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Introduction

In this thesis we will study some financial problems concerning the option pricing in
complete and incomplete markets and the bond pricing in the short-term interest
rates framework. We start from well known models in pricing options or zero-coupon
bonds, as the Black-Scholes model [12] (see also R. C. Merton [67], [68]) and the
Cox-Ingersoll-Ross model [25] and study some their generalizations. In particular, in
the first part of the thesis, we study a generalized Black-Scholes equation to derive
explicit or approximate solutions of an option pricing problem in incomplete market
where the incompleteness is generated by the presence of a non-traded asset. As
explained by L. E. O. Svensson in [89]: "In the literature of international finance,
the existence of income from non-traded assets seems to be the rule rather than the
expectation. The existence of non-traded assets could be a result of asset market
imperfections, which in turn are caused by the usual reasons: transaction costs,
moral hazard, legal restrictions, etc. As examples we can think of an individual
who cannot trade claims to his future wages for obvious moral hazard reasons; a
government which cannot trade claims to future tax receipts; or a country which
cannot trade claims to its gross domestic product (GDP) in world capital markets".
Finding solutions to portfolio problems in a continuous time model when there is
some income from non-traded assets, can be seen as the problem of pricing and
hedging in incomplete markets, where incompleteness is generated just by non-traded
assets that prevent the creation of perfectly replicating portfolio. Thus the evaluation
based on replication and no arbitrage assumptions is no longer possible and new
strategies to price and hedge derivatives that are written on such securities are
needed (see, for example, M. Musiela and T. Zariphopoulou [71] and references
therein). A pricing methodology is based on utility maximization criteria which
produce the so called indifference price. By this approach the price is not determined
with respect to the risk neutral measure as in a complete setting, but with respect
to an indifference measure: "describing the historical behavior of the non-traded
asset. In fact, it refers to which is defined as the closest to the risk neutral one and,
at the same time, capable of measuring the unhedgeable risk, by being defined on
the filtration of the Brownian motion used for the modelling of the non-traded asset
dynamics" (M. Musiela and T. Zariphopoulou [71, p.3]). The indifference pricing
problem and the underlying utility-optimization problem are well characterized by
martingale duality results (see M. Frittelli [37]), by stochastic differential equations
(see R. Rouge and N. El Karoui [85]) and by non-linear partial differential equations
(see L. A. Bordag and R. Frey [13]). The utility-based price and the hedging strategy
can be described by the solution of a partial differential equation, in analogy to the
Black Scholes model, but it is more difficult to obtain the explicit solution in specific
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models. M. Musiela and T. Zariphopoulou in [71] derived the indifference price
of a European claim, written exclusively on the non-traded asset, as a non-linear
expectation of the derivative’s payoff under an appropriate martingale measure. Our
aim (see also [18]) is to give a closed form representation of the indifference price by
using the analytic tool of (C0) semigroup theory, which allows to study the evolution
in time of some problems coming from Mathematical Physics, Mathematical Finance
and other applied sciences (see e.g. K. J. Engel and R. Nagel [32], J. A. Goldstein
[44], and J. A. Goldstein et al. [42]). We will focus on the abstract Cauchy problem
associated with operators of the type

Lu = 1
2(cx+ d)2u′′ + [(γx+ δ)− θ(cx+ d)]u′, (0.1)

acting on the space of all real-valued continuous functions in a suitable real interval
having finite limits at the endpoints.
The second part of the thesis deals with the problem of forecasting future interest
rates from observed financial market data by a suitable partition of the dataset. We
propose a new numerical methodology for the CIR framework, which we call the
CIR# model, that well fits the term structure of short interest rates as observed in a
real market. J. C. Cox, J. E. Ingersoll and S. A. Ross [25] proposed a term structure
model, well known as the CIR model, to describe the price of discount zero-coupon
bonds with various maturities under no-arbitrage condition. This model generalizes
the Vasicek model [92] to the case of non constant volatility and assumes that the
evolution of the underlying short term interest rate is a diffusion process, i.e. a
continuous Markov process, unique solution to the following stochastic differential
equation (SDE)

dr(t) = [k(θ − r(t))− λ(t, r(t))]dt+ σ
√
r(t)dW (t), (0.2)

with initial condition r(0) = r0 > 0. (W (t))t≥0 denotes a standard Brownian motion
under the risk neutral probability measure, intended to model a random risk factor.
The interest rate process r = (r(t))t≥0 solution to (0.2) is usually known as the
CIR process or square root process. The SDE (0.2) is classified as a one-factor
time-homogeneous model, because the parameters k, θ and σ, are time-independent
and the short interest rate dynamics is driven only by the market price of risk
λ(t, r(t)) = λr(t), where λ is a constant. Therefore the SDE (0.2) is composed of two
parts: the "mean reverting" drift component k[θ − r(t)], which ensures the rate r(t)
is elastically pulled towards a long-run mean value θ > 0 at a speed of adjustment
k > 0, and the random component W (t), which is scaled by the standard deviation
σ
√
r(t). The volatility parameter is denoted by σ > 0.

The paths of the CIR process never reach negative values and their behaviour depends
on the relationship between the three constant positive parameters k, θ, σ. Indeed,
it can be shown (see, e.g., M. Jeanblanc, M. Yor and M. Chesney [54, Chapter III])
that if the condition 2kθ ≥ σ2 is satisfied, then the interest rates r(t) are strictly
positive for all t > 0, and, for small r(t), the process rebounds as the random
perturbation dampens with r(t) vanishing to zero. Furthermore, the CIR process
belongs to the class of processes satisfying the "affine property", i.e., the logarithm
of the characteristic function of the transition distribution of such processes is an
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affine (linear plus constant) function with respect to their initial state (for more
details the reader can refer to D. Duffie, D. Filipović and W. Schachermayer [30,
Section 2]). As a consequence, the non-arbitrage price of a discount zero coupon
bond with maturity T > 0 and underlying interest rate dynamics described by a
CIR process, is given by

P (T − t, r(t)) = A(T − t)e−B(T−t)r(t), t ∈ [0, T ], (0.3)

where A(·) and B(·) are deterministic functions (see [25]). The final condition is
P (T, r(T )) = 1, which corresponds to the nominal value of the bond conventionally
set equal to 1 (monetary unit). Since bonds are commonly quoted in terms of yields
rather than prices, the formula (0.3) allows derivation of the yield-to-maturity curve

Y (T − t, r(t)) = − lnP (t, T, r(t))/(T − t)

= [B(T − t)r(t)− ln(A(T − t))]/(T − t), t ∈ [0, T ],

which tends to the asymptotic value Υ = 2kθ/(γ + k + λ) as T → ∞, where
γ =

√
(k + λ)2 + 2σ2.

The CIR model became very popular in finance among practitioners because it does
not allow for negative rates and introduces a rate dependent volatility. Further the
CIR model was attractive for its relatively handy implementation and analytical
tractability. Other applications of the model (0.2) include stochastic volatility
modelling in option pricing problems (see e.g. G. Orlando and G. Taglialatela [79],
S. L. Heston [49]), or default intensities in credit risk (see D. Duffie [29]).
However, the CIR model fails as a satisfactory calibration to market data since it
depends on a small number of constant parameters, k, θ and σ. As explained by D.
Brigo and F. Mercurio [15, Section 3.2]: "the zero coupon curve is quite likely to be
badly reproduced, also because some typical shapes, like that of an inverted yield
curve, may not be reproduced by the model,... no matter the values of the parameters
in the dynamics that are chosen". J. C. Cox, J. E. Ingersoll and S. A. Ross [25],
instead, mentioned explicitly that the model can "produce only normal, inverse or
humped shapes" . The seeming contradiction lies in the practical implementation.
As proved by M. Keller-Ressel and T. Steiner [59, Theorem 3.9 and Section 4.2]
the yield-to-maturity curve of any time-homogenous, affine one-factor model is
either normal (i.e., a strictly increasing function of T − t), humped (i.e., with one
local maximum and no minimum on ]0,∞[) or inverse (i.e., a strictly decreasing
function of T − t) (see Figure 0.1). For the CIR process, the yield is normal when
r(t) ≤ kθ/(γ−2(k+λ)), while it is inverse when r(t) ≥ kθ/(k+λ). For intermediate
values the yield curve is humped. However, R. A. Carmona and M. R. Tehranchi
[20, Section 2.3.5] explained that: "Tweaking the parameters can produce yield
curves with one hump or one dip (a local minimum), but it is very difficult (if not
impossible) to calibrate the parameters so that the hump/dip sits where desired.
There are not enough parameters to calibrate the models to account for observed
features contained in the prices quoted on the markets" (see Figure 0.2).
Thus the need for more sophisticated models fitting closely to the currently-observed
yield curve, which could take into account multiple correlated sources of risk as well
as shocks and/or structural changes of the market, has lead to the development of
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Figure 0.1. Inverse, humped or normal yield-to-maturity curves (M. Keller-Ressel and T.
Steiner [59, Figure 1]).

a number of papers for pricing interest rate derivatives based on stochastic short
rates interest models that generalize the classical CIR paradigm. Among the best
known we mention: the Hull-White model [50] based on the idea of considering
time-dependent coefficients; the Chen three-factor model [22]; the CIR++ model by
D. Brigo and F. Mercurio [15] that considers short rates shifted by a deterministic
function chosen to fit exactly the initial term structure of interest rates; the jump
diffusion JCIR model (see D. Brigo and F. Mercurio [17]) and JCIR++ by D. Brigo
and N. El-Bachir [16] where jumps are described by a time-homogeneous Poisson
process; the CIR2 and CIR2++ two-factor models (see D. Brigo and F. Mercurio
[17]). Very recently, L. Zhu [93], in order to incorporate the default clustering effects,
proposed a CIR process with jumps modelled by a Hawkes process (which is a point
process that has self-exciting property and the desired clustering effect), M. Moreno
et al. [70] presented a cyclical square-root model, and A. R. Najafi et al. [73], [74]
proposed some extensions of the CIR model where a mixed fractional Brownian
motion applies to display the random part of the model.
Note that all the above cited extensions preserve the positivity of interest rates, in
some cases through reasonable restrictions on the parameters. But the financial
crisis of 2008 and the ensuing quantitative easing policies brought down interest
rates, as a consequence of reduced growth of developed economies, and accustomed
markets to unprecedented negative interest regimes under the so called "new normal".
As observed in K. C. Engelen [33] and BIS (2015) [11]: "Interest rates have been
extraordinarily low for an exceptionally long time, in nominal and inflation-adjusted
terms, against any benchmark"(see Figure 0.3). "Between December 2014 and
end-May 2015, on average around $2 trillion in global long-term sovereign debt,
much of it issued by euro area sovereigns, was trading at negative yields", "such
yields are unprecedented. Policy rates are even lower than at the peak of the Great
Financial Crisis in both nominal and real terms. And in real terms they have now
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(a) EUR term structure through 2013.

(b) USD term structure through 2013.

Figure 0.2. EUR and USD term structure (1Y-50Y) as observed on monthly basis from
January to December 2013.

been negative for even longer than during the Great Inflation of the 1970s. Yet,
exceptional as this situation may be, many expect it to continue". "Such low rates
are the most remarkable symptom of a broader malaise in the global economy: the
economic expansion is unbalanced, debt burdens and financial risks are still too high,
productivity growth too low, and the room for manoeuvre in macroeconomic policy
too limited. The unthinkable risks becoming routine and being perceived as the new
normal."
Therefore, the need for adjusting short term interest rate models for negative rates
has become an additional characteristic that a "good" model should possess. It is
worth noting that the main drawback of the Vasicek model [92], which allows for
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Figure 0.3. BIS 85th Annual Report 2015.

negative interest rates, is that the conditional volatility of changes in the interest
rate is constant, independent on the level of it, and this may unrealistically affect
the prices of bonds (see L. C. G. Rogers [84]). For this reason, the Vasicek model is
unused by practitioners.
Hence, let us recap the main issues of the original CIR model:

i. Negative interest rates are precluded;

ii. The diffusion term in (0.2) goes to zero when r(t) is small (in contrast with
market data);

iii. The instantaneous volatility σ is constant (in real life σ is calibrated continu-
ously from market data);

iv. There are no jumps (e.g. caused by government fiscal and monetary policies,
by release of corporate financial results, etc.);

v. There is not a satisfactory calibration at each time to market data since it
depends on a small number of constant parameters;

vi. Risk premia are linear with interest rates (false if credit worthiness of a
counterparty and market volatility are considered);

vii. The change in interest rates depends only on the market risk.

Our contribute is to provide a new methodology that gives an answer to points i.-
v. by preserving the structure of the original CIR model to describe the dynamics
of spot interest rates observed in financial markets.
The thesis is organized as follows:

• Chapter 1 is dedicated to the (C0) semigroup theory. We recall first of all
the main theorems and results (see K. J. Engel and R. Nagel [32] and J. A.
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Goldstein [44]). Then we describe some financial application related to the
semigroup governing the Black-Scholes and CIR partial differential equations
(see G. R. Goldstein et al. [40], J. A. Goldstein et al. [42], [43]);

• Chapter 2 describes the results reported in on our paper [18]. A generalized
Black-Scholes type operator is studied by using the (C0) semigroup theory
to derive explicit or approximate solutions of an option pricing problem in
incomplete market proposed by M. Musiela and T. Zariphopoulou in [71]. In
particular, approximate solutions expressed in terms of a generalized Feynman-
Kac type formula are given when explicit closed-form solutions are not available;

• Chapter 3 and Chapter 4 introduce a new methodologies to forecast future
interest rates from observed financial market data by a suitable partition of the
dataset. In Chapter 3 (see also [76] and [78]) we will focus on forecasting future
expected interest rates in the framework of the CIR model. In particular, we
improve the performances of the model by a suitable partion of the available
market data samples and a proper translation of the interest rate values.
This to shift to positive values negative or near-to-zero interest rates and
to capture all the statistically significant changes of variance, respectively.
Moreover, to calibrate the parameters model, we use the martingale estimating
functions approach (see B. M. Bibby et al. [10, Example 5.4]) which provides
better results than the usual maximul likelhood method for discretely observed
diffusion processes. Empirical results on observed market data with different
maturities in EUR currency are also shown and compared with the results
obtained by the Exponentially Weighted Moving Average model.
Chapter 4 describes a new model, named CIR# model (see also [77]) in
which we will show that this model improves the results obtained in Chapter
3. To this end, we again consider a suitable partition and and a proper
translation to positive values of the available market data samples. The
innovation in our procedure is to replace the classical Brownian motion as a
noise source perturbing the time dynamics of the interest rate process, with
the standardized residuals of the "optimal" ARIMA model selected for each
sub-sample partitioning the whole observed data sample. In this way, we
calibrate the parameters and simulate exact trajectories of the CIR process
by a strong convergent discretization scheme. Finally we forecast the future
interest rates and compare our results with the ones obtained by the classical
CIR model. The considered dataset is available from IBA [52] and consider
both EUR and USD currencies;

• Chapter 5 considers the problem of solving abstract Cauchy problems in
the non-autonomous case, i.e. when the coefficients of the models are time-
dependent. We will introduce the basic semigroup theory to solve this type
of problems involving the concept of evolution families. Furtehr, we consider
the approximation splitting formulas provided by A. Batkai et al. [8], which
are very helpful when the explicit solution can not be directly computed.
We study the non-autonomous abstract Cauchy problem associated with the
Black-Scholes equation and give some hints to study the non-autonomous CIR
problem.
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Chapter 1

Semigroups of Operators and
Applications in Finance

This chapter will summarize some important results about the operator semigroup
theory that will be also used in Chapter 2 and Chapter 5. The aim of this analytic
tool is to solve the abstract Cauchy problem (ACP){

ut(t, x) = Au(t, x), t ≥ 0, x ∈ J,
u(0, x) = u0(x), x ∈ J,

(1.1)

in some spaces of continuous functions on J ⊆ R, where A is a suitable differential
operator and u0 ∈ D(A) ⊆ X is fixed.
In Section 1.1 we present the standard notations and the classic theorems, while
Section 1.2 concerns the main financial applications (see for instance [40], [42] and
[43]).

1.1 Semigroups of Operators Theory
In this section, based on [32], [44], we recall some basic definitions and properties of
functional analysis and the main results concerning semigroups of linear operators.
Let (X, ‖ · ‖) be a Banach space on K (i.e. K = R or K = C) and T : X → X a
linear operator.

Definition 1.1.1. The linear operator T is bounded, and it is denoted by T ∈ LK(X),
if there exists M ≥ 0 such that for all x ∈ X one has ‖T (x)‖ ≤M‖x‖.

Let A : D(A)→ X a linear operator, with D(A) ⊆ X, and introduce the following
subspaces

R(A) = {y ∈ X|∃x ∈ D(A) such that y = A(x)},

G(A) = {(x, y) ∈ X ×X|x ∈ D(A), y = A(x)},

ρ(A) = {λ ∈ K|(λI −A) is bijective},

where I denotes the identity operator. D(A), R(A), G(A), ρ(A) are called respectively
the domain, the rank, the graph and the resolvent of the operator A. Moreover, the
operator R(λ,A) = (λI −A)−1 is said to be the resolvent operator associated to A.
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Definition 1.1.2. The operator A is closed if G(A) is a closed set of X ×X. In
particular, the following characterization holds

(A is closed) ⇐⇒ (∀(xn)n∈N ∈ D(A) such that lim
n→+∞

xn = x ∈ X,

lim
n→+∞

A(xn) = y ∈ X ⇒ x ∈ D(A), A(x) = y).

If A is closed, then the closure A coincides with A (for more details see [32, Appendix
B]).

Now, we introduce the definition of a (C0) semigroup and its generator.

Definition 1.1.3. ((C0) Semigroup of Operators)
Given (T (t))t≥0 ∈ LK(X), if the following properties hold

i T (0) = I,

ii ∀t, s ∈ R+, T (s+ t) = T (t) · T (s),

(T (t))t≥0 is said to be a semigroup of operators on X.
The semigroup (T (t)t≥0 is strongly continuous, or (C0), if for all t0 ∈ R+ one has

lim
t→t0
‖T (t)f − T (t0)f‖,

for all f ∈ X. Finally, if all these properties hold for R istead of R+ (with R+ =
[0,+∞)), (T (t))t∈R is said to be a (C0) group of operators on X.

Definition 1.1.4. (Semigroup Generator)
Let (T (t))t≥0 be a (C0) semigroup on X. Define the subspace

D(A) =
{
f ∈ X

∣∣∣∣∃ lim
t→0+

T (t)f − f
t

∈ X
}
,

and define
Af = lim

t→0+

T (t)f − f
t

.

The operator (A,D(A)) (i.e. A with domain D(A)) is said to be the generator of
(T (t))t≥0.
Remark 1.1.5. The definition of the generator (A,D(A)) of a (C0) group on X
is analogous to Definition 1.1.4. In particular, given a (C0) group (T (t))t∈R with
generator (A,D(A)) we can define T+(t) = T (t) for t ≥ 0 and T−(t) = T (−t) for
t < 0. Then it is clear that T+(t) and T−(t) are (C0) semigroups with generators
(A,D(A)) and (−A,D(A)), respectively. Therefore, if (A,D(A)) is the generator of
a group, then both (A,D(A)) and (−A,D(A)) generate (C0) semigroups. Moreover,
the converse of this statement is also true (for more details see [32, Section 2.3]).

Now, we recall the definition of some important Banach spaces, that we will use in
the rest of this chapter and in Chapters 2 and 5. Let J ⊆ R, we define:

• C(J) the space of all real-valued continuous functions f defined on J ,
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• BUC(J) the space of all real-valued, bounded and continuous functions f
defined on J ,

• Ck(J) (k ∈ N, k ≥ 1) the space of all real-valued continuous and k-times
differentiable functions f defined on J , where each derivative is continuous,

• C0(J) the space of all real-valued continuous functions defined on J , which
vanish at ∂, where ∂ denotes the point at infinity, if J is not compact. Observe
that if J = [0,+∞), we have J = J ∪ ∂ = [0,+∞], and C0(J) = {f ∈
C(J)| limx→+∞ f(x) = 0}.

• C(J) is the space of all real-valued continuous functions f on J , having finite
limits at the endpoints not included in J ,

In particular, given a Banach space X, we define

• C(J,X) the space of all X-valued continuous functions f defined on J ,

• BUC(J,X) the space of all X-valued bounded and continuous functions f
defined on J ,

• C0(J,X) the space of all X-valued continuous functions f defined on J , which
vanish at ∂, where ∂ denotes the point at infinity, if J is not compact.

• Ck(J,X) (k ∈ N, k ≥ 1) the space of all X-valued continuous and k-times
differentiable functions f defined on J , where each derivative is continuous,

Example 1.1.6. Let X = C0(R+), the Banach space endowed with the norm ‖f‖ =
supx∈R+ |f(x)|. For all t ≥ 0, f ∈ X, x ∈ R+, define T (t) : X → X such that
(T (t)f)(x) = f(x+ t). It is simple to see that T (t) is a linear and bounded operator
for all t. We have that (T (t))t≥0 is a (C0) semigroup on X with generator (A,D(A)),
where

Af = f ′, D(A) = {f ∈ X|f ′ ∈ X}.

Example 1.1.7. Let A ∈ LK(X). It is easy to prove that the series
∑+∞
n=0

tnAn

n!
converges. Denote etA =

∑+∞
n=0

tnAn

n! ∈ LK(X), for all t ≥ 0. Thus, the family of
operators (T (t))t≥0 defined as T (t) = eAt is a (C0) semigroup on X, and its generator
coincides with A (for more details see [32, Section 1.2]).

Proposition 1.1.8. Let (T (t))t≥0 be a (C0) semigroup on X with generator (A,D(A))
on X. The following properties hold

i. ∃M ≥ 1, ω ∈ R such that ∀t ≥ 0, ‖T (t)‖ ≤Meωt. If M = 1 the semigroup is
quasi-contractive. If M = 1 and ω = 0 the semigroup is contractive;

ii. ∀t ≥ 0, T (t)D(A) ⊂ D(A);

iii. f ∈ D(A) ⇐⇒ ∃ ddt(T (t)f) = T (t)A(f)(= AT (t)f), for all t ≥ 0;

iv. (A,D(A)) is densely defined, i.e. the closure D(A) = X;

v. (A,D(A)) is closed;
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vi. The semigroup (T (t))t≥0 identifies uniquely its generator (A,D(A)).

Proof. See [32, Chapter I, Proposition 5.3 and Chapter II, Lemma 1.2, Theorem
1.4].

We recall that we can solve our problem (1.1) by the semigroup theory.

Definition 1.1.9. Given A : D(A)→ X a linear operator, consider the following
abstract Cauchy problem (ACP){

ut(t, x) = Au(t, x),
u(0, x) = u0(x),

(1.2)

with u0 ∈ D(A). The function u = u(t, x), t ≥ 0 is called solution of (1.2) if

i. u ∈ D(A);

ii. the map t ∈ R+ 7→ u(t, ·) ∈ D(A) is of class C1;

iii. u satisfies (1.2).

Theorem 1.1.10. (Existence and Uniqueness of a Solution of (ACP))
Consider the (ACP) (1.2), if A is the generator of a (C0) semigroup (T (t))t≥0 on
X, then the (ACP) admits a unique solution given by

u(t, x) = T (t)u0(x). (1.3)

Proof. See [32, Chapter II, Proposition 6.2].

Now, we recall the well-known Hille-Yosida Theorem for the contractive case (for
more details and generalizations, see [32, Section 3.2])

Theorem 1.1.11. (Hille-Yosida Theorem)
Let A be a linear and densely defined operator. Then the following statements are
equivalent:

i. (A,D(A)) generates a (C0) contraction semigroup on X;

ii. (A,D(A)) is closed and for all λ > 0, one has λ ∈ ρ(A) and ‖R(λ,A)‖ ≤ 1/λ.

In particular, if i. or ii. is true, one has

R(λ,A) =
∫ +∞

0
e−λsT (s)f ds,

for all f ∈ X, λ ∈ ρ(A).

Proof. See [32, Chapter II, Theorem 3.5].

A further charaterization for the generation can be given in the case of dissipative
operators defined as follows (for more details, see [32, Section 2.3]).

