying true intersection cardinalities (x axis) and compare it to the

estimated set intersection cardinalities (y axis). Again, note the logarithmic scale and the resulting

downward overhang of the error bars. The gray diagonal provides a guideline: perfect estimates

would lie here.

Starting by an intersection of two sets and gradually increasing the number of sets, the results

clearly demonstrate the benefits of P2KMV over PCSA. While P2KMV’s resolution limit improves

with an increasing number of sets, PCSA’s resolution limit gets worse. It appears that the influence

of the privacy level becomes less noticeable for P2KMV. This underlines P2KMV’s merits to handle

larger number of sets. The variations of the resolution limit are basically caused by an accumulated

privacy level pu , which is larger for more sets. PCSA’s resolution limit, in contrast, suffers not only

from an accumulated pu , but also from error propagation.

Increasing the privacy level p intentionally adds more noise to the sketches. Therefore, it in-

evitably affects estimations. In Figure 8, we show p’s impact on accuracy. While increasing p
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Fig. 7. Influence of #sets (k = 0.01 · s , p = 0.1).

massively distorts PCSA, P2KMV can handle it adequately, resulting only in a shifted resolution

limit.

We can adjust the accuracy by modifying k . In Figure 9, we show k’s influence on the accuracy.

The results, including Figure 8a (k = 0.01 ·s), confirm that increasing k results in better accuracy for

both PCSA and P2KMV. For P2KMV, k’s impact is stronger, though. The transition from Figure 9a

to 8a and from Figure 8a to 9b clearly demonstrates P2KMV’s accuracy improvements.

So far, we presented the standard error of the mean in our analysis to provide a measure of

accuracy. In order to quantify the amount of variation or dispersion as well, we also provide the

standard deviation for varying setups. In Table 1, we fixed the true intersection size at 2
14
and

varied the number of sets, p, and k as before. Hence, the results can be considered a point estimate

of our simulation study. In some cases, the standard deviation becomes larger, e. g., for less sets or

a larger p, which implies a dispersion between individual runs. As a consequence, we suggest to

perform multiple measurements to increase precision (see Section 5.7 for a discussion). In general,

though, the standard deviation confirms our impression of the parameter’s influence and that

P2KMV is superior compared to PCSA in terms of intersections.
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Fig. 8. Influence of p (k = 0.01 · s , 7 sets).
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Fig. 9. Influence of k (p = 0.1, 7 sets).
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Table 1. Set intersection cardinality estimations for a true intersection size of 214 (= 16384) IDs.

P2KMV PCSA

Setup Mean SD Mean SD

7 sets, p = 0.0, k = 0.01 · s 16381 2477 18504 9547

7 sets, p = 0.1, k = 0.01 · s 16779 4293 19338 18493

7 sets, p = 0.1, k = 0.02 · s 16587 2960 19408 7002

7 sets, p = 0.3, k = 0.01 · s 15859 9193 23132 50788

2 sets, p = 0.1, k = 0.01 · s 15539 10283 20742 12732

SD = standard deviation

5.5 Parameter Selection for P2KMV
As discussed above, there are several parameters influencing P2KMV’s accuracy and privacy.

Both are influenced by the choice of the privacy level p. In general we advice to use a privacy

level of 0.1, because we believe it provides a good trade-off between privacy and accuracy. However,

higher estimation accuracy can be achieved at the cost of weaker plausible deniability by a privacy

level closer to zero.

The number k of the smallest values stored in each sketch greatly influences the estimate’s

accuracy as well as how many IDs have to be secured via perturbation. As we saw in Figure 9, the

choice of k is directly related to the sketch’s resolution limit. To better understand the impact of k
on P2KMV’s accuracy, taking a closer look at KMV can be very helpful. It is important to note that

both accuracy and resolution limit of KMV represent lower bounds for P2KMV—in essence because

the perturbation can obviously only make things worse. Because of the way the set intersection

cardinality estimation is performed (see Equation (2)), k influences the estimate as follows: given

the union cardinality |U |, k determines the “granularity” of the estimation, because it can only

output multiples of
|U |

k as estimates. This also gives a theoretical lower bound for the resolution

limit, as no set intersection cardinalities below
|U |

k can be told apart.