Definition 1.1.12. The operator A is dissipative if for all λ > 0, u ∈ D(A) one
has λ‖u‖ ≤ ‖(λI −A)u‖.



1.1 Semigroups of Operators Theory 5

Definition 1.1.13. The operator A is m − dissipative if it is dissipative and
ρ(A) ∩ (0,+∞) 6= ∅.

Theorem 1.1.14. (Lumer-Phillips Theorem)
Let A be a dissipative operator such that D(A) = X. Then the following statements
are equivalent:

i. (A,D(A)) generates a (C0) contraction semigroup on X;

ii. there exists λ > 0 such that R(λI −A) = X.

Proof. See [32, Chapter II, Theorem 3.15].

Theorem 1.1.15. The operator (A,D(A)) generates a (C0) contraction semigroup
on X if and only if A is closed, densely defined and m− dissipative.

Proof. See [44, Chapter I, Theorem 3.3].

Another important characterization for the generation is given by using Feller theory,
which links the semigroup theory with the stochastic differential equations (SDE)
theory (for more details see, for instance [19], [90]).

Definition 1.1.16. (Feller Semigroup)
Let us consider a locally compact, separable, metric space (K,m) and define K∂ =
K ∪ ∂ where ∂ is the point at infinity if K is not compact. A (C0) semigroup
(T (t))t≥0 ∈ LR(C(K∂)) is a Feller semigroup on C(K∂) if it satisfies the following
property

(f ∈ C(K∂), 0 ≤ f ≤ 1 onK∂) ⇐⇒ (0 ≤ T (t)f ≤ 1, t ≥ 0 onK∂ , T (t)1 = 11, t ≥ 0).

It is clear that every Feller semigroup is also a positive semigroup, i.e. T (t)f ≥ 0 for
all f ≥ 0, t ≥ 0.
If we leave out the (C0)-hypothesis in the above definition, we obtain a Markov
semigroup.

Definition 1.1.17. A Markov transition probability function on K is a measure
pt, t ≥ 0, on K that is uniformly stochastically continuous, i.e. for all E compact
subset of K and ε > 0 there exists Uε(x), an ε-neighborhood of x, such that one has
limt→0+ supx∈E(1− pt(x, Uε(x)) = 0.

Theorem 1.1.18. The following statements are equivalent:

i. (pt)t≥0 is a uniformly stochastically continuous (C0)-transition function on K,
such that for all s > 0 and E compact subset of K, limx→∂ sup0≤t≤s pt(x,E) =
0;

ii. for all f ∈ C0(K),
T (t)f(x) =

∫
K
pt(x, dy)f(y),

is a Feller semigroup.
11 represents the constant function equals to 1, in these cases.
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In particular, any Feller semigroup (and hence any corresponding family of uniformly
stochastically continuous (C0) transition functions) is uniquely associated to a suitable
operator (A,D(A)), called the generator of the Feller semigroup, defined as follows

D(A) =
{
u ∈ C0(K)

∣∣∣∣∃ lim
t→0+

T (t)u− u
t

∈ C0(K)
}
,

Au = lim
t→0+

T (t)u− u
t

,

for any u ∈ D(A).

Proof. See [90, Theorem 9.2.3].

Remark 1.1.19. The link with the SDE theory can be summarized in this way. Let
(Ω,F , (Ft)t≥0,P) a filtered probability space, and consider (Xt)t≥0 a Markov process
with state space (K,B(K)) (for more details see e.g. [75], [88]), with dynamics

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt, X0 = x, (1.4)

where Wt denotes the Brownian motion and µ, σ are the drift and diffusion functions
respectively.
Let Px(Xt ∈ B) = P(Xt ∈ B|X0 = x) for any B ∈ B(K), and

Ex[f(Xt)] =
∫
K
f(y)Px(Xt ∈ dy), (1.5)

for any f ∈ C0(K), x ∈ K. A Feller process is a Markov process whose transition
semigroup T (t)f(x) = Ex[f(Xt)] is a Feller semigroup. Clearly the related transition
function is

pt(x,B) = P(Xt ∈ B|X0 = x),

for all t ≥ 0, x ∈ K, B ∈ B(K).
Finally, the generator (A,D(A)) of (T (t))t≥0 coincides with the infinitesimal genera-
tor of the process (Xt)t≥0, that is defined by

Au(x) = lim
t→0+

Ex[u(Xt)]− u(x)
t

,

and D(A) is the set of all u for which tha above limit exists for all x ∈ R. One has
that

Au = 1
2σ

2u′′ + µu′,

for any u ∈ D(A). One can show that any compactly-supported C2 function u lives
in D(A).
So, we can conclude that if (Xt)t≥0 is a process which satisfies the SDE (1.4) then
a function u(t, x) defined by (1.5) for all x ∈ K, t ∈ R+, has to solve the PDE
ut(x) = Au(x).
In particular, if we consider the following (ACP){

ut(t, x) = Au(t, x)− ru(t, x), (t, x) ∈ R+ ×K
u(0, x) = f(x), x ∈ K
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for all r ≥ 0, its solution is given by the Feller semigroup

u(t, x) = Ex[e−rtf(Xt)]. (1.6)

The above result is well known as the Feynman-Kac Theorem (see, for instance [87,
Chapter VI, Section 4]).
Now, we recall a generation theorem based on the so called Feller classification
(see [32, Chapter VI, Section 4]). An equivalent classification for the boundary
endpoints is described in Appendix 6.1.

Definition 1.1.20. (Feller Classification)
If J = (r1, r2) is a real interval, with −∞ ≤ r1 < r2 ≤ +∞, let A be a second order
differential operator of the type Au = a(x)u′′+ b(x)u′, where a, b are real continuous
functions on J such that a(x) > 0 for any x ∈ J . Introduce the following functions

W (x) = exp

(
−
∫ x

x0

b(s)
a(s)ds

)
, (1.7)

Q(x) = 1
a(x)W (x)

∫ x

x0
W (s)ds, (1.8)

R(x) = W (x)
∫ x

x0

1
a(s)W (s)ds, (1.9)

where x ∈ J, x0 is fixed in J . The boundary point r2 is said to be

i. regular if Q ∈ L1(x0, r2) and R ∈ L1(x0, r2);

ii. exit if Q 6∈ L1(x0, r2) and R ∈ L1(x0, r2);

iii. entrance if Q ∈ L1(x0, r2) and R 6∈ L1(x0, r2);

iv. natural if Q 6∈ L1(x0, r2) and R 6∈ L1(x0, r2).

Analogous definitions can be given for r1 by considering the interval (r1, x0) instead
of (x0, r2).

Theorem 1.1.21. The operator A with the so called maximal domain

DM (A) = {u ∈ C(J̄) ∩ C2(J)|Au ∈ C(J̄)},

generates a Feller semigroup on C(J̄) if and only if r1 and r2 are of entrance or
natural type.
Moreover, the operator A with the so called Wentzell domain

DW (A) =
{
u ∈ C(J̄) ∩ C2(J)

∣∣∣∣ lim
x→r1
x→r2

Au(x) = 0
}
,

generates a Feller semigroup on C(J̄) if and only if both the endpoints r1 and r2 are
not of entrance type.

Proof. See [32, Chapter VI, Theorem 4.15, Theorem 4.18].
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The next lemma will be useful in the sequel to study the behaviour of the boundary
points according to the Feller classification.

Lemma 1.1.22. Fix x0 ∈ J = (r1, r2), then we have

i) W 6∈ L1(x0, r2) implies R 6∈ L1(x0, r2);

ii) R ∈ L1(x0, r2) implies W ∈ L1(x0, r2);

iii) (mW )−1 6∈ L1(x0, r2) implies Q 6∈ L1(x0, r2);

iv) Q ∈ L1(x0, r2) implies (mW )−1 ∈ L1(x0, r2).

Analogously for r1.

Proof. See [32, Chapter VI, Remark 4.10].

Remark 1.1.23. By some interchanges between the integration variables, the integrals
of Q and R can be written as∫ r2

x0
Q(x) dx =

∫ r2

x0

(∫ x

x0
W (s) ds

)
(m(x)W (x))−1 dx

=
∫ r2

x0

(∫ r2

x
(m(s)W (s))−1 ds

)
W (x) dx (1.10)

and ∫ r2

x0
R(x) dx =

∫ r2

x0

(∫ x

x0
(m(s)W (s))−1 ds

)
W (x) dx

=
∫ r2

x0

(∫ r2

x
W (s) ds

)
(m(x)W (x))−1 dx (1.11)

for any fixed x0 ∈ (r1, r2). Analogously for r1.
Among all possible (C0) semigroups, the most regular class is the class of analytic
semigroups that we will define below.

Definition 1.1.24. (Analytic semigroup) Let δ ∈ (0, π/2] and define the sector of an-
gle δ, Sδ = {λ ∈ C||arg(λ)| < δ}/{0}. Let (T (z))z∈Sδ∪{0} ∈ LC(X). (T (z))z∈Sδ∪{0}
is said be an analytic semigroup if

i. T (0) = I and ∀z1, z2 ∈ Sδ∪{0}, T (z1 + z2) = T (z1) · T (z2);

ii. the map z ∈ Sδ 7→ T (z) is analytic;

iii. limz→0T (z)f = f, ∀z ∈ Sδ′ , δ′ ∈ (0, δ), f ∈ X.

Theorem 1.1.25. Let (A,D(A)) be a linear operator on a complex Banach space
X. The following statements are equivalent:

i. (A,D(A)) generates an analytic semigroup on X;
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ii. there exists θ ∈ (0, π/2) such that e±iθA generate (C0) bounded semigroups on
X.

Proof. See [32, Chapter II, Theorem 4.6].

The advantage to have the generation of an analytic semigroup is given by the
possibility to take the initial value of (ACP) (1.1) in the whole space X (for more
details, see [32, Chapter II, Section 4.a]).
In many concrete situations, the linear operator associated to an evolution equation
is given as the sum of several terms of different type. We analyze the case of bounded
perturbation (see [32, Chapter III, Section 1]).

Theorem 1.1.26. Let (A,D(A)) be generator of a (C0) semigroup (T (t))t≥0 on
X, such that ‖T (t)‖ ≤ Meωt for all t ≥ 0 and some M ≥ 1, ω ∈ R. Consider
B ∈ LK(X). Then, the operator (A+B,D(A)) generates a (C0) semigroup (S(t))t≥0
on X, such that ‖S(t)‖ ≤Me(ω+M‖B‖)t for all t ≥ 0 .

Proof. See [32, Chapter III, Theorem 1.3].

Definition 1.1.27. Let (A,D(A)) and (B,D(B)) be linear operators with D(A) ⊂
D(B). B is an A-bounded perturbation if there exist a, b ∈ R+ such that for all
u ∈ D(A) one has ‖Bu‖ ≤ a‖Au‖+ b‖u‖. In particular the element

a0 = inf{a ∈ R+|∃b ∈ R+ such that∀u ∈ D(A) , ‖Bu‖ ≤ a‖Au‖+ b‖u‖}

is called the A-bound of B.

Theorem 1.1.28. Let (A,D(A)) be the generator of a (C0) contraction semigroup
and assume (B,D(B)) to be dissipative and A-bounded with A-bound a0 < 1. Then
(A+B,D(A)) generates a (C0) contraction semigroup.

Proof. See [32, Chapter III, Theorem 2.7].

Now, we recall the main useful approximation theorems (see [24], [32, Section 3.5]).

Theorem 1.1.29. (Chernoff Product Formula)
Consider a function V : R+ → LR(X) satisfying V (0) = I and ‖[V (t)]m‖ ≤M , for
all t ≥ 0, m ∈ N and some M ≥ 1. Assume that

Af = lim
h→0

V (h)f − f
h

exists for all f ∈ D ⊂ X, with D, (λI −A)D dense subspaces in X for some λ > 0.
Then the closure of A generates a (C0) contraction semigroup (T (t))t≥0 on X given
by

T (t)f = lim
h→+∞

[V (t/n)]nf,

for all f ∈ X and uniformly for t in compact intervals.

Proof. See [32, Chapter III, Theorem 5.2].
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Theorem 1.1.30. (Trotter Product Formula)
Let (T (t))t≥0 and (S(t))t≥0 be (C0) semigroup satisfying the stability condition

‖[T (t/n)S(t/n)]n‖ ≤Meωt,

for all t ≥ 0, n ∈ N, n ≥ 1 and for constants M ≥ 1, ω ∈ R. Let (A,D(A)) and
(B,D(B)) be the generators of the semigroups (T (t))t≥0 and (S(t))t≥0 respectively,
and consider the operator (A + B,D), where D = D(A) ∩ D(B). Assume that
D, (λI − A − B)D are dense in X for some λ > ω. Then the closure of (A + B)
generates a (C0) semigroup (U(t))t≥0 on X given by

U(t)f = lim
h→+∞

[T (t/n)S(t/n)]nf, (1.12)

for all f ∈ X and uniformly for t in compact intervals.

Proof. See [32, Chapter III, Corollary 5.8].

It remains to give some results about the explicit representation of the semigroup,
which give an analytic representation of the solution of (ACP) (1.1). The most used
result is given by the Romanov’s formula (see [44, Chapter II, Section 8]).

Definition 1.1.31. A (C0) cosine function on a Banach spaceX is a family (C(t))t∈R
of linear bounded operators on X satisfying the following properties

i. C(0) = I;

ii. for all t, s ∈ R, C(t+ s) + C(t− s) = 2C(t) · C(s);

iii. for all f ∈ X, C(·)f ∈ C(R, X).

The generator (A,D(A)) of a cosine function C is the operator A = C ′′(0), with
domain

D(A) = {f ∈ X|C(·)f ∈ C2(R, X)}.

Theorem 1.1.32. If (A,D(A)) generates a (C0) group (S(t))t∈R on X, then
(A2, D(A2)) generates a (C0) cosine function given by

C(t) = S(t) + S(−t)
2 , t ∈ R.

Moreover, (A2, D(A2)) generates a (C0) semigroup (T (t))t≥0 given by

T (t)f = 2
∫ +∞

0
C(y)f p(t, y)dy, (1.13)

(T (0) = I, if t = 0) for any f ∈ X, and with

p(t, y) = 1√
4πt

e−
y2
4t , t > 0, (1.14)

the density distribution function of a normally distributed random variable with zero
mean and variance 2t. In addition, if X is a complex space, then (T (t))t≥0 is an
analytic semigroup in the right half plane.
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Proof. See [44, Chapter II, Section 8].

Remark 1.1.33. We note that A is an A2-bounded perturbation (with a0 = 0). Thus
if (A,D(A)) is the generator of the (C0) semigroup (S(t))t≥0 on X, for any θ ∈ R,
the operator (A2 + θA,D(A2)) generates the (C0) semigroup on X given by the
product (T (t)S(θt))t≥0, as a consequence of Theorem 1.1.28.
Remark 1.1.34. Note that the integral in (1.13) can be rewritten as∫ +∞

0
(S(y) + S(−y)) f(x) p(t, y)dy

=
∫ +∞

0
S(y) f(x) p(t, y)dy +

∫ +∞

0
S(−y) f(x) p(t, y)dy,

for all x ∈ J, t ≥ 0. By changing the variable w = −y in the above second integral,
and by (1.14), the semigroup (T (t))t≥0 has the following explicit representation

T (t)f(x) =
∫ +∞

−∞
S(y) f(x) p(t, y)dy.

1.2 Financial Applications
In this section we will present some applications of the semigroup theory. In particular
we will focus on the well-known Black-Scholes-Merton model and Cox-Ingersoll-Ross
model, described in the next Subsection 1.2.1 and 1.2.2 respectively.
It is worth noting that in [7], [38], [46] and [21] (see also references therein) the
generation of analitic semigroup for a family of degenerate elliptic operators arising in
Financial Mathematics have been studied. In particular, their results are given both
in Lp, p ≥ 1 and in weighted Sobolev spaces ([7], [38], [46]) or in the space of unifomly
and bounded continuous function on Rd ([21], by using a probabilistic approach),
but with conditions and results different from those herein obtained. Indeed, as
observed in the Introduction, the main goal in this thesis (see Chapter 2) is to study
the generation of strongly continuous semigroups on suitable spaces of continuous
functions on a real interval, and their explicit or approximate representation, which
is useful from a numerical point of view.

1.2.1 The semigroup governing the Black-Scholes equation

In the financial literature the Black-Scholes-Merton equation (see [12], [68]) plays a
fundamental role, because solved the problem of pricing European options. This
equation was studied from different points of view, especially in the stochastic
process theory (see, for instance [37], [63], [88]). The semigroup approach gives
more results about the solution of the Black-Scholes equation and its properties (see,
for instance [4], [43], [31]). In [4] the shape-preserving properties of a semigroup
generated by a particular second-order differential operator are investigated, with
particular emphasis on the higher order convexity, Lipschitz classes and asymptotic
behaviour. The asymptotic behaviour of the Black-Scholes semigroup is studied
also in [5], by the analysis of a suitable approximate sequences of positive linear
operators in a setting of weighted continuous function spaces. Moreover, since the
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initial value of the Cauchy problem associated to the Black-Scholes-Merton equation
is an unbounded function, the corresponding semigroup is also studied in spaces
of continuous functions wich may grow at +∞ and is proved that it is chaotic for
t ≥ 0, s > 1 and sσ > 1 (see [31]). Several exstensions of the Black-Scholes equation
was considered involving e.g. dividend payments, transaction costs, or illiquid and
incomplet markets (see, for instance [9], [28], [13], [18]).
Let (Ω,F , (Ft)t≥0,P) a filtered probability space. Consider a dynamic market
environment with a riskeless bond B with maturity T , satisfying

dBt = rBtdt, B0 = 1,

being r the (fixed) risk-free interest rate, and a risky asset whose price S is a
geometric Brownian motion, i.e. it is driven by the following SDE

dSt = µStdt+ σStdWt, S0 = s0 > 0, (1.15)

where µ and σ are the drift and the volatility of the process and (Wt)t≥0 is the
standard Brownian motion. An European call option is the right to buy one share of
stock (S) at a given strike price K at the expiration time t = T . It is assumed that
the bond can be purchased at the (fixed) risk-free interest rate r, and the option
should be priced to avoid arbitage. Hedging consists in duplicating the option by
a portfolio of changing holdings of the risk-free bond and of the stock. The price
function v(t, x) is the proper price of the option at time t = 0, given St = x > 0.
Hence we have to find v(0, x). Black-Scholes and Merton showed that the price v
satisfies the following backward parabolic problem

vt(t, x) + 1
2σ

2x2vxx(t, x) + rxvx(t, x)− rv(t, x) = 0, t ∈ [0, T ], x > 0,
v(T, x) = (x−K)+, x > 0,
v(t, 0) = 0, t ∈ [0, T ],

(1.16)

where the second and third equation of (1.16) represent the terminal condition of
the call option and the price boundary condition, respectively. If we let u(t, x) =
v(T − t, x), then u satisfies the forward parabolic problem

ut(t, x) = 1
2σ

2x2uxx(t, x) + rxux(t, x)− ru(t, x) = 0, t ∈ [0, T ], x > 0,
u(0, x) = (x−K)+, x > 0,
u(t, 0) = 0, t ∈ [0, T ].

(1.17)
Let X be the Banach space C[0,+∞]. The problem (1.17) can be rewritten as the
following abstract Cauchy problem (ACP)

ut(t, x) = Lu(t, x), t ≥ 0, x > 0
u(0, x) = u0(x), x > 0
u(t, 0) = 0, t ≥ 0;

(1.18)

with a general initial condition u0, and for any t ≥ 0, the operator L is given by

Lu(x) = 1
2σ

2x2u′′(x) + rxu′(x)− ru(x).
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First of all we give the generation result for the operator L, i.e. the well-posedness
theorem for the problem (1.18).

Theorem 1.2.1. The operator L with the maximal domain

DM (L) = {u ∈ X ∩ C2(0,+∞)|Lu ∈ X}, (1.19)

generates a (C0) semigroup on X.

Proof. The proof is based on the Feller classification (see Definition 1.1.20, Theorem
1.1.21). Consider the operator

L0u(x) = σ2

2 x
2u′′(x) + rxu′(x)

Let r1 = 0, r2 = +∞ and choose x0 = 1. For all x ∈ R+, we can compute

W (x) = exp

(
−
∫ x

1

2rs
σ2s2ds

)
= e−k lnx = 1

xk
,

where k = 2r
σ2 . Now, we have that

Q(x) = 2
σ2x2−k

∫ x

1

1
sk
ds =


2

σ2(1−k)

(
1
x − x

k−2
)
, if k 6= 1,

2
σ2

lnx
x , if k = 1,

and

R(x) = 2
σ2xk

∫ x

1

1
s2−k ds =


2

σ2(k−1)

(
1
x −

1
xk

)
, if k 6= 1,

2
σ2

lnx
x , if k = 1.

Now, if k = 1, we have∫ +∞

1
Q(x) dx =

∫ +∞

1
R(x) dx = 2

σ2

∫ +∞

1

lnx

x
dx =

[
ln2x

σ2

]+∞

1
= +∞,

and ∫ 1

0
Q(x) dx =

∫ 1

0
R(x) dx = 2

σ2

∫ 1

0

lnx

x
dx =

[
ln2x

σ2

]1

0
= −∞,

hence, the endpoints 0 and +∞ are of a natural type if k = 1. Otherwise, if k 6= 1,
we have ∫ +∞

1
Q(x) dx = 2

σ2(1− k)

∫ +∞

1

1
x
− xk−2 dx

= 2
σ2(1−k)

[
lnx− xk−1

k−1

]+∞

1
= +∞, if k < 1

' 2
σ2(k−1)

∫+∞
1 xk−2 dx = +∞, if k > 1,∫ +∞

1
R(x) dx = 2

σ2(k − 1)

∫ +∞

1

1
x
− 1
xk

dx
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= 2
σ2(k−1)

[
lnx− x1−k

1−k

]+∞

1
= +∞, if k > 1,

' 2
σ2(1−k)

∫+∞
1

1
xk
dx = +∞, if k < 1,

and analogously Q(x) /∈ L1(0, 1), R(x) /∈ L1(0, 1), i.e. 0,+∞ are endpoints of
natural type even if k 6= 1. Then, we can conclude that the operator L0 with the
maximal domain generates a Feller semigroup on X, for every k ≥ 1. Finally, since
rI is a bounded perturbation, the whole operator L = L0 − rI with the maximal
domain generates a (C0) semigroup on X (see Theorem 1.1.26).

The next result gives an alternative proof of the generation by L and provides an
explicit representation of the (ACP) solution (1.18).

Theorem 1.2.2. The operator L with the maximal domain DM (L) defined in 1.19
generates a (C0) contraction semigroup on X given by

T (t)f(x) = e−rt
∫ +∞

−∞
f
(
xe(r−σ2/2)t−yσ/

√
2) p(t, y)dy, (1.20)

with p(t, y) defined in (1.14), for all t ≥ 0, x ∈ R+ and f ∈ X.

Proof. See [43, Section 3].
We start to rewrite our operator L as

L = G2 + γG+ δI, (1.21)

where
Gu(x) = νxu′(x),

D(G) = {u ∈ X ∩ C1(0,+∞)|xu′ ∈ X}, (1.22)

and
G2u(x) = ν2x2u′′(x) + ν2xu′(x),

D(G2) = {u ∈ D(G)|Gu ∈ D(G)} = {u ∈ X ∩ C2(0,+∞)|Lu ∈ X}, (1.23)

with ν = σ/
√

2, δ = −r and γ = −(δ + ν2)/ν.
The operator (G,D(G)) generates a (C0) contraction semigroup on X given by

etGf(x) = f(xeνt)

for all x ∈ R+, t ≥ 0 and f ∈ X (see [32, Chapter VI]). Then, (G2, D(G2)) generates
a (C0) semigroup on X given by

etG
2
f(x) =

∫ +∞

−∞
e−yGf(x) p(t, y)dy,

and the perturbed operator (G2 +γG,D(G2)) generates the following (C0) semigroup
on X ∫ +∞

−∞
e−yGeγtGf(x) p(t, y)dy,

for all x ∈ R+, t ≥ 0, f ∈ X (see Remark (1.1.33)). Moreover, the multiplication
operator M = δI generates a (C0) semigroup on X given by the funtion etM = eδt.
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Hence, the whole operator (L, D(G2)) generates a (C0) (and analytic) semigroup on
X given by

T (t)f(x) = eδt
∫ +∞

−∞
e−yGeγtGf(x) p(t, y)dy = e−rt

∫ +∞

−∞
f
(
xe(r−σ2/2)t−yσ/

√
2) p(t, y)dy,

for all x ∈ R+, t ≥ 0, f ∈ X. We note that the domain D(G2) coincides with
the maximal domain DM (L). In particular, it is easy to see that (T (t))t≥0 is also
contractive on X.

Remark 1.2.3. By Theorem 1.1.10, the solution of (ACP) (1.18) has the form
u(t, x) = T (t)u0(x), with (T (t))t≥0 defined in (1.20). Since the semigroup (T (t))t≥0
is analytic in the right half plane, we can take u0 in the whole space X (and not
only in D(L)). However, u0 could not be in the space X considered. This is the
case of the call option whose payoff is unbounded at infinity. For this reason, we
can let uM = min{u0,M}, for M ≥ 1, so that uM belongs to X.
Remark 1.2.4. We can compare the solution (1.20) obtained via semigroup theory with
the classic Black-Scholes formula for European call option, derived in a probabilistic
context (see e.g. [88, Section 5.2]). Indeed, the solution of (1.16) is directly derived
by the Feynman-Kac Theorem

EQ[e−r(T−t)(ST −K)+|Ft], (1.24)

where Q is the risk-neutral measure under which the solution of the SDE (1.15) is
given by

St = S0 exp

(
σW̃t +

(
r − σ2

2
)
t

)
,

and W̃t is the Brownian motion under the measure Q. Thus, we may write

ST = St exp

(
σ(W̃T − W̃t) +

(
r − σ2

2
)
(T − t)

)

= St exp

(
−σ
√
τY +

(
r − σ2

2
)
τ

)
,

where Y is the standard normal random variable

Y = −W̃T − W̃t√
τ

,

and τ is the time to expiration (T − t).
Consider an European call option with strike price K, maturity T and payoff

G(x) = (x−K)+ =
{
x−K, if x ≥ K
0, if x < K.

(1.25)

Therefore, (1.24) becomes

1√
2π
e−rτ

∫ +∞

−∞

(
xexp

(
−σ
√
τy +

(
r − σ2

2
)
τ

)
−K

)+
e−

y2
2 dy, (1.26)

where x is a realization of St.
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1.2.2 The semigroup governing the Cox-Ingersoll-Ross equation

Let (Ω,F , (Ft)t≥0,P) a filtered probability space. Cox, Ingersoll and Ross [25]
derived the pricing formula of a zero-coupon bond under the assumption that the
short-term interest rate is a diffusion process, called the square − root process,
satisfying the following stochastic differential equation (SDE)

drt = k̃(θ̃ − rt)dt+ σ
√
rtdW̃t, r0 > 0,

where k̃(θ̃ − rt) defines a mean reverting drift pulling the interest rate towards its
long-term value θ̃ with a speed of adjustment equal to k̃, and W̃t is the Brownian
motion. In the risk-adjusted economy, the dynamics is supposed to be given by

drt = (k̃(θ̃ − rt)− λrt)dt+ σ
√
rtdWt, r0 > 0

where
Wt = W̃t + λ

σ

∫ t

0

√
rs ds,

is a Brownian motion under the martingale measure Q with λ being the market
price of risk. Setting

k = k̃ + λ, θ = k̃(θ̃/k),

the SDE describing the Q-dynamics of the square-root process r is

drt = k(θ − rt)dt+ σ
√
rtdWt, r0 > 0. (1.27)

Cox et al. in [25] derived the bond price P , with face value 1, that satisfies the
following backward parabolic problem{
Pt(t, x) + σ2

2 xPxx(t, x) + kθPx(t, x)− kxPx(t, x)− xP (t, x) = 0, t ∈ [0, T ], x ∈ R+,

P (T, x) = 1, x ∈ R+,

where T is the maturity date and x is a realization of rt. If we let u(t, x) = P (T−t, x),
then u(t, x) satisfies the forward parabolic problem{
ut(t, x) = σ2

2 xuxx(t, x) + kθux(t, x)− kxux(t, x)− xu(t, x) = 0, t ∈ [0, T ], x ∈ R+,

u(0, x) = 1, x ∈ R+.

(1.28)
Let X be the Banach space C[0,+∞]. The problem (1.28) can be rewritten as the
following abstract Cauchy problem (ACP){

ut(t, x) = Lu(t, x), t ≥ 0, x ∈ R+

u(0, x) = u0(x), x ∈ R+,
(1.29)

where u0 is the initial data, and for any t > 0, the operator L is given by

Lu(x) = 1
2σ

2xu′′(x) + k(θ − x)u′(x)− xu(x).
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Proposition 1.2.5. The homogeneous operator L0 defined as

L0u(x) = 1
2σ

2xu′′(x) + k(θ − x)u′(x),

with the maximal domain

D(L0) = {u ∈ X ∩ C2(0,+∞)|L0u ∈ X},

generates a Feller semigroup on X.

Proof. See [54, Chapter VI, Section 3] and Example 6.1.8 of Appendix 6.1.
We start to observe that the square-root process rt satisfies the following relation

rt = e−ktρ

(
σ2

4k (ekt − 1)
)
,

so, it can be viewed as a squared Bessel process ρ(t), which is the unique solution of
the following SDE

dρ(t) = 4kθ
σ2 dt+ 2

√
ρ(t)dWt.

Note that the state space of the process ρ(t) is the interval [0,+∞). Then, the
behavior of the square-root process rt at the boundary points 0 and +∞ can be
studied by knowing the behavior of the process ρt at these endpoint. It can be
showed that the endpoint 0 is of entrance type if kθ ≥ σ2

4 , and the endpoint +∞ is
of natural type. Hence, the assertion follows from Theorem 1.1.21.

Remark 1.2.6. The generation result for the CIR operator is a more difficult task
than the Black-Schols operator. The main issue is given by the potential term −xu.
This term represents an unbounded pertutbation, so, we can not apply Theorem
1.1.26 as it is for the Black-Scholes operator.
Moreover, this perturbation forces us to let X = C0[0,+∞) instead of C[0,+∞].
Since X is not dense in C[0,+∞], L is not densely defined in C[0,+∞], but its
restriction to X will be densely defined on X.
Moreover, by probabilistic results, it is known that the unique solution of (1.29) is
given by the Feynman-Kac Theorem (see e.g. [54, Section 6.3])

u(t, x) = ExQ
[
exp

(
−
∫ t

0
rs ds

)
u0(rt)

]
, (1.30)

for t ≥ 0, with initial value r0 = x > 0. The expectation is taken with respect to the
martingale measure Q.
By the semigroup theory one can prove that L is m-dissipative and densely defined
on X (see [40]) and so the generation follows from Theorem 1.1.15.
The next Theorem 1.2.8 states the generation result for the operator L and provides
an approximate (semi-explicit) representation for the solution of problem (1.29),
by applying a generalized Lie-Trotter-Daletskii type formula given in the following
proposition.
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Proposition 1.2.7. Let Ai be a densely defined and m-dissipative operator on a
Banach space X, such that Ai generates a (C0) contraction semigroup Ti on X,
for i = 1, ..., n. Suppose that the closure A = A1 + ...+An is densely defined and
m-dissipative, and let T be the semigroup that it generates. Let J1, .., Jq be a piecewise
disjoint decomposition of {1, ..., n} into q nonempty subsets, 2 ≤ q ≤ n. Let

Ah =
∑
j∈Jh

Aj , h = 1, ..., q.

Then, Ah generate a (C0) contraction semigroup Sh on X, with

Sh(t)f = lim
m→+∞

(
Tj1

(
t

m

)
· · · Tjl

(
t

m

))m
f, (1.31)

for all t ≥ 0 f ∈ X and with Jh = {j1, ..., jl}. Furthermore,

T (t)f = lim
n→+∞

(
S1

(
t

n

)
· · · Sq

(
t

n

))n
f, (1.32)

for all t ≥ 0 f ∈ X. The convergence is uniform for t in compacta.

Proof. See [40, Section 2, Proposition 1].
If i = 2, the proposition reduces to Theorem 1.1.30. If i > 2, the representation
(1.31) follows from Theorem 1.1.29 writing V (t) = Tj1(t) · · · Tjl(t). Then (1.32) is
a consequence of setting V (t) = S1(t) · · · Sq(t). Thus, this proposition formally
extends Theorem 1.1.29 but has essentially the same proof, and so it is simply a
variant of the standard product formula.

Theorem 1.2.8. Assume that kθ ≥ σ2

4 and k 6= 0. Then, the operator L with
domain

D(L) = {u ∈ X ∩ C2(0,+∞)|Lu ∈ X}, (1.33)

generates a (C0) contraction semigroup on X given by

T (t)u0(x) = lim
n→+∞

un(t, x), (1.34)

uniformly in x ∈ [0,∞) and for t in bounded intervals of [0,+∞), where n = 2k, k ∈
N. In particular, the approximate solution un can be written as

un(t, x) =
∫ +∞

−∞
...

∫ +∞

−∞︸ ︷︷ ︸
n times

L(t, n, σ, {yi}1≤i≤n, x, u0)
n∏
i=1

p

(
t

n
, yi

)
dy1...dyn. (1.35)

The expression of the above function L is given in Appendix 6.2.

Proof. This proof is based on the recent work [40] and summarizes its main results.
We start to rewrite the operator L as

L = G2 +Q+ P,
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where

Gu(x) = ν
√
xu′(x), D(G) = {u ∈ X ∩ C1(0,+∞)|

√
xu′ ∈ X},

Qu(x) = αu′(x) + βxu′(x), D(Q) = {u ∈ X ∩ C1(0,+∞)|u′, xu′ ∈ X},

Pu(x) = −xu(x), D(P ) = {u ∈ X|xu ∈ X},

with ν = σ√
2 > 0, α =

(
kθ − ν2

2
)
≥ 0, β = −k 6= 0, for any x ∈ R+. In particular

G2u(x) = ν2xu′′(x) + ν2

2 u
′(x), D(G2) = {u ∈ D(G)|Gu ∈ D(G)}

= {u ∈ X ∩ C2(0,+∞)|
√
xu′,
√
x(
√
xu′)′ ∈ X}.

The operators (G2, D(G2)), (Q,D(Q)) and (P,D(P )) generate the (C0) contraction
semigroups (etG2)t≥0 , (etQ)t≥0 and (etP )t≥0 on X (see [40, Section 3, Lemma 1] and
[40, Section 5, Lemma 3]) respectively, given by

etG
2
f(x) =

∫ +∞

−∞
f

((√
x+ νy

2

)2)
p(t, y)dy, (1.36)

with p defined in (1.14),

etQf(x) = f

(
etβx+ α

β
(etβ − 1)

)
, (1.37)

and
etP f(x) = e−txf(x),

for any x ∈ R+, t ≥ 0, f ∈ X.
Now, the closure of Q+P with domain D(Q+P ) = {u ∈ D(Q)|Pu ∈ X} generates
a (C0) contraction semigroup on X given by

et(Q+P )f(x) = exp

(
− 1
β

(
(etβ − 1)

(
α

β
+ x

)
− αt

))
f

(
etβx+ α

β
(etβ − 1)

)
(1.38)

(see [40, Section 5, Theorem 4]). Finally, the operator L with domain D(L) =
D(G2)∩D(Q+P ) = {u ∈ D(G2)|Qu,Pu ∈ X} (coincident with the domain (1.33))
is densely defined and m-dissipative on X (see [40, Theorem 3, Section 4]). Hence,
by Proposition 1.2.7, the closure L generates a (C0) contraction semigroup on X
given by the following product formula

T (t)u0(x) = lim
n→+∞

un(t, x) = lim
n→+∞

(
e
t
n
G2
e
t
n

(Q+P )
)n
u0(x),

that leads to formula (1.35) (see Appendix 6.2).

Remark 1.2.9. Formula (1.34) is called a "generalized Feynman-Kac type formula".
In fact, it is the analytic form of the classic Feynman-Kac formula (1.30). The (C0)
property of the semigroup (T (t))t≥0 on C0[0,+∞) had been established in [30], but
there it is expressed in a very different context using affine processes. Note that the
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initial data u0 = 1 by referring to the CIR problem (1.28), is not included in the
space C0[0,+∞). However, it is possible to define the following sequence

um(x) =


1, if x ∈ [0,m],
m+ 1− x, if x ∈ [m,m+ 1],
0, if x ∈ [m+ 1,+∞],

(1.39)

um ∈ X and clearly um(x) → u0(x), for all x ≥ 0, as m → +∞. Thus the
approximate solutions (T (t)um)(x) given by (1.34) and (1.35) with initial condition
um converges to

u(t, x) = lim
n→+∞

∫ +∞

−∞
...

∫ +∞

−∞︸ ︷︷ ︸
n times

L(t, n, ν, {yi}1≤i≤n, x, 1)
n∏
i=1

p

(
t

n
, yi

)
dy1...dyn,

as m→ +∞, for all x ∈ R+.



21

Chapter 2

A Semigroup Approach to
Generalized Black-Scholes Type
Equations in Incomplete
Markets

In this chapter an option pricing problem in incomplete market is studied by an
analytic point of view. In particular, the results reported in the paper [18] are herein
illustrated. The incompleteness is generated by the presence of a non-traded asset.
The aim is to use the semigroup theory in order to prove existence and uniqueness of
solutions to generalized Black-Scholes type equations that are non-linearly associated
with the price of European claims written exclusively on non-traded assets. Then,
analytic expressions of the solutions are obtained. An approximate representation
in terms of a generalized Feynman-Kac type formula is derived in cases where an
explicit closed form solution is not available. Numerical applications and examples
are also given showing an excellent agreement between our theoretical results and
the numerical tests.
The chapter is organized as follows. After a short discussion in Section 2.1, in Section
2.2 we will focus on initial value Cauchy problems associated with operators of the
type

Lu = 1
2(cx+ d)2u′′ + [(γx+ δ)− θ(cx+ d)]u′,

acting on the space of all real-valued continuous functions in a suitable unbounded
real interval having finite limits at the endpoints. Here the domain of L depends on
the coefficients of u′, u′′. More generation results are provided, giving an analytic
expression of the solution to the associated Cauchy problem. In particular, approxi-
mate solutions expressed in terms of a generalized Feynman-Kac type formula are
given when explicit closed forms are not available. This is a valuable result since very
few exact solution formulas to Cauchy problems associated with financial models are
available. Some numerical applications and examples are also presented in Section
2.3 to compare the approximate solutions with benchmark formulas in the literature.
These applications confirm the accuracy and the fast convergence of the proposed
approximation formulas, thus showing that an approximate representation of the
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indifference price is particularly helpful in cases where exact pricing formulas fail
because their coefficients cannot be explicitely computed.

2.1 Analytic Problem
We consider the market environment with two risky assets assumed by M. Musiela
and T. Zariphopoulou in [71]; the price S of the traded asset is a geometric Brownian
motion, i.e. it is the unique solution of the following SDE

dSτ = µSτdτ + σSτdW̃τ , 0 ≤ t < τ, (2.1)

with initial value St = s > 0, µ ∈ R, σ > 0. The dynamics of the level Y of the
non-traded risky asset is described by a general diffusion process satisfying the SDE

dYτ = b(Yτ , τ) dτ + a(Yτ , τ) dWτ , 0 ≤ t < τ, (2.2)

with initial value Yt = y ∈ R, where the coefficients b(·, ·) and a(·, ·) satisfy enough
regularity for (2.2) to have a unique (strong) solution. The processes {W̃τ , τ ≥ 0}
and {Wτ , τ ≥ 0} are standard one-dimensional Brownian motions defined on a given
filtered probability space (Ω,F , (Fτ )τ≥0 ,P), where Fτ is the σ−algebra generated
by {W̃u,Wu, 0 ≤ u ≤ τ}. The Brownian motions are correlated with instantaneous
correlation coefficient ρ ∈ (−1, 1). It is assumed that the derivative to be priced is
a European claim written exclusively on the non-traded asset, whose payoff at the
maturity T > t is of the form ε = G(YT ), being G a bounded function. Moreover,
trading occurs in the time horizon [t, T ] and only between the risky asset with
price S and a riskless bond B = 1 with maturity T , yielding constant interest rate
0 ≤ r < µ. Without any loss of generality, we assume that r = 0.
In the framework described above, the individual risk preferences are modelled via
an exponential utility function

U(x) = −e−ηx, x ∈ R, (2.3)

where η > 0 is the risk aversion parameter. Then according to the approach to
pricing based on the comparison of maximal expected utility payoffs, Musiela and
Zariphopoulou [71] derived the writer’s indifference price of a European derivative
with payoff ε = G(YT ) in the following closed form (see [71, Theorem 3])

h(y, t) = 1
η(1− ρ2) ln EQ[eη(1−ρ2)G(YT ) | Yt = y], (2.4)

for (y, t) ∈ R× [0, T ], where the pricing indifference measure Q is defined as follows

Q(A) = EP

[
exp

(
−ρµ

σ
WT −

1
2ρ

2µ
2

σ2T

)
IA

]
, A ∈ FWT , (2.5)

where FWT is the augmented σ-algebra generated by Wτ , 0 ≤ τ ≤ T .
Remark 2.1.1. In the the reduced complete model in which one trades the asset S
and the bond B, and where the non-traded asset Y is not taken into account, the
pricing measure in (2.5) is replaced by the following unique martingale measure

Q̃(A) = EP

[
dQ̃
dP

IA

]
= EP

[
exp

(
−µ
σ
W̃T −

1
2
µ2

σ2T

)
IA

]
, A ∈ FW̃T ,
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where F W̃T is the augmented σ-algebra generated by W̃τ , 0 ≤ τ ≤ T .
Thus the indifference measure Q defined in (2.5) satisfies (see [72, Theorem 2.2])

Q(A) = EP

[
EP

[
dQ̃
dP

∣∣∣∣FWT

]
IA

]
,

where EP[dQ̃/dP|FWT ] is the projection of the Radon-Nikodym density dQ̃/dP onto
the Brownian motion Wτ , τ ≥ 0. Thus, the indifference probability measure Q is the
closest measure to the risk-neutral one Q̃. Note that in the perfect correlated case,
i.e. when ρ2 = 1, we have that Q = Q̃ (see [72, Theorem 2.3]).
In particular, under the measure Q, Yτ satisfies the following SDE

dYτ =
(
b(Yτ , τ)− ρµ

σ
a(Yτ , τ)

)
dτ + a(Yτ , τ)dW τ , (2.6)

where W τ = Wτ + ρµσ τ is a Brownian motion. Hence, (Yτ )τ≥0 is a diffusion process
with the infinitesimal generator

∂

∂τ
+ 1

2a
2(y) ∂

2

∂y2 +
(
b(y)− ρµ

σ
a(y)

) ∂
∂y

(see [71, Theorem 2] or [72, Theorem 2.1]).
Remark 2.1.2. In complete arbitrage-free markets every financial instrument can
be replicated. Thus by using self-financing and replicating portfolio strategies, the
arbitrage-free representation of a contingent claim at a time 0 ≤ t < T is uniquely
determined as the conditional expectation of the discounted payoff function under
the unique risk-neutral martingale measure (see, e.g., [87, Section VI.1]).
As mentioned in the Introduction, in incomplete arbitrage-free markets financial
instruments are not, in general, perfectly replicable. Further, asset pricing will
depend on the utility function of investors. Thus a specific martingale measure,
which is defined as the closest to the risk-neutral one, must be determined by a
certain optimality criteria to price a contingent claim. Frittelli in [37] showed that if
the minimal entropy martingale measure exists, it is unique and is equivalent to P.
Our aim herein is to give an explicit representation for the indifference pricing
function h(y, t) that, by (2.4), can be written as

h(y, t) = 1
η(1− ρ2) lnw(y, t),

where
w(y, t) = EQ[eη(1−ρ2)G(YT ) | Yt = y]. (2.7)

Under the usual regularity for the Feynman-Kac approach (see, for example, [75,
Section 8.2]), w(y, t) solves the Cauchy problem

∂w
∂t + 1

2a
2(y, t)∂2w

∂y2 +
(
b(y, t)− ρµσa(y, t)

)
∂w
∂y = 0, (y, t) ∈ R× [0, T ],

w(y, T ) = eη(1−ρ2)G(y), y ∈ R,
(2.8)

where y = Yt is a dummy variable for any t ∈ [0, T ].
To give an explicit representation of h(y, t), we will prove existence and uniqueness
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of the solution to problem (2.8) by a semigroup approach. Observe that, in a perfect
correlation between the traded and the non-traded asset, i.e. when ρ2 = 1, and,
in addition, the coefficients in (2.2) are b(y, t) = µy and a(y, t) = σy, the market
becomes complete and the indifference price h reduces to the usual Black-Scholes
model (see [72, Theorem 2.3]).
With the variable change u(y, t) = w(y, T − t) the problem (2.8) can be transformed
from a backward to a forward parabolic problem

∂u
∂t = 1

2a
2(y, t)∂2u

∂y2 +
(
b(y, t)− ρµσa(y, t)

)
∂u
∂y , (y, t) ∈ R× [0, T ],

u(y, 0) = eη(1−ρ2)G(y), y ∈ R.
(2.9)

Once we consider (2.9), we may do so for 0 ≤ t < +∞.
The coefficients a(·, ·) and b(·, ·) are assumed of the type

a(Yτ , τ) = cτYτ + dτ , b(Yτ , τ) = γτYτ + δτ , (2.10)

where cτ , dτ , γτ , δτ are suitable functions depending on τ . This assumption is not
restrictive from a financial point of view, because it is often possible to reduce a(·, ·)
and b(·, ·) to (2.10) (for more details the reader can refer to O. S. Farad [35]).
In the sequel, we shall focus the discussion on the autonomous case, i.e. we assume

a(Yτ , τ) ≡ a(Yτ ) = c Yτ + d, b(Yτ , τ) ≡ b(Yτ ) = γ Yτ + δ,

for any τ ≥ 0, with c, d, γ, δ ∈ R. Under this assumption, obviously, the SDE (2.6)
has a unique strong solution (see, for example, [75, Section 5.2]).
Remark 2.1.3. We notice that assumption (2.10) is suggested by M. Musiela and T.
Zariphopoulou in [72]. Indeed, they indicate as possible candidate for the dynamics
of the non-traded asset a class of diffusion processes for which a(y) = d, b(y) = γy+δ,
with d, γ, δ ∈ R. We shall examine this particular case in Subsection 2.2.2.

2.2 Semigroup Approach
Let J = (r1, r2) be a real interval with −∞ ≤ r1 < r2 ≤ +∞ and C(J̄) be the space
of all real-valued continuous functions in J having finite limits at the endpoints r1,
r2. We consider the following abstract Cauchy problem

(ACP )

ut = Lu, in J × [0, +∞),

u(x, 0) = g(x), x ∈ J,
(2.11)

where L is a differential operator of the type Lu = m(x)u′′ + q(x)u′ acting on C(J̄),
with the maximal domain

DM (L) = {u ∈ C(J̄) ∩ C2(J)| Lu ∈ C(J̄)}. (2.12)

For our purposes
Lu = 1

2a
2(x)u′′ + (b(x)− θa(x))u′,
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with a(x) = cx+ d, b(x) = γx+ δ, and c, d, γ, δ, θ ∈ R constant parameters. Here
θ = ρµ/σ, where the parameters ρ, µ and σ are defined in Section 2.1. Thus we can
write

Lu = 1
2(cx+ d)2u′′ + ((γx+ δ)− θ(cx+ d))u′. (2.13)

The initial condition of (2.11) is

g(x) = eη(1−ρ2)G(x), x ∈ J, (2.14)

where η > 0 is the risk aversion parameter and G ∈ C(J̄). We recall a well-known
result that will be useful later (see [32, Chapter VI, Section 4]).