As stated before, these lower bounds for KMV are also lower bounds for P2KMV and can be used

to suitably choose k for a given application. Now let us assume somebody wants to know whether

the cardinality of n sets’ intersection is bigger than i . This person knows that the intersected sets

are each of size s . Then k should chosen to be at least

n · s

i
,

which is the maximal cardinality of the sets’ union divided by the desired intersection cardinality.

Our practical experience showed that a more robust estimate can be obtained by choosing k about

twice as big, i. e.,

k ≥ 2 ·
n · s

i
.

Note that this approximates the union cardinality rather coarsely, which results in substantial

overestimation if n is large. If the cardinality u of the union is known or can be approximated,

replacing n · s with u in this last inequality will yield a far better choice for k .
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Table 2. Mean runtime for varying number of sets

P2KMV PCSA

#Sets Mean SE Mean SE

9 1228ms 102ms 1102ms 171ms

10 1331ms 144ms 2108ms 162ms

11 1455ms 139ms 4907ms 269ms

12 1384ms 139ms 9399ms 667ms

13 1546ms 165ms 20140ms 344ms

SE = standard error of the mean

5.6 Runtime Complexity
Beside accuracy, computational efficiency is one of our main motivations for the development

of P2KMV. The runtime for estimating the intersection cardinality using the inclusion-exclusion

principle grows exponentially with the number of sets n, as shown above. P2KMV, in contrast,

is far more efficient: to estimate the set intersection cardinality with P2KMV, the first step is to

construct matrix G, which takes O(n2) operations. Solving the system of linear equations from

Equation (13) efficiently involves calculating the inverse of G. This takes O(n3) steps. However,
both constructing G and calculating its inverse has to be done only once for any given value of n.
So, when calculating multiple set intersections of n sets each, the matrix can be pre-calculated and

reused.

As the second step, the union sketch Su has to be calculated, which is necessary for many

procedures in our algorithm. In order to calculate Su , we have to find the ku smallest hash values

in the (sorted) P2KMV sketches S1, S2, . . . , Sn , which results in O(ku · n) operations.
The key parameters for set intersection cardinality estimations are the coefficients c j . We can

obtain them by examining how often which hash value appeared in S1, S2, . . . , Sn . This will take
O(kmax · n) steps, where kmax denotes the highest number of stored hash values in the P2KMV

sketches.

From the coefficients c j , we can estimate the |Fi |. Estimating |Fn | using Equation (10) requires the

set cardinality of the union. This can be estimated with the help of Su by finding the biggest hash

value of the ku hash values in Su and performing a constant number of multiplications, divisions

and subtractions. We recommend to store the hash values sorted by size, which enables us to

perform the set cardinality estimation in O(1).

In order to estimate |F1 | to |Fn−1 |, Equation (13) is solved. Here the inverse of G simplifies this

procedure to a standard matrix-vector-multiplication, which takes O(n2) operations. With the help

of |F1 | to |Fn |, |F0 |, our cardinality of interest, is calculated by subtracting c0 by |F1 | to |Fn |. This
last step takes O(n) operations, resulting in a runtime complexity of O(n2) for estimating the |Fi |.
Finally the Jaccard index can be calculated by evaluating Equation (8). Each value needed here

was already calculated in one of the previous steps and no complex math is involved, resulting in

a complexity of O(1). The same applies for estimating the set intersection cardinality using the

Jaccard index, which is in O(1), too.

The overall runtime complexity of our estimation algorithm depends on whether G and its

inverse were already calculated for an earlier estimation. If so, the complexity of estimating the set

intersection cardinality using P2KMV is O(n2), because k will always be smaller or equal to n in

P2KMV. Otherwise, O(n3) operations are necessary to calculate G−1
. In summary, the asymptotic
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complexity of Jaccard index-based estimation is drastically lower than the asymptotic effort that

results from any solution based on the inclusion-exclusion principle. It is important to note that

the privacy level does not affect the runtime complexity of P2KMV.