Lemma 2.2.1. Let us consider J = (r1, r2) and Γ = (s1, s2), with −∞ ≤ r1 < r2 ≤
+∞, −∞ ≤ s1 < s2 ≤ +∞. Let Φ : J → Γ be a bijective function with inverse Φ−1,
such that Φ ∈ C2(J), Φ′(x) > 0 and for any v ∈ C(Γ̄), define TΦ(v) = v ◦ Φ. Then
TΦ(v) ∈ C(J̄). Moreover TΦ is an invertible bounded linear operator from C(Γ̄) to
C(J̄) such that ‖TΦ‖ ≤ 1 and (TΦ)−1 = TΦ−1. Further, si has the same type of
Feller classification of ri, i = 1, 2.

Proof. Observe that, if v ∈ C(Γ̄), then v ◦ Φ ∈ C(J), moreover

lim
x→r1

(v ◦ Φ)(x) = lim
z→s1

v(z) ∈ R.

Analogously,
lim
x→r2

(v ◦ Φ)(x) = lim
z→s2

v(z) ∈ R.

Hence, TΦ(v) ∈ C(J̄). It is clear that TΦ is a linear and

‖TΦ(v)‖∞ = ‖v ◦ Φ‖∞ ≤ ‖v‖∞.

This yields that TΦ is bounded with ‖TΦ‖ ≤ 1. Moreover, TΦ is bijective with inverse
TΦ−1 .

Remark 2.2.2. Under the assumptions of Lemma 2.2.1, according to [32, Chapter II,
Section 2.a], if (T (t))t≥0 is a (C0) semigroup on C(J̄) having (A,D(A)) as generator,
then (S(t))t≥0 given by S(t) = TΦ−1 ◦ T (t) ◦ TΦ, t ≥ 0, is a (C0) semigroup on C(Γ̄)
with generator (B,D(B)). Here B = TΦ−1 ◦A ◦TΦ, and D(B) = {g ∈ C(Γ̄)|TΦ (g) ∈
D(A)}. Moreover, if (T (t))t≥0 is a positive contraction semigroup on C(J̄) (i.e.

(f ∈ C(J̄), f ≥ 0)⇒ (T (t)f ≥ 0, t ≥ 0, ‖T (t)‖ ≤ 1),

then (S(t))t≥0 is a positive contraction semigroup on C(Γ̄).

2.2.1 Generation of a (C0) semigroup and its explicit representa-
tion: the case δc = dγ

In order to solve the (ACP) (2.11), we will start by showing the existence of a (C0)
semigroup generated by L on C(J̄), under the additional assumption δc = dγ.
A preliminary result is presented in the following.
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Lemma 2.2.3. Let us assume that c, d, γ, δ satisfy

(δc = dγ) and (c, d) 6= (0, 0). (2.15)

Then the operator (L, DM (L)) has one of the following expressions, for any u ∈
DM (L),

Lu = 1
2c

2x2u′′ + k1xu
′, if d = 0, (2.16)

Lu = 1
2d

2u′′ + k2u
′, if c = 0, (2.17)

Lu = 1
2d

2(kx+ 1)2u′′ + k3(kx+ 1)u′, if c 6= 0 and d 6= 0. (2.18)

Here k1 = γ − θc, k2 = δ − θd, k = d
c , k3 = k2 if γ 6= 0 and k3 = −θd if γ = δ = 0.

Moreover, for γ 6= 0 and d 6= 0 we have k = d
c = γ

δ .

Proof. We examine the following cases

(i) d = 0, (ii) d 6= 0.

In the case (i), due to (2.15), we deduce that c 6= 0 and δ = 0. Hence, for any
u ∈ DM (L), we obtain

Lu = 1
2c

2x2u′′ + (γ − θc)xu′

and hence, L has the form (2.16).
In the case (ii), we have to examine the following subcases

(ii)1 γ = c = 0, (ii)2 γ = δ = 0, (ii)3 γ 6= 0.

In the subcase (ii)1, we obtain

Lu = 1
2d

2u′′ + (δ − θd)u′.

Thus L is of the form (2.17).
In the subcase (ii)2, we can assume c 6= 0, otherwise we come back to the case (ii)1.
Hence

Lu = 1
2(cx+ d)2u′′ − θ(cx+ d)u′ = 1

2d
2(kx+ 1)2u′′ − θd(kx+ 1)u′,

with k = d
c and L is of the type (2.18).

In the subcase (ii)3, δ 6= 0 and c 6= 0, being γ 6= 0 and d 6= 0. Hence

Lu = 1
2d

2(d
c
x+ 1)2u′′ +

[
δ

(
γ

δ
x+ 1

)
− θd

(
d

c
x+ 1

)]
u′

= 1
2d

2(kx+ 1)2u′′ + (δ − θd)(kx+ 1)u′,

where k = d
c = γ

δ . Thus L is of the type (2.18).
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We are now in a position to state our first main result of this section.

Theorem 2.2.4. Assume that c, d, γ, δ, θ ∈ R satisfy (2.15) and the operator L is
defined by (2.13) with domain DM (L) given by (2.12). Then the operator (L, DM (L))
generates a positive (C0) contraction semigroup on C(J̄). Here J = (0,+∞) if L
is of the type (2.16), J = R if L is of the type (2.17) and J =

(
−d
c ,+∞

)
if c > 0

(resp. J =
(
−∞,−d

c

)
if c < 0) if L is of the type (2.18).

Proof. As consequence of Lemma 2.2.3, the operator L takes the form (2.16) or (2.17)
or (2.18). In the case L is of the type (2.16), then, according to [42, Theorem 3.2],
the operator L with domain DM (L) generates a positive (C0) contraction semigroup
on C[0,+∞]. In the case L is of the type (2.17), the assertion follows from [42,
Section IV] and J = R.
Finally, let us focus on L of the form (2.18). Let us proceed with the change of
variable

z = Φ(x) = kx+ 1, (2.19)

where k = d
c . If c > 0 (analogous arguments work for c < 0), then the operator L

acting on C
[
−d
c ,+∞

]
can be transformed in the operator L̃ acting on C[0,+∞],

where
L̃v = 1

2 k̃
2z2v′′ + k3kzv

′, (2.20)

with k̃ = kd, and k3 defined as in Lemma 2.2.3. We observe that D(L̃) has the
same expression of DM (L) where J is replaced by (0,+∞) (see [42, Theorem 3.2]).
Consequently, L̃ is of the type (2.16) on C[0,+∞]. Thus, according to the above
arguments, L̃ generates a positive (C0) contraction semigroup on C[0,+∞], where
DM (L̃) is obtained easily from DM (L). Hence, Lemma 2.2.1 and Remark 2.2.2
imply the assertion.

Remark 2.2.5. From Theorem 1.1.21 follows that DM (L) coincides with

DW (L) =
{
u ∈ C(J̄) ∩ C2(J)

∣∣∣∣ lim
x→r1
x→r2

Lu(x) = 0
}
,

provided that the assumptions of Theorem 2.2.4 hold.

The next step is to give an explicit representation of the solution to (2.11).

Theorem 2.2.6. Under the assumptions of Theorem 2.2.4, fixed g ∈ C(J̄) and for
any (x, t) ∈ J × [0,+∞) the explicit solution to the problem (2.11) is given by
Case 1: If d = 0,

u(x, t) =
∫ +∞

−∞
g
(
e
c√
2

(ψt+y)
x
)
p(t, y)dy, (2.21)

with J = (0,+∞) and ψ =
√

2
c γ −

√
2θ − c√

2 .
Case 2: If c = γ = 0,

u(x, t) =
∫ +∞

−∞
g

(
x+ d√

2
(ωt+ y)

)
p(t, y)dy, (2.22)
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with J = R and ω =
√

2
d (δ − θd).

Case 3: If d 6= 0 and c 6= 0,

u(x, t) =
∫ +∞

−∞
g
(
e
k√
2

(χt+y)(kx+ 1)
)
p(t, y)dy, (2.23)

with J =
(
−d
c ,+∞

)
if c > 0 (resp. J =

(
−∞,−d

c

)
if c < 0) and χ =

√
2
d k3 − k̃√

2 .
In all cases

p(t, y) = 1
2
√
πt
e−

y2
4t , t > 0, y ∈ R. (2.24)

Proof. Case 1. According to Lemma 2.2.3, if d = 0 the operator L can be written
as in (2.16). Thus define the operator Gu = c√

2
xu′ with domain

D(G) = {u ∈ C[0,+∞] ∩ C1(0,+∞)|u′, xu′ ∈ C[0,+∞]}. (2.25)

Hence, the square of G is given by

G2u = c√
2
x

(
c√
2
xu′
)′

= c2

2 x
2u′′ + c2

2 xu
′,

with domain

D(G2) = {u ∈ D(G)|Gu ∈ D(G)}
= {u ∈ C[0,+∞] ∩ C2(0,+∞)|u′, xu′, x(xu′)′ ∈ C[0,+∞]}.

Therefore, for any u ∈ D(G2), the operator L can be written as

Lu = G2u+ ψGu, (2.26)

with ψ =
√

2
c γ−

√
2θ− c√

2 . Notice that (G,D(G)) generates a (C0) group on C[0,+∞]
and, according to [42, Section 3], it is a suitable perturbation of (G2, D(G2)). Hence,
by [44, Chapter II, Section 8], (L, D(G2)) generates the following (C0) contraction
semigroup

T (t)g(x) =
∫ +∞

0

(
g
(
e
c√
2

(ψt+y)
x
)

+ g
(
e
c√
2

(ψt−y)
x
))
p(t, y)dy

=
∫ +∞

−∞
g
(
e
c√
2

(ψt+y)
x
)
p(t, y) dy

for any t ≥ 0, and therefore the representation (2.21) follows.
Case 2: If c = γ = 0, then the operator L can be written as in (2.17). Let us define

Gu = d√
2
u′, D(G) = {u ∈ C(R̄)|u′ ∈ C(R)}. (2.27)

Then, the square of G is given by

G2u = d√
2

(
d√
2
u′
)′

= d2

2 u
′′, (2.28)
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with domain

D(G2) = {u ∈ D(G)|Gu ∈ D(G)} = {u ∈ C(R) ∩ C2(R)|u′, u′′ ∈ C(R)}. (2.29)

Thus, for any u ∈ D(G2), L can be written as

Lu = 1
2c

2x2u′′ + k1xu
′ = G2u+ ωGu, (2.30)

with ω =
√

2
d (δ − θd). The operator (G,D(G)) generates a (C0) group on C[0,+∞]

and according to [42, Section 4], it is a suitable perturbation of (G2, D(G2)). Then
(L, D(G2)) generates the following (C0) contraction semigroup

T (t)g(x) =
∫ +∞

0

(
g

(
x+ d√

2
(ωt+ y)

)
+ g

(
x+ d√

2
(ωt− y)

))
p(t, y) dy

=
∫ −∞
−∞

g

(
x+ d√

2
(ωt+ y)

)
p(t, y) dy,

and therefore the representation (2.22) follows.
Case 3: If c 6= 0, d 6= 0 the operator L can be written as in (2.18). By the change
of variable (2.19), L can be transformed into the operator L̃ defined in (2.20), acting
on C[0,+∞]. Hence, let us define

Gv = k̃√
2
zv′, D(G) = {v ∈ C[0,+∞] ∩ C1(0,+∞)|v′, zv′ ∈ C[0,+∞]}.

Thus, the square of G is given by

G2v = k̃√
2
z( k̃√

2
zv′)′ = k̃2

2 z
2v′′ + k̃2

2 zv
′,

with domain

D(G2) = {v ∈ D(G)|Gv ∈ D(G)}
= {v ∈ C[0,+∞] ∩ C2(0,+∞)|v′, zv′, z(zv′)′ ∈ C[0,+∞]}.

Therefore, for any v ∈ D(G2), L̃ can be written as

L̃v = G2v + χGv, (2.31)

where χ =
√

2
d k3 − k̃√

2 . Analogous arguments as for the Case 1 lead to state that
(L, D(G2)) generates the following (C0) contraction semigroup

T (t)g(x) =
∫ +∞

−∞
g
(
e
k√
2

(χt+y)(kx+ 1)
)
p(t, y) dy

for any t ≥ 0 and x ∈ J =
(
−d
c ,+∞

)
if c > 0 (resp. x ∈ J =

(
−∞,−d

c

)
if c < 0),

and therefore the representation (2.23) follows.
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2.2.2 Generation of a (C0) semigroup and its approximate repre-
sentation: the case c = 0, γ 6= 0

In this section we prove the existence and uniqueness of the solution to (2.11) in
the case c = 0, γ 6= 0. Further, by considering similar arguments to those used in
[40], we derive an approximate formula for the solution. Notice that the assumption
c = 0 implies d > 0 because the diffusion coefficient a(x) = cx+ d in the SDE (2.6)
must be positive.

Theorem 2.2.7. Assume c = 0, γ 6= 0, d > 0 and δ, θ ∈ R, so that L, with maximal
domain DM (L) defined in (2.12), takes the form

Lu = 1
2d

2u′′ + (γx+ (δ − θd))u′. (2.32)

Then, for any g ∈ C(R), there exists a unique solution to the (ACP) (2.11).

Proof. First of all, we note that the operator L in (2.32) can be rewritten as

Lu = 1
2d

2u′′ + γ

(
x+ (δ − θd)

γ

)
u′. (2.33)

Thus, by the change of variable

z = Φ(x) = x+ (δ − θd)
γ

(2.34)

the operator (2.33) is transformed in the following operator

L̃u = 1
2d

2v′′ + γzv′. (2.35)

Hence, to prove the existence and uniqueness of the solution to (ACP), it is sufficient
to show that the boundary endpoints ±∞ are of entrance or natural type (see
Theorem 1.1.21).
We start to study the boundary point −∞. For sake of simplicity, we set z0 = −1
and compute (see Definition 1.1.20)

W (z) = exp
(
−
∫ z

−1

2γs
d2 ds

)
= exp

(
− γ

d2 (z2 − 1)
)

= e−αeα z
2
,

with α = − γ
d2 6= 0. Then∫ −1

−∞
W (z) dz = e−α

2α

∫ −1

−∞

2αzeαz2

z
dz = e−α

2α

∫ −1

−∞

1
z

d

dz
(eαz2) dz.

Observe that, by twice integration by parts,∫ 1
z

d

dz
(eαz2) dz = 1

z
eαz

2 + 1
2αz3 e

αz2 + 3
4α2

∫ 1
z5

d

dz
(eαz2) dz,

and therefore, as z → −∞ ∫ 1
z

d

dz
(eαz2) dz ' 1

z
eαz

2
. (2.36)
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Moreover, by noting that in our casem(z) = d2/2, so that (m(z)W (z))−1 = 2eα
d2 e

−αz2
,

we compute∫ z

−∞
(m(s)W (s))−1 ds = 2eα

d2

∫ z

−∞
e−αs

2
ds = − eα

αd2

∫ z

−∞

1
s

d

ds
(e−αs2) ds.

With similar arguments as before it follows that, as s→ −∞∫ 1
s

d

ds
(e−αs2) ds ' 1

s
e−αs

2
. (2.37)

Assume α > 0 (i.e. γ < 0). Thus by (2.36) we can conclude that W 6∈ L1(−∞, z0)
and hence, by Lemma 1.1.22, R 6∈ L1(−∞, z0).
Further, by (2.37) and Remark 1.1.23, we compute∫ −1

−∞
Q(z) dz =

∫ −1

−∞

(∫ z

−∞
(m(s)W (s))−1 ds

)
W (z) dz

' − 1
αd2

∫ −1

−∞

1
z
e−αz

2
eαz

2
dz = 1

αd2

∫ +∞

1

1
z
dz = +∞,

and therefore Q 6∈ L1(−∞, z0).
Assume now α < 0 (i.e. γ > 0). Thus by (2.37) we can conclude that (m(z)W (z))−1 6∈
L1(−∞, z0) and hence, by Lemma 1.1.22, Q 6∈ L1(−∞, z0).
Further, by (2.36) and Remark 1.1.23 we compute∫ −1

−∞
R(z) dz =

∫ −1

−∞

(∫ z

−∞
W (s) ds

)
(m(z)W (z))−1 dz

' 1
αd2

∫ −1

−∞

1
z
eαz

2
e−αz

2
dz = − 1

αd2

∫ +∞

1

1
z
dz = +∞,

and therefore R 6∈ L1(−∞, z0). We can then conclude that −∞ is of natural type
for all α 6= 0.
We consider now the endpoint +∞, set z0 = 1 for sake of simplicity. Similar
calculations as carried out for −∞ allow to conclude that +∞ is of natural type too,
for all α 6= 0.
By Lemma 2.2.1 the boundary points ±∞ have the same type of Feller classification
with respect to the operator L. This complete the proof.

The Lie-Trotter-Daletskii product formula (see Proposition 1.2.7) implies the follow-
ing theorem.

Theorem 2.2.8. By referring to Theorem 2.2.7, the solution to the (ACP) (2.11)
admits the following approximate formula

u(x, t) = lim
n→+∞

un(x, t),

uniformly in x ∈ R and for t in bounded intervals of [0,∞). Here un(·, ·), n ≥ 1, is
a sequence of approximate solutions given by

un(x, t) =
∫ +∞

−∞
...

∫ +∞

−∞︸ ︷︷ ︸
n times

L0(t, n, {yj}1≤j≤n, x, g)
n∏
j=1

p

(
t

n
, yj

)
dy1...dyn, (2.38)
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where

L0(t, n, {yj}1≤j≤n, x, g) = g

(x+ (δ − θd)
γ

)
eγt + ξ

n∑
j=1

yje
γ(n−j)t/n

 , (2.39)

with n = 2k, k ∈ N, ξ = d√
2 , and p(t, y) is defined in (2.24).

Proof. Consider the operator L̃ defined in (2.35), obtained from L by the change of
variable (2.34). Moreover, consider the operator (G,D(G)) defined in (2.27) and the
operator

G1v = γzv′, D(G1) = {v ∈ C(R̄) ∩ C1(R)|zv′ ∈ C(R̄)}.

The square (G2, D(G2)) defined in (2.28), (2.29) represents the well known heat
operator that generates a (C0) contraction semigroup on C(R̄) defined by

U(t)f(z) =
∫ +∞

−∞
f(z + ξy)p(t, y) dy, (2.40)

for t ≥ 0, z ∈ R, f ∈ C(R) (see, e.g. [43]), with ξ = d√
2 and p(t, y) given in 2.24.

Further, the operator (G1, D(G1)) generates a (C0) semigroup of isometries on C(R)
given by

V (t)f(z) = f(zeγt), (2.41)

for t ≥ 0, z ∈ R, f ∈ C(R).
Then, by the Lie-Trotter-Daletskii formula we can conclude that the closure of the
operator (L̃, D(G2)∩D(G1)) generates a (C0) semigroup (T (t))t≥0 on C(R) defined
by

T (t)g(z) = lim
n→+∞

[U(t/n)V (t/n)]n g(z), (2.42)

uniformly in z ∈ R and for t in bounded intervals of [0,+∞). Hence, the solution to
the (ACP) (2.11) is given by

u(z, t) = T (t)g(z) = lim
n→+∞

[U(t/n)V (t/n)]n g(z).

Denote un(z, t) = [U(t/n)V (t/n)]n g(z). To compute the approximate solutions
un(·, ·), n ≥ 1, we proceed by steps. The details are given in Appendix 6.3. Finally,
by Lemma 2.2.1 the formula (2.39) holds.

Remark 2.2.9. If γ < 0, the operator L̃ in (2.35) represents the infinitesimal generator
of the Ornstein-Uhlenbeck process. The corresponding (C0) semigroup on C0(R)
has the following explicit representation (see e.g. [66, Chapter 12])

1√
2π

∫ +∞

−∞
g

(
zeγt + ξ

√
e2γt − 1

γ
y

)
e−y

2/2dy, (2.43)

for t ≥ 0, z ∈ R, g ∈ C0(R). In Section 2.3 we will show that the approximate
solutions (2.38) converge numerically to (2.43).
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Remark 2.2.10. It is worth noting that in the case c = 0 the non-traded asset level Y
is an affine process since both the drift b and the square of the diffusion coefficient a
in (2.2) are time-homogeneous affine functions in y = Yt.{

b(y, t) = b(y) = γy + (δ − θd)
a2(y, t) = a2(y) = d2,

for any γ, δ, θ, d ∈ R. This condition is equivalent to state that the problem (2.8)
admits an affine term structure (for more details on affine processes and affine term
structures the reader can refer, for example, to [29] or [30]) and then, its solution is
of the form

w(y, t) = eB(t,T )−A(t,T )y, (y, t) ∈ R× [0, T ], (2.44)

where A and B are deterministic functions satisfying the following differential
equations

∂A(t, T )
∂t

= −γA(t, T ), (2.45)

∂B(t, T )
∂t

= −d
2

2 A
2(t, T ) +A(t, T )(δ − θd), (2.46)

obtained by plugging the partial derivatives of w into the parabolic equation in (2.8).
For fixed T , equations (2.45) and (2.46) are uniquely solvable ODEs when the final
conditions A(T, T ) and B(T, T ) are known. The final condition in (2.8) implies that
A(T, T ) and B(T, T ) must satisfy the following equation

eB(T,T )−A(T,T )y = eη(1−ρ2)G(YT ), (2.47)

which can be explicitly solved if and only if the payoff function G(YT ) is a polynomial,
as shown in the next Example 2.2.11.
Hence the closed form (2.44) is a useful explicit representation of the solution to
problem (2.8) provided that the deterministic functions A and B are explicitly
known. For this reason, the approximation formula (2.38) for the case c = 0 may be
considered a helpful alternative to the Feynman-Kac formula (2.7).
Example 2.2.11. We consider a European option that conveys the opportunity, but
not the obligation, to sell an underlying asset at time t > 0 for some fixed price
K > 0. This is known as a put option; the corresponding call option to buy the asset
may be treated similarly. Assuming that the option is written exclusively on the
non-traded asset Y , its payoff at the maturity date T > t is

G(YT ) = (K − YT )+ =

K − YT , if K > YT ,

0, if K ≤ YT .

Thus equation (2.47) becomes

eB(T,T )−A(T,T )y = er(K−y)+ =
{
er(K−y), if K > y,

1, if K ≤ y,
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with r = η(1− ρ2) and YT = y ∈ R, and henceB(T, T ) = rK, A(T, T ) = r, if K > y,

B(T, T ) = 0, A(T, T ) = 0, if K ≤ y.

In the case K > y (from (2.7) we deduce that w reduces to the constant function 1
when K ≤ y), the functions A and B solve the following systems

dA(t, T )
dt

= −γA(t, T )

A(T, T ) = r,

(2.48)


dB(t, T )

dt
= (δ − θd)A(t, T )− d2

2 A
2(t, T )

B(T, T ) = rK.

(2.49)

Since (2.48) is a simple linear ODE, for fixed T , we immediately obtain

A(t, T ) = reγ(T−t).

Plugging this expression into the so called Riccati equation (2.49) and integrating
in the interval [t, T ]

B(t, T ) = r(δ − θd)
∫ T

t
eγ(T−s)ds− r2d2

2

∫ T

t
e2γ(T−s)ds,

we obtain

B(t, T ) = −r(δ − θd)
γ

(1− eγ(T−t)) + r2d2

4γ (1− e2γ(T−t)) + rK.

2.2.3 Generation of a (C0) semigroup and its approximate repre-
sentation: the case c 6= 0

In this section we will prove a generation result and an approximation formula
for the solution to the (ACP) (2.11) when the condition (2.15) on the parameters
c, d, γ, δ, θ is not verified and c 6= 0.
Thus the operator L is defined by

Lu = 1
2(cx+ d)2u′′ + ((γx+ δ)− θ(cx+ d))u′, (2.50)

Fix c > 0 (analogous arguments work for c < 0) and consider the change of variable
z = Φ(x) = cx+d, where Φ is the isomorphism that maps C

(
−d
c ,+∞

)
into C(0,+∞).

Then L is transformed in the following operator

L̃v = α0z
2v′′ + (α1 z + α2) v′, (2.51)

where
α0 = c2

2 > 0, α1 = (γ − θ c) ∈ R, α2 = (δ c− γ d) 6= 0 (2.52)

(if α2 = 0, then condition (2.15) holds).

We are now in position to prove the main result of this section.
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Theorem 2.2.12. Assume c 6= 0, d, γ, δ, θ ∈ R and consider the operator L̃ defined
in (2.51) with the parameters given in (2.52). Denote by

h1 = −α1
α0
∈ R, h2 = α2

α0
6= 0. (2.53)

Then

i. for any h1 ∈ R and h2 > 0, the operator L̃ with maximal domain

DM (L̃) = {v ∈ C[0,+∞] ∩ C2[0,+∞)| L̃v ∈ C[0,+∞]},

generates a positive (C0) contraction semigroup on C[0,+∞].

ii. for any h1 ∈ R and h2 < 0, the operator L̃ with Wentzell domain

DW (L̃) =
{
v ∈ C[0,+∞] ∩ C2[0,+∞)

∣∣∣∣ lim
z→0
z→+∞

L̃v(z) = 0
}
,

generates a positive (C0) contraction semigroup on C[0,+∞].

Proof. Consider J = (0,+∞). According to Theorem 1.1.20, the proof is based
on the Feller classification of the endpoints 0,+∞. First, we study the boundary
point z = +∞. Set z0 = 1 for sake of simplicity. For any z > 0, we compute (see
Definition 1.1.21)

W (z) = exp
(
−
∫ z

1

(α1s+ α2)
α0s2 ds

)
= exp

(
− 1
α0

[
α1 ln z − α2

z
+ α2

])

= e−h2zh1eh2/z,

and
(m(z)W (z))−1 = eh2

α0

e−h2/z

zh1+2 .

with h1 = −α1
α0
∈ R and h2 = α2

α0
6= 0.

Assume h2 > 0. Since eh2/z > 1 for all z > 0, we obtain∫ +∞

z
W (s) ds = e−h2

∫ +∞

z
sh1eh2/s ds

> e−h2

∫ +∞

z
sh1 ds =


+∞, if h1 ≥ −1

−e
−h2 zh1+1

h1 + 1 , if h1 < −1.
(2.54)

HenceW 6∈ L1(z0,+∞) if h1 ≥ −1 and therefore, by Lemma 1.1.22, R 6∈ L1(z0,+∞).
If h1 < −1, by Remark 1.1.23 and (2.54) we have∫ +∞

1
R(z) dz =

∫ +∞

1

(∫ +∞

z
W (s) ds

)
(m(z)W (z))−1 dz

> − 1
α0(h1 + 1)

∫ +∞

1
zh1+1 e

−h2/z

zh1+2 dz

> − 1
α0(h1 + 1)

∫ +∞

1

1
z
dz = +∞,
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where the last inequality follows by observing that e−h2/z < 1 for z > 1 Moreover,
for any z > 0 we compute

∫ +∞

z
(m(s)W (s))−1 ds = eh2

α0

∫ +∞

z

e−h2/s

sh1+2 ds

(e−h2/s > e−h2/z for all s > z)

>
eh2

α0
e−h2/z

∫ +∞

z

1
sh1+2 ds =

+∞, if h ≤ −1
eh2

α0(h1+1)
e−h2/z

zh1+1 , if h > −1.
(2.55)

Hence (mW )−1 6∈ L1(z0,+∞) if h1 ≤ −1 and therefore, by Lemma 1.1.22, Q 6∈
L1(z0,+∞).
If h1 > −1, by Remark 1.1.23 and (2.55) we have∫ +∞

1
Q(z) dz =

∫ +∞

1

(∫ +∞

z
(m(s)W (s))−1 ds

)
W (z) dz

>
1

α0(h1 + 1)

∫ +∞

1

e−h2/z

zh1+1 zh1eh2/z dz = 1
α0(h1 + 1)

∫ +∞

1

1
z
dz = +∞.

We have then proved that +∞ is natural for any h2 > 0 and h1 ∈ R.
Now, assume h2 < 0. Observe that eh2/s > eh2/z for all s > z > 0. Thus∫ +∞

z
W (s) ds = e−h2

∫ +∞

z
eh2/ssh1 ds

> e−h2eh2/z
∫ +∞

z
sh1 ds =

+∞, if h ≥ −1

− e−h2
h1+1

eh2/z

zh1+1 , if h < −1.

By Lemma 1.1.22, that implies R 6∈ L1(z0,+∞) if h1 ≥ −1. If h1 < −1, with similar
calculations as in the case h2 > 0, we obtain that∫ +∞

1
R(z) dz = +∞,

and therefore, we can conlude that R 6∈ L1(z0,+∞) for any h2 < 0 and h1 ∈ R.
Moreover, by observing that e−h2/z > 1 for any z > 0, we have∫ +∞

z
(m(s)W (s))−1 ds = eh2

α0

∫ +∞

z

e−h2/s

sh1+2 ds

>
eh2

α0

∫ +∞

z

1
sh1+2 ds =

+∞, if h1 ≤ −1
eh2

α0(h1+1)
1

zh1+1 , if h1 > −1.

Then, by Lemma 1.1.22 it follows that Q 6∈ L1(z0,+∞) when h ≤ −1.
If h > −1, with similar calculations as in the case h2 > 0, we obtain that∫ +∞

1
Q(z) dz = +∞.
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Hence, the endpoint +∞ is natural when h2 < 0 and h1 ∈ R. Therefore, we have
proved that +∞ is natural for all h2 6= 0 and h1 ∈ R.
We study now the behaviour at the boundary point 0.
First, assume h2 > 0. Without any loss of generality, set z0 = 1. Observe that
eh2/s > eh2/z for any 0 < s < z. Thus

∫ z

0
W (s) ds > e−h2eh2/z

∫ z

0
sh1 ds =

+∞, if h1 ≤ −1
e−h2
h1+1 e

h2/zzh1+1, if h1 > −1,
(2.56)

which implies R 6∈ L1(0, z0) when h1 ≤ −1. If h1 > −1, by (2.56) we obtain

∫ 1

0
R(z) dz =

∫ 1

0

(∫ z

1
W (s) ds

)
(m(z)W (z))−1 dz

>
1

α0(h1 + 1)

∫ 1

0

eh2/ze−h2/zzh1+1

zh1+2 dz = 1
α0(h1 + 1)

∫ 1

0

1
z
dz = +∞,

and therefore, R 6∈ L1(0, z0) for any h2 > 0 and h1 ∈ R. Moreover, for any z > 0

0 <
∫ z

0
(m(s)W (s))−1 ds < +∞.

Hence Q ∈ L1(0, z0) or Q /∈ L1(0, z0) that is, the endpoint 0 may be of entrance or
natural type for any h2 > 0 and h1 ∈ R. Then from Theorem 1.1.21 the assertion i.
holds.
Assume now h2 < 0. Since e−h2/s > e−h2/z for 0 < s < z, we compute∫ z

0
(m(z)W (z))−1 dz = eh2

α0

∫ z

0

e−h2/s

sh1+2 ds

>
eh2

α0
e−h2/z

∫ z

0

1
sh1+2 ds =

+∞, if h1 ≥ −1

− eh2
α0(h1+1)

e−h2/z

zh1+1 , if h1 < −1,

wich implies Q 6∈ L1(0, z0) when h1 ≥ −1. If h1 < −1

∫ 1

0
Q(z) dz =

∫ 1

0

(∫ z

0
(m(s)W (s))−1 ds

)
W (z) dz

> − 1
α0(h1 + 1)

∫ 1

0

e−h2/z zh1 eh2/z

zh1+1 dz = − 1
α0(h1 + 1)

∫ 1

0

1
z
dz = +∞;

and therefore, Q 6∈ L1(r1, x0) for any h2 < 0 and h1 ∈ R. Moreover, for any z > 0,

0 <
∫ z

0
W (s) ds < +∞,

Hence R ∈ L1(0, z0) or R /∈ L1(0, z0) that is, 0 may be of exit or natural type when
h2 < 0 and h1 ∈ R. This implies that both the boundary points 0 and +∞ are not
of entrance type for any h2 < 0 and h1 ∈ R. Therefore, from Theorem 1.1.21, the
assertion ii. holds.
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Remark 2.2.13. Consider J =
(−d
c ,+∞

)
if c > 0 (resp. J =

(
−∞, −dc

)
if c < 0).

From Remark 2.2.2 and Theorem 2.2.12 follows that

i) for any h1 ∈ R and h2 > 0, the operator (L, DM (L)) generates a positive (C0)
contraction semigroup on C(J̄);

ii) for any h1 ∈ R and h2 < 0, the operator (L, DW (L)) generates a positive (C0)
contraction semigroup on C(J̄),

where L is given in (2.50) and h1, h2 are defined in (2.53). We recall that the case
h2 = 0 corresponds to condition (2.15). Then, for any g ∈ C(J̄), there exists a
unique solution to the (ACP) (2.11).
Remark 2.2.14. If c > 0, α1 < 0 (⇒ h1 > 0), α2 > 0 (⇒ h2 > 0), the operator
L̃ in (2.51) represents the infinitesimal generator of a diffusion process considered
by Brennan and Schwartz [14] and, successively, by Courtadon [26] to model the
dynamic behaviour of interest rates for the valuation of default-free bonds and prices
of European options written on default-free bonds.
As in the previous section, the Lie-Trotter-Daletskii product formula implies the
following result.

Theorem 2.2.15. Assume c 6= 0, d, γ δ, θ ∈ R. Consider J =
(−d
c ,+∞

)
if c > 0

(resp. J =
(
−∞, −dc

)
if c < 0). Then the unique solution u to (ACP) (2.11) admits

the following approximate formula

u(x, t) = lim
n→+∞

un(x, t),

uniformly for x ∈ J and for t in bounded intervals of [0,∞). The sequence un(·, ·), n ≥
1, of approximate solutions is given by

un(x, t) =
∫ +∞

−∞
...

∫ +∞

−∞︸ ︷︷ ︸
n times

L(t, n, {yj}1≤j≤n, x, g)
n∏
j=1

p

(
t

n
, yj

)
dy1...dyn, (2.57)

where

L(t, n, {yj}1≤j≤n, x, g) =

g

eβ(
∑n

i=1 yi+ζt)
(
x+ d

c

)
− d

c
+ α2t

nc

n∑
j=1

e

[
β

(∑n

i=j yi+(n−j+1
n )ζt

)] , (2.58)

for g ∈ C(J̄), with n = 2k, k ∈ N. The parameters α1, α2 are defined in (2.52),
ζ =
√

2
(α1
c −

c
2
)
, and p(t, y) is given in (2.24).

Proof. We start by rewriting the operator L defined in (2.50) as follows

Lu = 1
2(cx+ d)2u′′ + ((γ − θc)x+ (δ − θd))u′

= 1
2(cx+ d)2u′′ +

((
γ

c
− θ

)
(cx+ d) +

(
δ − γd

c

))
u′

= 1
2(cx+ d)2u′′ +

(
α1
c

(cx+ d) + α2
c

)
u′. (2.59)
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Let us introduce the operator

Gu = cx+ d√
2

u′, D(G) = {u ∈ C(J̄) ∩ C1(J)|u′, xu′ ∈ C(J̄)}.

Then the square of G is given by

G2u = cx+ d√
2

(
cx+ d√

2
u′
)′

= 1
2(cx+ d)2u′′ + c

2(cx+ d)u′,

with domain

D(G2) = {u ∈ D(G)|Gu ∈ D(G)}
= {u ∈ C(J̄) ∩ C2(J)|u′, xu′, x(xu′)′ ∈ C(J̄)}.

Hence, the operator L can be written in the form

Lu = P1u+ P2u, (2.60)

where
P1u = G2u+ ζGu, D(P1) = D(G2),

with ζ =
√

2
(α1
c −

c
2
)
, and

P2u = α2
c
u′, D(P2) = {u ∈ C(J̄) ∩ C1(J)|u′ ∈ C(J̄)}.

According to [40, Section 5, Lemma 3], (G,D(G)) generates a (C0) group of isometries,
(S(t))t≥0, on C(J̄), given by

S(t)f(x) = etGf(x) = f

(
eβ tx+ d

c
(etβ − 1)

)
, (2.61)

with β = c√
2 , for any f ∈ C(J̄), t > 0, x ∈ J . Indeed, (G,D(G)) and (−G,D(G))

are respectively generators of the (C0) semigroups (S+(t))t≥0 and (S−(t))t≥0 on
C(J̄), where S+(t) = S(t) and S−(t) = S(−t) for t > 0. The first result is proved
by [40, Section 5, Lemma 3], the second one can be proved analogously.
Thus, (P1, D(P1)) generates a (C0) contraction semigroup (see [40, Sections 3-4] and
[44, Chapter I, Section 9, and Chapter II, Section 8]) given by

U(t)f(x) =
∫ +∞

0
S(y)S(ζ t)f(x)p(t, y)dy +

∫ +∞

0
S(−y)S(ζ t)f(x)p(t, y) dy

=
∫ +∞

−∞
S(ζ t+ y)f(x)p(t, y )dy

=
∫ +∞

−∞
f

[
eβ(ζ t+y)x+ d

c
(eβ(ζ t+y) − 1)

]
p(t, y) dy, (2.62)

for any f ∈ C(J̄), t > 0, x ∈ J , and p(t, y) is defined in (2.24).
Further, it is well known that (P2, D(P2)) generates the (C0) contraction semigroup
given by

V (t)f(x) = f

(
x+ α2

c
t

)
, (2.63)
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for any f ∈ C(J̄), t > 0, x ∈ J . Finally, by the Lie-Trotter-Daletskii product formula
the operator (L, D(G2)) generates a (C0) semigroup (T (t))t≥0 on C(J̄) defined as

T (t)g(x) = lim
n→+∞

[
U(t/n)V (t/n)

]n
g(x), (2.64)

uniformly in x ∈ J and for t in bounded intervals of [0,+∞). Hence, the solution to
the (ACP) (2.11) is given by

u(x, t) = T (t)g(x) = lim
n→+∞

[U(t/n)V (t/n)]n g(x),

for any g ∈ C(J̄), t > 0, x ∈ J. Denote un(x, t) = [U(t/n)V (t/n)]n g(x). Thus
un(·, ·), n ≥ 1, is a sequence of approximating solutions whose explicit expression
(2.57)-(2.58) is computed in the Appendix 6.4.

2.3 Numerical Evaluations
In this section we focus on some numerical applications and examples related to
the approximate solutions given in (2.38) and (2.57). It is well known that very few
exact solution formulas to Cauchy problems associated with financial models are
available. Therefore, one can choose among different computational methods: finite
difference methods, finite element methods, finite volume methods, spectral methods,
etc...(the reader can refer to [1] and references therein), which are in general very
slow.
It is worth noting that formulas (2.38) and (2.57) seems to be hard to numerically
calculate because of the high computational cost for solving a n-dimensional integral
when n is large. Some numerical methods have been proposed in literature to faster
evaluate a multidimensional integral (see, for example, [80]). However, since the
function p(t, y) defined in (2.24) is the probability density of a normal distribution,
N(0, 2t), with mean 0 and variance 2t, the integration variables {yj}1≤j≤n are n in-
dependent realizations of a normal distribution N(0, 2t/n). Thus, the n-dimensional
integrals (2.38) and (2.57) are nothing but the conditional expected value of a func-
tion of n independent and normally distribuited random variables Yj ∼ N(0, 2t/n),
that can be estimated by the Monte Carlo integration method.
In the following examples we compute the approximate solutions for both cases c = 0
and c 6= 0, when the payoff G refers to some well known fixed income derivatives.
In particular, we consider a put European option with maturity T and strike price
K, whose payoff is given by G(x) = (K − x)+ (where x ≡ YT ). Hence, the initial
condition of (2.11), defined in (2.14), can be written as

g(x) = er(K−x)+
, (2.65)

with r = η(1− ρ2).
Example 2.3.1. (The case c = 0)
As observed at the beginning of this section, the solution to the (ACP) (2.11) admits
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the approximate formula (Theorem 2.2.12)

u(x, t) = lim
n→+∞

un(x, t)

= lim
n→+∞

∫ +∞

−∞
...

∫ +∞

−∞︸ ︷︷ ︸
n times

L0(t, n, {yj}1≤j≤n, x, g)
n∏
j=1

p

(
t

n
, yj

)
dy1...dyn (2.66)

= lim
n→+∞

Ep[L0(t, n, {Yj}1≤j≤n, x, g)],

for any x ∈ R, t ≥ 0 and g ∈ C(R), where the function L0 is defined in (2.39).
Assuming that the initial condition g is of type (2.65), L0 may be written as

L0(t, n, {yj}1≤j≤n, x, g) = exp
[
r

(
K −

(
x+ (δ − θd)

γ

)
eγt − ξ

n∑
j=1

yje
γ(n−j)t/n

)+]
.

(2.67)
As shown in Remark 2.2.10, the solution to the (ACP) (2.11) is also given by the
affine type solution formula derived in Example 2.2.11 by taking into account the
time transformation t → (T − t). Therefore, the affine type solution (ATS) is as
follows

u(t, x) = eB(t)−A(t)x, Y0 = x (2.68)

with 
A(t) = reγt,

B(t) = r2d2

4γ (e2γt − 1)− r(δ − θd)
γ

(eγt − 1) +Kr.

Further, as observed in Remark 2.2.9, if the parameter γ < 0, the solution to (2.11)
can be also expressed in closed form by the Ornstein-Uhlenbeck semigroup as follows

u(t, x) = 1√
2π

∫ +∞

−∞
exp

[
r

(
K −

(
x+ (δ − θd)

γ

)
eγt − ξ

√
e2γt − 1

γ
y

)+]
e−y

2/2dy,

(2.69)
for t ≥ 0, z ∈ R, g ∈ C0(R). Using basic probability calculations one can easily show
that the term

∑n
j=1 yje

γ(n−j)t/n in (2.67) converges to
√

e2γt−1
γ y as n→ +∞, where

y is a realization of a standard normal distribution N(0, 1).
Figure 2.1 plots the behaviour of both the function w solving the parabolic problem
(2.8) or, equivalently, (2.9), and the corresponding indifference price h, defined in
(2.4), for a put European option, under the following suitably chosen parameter
values

d = 0.2016, γ = −0.9593, δ = 0.3209, µ = 0.0380, σ = 0.0300,
ρ = 0.8, η = 2, Y0 = 8, K = 12, T = 8.

The function w is computed via the approximate formula (2.66), for n = 2k with
k = 1, 3, 5, by applying a Monte Carlo integration method. In particular, when
k = 5, the plots in Figure 2.1 show an accurate goodness-of-fit to the curves obtained,
respectively, by the closed form ATS (2.68) and the OU type solution (2.69).
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Figure 2.1. Top line: approximate solution wn (n = 25) versus the ATS solution (left
plot) and the OU type solution (right plot). Bottom line: approximate solutions for
n = 2k, k = 1, 3, 5 (left plot); indifference price h of a put European option corresponding
to the function w computed, respectively, by the approximate solution wn (n = 25) and
the ATS solution (right plot).

Example 2.3.2. (The case c 6= 0)
Let c > 0 and consider the interval J =

(
−d
c ,+∞

)
. By Theorem 2.2.15, the solution

to the (ACP) (2.11) admits the approximate formula

u(x, t) = lim
n→+∞

un(x, t)
∫ +∞

−∞
...

∫ +∞

−∞︸ ︷︷ ︸
n times

L(t, n, {yj}1≤j≤n, x, g)
n∏
j=1

p

(
t

n
, yj

)
dy1...dyn

= lim
n→+∞

Ep[L(t, n, {Yj}1≤j≤n, x, g)]. (2.70)

for any x ∈ J, t ≥ 0 and g ∈ C(J̄). Assuming the initial condition g to be of type
(2.65), the function L, defined in (2.58), can be written as

L(t, n, {yj}1≤j≤n, x, g) =

exp
[
r

(
K − eβ(

∑n

i=1 yi+ζt)
(
x+ d

c

)
+ d

c
− α2t

nc

n∑
j=1

e

[
β

(∑n

i=j yi+(n−j+1
n )ζt

)])+]
.

As in Example 2.3.1, Figure 2.2 shows the behaviour of the function w and of the
corresponding indifference price h of a put European option, under the following
suitably chosen parameter values
c = 0.0300, d = −0.0300, γ = −0.9593, δ = 0.3209, µ = 0.0380, σ = 0.0300,
ρ = 0.8, η = 2, Y0 = 8, K = 12, T = 8.

The function w is computed via the approximate formula (2.70) for n = 2k with
k = 1, 3, 5, 7, 9, by applying a Monte Carlo integration method. In particular, when
k = 9, an accurate goodness-of-fit to the curve obtained by the classical Feynman-Kac
formula (2.7) is showed.
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Figure 2.2. Top line: approximate solution wn (n = 29) versus the classical Feynman-
Kac solution (left plot); approximate solutions for n = 2k, k = 1, 3, 5, 7, 9 (right plot).
Bottom line: indifference price h of a put European option corresponding to the
function w computed, respectively, by the approximate solution wn (n = 29) and the
Feynman-Kac solution.
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Chapter 3

On the Forecast of Expected
Short Interest Rates in the CIR
Model

In this chapter, based on [76] and [78], we propose a new methodology to forecast
future short-term interest rates from observed financial market data by using the
original CIR model (1.27), even if interest rates are negative. This new approach
preserves the analytical tractability of the CIR model that has become inadequate
to describe the term structure of interest rates for all the reasons explained in the
Introduction, especially after the 2008 financial crisis. The performance of the new
approach, tested on monthly data, provides a fitting close to market interest rates on
different maturities. It is shown how the proposed methodology overcomes both the
usual challenges (e.g. simulating regime switching, clustered volatility, skewed tails,
etc.) as well as the new ones added by the current market environment characterized
by low to negative interest rates.
This chapter is organized as follows. Section 3.1 explains the reasons behind the
idea to implement a new methodology. Section 3.2 presents the model in full detail.
Finally, Section 3.3 shows the empirical results on observed market data for different
maturities.

3.1 Material and Method

3.1.1 Dataset

Our dataset records monthly EUR interest rates (spanning from 31 December 2010
to 29 July 2016) with maturities 1/360A, 30/360A, 60/360A,..., 360/360A and 1Y,...,
50Y (i.e. at 1 day (overnight), 30 days, 60 days,...., 360 days and 1 Year,...,50 Years)
available from IBA 1 [52]. For our convenience we have split the dataset in two
Datasets: money market (Dataset I) and short- to long-term interest rates (Dataset
II). It is well known that the CIR model is adequate to describe the short-term

1ICE Benchmark Administration, Data Vendor Codes.
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interest rates, but we will show that our procedure can be used also for maturities
of Dataset II.

Table 3.1. Monthly EUR interest Rates: the Dataset

Dataset I Dataset II

Maturity
Date 1/360A 30/360A · · · 360/360A 1Y 2Y · · · 50Y

31.12.2010 0.606 0.788 · · · 1.507 1.311 1.557 · · · 3.306
31.01.2011 1.231 0.895 · · · 1.644 1.582 2.012 · · · 3.482

...
...

... · · ·
...

...
... · · ·

...
29.07.2016 -0.397 -0.371 · · · -0.049 -0.201 -0.215 · · · 0.632
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Figure 3.1. Datasets I and II

In Table 3.1, each column lists a sample of n = 68 monthly observed EUR interest
rates with a set maturity; each row shows interest rates on different maturities
observed at a fixed monthly date.
The plots in Figure 3.1 represent the columns of Dataset I and II, so they are different
from the yield curves (term structure) by plotting the rows. From Dataset I it is
evident that the short-term rates become permanently negative after 2014 (as from
March 2015). However, sample data from Dataset II also show a downward trend.
In [76] we carried out a qualitative analysis of the dataset and showed tha the most
challenging task is to fit short-term interest rates with maturities in Dataset I, due to
the largest presence of next-to-zero and/or negative spot rate values. For this reason,
we start to examine samples of interest rates with maturity from Dataset II. In this
chapter we limit ourselves to estimate and forecast future expected interest rates
over a fixed time horizon. In Chapter 4 we will focus on the problem of forecasting
exact future interest rates values based on rolling windows of market data.
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3.2 The Model
As explained in the Introduction, many models have been proposed for fixing the
shortcomings in the classical CIR model. Despite the great progress in this matter,
all these models assume the interest rates to be always non-negative, in some cases
to the detriment of reasonable restrictions on the parameters and/or analytical
tractability.