To verify our theoretical runtime analysis, we experimentally evaluated PCSA and P2KMV by

measuring the time to calculate the set intersection cardinality. Here we used a testbed with an Intel

Xeon E5-2643 v2 3.5 GHz, 8GB RAM, Ubuntu Linux 14.04, and Java 1.7. Table 2 shows the mean

runtime for 9 to 13 sets, measured in ten independent experiments. Even within this short range of

relatively small numbers of sets, we see that PCSA rapidly becomes very expensive. P2KMV on the

other hand, achieves good results for any number of sets, which underlines our theoretical findings.

5.7 Discussion
Despite complementing the toolbox of privacy-preserving data structures in general and privacy-

preserving counting sketches in particular, P2KMV has some limitations, which we will discuss in

this section.

First, we stress that our focus is clearly on efficient and accurate set intersection cardinality

estimations. For general cardinality estimations and for union cardinality estimations other counting

sketches exist, which achieve better accuracy. For example, PCSA was developed to estimate the set

cardinality in large data streams. Therefore, it does not come as a surprise that PCSA’s cardinality

estimation is more accurate than P2KMV. Nevertheless, P2KMV still provides reasonable results.

Our previous results implicitly include regular cardinality estimations and therefore also underline

the accuracy of P2KMV in this use case.

In order to achieve this high accuracy with P2KMV, we suggest parameter tuning as discussed

before. In addition, we suggest to repeat the same measurement to increase the confidence in the sta-

tistical results. Likewise, splitting the user base into cohorts within the same measurement window

might be able to increase confidence as well. Since the memory footprint and the computational

complexity of P2KMV is reasonably low, we can afford such approaches.

With P2KMV’s data minimization approach we achieve a high degree of privacy for the vast

majority of users. By applying our perturbation technique, we can guarantee a certain degree of

plausible deniability even to the small group of users that are amongst the k samples. For many

use cases, this kind of plausible deniability probably suffices, but there might be situations where

also the absence of users reveals sensitive information. In future work, we envisage to extend our

approach to conceal the absence of users as well. This is not in the nature of counting sketches,

though. It requires a novel “symmetric” perturbation technique, which also removes elements from

the sketch, and therefore leads to a completely different estimation formula.

In the face of a very powerful adversary with considerable knowledge about a certain user

ID and its statistical characteristics, a very interesting property is revealed. We can assume that

such an adversary knows the user’s hash value and the respective sketches it would expect this

user’s hash value to be sampled. In this highly targeted attack, if the user is found in all sketches,

the plausible deniability is less convincing. To some extent, our notion of an adversary’s pre-

knowledge covers this attack vector. That is, the adversary already has a “suspicion”, i. e., assumes

with a high probability, that the user contacted the service. Relative to this high starting point,

the certainty that and adversary gains, i. e., its post-knowledge after inspecting the sketches, is

considerably small. While we expect in practice a large number of categorical variables measured

with counting sketches, which likely leave enough uncertainty towards an adversary, the attack

vector still remains relevant and requires investigation in the future. In combination with the idea

of symmetric perturbation, we could impede this kind of attack vector.
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In summary, we were able to show P2KMV’s high accuracy in a deterministic simulation. We

showed that it improves privacy and provides provable plausible deniability. Further, we verified

its efficiency both theoretically and practically.

6 RELATEDWORK
In this paper, we investigate methods to obtain privacy-preserving user statistics. To this end, we

introduced a way to estimate set intersection cardinalities in a privacy-preserving way. The majority

of approaches in the area of privacy-preserving statistics consider calculating set intersections

or set intersection cardinalities in a distributed setting. Instead, we consider a centralized setting,

which is very common in practice. In this section, we will give a brief overview of the design space

and discuss related approaches. We put a focus on the security against an external and state-level

adversary and on the economic consequences of proposed solutions.

6.1 Distributed Approaches
There is a wide range of publications on private set intersections or private set intersection cardi-

nality based on distributed computation [10, 28, 30]. They generally follow two principles: (a) user

data is stored by distributed entities, and (b) only the computation result is made public, i. e., nobody

can learn any further information about other private input sets. Most prominent for this group of

solutions are algorithms employing two-party computation and secure multi-party computation.

6.1.1 Two-Party Computation. The oldest of these classes of algorithms is two-party computa-

tion, which can be seen as the predecessor of multi-party computation. Two-party computation

was first introduced by Yao [44] and allows two users to privately evaluate a function, i. e., only the

function’s result is made public but not the users’ input.

A common approach to two-party computation is the use of garbled circuits, e. g. [4, 23, 42].
However, to compute set intersections or their cardinalities using two-party computation, there

are many alternatives to garbled circuits like the use of oblivious transfer [37], homomorphic

encryption [12, 25], or commutative encryption [1, 8, 11].

All two-party computation algorithms have in common that they compute set intersections of

two parties only, which severely limits their applicability for association rule mining, for example.

For some of the approaches [5, 29] there are corresponding multi-party protocols overcoming this

limitation, while others [25] are strictly limited to two sets.

6.1.2 Secure Multi-Party Computation. Secure multi-party computation (MPC) describes a group

of algorithms to privately compute a function, i. e., without revealing any input data but what can

be learned by the function’s public output. Here, more than two private data sets can be used and

calculating the intersection of many private sets becomes possible.

As before, there are some generic MPC approaches to compute set intersections or set intersection

cardinalities, e. g., using garbled circuits [5], or specialized solutions. The main approach for

specialized solutions seems to be the usage of either secret sharing [14, 30, 34], homomorphic

encryption [26, 28], commutative encryption [41] or distributed differential privacy [10, 33].

While a wide variety of very clever algorithms has been developed in this field of research, a

severe drawback regarding privacy remains. In MPC either all data is stored in the system—by

the individual data sources or as secret shares distributed over all parties—or data minimization

techniques are used in a way that does not guarantee protection of each data record. So when all

parties of the multi-party computation are breached or are forced to reveal their information by a

state level adversary some or all private information remain retrievable.
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6.2 Centralized Approaches
Instead of collecting user data on many different sources, in the centralized approach all data is

collected at one central location (the service provider) and has to be secured there. This model

not only reflects today’s practice, but also eliminates the need of user cooperation. In fact, the

centralized model covers situations where data accumulates implicitly, i. e., metadata, which the

user cannot control. For this reason, users have to trust the service provider to some extent anyway.

This trust, however, does not extend to attackers who might gain access to the centralized data in

one way or the other. While certain attacks might be deflected by good data encryption, others will

also steal or otherwise obtain the secrets used for encryption. For this reason, storing all data and

performing set intersection or set intersection cardinality computations on the plain data, which is

arguably the easiest way, poses a privacy risk for the users. To mitigate this privacy risk and to

allow for the computation of set intersection cardinalities either sketches or differential privacy

can be used.

6.2.1 Sketches. The purpose of sketches is to aggregate data in a way that retains important

characteristics of the data, and reduces its storage footprint. This makes them suited as tools for

data minimization as well. Furthermore, the aggregation can result in an increase in privacy for

certain users, if their data can not be recovered sufficiently from the aggregate.

In general, sketches are used in a wide variety of ways [9, 13, 24, 27]. Counting sketches were

first devised by Flajolet and Martin [19] to enable fast and memory efficient estimates of the number

of unique elements in a database. Usually, they achieve a small memory footprint by constructing a

succinct representation of a set [3, 19, 21]. Sketches are also often used to reduce communication

complexity in network protocols [13, 30, 38]. Here, we use sketches to reduce the amount of stored

personal data of individuals. While in the first case, sketches might still contain sensible information,

we aim to quantify and minimize the information leakage remaining. Our proposed algorithm

therefore provides further procedures to obfuscate the data.

The combination of counting sketches and privacy-enhancing obfuscation was first introduced

in [40]. In this paper, we follow similar lines, but use KMV [3] as the counting sketch instead

of PCSA [20]. Changing the underlying counting sketch requires novel approaches to sketch

evaluation, but, as we have shown in this paper, this pays off through efficient and accurate set-

intersection cardinality estimates. The role of the perturbation in our new counting sketch is to

prevent the attacker from fully recovering user data from the aggregate. This increases the users’

privacy and guarantees plausible deniability for every user.