3.2.1 Procedure and Accuracy

To solve challenges i.-ii. mentioned in the Introduction, of the original CIR model,
we translate the observed interest rates by a suitable scalar parameter such that the
the eventually negative or near-to-zero market rates are shifted to positive values
and the diffusion term in (1.27) is not dampened by the proximity to zero but fully
reflects the same level of volatility present on the market. Moreover, in order to
catch clusters of volatility and jumps in financial time series for short-rates due
to a mixture of probability distributions, we partition the observed data sample
into sub-samples with a Normal or non-central Chi-square distribution by using an
appropriate technique described in Section 3.2.2. This should allow to overcome the
critical issue point iv. in the Introduction. Finally, to dealing with issue iii. we
calibrate, for each sub-sample, the parameters of the CIR model to the observed
interest rates (Section 3.2.4).
In order to measure the accuracy of our approach, we compute the square-root of
the mean square error (RMSE) ε defined as

ε =

√√√√ 1
n

n∑
h=1

e2
h, (3.1)

where eh = rh − r̂h denotes the residual between the market interest rate rh and
the corresponding fitted value r̂h. In our case the fitted values are the expected
short-term interest rates estimated through the numerical procedure described in
the following subsections, which are compared to market data in Section 3.3.
Finally, the expected values of future next-month interest rates based on fixed size
rolling windows are estimated by applying the procedure described in Section 3.3.1.

3.2.2 Step 1 - Dataset Partition

As observed in Section 3.2.1, the novelty in our procedure consists in partioning
the observed samples of interest rates into suitable sub-samples to take account of
multiple jumps and changes in the volatility. The sub-samples are chosen according
to the data empirical probability distribution, which is unknown and clearly different
from the Chi-square conditional distribution or the Gamma stationary distribution
of the square-root process (r(t))t≥0.
Notice that in the literature there exist several approaches for detecting multiple
changes in the probability distribution of a stochastic process or a time series (see,
for instance, M. Lavielle [64], M. Lavielle and G. Teyssiere [65], J. Bai and P. Perron
[6]). We adopt the numerical partition herein described into sub-samples following a
Normal or a non-central Chi-square distribution.
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Partition with Normal Distribution

In [76] we hypothesized the empirical distribution of the observed data sample to be
a mixture of normal distributions, with jumps and changes in the standard deviation,
for the presence of negative interest rate values. This hypothesis is appropriate
because the dynamics of the form (1.27) is obtained from a squared Gaussian model
(see, for example, L. C. G. Rogers [84]). Our idea was, therefore, to divide the
data sample into a number of sub-samples each coming from an appropriate normal
distribution. The goodness-of-fit to a normal distribution was performed by the
Lilliefors test (at a 5% significance level) as an improvement on the Kolomogorov-
Smirnov test when the population mean and standard deviation are not known, but
instead are estimated from the sample data. In this work we have implemented
a forward procedure that starts by considering the first four data of the original
sample, say (r1, . . . , r4), and performs the Lilliefors test until the first normally
distributed sub-sample, say (r1, . . . , rn1), with n1 ≥ 4, is found. Then, the procedure
is applied to the remaining sequence (rn1+1, . . . , rn1+4) until the second normally
distributed sub-sample (rn1+1, . . . , rn2), with n2 ≥ n1 + 4, is found, and so on up to
partition the entire data sample into m normally distributed sub-samples, namely
(r1, ..., rn1), (rn1+1, ..., rn2), . . . , (rnm−1+1, ..., rnm), nm ≤ n.2 Table 3.2 summarizes
the forward segmentation procedure.

Table 3.2. "Forward" procedure

1. Initialize h=4;
2. run the Lilliefors test on the interest rate vector r(1:h);
3. while the null hypothesis is not rejected
4. h=h+1;
5. run the Lilliefors test on r(1:h);
6. end
7. set n(1)=h;
8. initialize i=1;
9. while n(i)<length(r)
10. h=n(i)+4;
10. repeat steps 2-6 for r(n(i)+1:h) and find n(i+1);
11. if length(r)-n(i+1)<4
12. set resti=r(n(i+1)+1:length(r));
13. break
14. else
15. set i=i+1;
16. end
17. end

Further, observe that in performing the Lilliefors test it could happen that the
p-value is greater than the chosen significance level (5%), but differs from it by no
more than 10−2. Thus, in this case, the Johnson transformation is applied to ensure
that each sub-sample follows a normal distribution. The Johnson’s method consists

2The Matlab’s lillietest function performs the test only for samples of a size greater than or equal
to 4. It is therefore possible that the last three data of the entire sample, namely rn−2, rn−1, rn,
are excluded from partitioning at most.
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in transforming a non-normal random variable X to a standard normal variable Z
as follows

Z = γ + δf

(
X − ξ
λ

)
, λ, δ > 0 (3.2)

where f must be a monotonic function of X with the same range of values of the
standardized random variable (X − ξ)/λ, where ξ and λ are respectively the mean
and the standard deviation of X. The parameters δ and γ reflect respectively the
skewness and kurtosis of f. The algorithm to estimate the four parameters γ, δ, λ
and ξ, and performs the appropriate transformation is available as a Matlab Toolbox
written by D. L. Jones [56].
To apply the Johnson’s method to our case, the market interest rates in each sub-
sample have been transformed by (3.2) to m sub-samples with standard normal
distribution that is, for any k = 1, . . . ,m,

zh = γ + δf

(
rh − µk

σk

)
, h = nk−1 + 1, .., nk (n0 = 0),

where µk, σk denote respectively the sample mean and standard deviation of the
k-th sub-group, and, finally, to m sub-samples with normal distribution N(µk, σk)
as follows

rh = σkzh + µk, h = nk−1 + 1, .., nk (n0 = 0).

Partition with Non-Central Chi-Square Distribution

As an alternative to the previous hypothesis of a mixture of normal distributions,
the empirical distribution of the analysed data sample may be assumed a mixture of
non-central Chi-square distributions. This hypothesis is justified from the transition
probability density of the original CIR model, as mentioned above. Since the
non-central Chi-square distribution admits only positive values, to partition the
original sample into sub-samples following a non-central Chi-square distribution,
the market observed interest rates have to be first shifted to positive values by
(3.4). The partitioning procedure is analogous to that described in Table 3.2, and
the Kolmogorov-Smirnov test is performed to test (at a 5% significance level) the
goodness-of-fit test of the m sub-samples to a non central Chi-square distribution.

3.2.3 Step 2 - Interest Rates Shift

As mentioned in Section 3.2.1 an important step of the procedure consists in
translating market interest rates to positive values to eliminate negative/near-zero
values and to not dampen the volatility. A possible transformation could be of affine
type, that is

rshift(t) = µ̂+ σ̂ rreal(t), t ∈ [0, T ], (3.3)

where µ̂ and σ̂ are respectively the sample mean and the sample standard deviation
of the process {rreal(t), t ∈ [0, T ]} observed at n discretized time points of [0, T ], for
a fixed maturity T. In our opinion the transformation (3.3) does not represent the
best choice due to some possible complications (e.g., persistence of negative values,
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worse fitting, changes in short interest rates dynamics). Therefore, among different
options, we have preferred to consider the following transformation

rshift(t) = rreal(t) + α, t ∈ [0, T ], (3.4)

where α is a deterministic positive quantity. This translation leaves unchanged the
stochastic dynamics of the interest rates i.e., for any time t, drshift(t) = drreal(t).
There are many values that could be assigned to α, but we believe that the most
appropriate choice is the 99th percentile of the empirical interest rates probability
distribution. If the translation (3.4) is not adequate to move negative interest rates
to corresponding positive values, which means further negative values are between
the 99th- and the 100th-percentile, we can set α equal to the 1st-percentile of the
empirical distribution. In this case (3.4) becomes

rshift(t) = rreal(t)− α.

3.2.4 Step 3 - Calibration

In order to estimate interest rates from the CIR model, the involved parameters
k, θ, σ in (1.27) need to be calibrated to the market interest rates. Among many
approaches existing in the literature to estimate the parameters of the CIR model
(see, for instance, M. Poletti Laurini and L. K. Hotta [81] and references therein),
we considered the MATLAB implementation of the maximum likelihood (ML)
estimation method for the CIR process proposed by K. Kladìviko [60], and the
estimating function approach for ergodic diffusion models introduced in B. M. Bibby
et al. [10]). As we will show in Section 3.3, the latter method has turned out to be
very useful in obtaining optimal estimators for the parameters of discretely sampled
diffusion-type models whose likelihood function is usually not explicitly known. In
[10, Example 5.4] the authors constructed an approximately optimal estimating
function for the CIR model, from which they derived the following explicit estimators
of the three parameters k, θ, σ based on a sample of n observed market spot rates
(r1, . . . , rn):

k̂n = − ln
(

(n− 1)
∑n
i=2 ri/ri−1 − (

∑n
i=2 ri)(

∑n
i=2 r

−1
i−1)

(n− 1)2 − (
∑n
i=2 ri−1)(

∑n
i=2 r

−1
i−1)

)
,

θ̂n = 1
(n− 1)

n∑
i=2

ri + e−k̂n

(n− 1)(1− e−k̂n)
(rn − r1), (3.5)

σ̂2
n =

∑n
i=2 r

−1
i−1(ri − ri−1e

−k̂n − θ̂n(1− e−k̂n))2∑n
i=2 r

−1
i−1((θ̂n/2− ri−1)e−2k̂n − (θ̂n − ri−1)e−k̂n + θ̂n/2)/k̂n

.

Remark 3.2.1. These estimators exist provided that the expression for e−k̂n is strictly
positive (the authors observed that this happens with a probability tending to one
as n→∞).
It is worth noting that all the inferential methods for diffusion-type models available
in literature are applicable to the CIR model only when the sampled interest rates
are nonnegative. Thus, in the presence of negative/near-zero interest rate values, as
shown in Figure 3.1, the calibration of the unknown parameters can only be made
after shifting spot rates to positive values by using the transformation (3.4).
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3.3 Empirical Results
In order to test the performance of the methodology herein proposed, some empirical
investigations have been done using two data samples of the dataset reported in
Table 3.1. As observed in Section 3.1.1, we started to examine a market data sample
from Dataset II. We considered a sample consisting of n = 68 monthly observed
market interest rates with maturity T = 30Y. Figure 3.2 shows (green line) that the
observed interest rates are all positive with next-to-zero values in the tail.
In this section we are interested in estimating the expected CIR interest rates by
applying the proposed numerical procedure to the entire observed data sample. To
this end, for the calibration of the CIR parameters (k, θ, σ) to market data, we have
to decide which of the estimation methods introduced in Section 3.2.4 provides the
better estimates. Thus, we first shift all the observed rates away from zero. Then
we apply the two estimation methods and compare their efficiency by computing
the corresponding RMSE (3.1). For convergence to the ML estimates, Kladìviko
[60] suggests to use the Ordinary Least Squares (OLS) regression method for initial
parameter estimates. These initial values are listed in Table 3.3.
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Figure 3.2. Estimated expected interest rates (blue line) versus n = 68 monthly observed
EUR interest rates (green line) with maturity T = 30Y from Dataset II in Table 3.1.

In our case, the optimization process was completed after 74 steps giving the ML
estimates

(k̂n, θ̂n, σ̂n) = arg max lnL(k, θ, σ),

where L(·) is the log-likelihood function of the CIR process (see [60, formula (7)])
maximized over its parameter space Ω = [0,∞)3.
To compare the efficiency of both the estimation methods,Table 3.3 lists the calcu-
lated parameter estimates (k̂n, θ̂n, σ̂n) and the corresponding RMSE ε . A better
performance of the estimating function approach, to which a significantly smaller
value of RMSE corresponds, is clearly evident. Note also that the ML implemen-
tation is more time consuming compared with the estimating function approach,
which exactly computes the parameter estimate from equations (3.5).
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Table 3.3. Estimates of the parameter vector (k, θ, σ) and the corresponding RMSE ε for
a sample of n = 68 monthly observed interest rates with maturity T = 30Y from the
Dataset II in Table 3.1.

ML estimation Estimating Function Method

initial value ML estimate optimal value
k̂n 0.3300 0.3217 0.0278
θ̂n 4.5799 4.5201 4.5799
σ̂n 0.2832 0.2881 0.0830

ε 1.5453 0.4391

Then the optimal estimate vector computed by (3.5) has been used to calculate the
estimated expected interest rates using the following conditional expectation formula
availabe in closed form for the square-root process (r(t))t≥0

E[r(t)|r(s)] = θ + (r(s)− θ)e−k(t−s), 0 ≤ s < t. (3.6)

The initial value has been set equal to the first value in the observed (shifted) data
sample.
Figure 3.2 compares the original (no shifted) market data sample with the corre-
sponding sequence r̂exp of the estimated expected CIR interest rates shifted back by
using the inverse of the transformation (3.4).
To improve the results showed in Figure 3.2 in terms of fitting closely to market
data, we implemented a numerical algorithm based on the following main steps
summarizing the procedure described in Sections 3.2.2-3.2.4:

1. Partition the whole sample into m Normal/non-central Chi-square distributed
sub-groups;

2. Shift each sub-group to positive values by using the translation formula (3.4);

3. Apply the Johnson’s transformation if needed (only in the case of normally
distributed sub-samples);

4. Calibrate the parameters of the CIR interest rate process r to each sub-group
by applying the estimating function method described in Section 3.2.4 and
generate a sequence, r̂exp, of estimated expected CIR interest rates, which are
shifted back by using the inverse transformation of (3.4).

Again, we considered the above mentioned monthly observed data sample with long-
term maturity (T=30Y). From Step 1 we obtained a partition of the sample into m =
4 normally distributed sub-groups, namely (r1, ..., r22), (r23, ..., r50), (r51, ..., r59),
(r60, ..., r67), and into m = 7 sub-groups with non central Chi-square distribution,
namely (r1, ...r11), (r12, ..., r21), (r22, ..., r28), (r29, ..., r37), (r38, ..., r46), (r47, ..., r56),
(r57, ..., r65). Note that the values r68, in the first case, and (r66, r67, r68), in the
second case, were left out the partitioning. We then applied Steps 2-4 to each
sub-group for both the partitions. Tables 3.4 and 3.5 list the RMSE computed for
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each sub-group, namely εk, with k = 1, ...,m, and the total RMSE ε̃ computed over
the whole sample as a weighted mean of the εk, that is

ε̃ =

√√√√ m∑
k=1

nk
n

nk∑
h=1

e2
h. (3.7)

Figures 3.3 and 3.4 compare the plots of the estimated expected interest rates
with the original (no shifted) market data. It is evident a better fitting to market
data when a partitioning into non-central Chi-square distributed sub-samples was
considered.

Table 3.4. RMSEs after partitioning (with normal distribution) of a sample of n = 68
monthly EUR interest rates with maturity T = 30Y from the Dataset II in Table 3.1.

Normal distribution
Subgroups

1st 2nd 3rd 4th
εk 0.4995 0.3821 0.2734 0.2090
ε̃ 1.3438
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Figure 3.3. Estimated expected interest rates (blue line) versus market rates (green line)
after segmentation with the Normal distribution for a data sample of n = 68 monthly
EUR interest rates with maturity T = 30Y from Dataset II in Table 3.1.
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Table 3.5. RMSEs after partitioning (with non-central Chi-square distribution) of a sample
of n = 68 monthly EUR interest rates with maturity T = 30Y from Dataset II in Table
3.1.

Non-central Chi-square distribution
Subgroups

1st 2nd 3rd 4th 5th 6th 7th
εk 0.5151 0.2008 0.0633 0.0765 0.1514 0.2448 0.1822
ε̃ 0.7136
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Figure 3.4. Estimated expected interest rates (blue line) versus market rates (green line)
after segmentation with the non-central Chi-square distribution for a data sample of
n = 68 monthly EUR interest rates with maturity T = 30Y from Dataset II in Table 3.1.

The second tested data sample consists of n = 68 monthly EUR interest rates in
a money market, with maturity T = 30/360A from Dataset I in Table 3.1. From
Step 1 of the above described numerical procedure, the entire sample has been parti-
tioned into m = 5 normally distributed sub-groups, namely (r1, ..., r27), (r28, ..., r35),
(r36, ..., r42), (r43, ..., r49), (r50, ..., r67), and into m = 10 non-central Chi-square
distributed sub-groups, namely (r1, ...r8), (r9, ..., r18), (r19, ..., r24), (r25, ..., r30),
(r31, ..., r36), (r37, ..., r42), (r43, ..., r48), (r49, ..., r54), (r55, ..., r60), (r61, ..., r66). In
this case, the values r68 and (r67, r68), respectively, were left out the partitioning.
The results listed in Tables 3.6 and 3.7 as well as the plots in Figures 3.5 and 3.6,
show a better fitting to the observed market interest rates when a partitioning into
non-central Chi-square distributed sub-samples was considered.
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Figure 3.5. Expected simulated interest rates (blue line) versus market rates (green line)
after segmentation with Normal Distribution for a data sample of n = 68 monthly EUR
interest rates with maturity T = 30/360A from Dataset I in Table 3.1.
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Figure 3.6. Expected simulated interest rates (blue line) versus market rates (green line)
after segmentation with non-central Chi-square Distribution for a data sample of n = 68
monthly EUR interest rates with maturity T = 30/360A from Dataset I in Table 3.1.
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Table 3.6. RMSEs after partitioning (with normal distribution) of a sample of n = 68
monthly EUR interest rates with maturity T = 30/360A from Dataset I in Table 3.1.

Normal distribution
Subgroups

1st 2nd 3rd 4th 5th
εk 0.4387 0.0050 0.0138 0.0234 0.0440
ε̃ 1.6470

Table 3.7. RMSEs after partitioning (with non central Chi-square distribution) of a sample
of n = 68 monthly EUR interest rates with maturity T = 30Y from Dataset II in Table
3.1.

Non-central Chi-square distribution
Subgroups

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
εk 0.1267 0.1979 0.0129 0.0076 0.0432 0.0129 0.0252 0.0179 0.0270 0.0294

ε̃ 0.1323

3.3.1 Forecasting Expected Interest Rates

In the section we apply the proposed numerical procedure to forecast future expected
values of market interest rates.
To explain our idea we refer to the first data sample considered in the previous
section (n = 68 monthly observed EUR interest rates with maturity T = 30Y). We
consider a fixed size window of 12 real interest rates that is rolled through time,
each month adding a new rate and taking off the oldest one. The length of this
window (12 months) is the historical period over which we forecasted the next-month
expected spot rate value. Steps 2-4 of the numerical procedure are applied to the
historical market interest rates. Note that Step 1 of the proposed procedure cannot
be (always) applied in case of low-frequency data, as in this case of monthly observed
data, because the size of the historical data sample is small. Further, the calibration
of the CIR parameters with sample data of smaller size than 12 is not always possible
when the optimal estimating function method described in Section 3.1.1 is applied
(see Remark 3.2.1).
The resulting forecasted next-month expected values computed by the formula (3.6)
are plotted in Figure 3.7. Moreover, their values show a better performance with
respect to the sequence of expected future rates computed by the Exponentially
Weighted Moving Average (EWMA) model 3. The EWMA is a weighting scheme
to estimate future values averaging on historical data with weights that decrease
exponentially at a rate λ throughout as the observations are far in the past (the
reader can refer, for example, to J. C. Hull [51, Chapter II]). The EWMA has
been shown to be powerful for prediction over a short horizon and track closely the

3We used the Matlab function tsmovavg, parameter "e".
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volatility as it changes. Indeed recent interest rates movement is the best predictor
of future movement as it is not conditioned on a mean level of volatility. Finally,
we applied the proposed numerical procedure and the EWMA model to all data
samples (63 maturities) available from Dataset I and II in Table 3.1 to forecast
future next-month expected interest rates. Note that we considered a rolling window
of 14 real interest rates because the calibration of the CIR model parameters to
market data described requires at least a historical period of 14 months for most
available market samples. Figure 3.8 compares the corresponding RMSE values
computed by our numerical algorithm and by the EWMA model (the vertical black
line differentiates the samples in Dataset I from the ones in Dataset II). The error
analysis shows that our procedure provides a better fitting of the predicted expected
interest rates to real data than the EWMA model.
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Figure 3.7. Forecast of the expected next-month interest rates based on a rolling window
of 12 real data: n = 68 monthly EUR interest rates with maturity T=30Y (green line);
CIR future expected interest rates (magenta dashed line); EWMA predicted values (blu
dotted line).
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Figure 3.8. Error analysis for future next-month expected interest rates based on a rolling
window of 14 real data: RMSE values computed by the proposed numerical procedure
(dashed orange line) vesus RMSE values computed by the EWMA model (blue line).
The vertical black line differentiates samples in Dataset I from samples in Dataset II.
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Remark 3.3.1. In an ongoing research work our aim is to consider sample data of
larger size, e.g. weekly observed market interest rates (unavailable at this time).
In the case of larger dataset, indeed, the methodology here proposed necessarily
requires a rolling window of variable size. Roughly speaking, the partitioning of the
available data sample will be useful to determine the size of the historical period
(i.e. of the more recent sub-sample) over which calibrate the CIR parameters and
forecast future interest rates.
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Chapter 4

A Revised Approach to CIR
Short-Term Interest Rates
Model: the CIR# Model

In this chapter a new accessible methodology, named CIR# model, is described (see
[77]). We will show that this model improves the results obtained in Chapter 3.
In Section 4.1 the reasons behind our idea to propose a new approach in the CIR
framework is explained and a short description of it is provided. Section 4.2 presents
the numerical procedure in full details and tests it to market data. Finally Section
4.3 shows the powerful of the model in forecasting future next interest rates values
based on rolling windows of market data for EUR and USD currencies.

4.1 The CIR# model
In the following we will illustrate our original approach, but first let us recap the
main issues of the CIR model, as explaned in the Introduction:

i Negative interest rates are precluded;

ii The diffusion term in (1.27) goes to zero when r(t) is small (in contrast with
market data);

iii The instantaneous volatility σ is constant (in real life σ is calibrated continu-
ously from market data);

iv There are no jumps (e.g. caused by government fiscal and monetary policies,
by release of corporate financial results, etc.);

v. There is not a satisfactory calibration at each time to market data since it
depends on a small number of constant parameters;

As already explained in Chapter 3, our aim is to give an answer to points i.-v..
In particular, our task herein is to improve the results obtained in Chapter 3 by
estimating and forecasting exact (not expected) interest rates values by preserving
the structure of the original CIR model (1.27). In the remainder of this section
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we will summarize the main steps our methodology. The first step consists in
partitioning the available market data sample into sub-samples - not necessarily of
the same size - by an ANOVA test in order to capture all the statistically significant
changes of variance in market spot rates and consequently, to give an account of
jumps (see Section 4.2.1). This should allow to overcome the critical issue pointed
out in iv.. After that, as already explained in Chapter 3, to overcome challenges
i.-ii., the observed market rates are properly translated to shift them away from
zero or negative values (see Section 4.2.2).
The second step consists in fitting an "optimal" - as explained in Section 4.2.4 -
ARIMA model to each sub-sample of market data. To ensure that the residuals of
the chosen "optimal" ARIMA model for each sub-sample look like Gaussian white
noise, the Johnson’s transformation [55] is applied to the standardized residuals (see
Section 4.2.3).
As a third step, the parameters k, θ, σ in the CIR model (1.27) are calibrated to the
(eventually) shifted market interest rates by estimating them for each sub-sample of
available data, as explained in Section 4.2.3 (this allows to overcome the issue iii.).
For this purpose, trajectories of the CIR process (r(t))t≥0 are simulated by a strong
convergent discretization scheme. The innovation in our procedure is to replace the
standard Brownian motion, as a noise source perturbing the interest rates dynamics,
with the standardized residuals of the "optimal" ARIMA model selected for each
sub-sample. As a result, exact CIR fitted values to market data are calculated and
the computational cost of the numerical procedure is considerably reduced. It is
worth noting that to determine each "optimal" ARIMA model further parameters
needed to be estimated in addition to (k, θ, σ). That allows to solve issue v.. Finally,
the estimated interest rates are shifted back and compared to market data. As a
measure of goodness-of-fit to the available market data, we compute:

• the statistics R2 given by the following expression (see [62])

R2 = 1−

m∑
h=1

(eh − e)2

m∑
h=1

(rh − r)2
, (4.1)

where eh = rh − r̂h denotes the residual between the observed market interest
rate rh and the corresponding fitted value r̂h, evaluated on a data sample
of size m ≥ 2. Furthermore, e and r denote the sample mean of eh and rh,
respectively;

• the square root of the mean square error (RMSE)

ε =

√√√√ 1
m

m∑
h=1

e2
h. (4.2)

The datasets tested in this chapter records EUR and USD interest rates for a total
number of 63 maturities (see Section 3.1.1 for more details). In particular Table 4.1
and Figure 4.1 represent the columns of Dataset I and Dataset II in the case of USD
currency.
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Table 4.1. Monthly USD interest Rates: the Dataset

Dataset I Dataset II

Maturity
Date 1/360A 30/360A · · · 360/360A 1Y 2Y · · · 50Y

31.12.2010 0.251 0.260 · · · 0.780 0.441 0.784 · · · 4.059
31.01.2011 0.235 0.260 · · · 0.781 0.430 0.784 · · · 4.259

...
...