6.2.2 Differential Privacy. In recent years, differential privacy [16] became a popular technique

for obfuscating the answers to statistical queries [15, 31]. Similar to our approach, this obfuscation,

which can be seen as the addition of random noise, allows for strong privacy guarantees. Because

the user’s privacy has to be protected against an attacker with access to the centrally stored data,

it is not enough to apply the random noise to computation results, as is normally done [10, 33].

Instead, the noise has to be applied to the underlying data sets directly.

Another notable approach is RAPPOR [17], a privacy-preserving technology to crowdsourcing

statistics. It uses a randomized response scheme [43] to achieve differential privacy, which requires

the clients’ assistance. Metadata, such as a software version for example, are often an inherent part of

a protocol, though. Unfortunately, randomized response in general and RAPPOR in particular cannot

protect privacy in these cases because altering these values might impair the protocol. Metadata,

however, are relevant sources for user statistics and therefore needs additional protection applied

by service provider as well. Since it is not obvious how to implement RAPPOR in a centralized
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fashion, particularly how to deal with data that accumulates over time, we believe that our approach

complements the set of technologies for privacy-preserving user statistics.

In general, unlike perturbation, which obfuscates the presence of a user in a set, differential

privacy obfuscates the user’s absence as well. Thus, the resulting data set would be heavily distorted

by noise, which is bound to severely limit the accuracy of any computations based on them. To our

best knowledge, there is no publication showing how accurate set intersection cardinality estimates

can be achieved when using data sets that are differentially private with regard to membership of

elements in the set.

7 CONCLUSION
In this paper, we have shown that counting sketches are a promising basis to achieve data min-

imization. Without additional means of protection, though, they still leak personal information.

Therefore, we have developed P2KMV, a privacy-preserving counting sketch based on KMV.

As the main contribution of this paper, we showed that P2KMV is particularly suited to calculate

set intersection cardinalities. To this end, we modeled P2KMV stochastically and developed the

required tools to estimate cardinalities. While our approach is efficient and accurate, our model

also demonstrates privacy guarantees, i. e., plausible deniability.

In our evaluation, we reveal parameter dependencies and thereby confirm the findings of our

formal approach. In summary, we believe P2KMV finds a sweet spot in the trade-off between

privacy, accuracy, and efficiency.

A GENERALIZING c j AND |Fi |

A central contribution of this paper is the derivation of a perturbation-resistant estimation formula

for the set intersection cardinality. While the estimation for two sets can be derived more or less

straightforward, the generalization for n sets is much more abstract and complex. To this end,

the connection between c j and |Fi |, given in Equation (12), plays a central role for our estimation.

Therefore, we will present an in-depth derivation of their connection in this section.

Let M1,M2, . . . ,Mn be the n sets whose set intersection cardinality is calculated. Further let

H (M1),H (M2), . . . ,H (Mn) be their hash values. To simplify the notation forn sets, let π1,π2, . . . ,πn!
denote all permutations for the numbers 1 to n. Accordingly, we can write Fi , in a compact form, as

Fi =
n!⋃
t=1

{
h ∈ Ku :

i∧
l1=1

h ∈ RDπt (l1) ∧

n∧
l2=i+1

h ∈ H (Mπt (l2))

}
.

Further, we can write the expected value of Fi ’s cardinality X |Fi | as

E
[
X |Fi |

]
= pi ·

����� n!⋃
t=1

{
h ∈ Ku :

i∧
l1=1

h < H (Mπt (l1)) ∧

n∧
l2=i+1

x ∈ H (Mπt (l2))

}����� .
Similarly, we can describe Ci as

Ci =

n!⋃
t=1

{
h ∈ Ku :

i∧
l1=1

h < Kπt (l1) ∧

n∧
l2=i+1

h ∈ Kπt (l2)

}
=

n!⋃
t=1

{
h ∈ Ku :

i∧
l1=1

h < Kπt (l1) ∧

n∧
l2=i+1

(
h ∈ H (Mπt (l2)) ∨ h ∈ RDπt (l2)

)}
.

26



Since h ∈ H (Mi ) and x ∈ RDi are mutually exclusive, we can partitionCi into a union of n − i + 1
disjoint subsets Q0,Q1, . . . ,Qn−i , where

Qm =

n!⋃
t=1

{
h ∈ Ku :

i∧
l1=1

h < Kπt (l1) ∧

i+m∧
l2=i+1

h ∈ H (Mπt (l2)) ∧

n∧
l3=i+m+1

h ∈ RDπt (l3)

}
.

Our cardinality estimation is based on the fact that the cardinality’s expected value of the sets

Θ1 = {h ∈ Ku : h < Ki } and Θ2 = {h ∈ Ku : h ∈ RDi } are connected. Let X |S1 | and X |S2 | be the

random variables of their respective cardinality, then

E
[
X |Θ1 |

]
= (1 − p) · |{h ∈ Ku : h < H (Mi )}|

and

E
[
X |Θ2 |

]
= p · |{h ∈ Ku : h < H (Mi )}|

holds.

We use this fact to write the expected value of Qm ’s cardinality X |Qm | as

E
[
X |Qm |

]
= (1 − p)i · pn−i−m · α(m)·����� n!⋃

t=1

{
h ∈ Ku :

i∧
l1=1

h < H (Mπt (l1)) ∧

i+m∧
l2=i+1

h ∈ H (Mπt (l2)) ∧

n∧
l3=i+m+1

h < H (Mπt (l3))

}�����
= (1 − p)i · pn−i−m · α(m) ·

E
[
X |Fn−m |

]
pn−m

=
(1 − p)i

pi
· α(m) · E

[
X |Fn−m |

]
.

Here, α(m) is introduced to enumerate the number of different sets that constitute Qm but have the

same cardinality estimation. For example the expected cardinality of the sets

Θ3 =

{
h ∈ Ku :

i∧
l1=1

h < Kl1 ∧

i+m∧
l2=i+1

h ∈ H (Ml2 ) ∧

n∧
l3=i+m+1

h ∈ RDl3

}
and

Θ4 =

{
h ∈ Ku : h ∈ RD1 ∧

i∧
l1=2

h < Kl1 ∧

i+m∧
l2=i+1

h ∈ H (Ml2 ) ∧

n−1∧
l3=i+m+1

h ∈ RDl3 ∧ h < Kn

}
is

(1 − p)i · pn−i−m ·

�����
{
h ∈ Ku :

i∧
l1=1

h < H (Ml1 ) ∧

i+m∧
l2=i+1

h ∈ H (Ml2 ) ∧

n∧
l3=i+m+1

h < H (Ml3 )

}����� .
So the expected value of X |S3∪S4 | , that is, the union’s cardinality of S3 and S4, would be

E
[
X |S3∪S4 |

]
= 2·(1−p)i ·pn−i−m ·

�����
{
h ∈ Ku :

i∧
l1=1

h < H (Ml1 ) ∧

i+m∧
l2=i+1

h ∈ H (Ml2 ) ∧

n∧
l3=i+m+1

h < H (Ml3 )

}����� .
The number of distinct sets α(m), which share the same formula for their expected cardinality,

can therefore simply be described by

α(m) =

(
n −m

i

)
.
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Thus, the complete formula for the expected cardinality of Qm is given by

E
[
X |Qm |

]
=

(1 − p)i

pi
·

(
n −m

i

)
· E

[
X |Fn−m |

]
.

This cardinality estimation can be used to express the expected cardinality of Ci by

E
[
X |Ci |

]
= |

n−i⋃
m=0

Qm |

=

n−i∑
m=0

|Qm |

=

n−i∑
m=0

(1 − p)i

pi
·

(
n −m

i

)
· E

[
X |Fn−m |

]
=

(1 − p)i

pi
·

n−i∑
m=0

(
n −m

i

)
· E

[
X |Fn−m |

]
=

(1 − p)i

pi
·

((
n

i

)
· E

[
X |Fn |

]
+

n−i∑
m=1

(
n −m

i

)
· E

[
X |Fn−m |

] )

=
(1 − p)i

pi
·
©­­«
(
n

i

)
·

ˆϑd(
1

p

)n
−

(
1−p
p

)n + n−i∑
m=1

(
n −m

i

)
· E

[
X |Fn−m |

]ª®®¬ .
Replacing E

[
X |Ci |

]
with ci and rearranging the equation for the sum of the Fi then gives the

formula presented in Equation (12).
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