... · · ·
...

...
... · · ·

...
29.07.2016 0.412 0.495 · · · 1.432 0.813 0.870 · · · 1.724
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Figure 4.1. Dataset I and II (USD).

4.2 Numerical Implementation and Empirical Analysis

4.2.1 ANOVA test with a fixed segmentation

As mentioned in Section 4.1, the first step of the CIR# model consits in partitioning
the observed market data sample into sub-samples, which we call groups, by a
one-way ANOVA analysis to highlight statistically significant changes of variance
in market rates and so to give an account of possible jumps. The main difficulty
concerns the choice of the optimal partition into groups to apply the ANOVA test;
we had to take into account both the size (the smaller the group is, the more refined
is the analysis) and the ability to capture any jumps (the larger the group, the better
in terms of statistical significance).
As an example, we consider the data sample consisted of n=68 EUR interest rates
with 1 day (overnight) maturity from Dataset I in Table 3.1. After several tests,
we decided to segment the whole sample into eight groups each of size m = 8 or a
multiple thereof (except for the last group, obviously). The results of the one-way
ANOVA test are reported in Table 4.2. The p-value (Prob>F) of 8.00796 · 10−19

indicates a statistically significant difference between groups.
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Table 4.2. The ANOVA Table shows the between-groups (Groups) and the within-groups
(Error) variation. "SS" is the sum of squares and "df" means degrees of freedom associated
to SS. MS indicates the mean squared error, i.e. the estimate of the error variance. The
value of the F-statistic is given by the ratio of the mean squared errors.

Source SS df MS F Prob>F
Groups 10.8783 7 1.55405 34.71 8.00796e-19
Error 2.6862 60 0.04477
Total 13.5645 67

Furthermore, the boxplot (Figure 4.2.a)) and a multiple comparison test performed
on the eight groups (Figure 4.2.b)) have suggested partitioning the data sample into
the following four groups of observations 1–8, 9–16, 17–56, 57–68.
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Figure 4.2. a). Boxplot; b). Multiple comparison test.

4.2.2 Jumps fitting by translation

As observed in the Introduction and in Chapter 3, the CIR model (1.27) does not
fit negative interest rates and normal/high volatility when the rate value is small.
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Thus, the translation formula (3.4) is applied in the presence of near zero/negative
interest rate values in the observed market data.
The translation is applied after carrying out a check on each group partitioning the
original data sample. The check consists in calculating the harmonic mean, that
is more robust than the arithmetic one in the presence of extreme values, and in
verifying whether it is smaller than a constant value chosen arbitrarily small (e.g.
10−2). If this happens in at least one group, then the whole sample is translated.

4.2.3 Sub-optimal ARIMA models

The second step of our procedure consists in deriving the best fitting ARIMA (p, i, q)
model to each group of interest rates partitioning the observed market data sample.
Thus we start by selecting, for each group, a set of ARIMA (p, i, q) models satisfying
the following "sub-optimal" conditions:

1. Absence of both autocorrelation (AC) and partial autocorrelation (PAC) in
the time series1;

2. Absence of unit roots (stationarity of the time series);

3. Normally distributed standardized residuals;

4. R2
ARIMA > 0.5,

where R2
ARIMA denotes the statistics R2, defined in (4.1), computed for the ARIMA

(p, i, q) model. We look for only the indices i ∈ {0, 1, 2} and p, q ∈ {1, 2, 3}.
As mentioned, to ensure that the residuals of the selected ARIMA (p, i, q) models
look like a Gaussian white noise, the Johnson’s transformation [55] described in
Section 3.2.2, is applied to the standardized residuals. The normally distributed
standardized ARIMA residuals will be used in the sequel to calibrate the parameters
(k, θ, σ) in the CIR model to the (eventually shifted) market interest rates.

Calibration of CIR parameters

Consider the jth-group partitioning the available market data sample, which we
assume to be of length nj . The calibration of the CIR parameters in the group is
performed as follows

1. The volatility σ is estimated by the group standard deviation, namely σ̂j ;

2. The long-run mean parameter θ is estimated by the group mean, namely θ̂j ;

3. The speed of mean reversion k is estimated by that value, say k̂j , solving the
following minimization problem:

min
k>0

Sj(k) = min
k>0

√√√√√√
nj∑
h=1

(ujh(k)− uj(k))2

nj − 1 . (4.3)

1If this condition is not verified, we can require just the absence of autocorrelation.
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For any k > 0, we define

ujh(k) = rjh(k)− rjh, h = 1, · · · , nj , (4.4)

being rjh the market (shifted) interest rate value, rjh(k) the corresponding simulated
CIR interest rate value expressed as a function of the unknown parameter k, and
uj(k) denotes the sample mean of ujh(k). The rjh(k) values are calculated by applying
the strong convergent Milstein discretization ([69]) to the SDE (1.27). D. Brigo and
F. Mercurio in [17, Section 22.7] showed that the Milstein scheme converges in a
much better way than other numerical schemes for the CIR process. It reads as

rjh+1(k) = rjh(k) + k(θ̂j − rjh) ∆ + σ̂j

√
rjh∆ Zjh+1 + (σ̂j)2

4 [(
√

∆ Zjh+1)2 −∆], (4.5)

where ∆ is the time step and Zjh+1 are the normally distributed standardized residuals
of each ARIMA (p, i, q) model satisfying the "sub-optimal" conditions 1.-4. for the
jth-group. Thus to simulate trajectories of the CIR process, the random terms in the
simulation scheme (4.5) are generated by the standardized residuals Zjh+1 instead
of a standard Brownian motion, as is usual. After calculation of the estimates
(k̂j , θ̂j , σ̂j), the CIR fitted values to the observed marked rates in the jth-group are
computed by the simulation scheme (4.5) as follows

r̂jh+1 = r̂jh + k̂j(θ̂j − r̂jh) ∆ + σ̂j

√
r̂jh∆Zjh+1 + (σ̂j)2

4 [(
√

∆Zjh+1)2 −∆], (4.6)

where ∆ and Zjh+1 are as before. We would emphasize that the partitioning of the
available data sample in groups affects the estimation of the parameters (k, θ, σ),
which are so locally calibrated to each group.
To measure the goodness-of-fit, the statistics R2 is computed. For sake of clarity,
in the sequel we will denote by R2

CIR the statistics (4.1) when referring to the CIR
model.

4.2.4 Optimal ARIMA-CIR model

For each group j, the "optimal" ARIMA(p, i, q) model providing the best CIR fitting
to market data will be chosen among the selected sub-optimal ARIMA (p, i, q)
models, as described in Section 4.2.3, satisfying the following additional conditions:

5. The ARIMA (p, i, q) minimizes the Bayesian Information Criterion (BIC)
matrix whose rows and columns are, respectively, the corresponding p and q
lags (BIC condition);

6. R2
CIR > 0.5.

Therefore we define the following sets of candidate ARIMA models:

IAC = {(p, i, q) |ARIMA(p, i, q) satisfies conditions 1.– 4. and 6.}

and
IACB = {(p, i, q)|ARIMA(p, i, q) satisfies conditions 1.– 6.} .
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Obviously, IACB ⊂ IAC .
Last but not least, the “optimal" ARIMA model is chosen in the above defined
classes as the model minimizing the RMSE εj

min
r̂j

εj = min
r̂j

√√√√ 1
nj

nj∑
h=1

(rjh − r̂
j
h)2, (4.7)

where the minimum is computed with respect to all the CIR fitted values vectors,
r̂j , simulated for the jth-group by (4.6).
Table 4.3 summarizes the main steps of the algorithm to select the optimal ARIMA
(p, i, q) model for each group j, and returns as output: the matrix of indices (p, i, q)
belonging to the sets IAC and IACB, the corresponding CIR fitted values vector r̂j
computed by (4.6), and the associated values of the statistics (R2

CIR)j and εj .

Table 4.3. ARIMA-CIR algorithm

Step 1: verify if check1 = 1 for the jth-group;
Step 2: if check1 = 1 verify if check2 = 1 for the current group;
Step 3: if check2 = 1 print the output. Else, reduce the size nj of the current group
to (nj −m) where m = 8.
Step 4: repeat Step 1-Step 3 for the remaining observations in the current group.
Step 5: return to Step 1 for the group j + 1.

Note that check1 and check2 refer to conditions 1.– 5. and 6., respectively. Their
value is equal to 1 if those conditions are satisfied.
It is worth noting that to compute the "optimal" ARIMA model for each group, the
parameters (p, i, q), in addition to those of the CIR model, need to be calibrated to
the observed market data. This, in some way, addresses the issue v.. We applied
the ARIMA-CIR algorithm to the n = 68 monthly observed EUR interest rates with
1 day (overnight) maturity, considered in Section 4.2.2. We recall that the ANOVA
analysis suggested to partition the data sample into four groups of observations:
1–8, 9–16, 17–56, 57–68. Table 4.4 shows in detail the outputs for this sample.
The group containing the observations 17–56 has been futher segmented into three
sub-groups of size m = 8 or a multiple thereof: 17–32, 33–48 and 49–56. The
triplets (p, i, q) identified by a rectangle in Table 4.4, indicates the "optimal" ARIMA
model chosen for each group/sub-group (with the smaller εj value). As it can be
seen, none of these models fulfils the BIC condition.
Figure 4.3 reports the qualitative statistical analysis referring to the ARIMA (1, 1, 2)
chosen as the "optimal" fitting model for the second group of observations 9-16
(similar plots for the other group/sub-groups are reported in Appendix 6.5).
Figure 4.4 compares the short-term interest rates structure of the analysed market
data sample with the corresponding curve of CIR fitted values computed by the
simulation scheme (4.6) for each group partitioning the whole data sample.
The market interest rates have been shifted by using a translation of type (3.4).
Finally, the CIR fitted values have been shifted back.
The total values of the statistics R2

CIR and the RMSE ε have been computed on the
whole sample as a weighted mean of the (R2

CIR)j and εj values corresponding to the
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Table 4.4. Outputs from the ARIMA-CIR algorithm for the 68 monthly EUR interest
rates on overnight maturity

j group/sub-groups ARIMA model (R2
CIR)j(R2
CIR)j(R2
CIR)j εjεjεj BIC cond.

1 1–8 (2,0,1) 0.8166 0.1643 1

(2,0,2) 0.5930 0.2414
(3,0,2) 0.780 0.1865
(1,1,1) 0.8166 0.1643
(1,2,1) 0.7309 0.2026
(1,2,2) 0.7805 0.1845

√

(3,2,1) 0.7023 0.2104
2 9–16 (1,0,1) 0.6842 0.2090

(2,0,2) 0.7799 0.2588
(3,0,2) 0.6418 0.2661

√

(1,1,1) 0.7378 0.2043
(1,1,2) 0.8472 0.1554
(2,1,1) 0.6842 0.2169
(2,1,2) 0.7799 0.2012
(3,1,2) 0.6418 0.2333

3 17–32 (1,0,3) 0.9174 0.0326
(3,0,1) 0.5485 0.0646

4 33–48 (3,0,1) 0.6901 0.0833
(3,1,2) 0.6332 0.1146
(3,2,1) 0.6332 0.1146

5 49–56 (1,0,1) 0.5076 0.0597
(1,0,2) 0.6030 0.0526
(2,0,1) 0.5702 0.0577
(3,0,1) 0.7648 0.0483
(3,0,2) 0.6240 0.0537
(1,1,1) 0.5702 0.0577
(2,1,1) 0.5393 0.0588
(3,1,2) 0.7715 0.0479
(1,2,1) 0.5542 0.0582
(3,2,1) 0.6987 0.0479
(3,2,2) 0.6343 0.0536

√

6 57–68 (1,0,2) 0.5964 0.0752
(1,0,3) 0.8080 0.0570
(2,0,2) 0.8136 0.0559
(3,0,2) 0.7899 0.0577
(3,0,3) 0.6560 0.0704
(1,1,2) 0.8136 0.0559
(1,1,3) 0.8006 0.0614
(2,1,1) 0.8239 0.0486
(2,1,2) 0.8542 0.0525
(2,1,3) 0.8936 0.0551
(3,1,2) 0.9023 0.0511
(3,1,3) 0.8000 0.0580

1 For a more exact comparison we use the numeric format long.
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Figure 4.3. Qualitative statistical analysis related to the group 9–16. Top line: ARIMA
(1, 1, 2) standardized residuals versus Johnson’s transformed residuals (left); Q-Q normal
plot for the ARIMA (1, 1, 2) standardized residuals (right). Middle line: AC plot
(left) and PAC plot (right). Bottom line: real interest rates versus ARIMA (1, 1, 2)
fitted values (left); comparison among the cumulative distribution function (CDF) of
the standard normal distribution, the empirical CDF of ARIMA (1, 1, 2) standardized
residuals and the empirical CDF of the residuals after the Johnson’s transformation
(right).
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Figure 4.4. Monthly EUR interest rates with T=1 day (overnight) maturity versus CIR
fitted rates

"optimal" ARIMA model chosen for each group/sub-group, i.e.

R̃2
CIR =

J∑
j=1

nj
n

(R2
CIR)j ,

ε =

√√√√ J∑
j=1

nj
n

nj∑
h=1

(rjh − r̂
j
h)2. (4.8)
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Their values for the analysed data sample are: R2
CIR = 0.8101, ε = 0.2922. The

Appendix 6.6 reports the CIR parameters estimates and the plots of the function
Sj(k), defined in (4.3), for all groups/sub-groups.
This strategy allows us to get an exact trajectory of CIR fitted values instead of a
curve averaged over 100000 simulated trajectories. Consequently, the computational
cost is considerably reduced.

4.2.5 The change points detection problem

As explained in Section 4.2.1, the main difficulty in partitioning the observed
data sample concerns the choice of the optimal segmentation to detect abrupt
changes in the variance of the interest rates dynamics. In the literature there exist
several approaches for detecting multiple changes in the probability distribution of a
stochastic process or a time series such as sequential analysis (i.e., "online" methods),
clustering based on maximum likelihood estimation (i.e. "offline" methods), minimax
change detection, etc. (see, for example, [6], [64], [65], [48], [2] and [3]).

Table 4.5. Numerical scheme for change points detection by Lavielle’s algorithm

- compute v(1 : end) the array of change points detected in the real data array x
by the Lavielle method

- set l = v(1);
- initialize xstart = 1, xend = l;
(xstart, xend denote the first and last component of a partitioning group
at each processing cycle)

- initialize j = 1;
- set smax = xstart +1 (each group must have a minimum length equal to 2)1;
- while l < v(end) & l 6= smax− 1
- compute check 1 and the matrix L
(L is the matrix of possible ARIMA (p, i, q) for x(xstart : xend));
- if check1 = 1
- compute check2;
- if check2 = 1
- compute εj and (R2

CIR)j ;
- let ex(j) = l;
(ex is the array of the rescaled change points, see Figure 4.5 );

- set xstart = ex(j) + 1;
- set j = j + 1;
- set l = v(j);
- set xend = l;
- else
- set l = l − 1;
- set xend = l;
- end
- end
- if l = smax
- if length(v) ≤ j + 1
- set l = v(j + 1);
- else break;
- end
- end
- end

1 Some statistical tests (involved in check1) require a minimum sample length equal
to 6, so one can also set smax = xstart+ 5.
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We decided to implement the Matlab algorithm proposed by Lavielle in [64] for
the detection of changes in the variance, which allows to partition the data sample
analysed in the previous section into the following six groups of observations: 1–13,
14–19, 20–30, 31–39, 40–52, 53–68. However, taking into account that our CIR#
model is based on the combination of an ARIMA model and the original CIR model,
the above detected change points reported in Figure 4.5, namely 13, 19, 34, 39, 52,
have to be adjusted according to the numerical scheme described in Table 4.5.
Table 4.6 lists the results from the ARIMA-CIR algorithm after application of the
change point detection algorithm. Figure 4.6 plots the market interest rates versus
the CIR# fitted values according to results in Table 4.6. We found that the total
R2
CIR = 0.7584 and the total RMSE ε = 0.4159. As before, for all j, the errors εj

are at most of the order of 10−1.

Figure 4.5. Scheme for change points detection from the algorithm in Table 4.5

Table 4.6. Outputs from the ARIMA-CIR algorithm applied to n = 68 monthly EUR
interest rates with T=1 day (overnight) maturity (after application of the Lavielle
method)

j Groups ARIMA model (R2
CIR)j(R2
CIR)j(R2
CIR)j εjεjεj BIC cond.

1 1–13 (2,1,1) 0.6223 0.2251
(3,1,1) 0.6117 0.2258
(3,1,2) 0.5985 0.2299

2 14–19 (1,0,1) 0.8842 0.0048
(2,0,1) 0.7960 0.0062
(2,0,2) 0.8814 0.0047
(2,0,3) 0.8795 0.0047
(1,1,1) 0.8291 0.0058
(1,1,2) 0.8821 0.0048
(1,2,1) 0.7623 0.0068
(2,1,1) 0.8421 0.0055

3 20–30 (3,1,2) 0.6345 0.0087
√

(3,1,3) 0.6193 0.0089
(1,2,3) 0.6452 0.0099
(2,2,2) 0.5178 0.0096

√

(2,2,3) 0.5777 0.0089
(3,2,2) 0.6369 0.0085
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j Groups ARIMA model (R2
CIR)j(R2
CIR)j(R2
CIR)j εjεjεj BIC cond.

4 31–39 (1,0,1) 0.7165 0.0444
(1,0,2) 0.6895 0.0465
(1,0,3) 0.6815 0.0469
(1,1,1) 0.7168 0.0439
(1,1,2) 0.7247 0.0415
(1,1,3) 0.5409 0.0546
(2,1,1) 0.6876 0.0458
(2,1,2) 0.7478 0.0404
(2,1,3) 0.6778 0.0449
(1,2,3) 0.5911 0.0507
(2,2,3) 0.5817 0.0509
(3,2,2) 0.6379 0.0473

5 40–52 (1,0,2) 0.8841 0.1050
(2,0,1) 0.8868 0.1196
(2,0,2) 0.7985 0.1317

√

(2,0,3) 0.7979 0.1315
(3,0,1) 0.8944 0.1178
(3,0,2) 0.8186 0.1230
(3,0,3) 0.8786 0.1158
(1,1,1) 0.6359 0.1653
(1,1,2) 0.6004 0.1752

√

(1,1,3) 0.6436 0.1595
(2,1,1) 0.8459 0.1287
(2,1,2) 0.5547 0.1783
(2,2,1) 0.6694 0.1637
(3,2,3) 0.7306 0.1630

6 53–68 (1,0,3) 0.8111 0.0683
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Market Interest Rates vs Simulated Interest Rates
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Simulated Interest Rates

Figure 4.6. Monthly EUR interest rates with T=1 day (overnight) maturity versus CIR#
fitted rates (after application of the Lavielle method)
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4.3 Forecast of future interest rates
In this section we will address the CIR# model’s progress on future interest rate
forecasts from a window of observed market data. It is worth noting that we decided
to impose the most challenging conditions by modelling the shortest part of the yield
curve (e.g. the overnight rate) and using only a handful of number of observations.
For instance, with monthly data we have found that m = 8 observations are sufficient
for a good calibration. Thus we start to consider a fixed size window of 8 real interest
rates that is rolled through time, each month adding the new rate and taking off the
oldest rate. The length of this window (8 months) is the historical period over which
we forecast the next-month spot rate value. The numerical procedure described in
Section 4.2 has been applied to forecast future monthly interest rates. We would like
to focus for a moment on some difficulties experienced in implementing the CIR#
model to forecast future interest rate values:

1. In the case of low-frequency rates and with fixed "a priori" rolling windows of
small length, as in our case, the partition of the data sample may not (always)
be performed. When higher-frequency data are available (e.g. weakly interest
rates), rolling windows of variable size can be determined by a segmentation
of the historical data sample (Section 4.2.1) and a change point detection
(Section 4.2.5). That we will be our task in an ongoing research.

2. It is better to calibrate the long-run mean parameter θ to the historical data
as an exponential moving average (EMA). Indeed, the EMA places a greater
weight and significance on the most recent interest rate values. Thus, it reacts
more significantly to recent interest rate changes than the sample mean, which
applies an equal weight to all observations in the historical period.

3. To forecast future interest rates from a window of historical data of length
m, say w = {rh+1, rh+2, ..., rh+m}, h ≥ 0, we have first to calibrate the
CIR parameters (k, θ, σ) and the parameters (p, i, q) corresponding to the
"optimal" ARIMA model to the sample w. Denote the parameter estimates by
(k̂w, θ̂w, σ̂w, p̂w, îw, q̂w). Then, a future interest rate value is predicted by the
simulation scheme (4.6) as follows:

r̂h+m+s = rh+m + k̂w(θ̂w − rh+m)∆

+ σ̂w

√
rh+m∆Ẑh+m+s + (σ̂w)2

4 [(
√

∆Ẑh+m+s)2 −∆], s ≥ 1, (4.9)

where Ẑh+m+s is an estimate of the unknown standardized residual, Zh+m+s,
corresponding to the increment of time s in the interest rate dynamics. The
estimate of Zh+m+s is computed as follows:

i. calculate the difference
d = r̂h+m+s − r̂ARIMA

h+m+s , (4.10)
where r̂ARIMA

h+m+s and r̂h+m+s are estimates of the unknown interest rate
rh+m+s predicted, respectively, by the ARIMA (p̂w, îw, q̂w) and the ex-
pectation closed formula (3.6) for the CIR model, i.e.

r̂h+m+s = E[rh+m+s|rh+m] = θ̂w + (rh+m − θ̂w)e−k̂ws, s ≥ 1;
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ii. the difference d is standardized with respect to the sample mean and
the sample standard deviation of the residual array {rj − rARIMA

j |j =
h+ 1, ..., h+m} ∪ {d}.
Finally, the Johnson transformation is applied to obtain the standard
normally distributed residuals

Z = {Zj |j = h+ 1, ..., h+m} ∪ {Ẑh+m+s}.

The algorithm to forecast a future interest rate value is summarized in Table 4.7. The
predicted yield curve for monthly EUR and USD interst rates with overnight maturity
is shown in Figure 4.7 and 4.8, respectively, and compared with the corresponding
market observed data.
It is evident that the predicted next-month spot rates computed by the CIR# model
follow the market trend. Moreover, the values of R2 and RMSE ε, computed to
measure the goodness-of-fit of forecast interest rates to real data, are respectively
0.8741 and 0.1120 for the EUR currency and 0.9216 and 0.0263 for the USD currency.

Table 4.7. CIR# forecast algorithm

-Denote by (k̂w, θ̂w, σ̂w, p̂w, îw, q̂w) the parameters’ model calibrated
to the rolling window w = [rh+1, ..., rh+m];
-denote by res the array of the ARIMA (p̂w, îw, q̂w) residuals;
-fix s ≥ 1 and compute r̂ARIMA

h+m+s ;
-compute the expected future interest value r̂h+m+s by the CIR model;
-set d = r̂h+m+s − r̂ARIMA

h+m+s ;
-set res_new = [res, d];
-compute the sample mean µ̂res and the sample standard deviation
σ̂res of the sample res_new = [res, d];
-apply the Johnson transformation to the standardized array: res_new−µ̂res

σ̂res
;

-denote by Z the array of the standard normally distributed residuals
{Zj |j = h+ 1, ..., h+m} ∪ {Ẑh+m+s};
-forecast the future interest rate by the simulation scheme (4.6).
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Figure 4.7. Forecast of the next-month interest rate based on a rolling window
of 8 real data: monthly EUR interest rates with maturity T=1 day (overnight) versus
predicted next-month interest rates.
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Figure 4.8. Forecast of the next-month interest rate based on a rolling window
of 8 real data: monthly USD interest rates with maturity T=1 day (overnight) versus
predicted next-month interest rates.
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4.3.1 CIR# forecasts versus CIR forecasts

In this section we would like to point out the CIR# improvements in forecast as
compared to the original CIR model. Note that future next-month interest rates
are predicted by the CIR model using the expectation closed formula (3.6) after the
CIR parameters (k, θ, σ) have been calibrated to the market historical data. This
is done by applying the martingale estimating function method [10] described in
Section 3.2.4. In this case to ensure the existence of such estimates (see Remark
3.2.1) the length of a rolling window must be greater than the window size of m = 8
observation required by the CIR# model. Figures 4.9 and 4.10 compare the future
next-month values predicted by the CIR# with the ones forecasted by the classical
CIR model, showing a better fitting to the real market available data.
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Figure 4.9. CIR# versus CIR: forecast of future next-month interest rates:
monthly EUR interest rates with overnight maturity compared with future next-month
interest rates predicted by the CIR# model based on a rolling window of m = 8 market
data, and future next-month interest rates predicted by the classical CIR model based
on a rolling window of m = 14 market data.

Figures 4.11, 4.12, 4.13 and 4.14 show the statistics R2 and RMSE values computed
for all (63) maturities of EUR and USD datasets by the proposed CIR# and the
original CIR model, respectively. The vertical black line separates Dataset I from
Dataset II (see Tables 3.1 and 4.1). The plotted results show in all cases a better
performance (bigger R2 values and smaller RMSE values) of the CIR# model.
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Figure 4.10. CIR# versus CIR: forecast of future next-month interest rates:
monthly USD interest rates with overnight maturity compared with future next-month
interest rates predicted by the CIR# model based on a rolling window of m = 8 market
data, and future next-month interest rates predicted by the classical CIR model based
on a rolling window of m = 14 market data.
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Figure 4.11. Statistics for EUR dataset: R2
CIR# versus R2

CIR, computed on a rolling
window of size m = 14.
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Figure 4.12. Statistics for EUR dataset: RMSECIR# versus RMSECIR, computed
on a rolling window of size m = 14.

1d 150d 300d 3Y 8Y 13Y 18Y 23Y 28Y 33Y 38Y 43Y 47Y
maturity

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
R2

CIR#
CIR

Figure 4.13. Statistics for USD dataset: R2
CIR# versus R2

CIR, computed on a rolling
window of size m = 14.
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Figure 4.14. Statistics for USD dataset: RMSECIR# versus RMSECIR, computed
on a rolling window of size m = 14.
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Chapter 5

Evolution Families for
Non-Autonomous Cases

In this chapter we will study the Cauchy problem related to the Black-Scholes model
in the non-autonomous case, i.e. when the coefficients in the corresponding PDE are
time dependent. Hence we start to consider the non-autonomous abstract Cauchy
problem (nACP) of type {

ut(t) = A(t)u(t), t ≥ s ∈ R
u(s) = u0 ∈ X,

where A(t) represents a family of linear operators and u0 is the initial data at time s,
which belongs to a given Banach space X. In Section 5.1 we will introduce the basic
theory to solve the above (nACP) (see, for instance [32, Section 9, Chapter VI] and
[44, Section 13, Chapter II]). In particular Section 5.2 contains the approximation
formulas provided by A. Batkai et al. [8], which are very helpful when the explicit
solution can not be directly computed. Sometimes, by suitable transformations, the
(nACP) may be reduced to another problem whose solution is known. This is the case
of the Black-Scholes model with time-dependent deterministic coefficients, as will be
described in Section 5.3. The existence of a unique evolution family (see Definition
5.1.2) solving more general (nACP), which are of interest in Mathematical Finance,
is still an open problem. This will be a challenging task in a forthcoming research,
starting from studying the generalized CIR problem (1.29) in the non-autonomous
case and in suitable Banach spaces.

5.1 Evolution Families
We start by considering the following (nACP) on a given Banach space X{

ut(t) = A(t)u(t), t ≥ s ∈ R
u(s) = u0 ∈ X,

(5.1)

where (A(t), D(A(t))) is a family of (unbounded) linear operators on X.
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Definition 5.1.1. Fixed s ∈ R, u0 ∈ X, a (classical) solution of (5.1) is a continuous
function u : [s,+∞) → X, such that u ∈ C1([s,+∞), X), u(t) ∈ D(A(t)) for all
t ≥ s and satisfies (5.1).
The Cauchy problem (5.1) is called well − posed (on regularity subspaces (Ys)s∈R,
with exponentially bounded solution) if

i. (existence and uniqueness) for all s ∈ R there are dense subspaces Ys of X such
that Ys ⊆ D(A(s)) and for every y ∈ Ys there is a unique classical solution
t 7→ u(t; s, y);

ii. (continuous dependence) for sn → s and yn ∈ Ysn → y ∈ Ys, we have

‖û(t; sn, yn)− û(t; s, y)‖ → 0,

uniformly for t in compact subsets of R, where

û(t; s, y) =
{
u(t; s, y), if s ≤ t
y, otherwise.

iii. (exponential boundedness) there exist constants M ≥ 1 and ω ∈ R such that

‖u(t; s, y)‖ ≤Meω(t−s)‖y‖,

for all y ∈ Ys and t ≥ s.

Definition 5.1.2. A family of bounded linear operators (U(t, s))t≥s on a Banach
space X is called a (strongly continuous) evolution family if

i. U(t, r)U(r, s) = U(t, s) and U(t, t) = I, for all t ≥ r ≥ s ∈ R;

ii. the mapping (t, s) 7→ U(t, s) is strongly continuous, with t ≥ s ∈ R.

We say that (U(t, s))t≥s solves the Cauchy problem (5.1) (on spaces Yt) if for all s ∈ R
there are dense subspaces Ys of X, such that the function t 7→ u(t; s, y) = U(t, s)y is
a solution of (5.1), for y ∈ Ys.

Definition 5.1.3. An evolution family (U(t, s))t≥s is called evolution family solving
the (nACP) (5.1) if for all s ∈ R the regularity subspace

Ys = {y ∈ X|t 7→ U(t, s)y solves (nACP ) (5.1)},

is dense in X.

Proposition 5.1.4. The Cauchy problem (5.1) is well-posed if and only if there
exists a unique evolution family (U(t, s))t≥s solving (5.1).

Definition 5.1.5. Let (U(t, s))t≥s be an evolution family on a Banach space X.
We define X = C0(R, X), the space of continuous functions from R to X vanishing
at infinity, normed by ‖f‖ = supt∈R ‖f(t)‖ for all f ∈ X , and the corresponding
evolution semigroup (T (t))t≥s in the following way

(T (t)f)(s) = U(s, s− t)f(s− t), (5.2)



5.1 Evolution Families 78

for f ∈ X , t ≥ s ∈ R. It easy to check that (T (t))t≥s is a (C0) semigroup on X . We
denote its generator by (G, D(G)).
In particular (5.2) can be also written as

(T (t)f)(s) = U(t, t− s)R(t)f(s).

(R(t)f)(s) = f(s− t) represents the (right) translation semigroup on X , for all t ≥ s,
whose generator is the differentiation operator, say − d

ds with domain

Xd = D

(
− d

ds

)
= {f ∈ C1(R, X)|f, fs ∈ X}.

We can recover the evolution family from the evolution semigroup by choosing a
function f ∈ X , with f(s) = u0, to obtain

U(t, s)u0 = (R(s− t)T (t− s)f)(s),

for every s ∈ R and t ≥ s. For a family (A(s), D(A(s)))s≥0 of unbounded operators
on X we consider the corresponding multiplication operator (A(·), D(A(·))) on the
space X defined as follows

(A(·)f)(s) = A(s)f(s), ∀s ∈ R,

D(A(·)) = {f ∈ X |f(s) ∈ D(A(s)), ∀s ∈ R, and each function s 7→ A(s)f(s) belongs toX}.

Theorem 5.1.6. Problem (5.1) is well-posed for the family (A(s), D(A(s)))s∈R on a
Banach space X if and only if there exists a unique evolution semigroup (T (t))t≥s with
generator (G, D(G)) and an invariant core D ⊂ Xd∩D(G) such that Gf +fs = A(·)f ,
for all f ∈ D.

There exist several sufficient conditions for well-posedness. We present here the
assumptions proposed by A. Batkai et al. [8] in the parabolic case.
Assumption 5.1.7. Assume that

i. The domain D(A(t)) is dense in X and is indipendent of t;

ii. for each t ∈ R, A(t) generates an analytic semigroup e·A(t) such that ‖e·A(t)‖ ≤
Meω· for some constants M ≥ 1, ω ≤ 0. Moreover, for all t ∈ R the resolvent
R(λ,A(t)) exists for all λ ∈ C with Reλ > 0, there is a constant M ≥ 1 such
that

‖R(λ,A(t))‖ ≤ M

|λ|+ 1;

iii. there exist constants L ≥ 0 and α ∈ (0, 1] such that

‖(A(t)−A(s))A(0)−1‖ ≤ L|t− s|α,

for all t, s ∈ R.

Then the problem (5.1) is well-posed on D(A(t)).
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5.2 Product Formulas
We start to consider the autonomous Cauchy problem on a Banach space X{

ut(t) = (A+B)u(t), t ≥ s ∈ R
u(s) = u0 ∈ X,

(5.3)

where the operators A,B, and the closure of (A+B) are supposed to be generators
of strongly continuous semigroups T, S, and U , respectively. The operator splitting
consists in recovering the solution semigroup U using the semigroups T and S. For
splitting procedures we mention the most used Trotter-Kato approximation defined
by

un(t) = [T (t/n)S(t/n)]nu0,

for t ≥ s and n ∈ N, n ≥ 1, whose convergence is guaranteed by Theorem 1.1.30.
However, we notice that Theorem 1.1.30 does not provide any information a priori
about the rate of convergence p. For convenience, we can denote by (F (t))t≥s the
family (T (t)S(t))t≥s. F is said to be of order p > 0, if for u0 fixed in a suitably
subset of X there is C > 0 such that for all t ∈ [s, τ ], τ > 0, it follows

‖F (t/n)nu0 − U(t)u0‖ ≤ C/np.

To obtain error estimates for diffusion problems, we apply the following result by T.
Jahnke and C. Lubich [53, Theorem 2.1], which relies on commutator bounds.

Theorem 5.2.1. Let A be the generator of a (C0) contraction semigroup on X and
B a bounded operator on X. Assume that there exists a α ≥ 0 such that

‖[A,B]v‖ ≤ c‖(−A)αv‖,

for all v in some dense subspace D of D((−A)α) which is invariant under the
semigroup et(A+B) generated by (A + B). In particular, [A,B] is the commutator
operator given by (AB −BA) and (−A)α represents the fractional power of A (for
more details, see e.g. [32, Section 2.5]). Then one has the convergence with order
p = 1, i.e.

‖(e
t
n
Be

t
n
A)nv − et(A+B)v‖ ≤ Ct2

n
‖(−A)αv‖.

Now, we consider the the Cauchy problem (5.3) in the non-autonomous case, i.e.{
ut(t) = (A(t) +B(t))u(t), t ≥ s ∈ R
u(s) = u0 ∈ X.

(5.4)

Suppose we are able to solve both the following autonomous Cauchy problems

wt(t) = A(r)w(t), t ≥ s, (5.5)

vt(t) = B(r)v(t), t ≥ s, (5.6)

with appropriate initial conditions, for every fixed time r ∈ R.
In order to find the solution at time s+ t > 0 with the sequential splitting, let the
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time interval [s, s + t] be partitioned in n subintervals with time step τ = t/n. If
u(s) = w0 is the initial value of (5.5), compute the solution w(1)(s+ τ) of (5.5) on
[s, s+ τ ] taking r = s. Then, compute the solution v(1)(s+ τ) of (5.6) on [s, s+ τ ]
taking w(1)(s+ τ) as initial value. Set u(s+ τ) = v(1)(s+ τ) as the initial value of
(5.4), repeat the above procedure for n times.
The iterative scheme at step k, with k ∈ {1, 2, ..., n}, can be summarized as follows
Step 1. Compute the solution w(k)(s+ kτ) of the problem{

w
(k)
t (t) = A(s+ (k − 1)τ)w(k)(t), t ∈ (s+ (k − 1)τ, s+ kτ ],

w(k)(s+ (k − 1)τ) = u(s+ (k − 1)τ).

Step 2. Compute the solution v(k)(s+ kτ) of the problem{
v

(k)
t (t) = B(s+ (k − 1)τ)v(k)(t), t ∈ (s+ (k − 1)τ, s+ kτ ],
v(k)(s+ (k − 1)τ) = w(k)(s+ kτ).

Step 3. Set
u(s+ kτ) = v(k)(s+ kτ).

Observe that, for any r ∈ [0, τ ]

w(k)(s+ (k − 1)τ + r) = erA(s+(k−1)τ)u(s+ (k − 1)τ),

and

v(k)(s+ (k − 1)τ + r) = erB(s+(k−1)τ)w(k)(s+ (k − 1)τ)
= erB(s+(k−1)τ)erA(s+(k−1)τ)u(s+ (k − 1)τ).

Thus, the split solution u(s+ kτ) can be written by induction as

u(s+ kτ) =
k−1∏
p=0

eτB(s+pτ)eτA(s+pτ)u0, (5.7)

for kτ ≤ t, k ∈ {1, 2, ..., n} and u0 ∈ X.
The next result is a general convergence thorem for the problem (5.4).

Theorem 5.2.2. Consider the non-autonomous Cauchy problem (5.4) and assume
that

i. (Well-Posedness) the problem is well-posed;

ii. (Stability) for all r ∈ R the operators A(r), B(r) generate (C0) semigroups of
type (M,ω), with M ≥ 1, ω ∈ R on X. Thus (ω,+∞) ⊂ ρ(A(r))∩ ρ(B(r)) for
all r ∈ R. Moreover, let

sup
s∈R

∥∥∥∥ 1∏
p=n

(
e
t
n
B(s−p t

n
)e

t
n
A(s−p t

n
)
)∥∥∥∥ ≤Meωt;

iii. (Continuity) the maps t 7→ R(λ,A(t))u0 and t 7→ R(λ,B(t))u0 are continuous
for all λ > ω and u0 ∈ X.
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If (U(t, s))t≥s denotes the evolution family solving (5.4), with related evolution
semigroup (U(t))t≥s generated by the closure of the operator − d

ds +A(·) +B(·), then
one has the convergence

U(t, s)u0 = lim
n→+∞

n−1∏
p=0

(
e
t−s
n
B(s+ p(t−s)

n
)e

t−s
n
A(s+ p(t−s)

n
))u0, (5.8)

for all u0 ∈ X, locally uniformly in s, t, with t ≥ s.
In partcular (U(t))t≥s is given by

(U(t)f)(s) = lim
n→+∞

1∏
p=n

(
e
t
n
B(s+ pt

n
)e

t
n
A(s+ pt

n
))f(t− s), (5.9)

for all f ∈ X in the uniform topology.
Now, suppose we are able to solve both the non-autonomous Cauchy problems

wt(t) = A(t)w(t), t ≥ s, (5.10)

vt(t) = B(t)v(t), t ≥ s, (5.11)
with appropriate initial conditions.
If w(s) = w0 is the initial value of (5.10), compute the solution w(1)(s+ τ) of (5.5)
on [s, s+ τ ]. Then, compute the solution v(1)(s+ τ) of (5.11) on [s, s+ τ ] taking
w(1)(s+ τ) as initial value. With u(s+ τ) = v(1)(s+ τ) as the initial value of (5.10),
repeat the above procedure for n times.
The algorithm scheme at step k, with k ∈ {1, 2, ..., n} can be summarized as follows
Step 1. Compute the solution w(k)(s+ kτ) of the problem{

w
(k)
t (t) = A(t)w(k)(t), t ∈ (s+ (k − 1)τ, s+ kτ ],

w(k)(s+ (k − 1)τ) = u(s+ (k − 1)τ),

Step 2. Compute the solution v(k)(s+ kτ) of the problem{
v

(k)
t (t) = B(t)v(k)(t), t ∈ (s+ (k − 1)τ, s+ kτ ],
v(k)(s+ (k − 1)τ) = w(k)(s+ kτ),

Step 3. Set
u(s+ kτ) = v(k)(s+ kτ).

If (W (t, s))t≥s and (V (t, s))t≥s denote the evolution families solving the above
problems (5.10) and (5.11), we have

w(k)(r) = W (r, s+ (k − 1)τ)u(s+ (k − 1)τ),

and

v(k)(r) = V (r, s+(k−1)τ)w(k)(s+kτ) = V (r, s+(k−1)τ)W (s+kτ, s+(k−1)τ)u(s+(k−1)τ),

for r ∈ [0, τ ]. Then the split solution u(s+ kτ) can be written by induction as

u(s+ kτ) =
k−1∏
p=0

(V (s+ (p+ 1)τ, s+ pτ)W (s+ (p+ 1)τ, s+ pτ))u0, (5.12)

for kτ ≤ t, k ∈ N, k ≥ 1 and u0 ∈ X.
The general convergence result, in this case, is given by the following theorem.
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Theorem 5.2.3. Consider the problem (5.4) and assume that

i. (Well-Posedness) the (nACP) corrisponding to the operators A(·), B(·) and
A(·) +B(·) are well-posed;

ii. (Stability) there exist M ≥ 1 and ω ∈ R such that

sup
s≥0

∥∥∥∥ 1∏
p=n−1

(
V

(
s− pt

n
, s− (p+ 1)t

n

)
W

(
s− pt

n
, s− (p+ 1)t

n

))∥∥∥∥ ≤Meωt,

where (W (t, s))t≥s and (V (t, s))t≥s denotes the evolution families solving the (nACP)
corresponding to A(·) and B(·) respectively. Then, if (U(t, s))t≥s denotes the evolution
family solving the (nACP) corresponding to A(·)+B(·), then one has the convergence

U(t, s)u0

= lim
n→+∞

n−1∏
p=0

(
V

(
s+ (p+ 1)(t− s)

n
, s+ p(t− s)

n

)
W

(
s+ (p+ 1)(t− s)

n
, s+ p(t− s)

n

))
u0,

(5.13)

for all u0 ∈ X.
In partcular the associated evolution semigroup (U(t))t≥s is given by

(U(t)f)(s) = lim
n→+∞

0∏
p=n−1

(
V

(
s−pt

n
, s−(p+ 1)t

n

)
W

(
s−pt

n
, s−(p+ 1)t

n

)))
f(s−t),

(5.14)
for all f ∈ X in the uniform topology.

For a general result that ensures the well-posedness of (nACP) (5.4), a reader can
also see the Kato’s Existence Theorem, given by [44, Theorem 13.13].

5.3 Black-Scholes Model with Time-Dependent Coeffi-
cients

In this section we consider the Black-Scholes problem with the coefficients, say the
volatility σ and the risk-free interest rate r, depending on time. In this way the
model becomes more realistic for financial markets. In the recent literature, the
non-autonomous problem is treated with different techniques, see e.g. the Stieltjes
moment approach [83], the Lie simmetry theory [91], the PDEs approach by using
change of variables [63, Section 3.4.1]. In this subsection we will derive the explicit
solution to the problem by applying the semigroup approach. Consider the (forward)
Black-Scholes equation{

ut(t, x) = σ2(t)
2 x2uxx(t, x) + r(t)xux(t, x)− r(t)u(t, x), t ≥ s ≥ 0, x ∈ R+,

u(s, x) = u0(x), x ∈ R+.

(5.15)
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The state variable x denotes a realization of the stochastic price at time t of the
underlying risky asset. The initial data u0 ∈ X, where we consider X = C[0,+∞].
The problem (5.15) can be rewritten as the following (nACP){

ut(t, x) = L(t)u(t, x), t ≥ s ≥ 0, x ∈ R+,

u(s, x) = u0(x), x ∈ R+.
(5.16)

where
L(t)u(x) = σ2(t)

2 x2u′′(x) + r(t)xu′(x)− r(t)u(x).

The following result holds.

Theorem 5.3.1. Assume that σ(·), r(·) ∈ BUC1(R+). For all t ≥ s ≥ 0 the
operator L(t) has domain independent of time

D(L(t)) = D(L(0)) = {u ∈ X ∩ C2(0,+∞)|L(0)u ∈ X}, (5.17)

that is dense in X. Then the (nACP) (5.16) is well-posed with solution given by

u(t, x) = U(t, s)u0(x)

= e−
∫ t
s
r(ζ) dζ ·

∫ +∞

−∞
u0

(
x exp

(∫ t

s

(
r(ζ)− ν2(ζ)

)
dζ − y

))
q(t, y) dy,

where ν(t) = σ(t)/
√

2 and

q(t, y) = 1√
2π
∫ t
s ν

2(ζ) dζ
exp

(
− y2

2
∫ t
s ν

2(ζ) dζ

)
. (5.18)

Proof. Note that the operators L(t) can be written as

L(t)u = ν2(t)G2u+ γ(t)Gu+ δ(t)I, t ≥ s ≥ 0,

where we set
ν(t) = σ(t)√

2
, γ(t) = r(t)− ν2(t), δ(t) = −r(t),

and the operators G, G2, with their respective domains, are defined in (1.22) and
(1.23), respectively. Thus, for all t ≥ s ≥ 0, D(L(t)) = D(G2).
With similar arguments to those in Theorem 1.2.2 we can conclude that there exists
the unique evolution family solving the (nACP) (5.16) having the following explicit
representation

U(t, s)u0(x)

= e−
∫ t
s
r(ζ) dζ
√

2π
·
∫ +∞

−∞
u0

(
x exp

(∫ t

s

(
r(ζ)− ν2(ζ)

)
dζ − z

√∫ t

s
ν2(ζ) dζ

)
e−

z2
2 dz.

(5.19)

Let

y = z

√∫ t

s
ν2(ζ) dζ,
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then we have

U(t, s)u0(x)

= e−
∫ t
s
r(ζ) dζ ·

∫ +∞

−∞
u0

(
x exp

(∫ t

s

(
r(ζ)− ν2(ζ)

)
dζ − y

)
q(t, y) dy,

where q(t, y) is given in (5.18).

5.4 Some Hints for the CIR Process with Time-Dependent
Coefficients

In this section we consider the following (nACP){
ut(x) = L(t)u(x), t ≥ s ≥ 0, x ∈ R+

u(s, x) = u0(x), x ∈ R+,
(5.20)

where u0 is the initial data and for any t ≥ s

Lu(x) = 1
2σ

2(t)xu′′(x) + k(θ(t)− x)u′(x)− xu(x), (5.21)

represents the operator related to the CIR problem. We are assuming that the
volatility and the lon-run mean parameters are time-dependent, i.e. σ = σ(t) and
θ = θ(t) while k is constant. This problem was recentely studied by M. Moreno
and F. Platania in [70] in the framework of affine models. They consider consider
a cyclical square-root model for the term structure where the short interest rates
are pulled back to a certain time-dependent long term level characterized by an
harmonic oscillator. Departing from this harmonic oscillator, they assume that the
volitility and the mean reversion level are defined as

σ2(t) = σ0 sin
2(ϕ− ωt),

θ(t) = θ0 sin
2(ϕ− ωt), (5.22)

where σ0, θ0, ϕ and ω denote the amplitude, offset phase, and temporal frequency,
respectively.
In Section 1.2.2 we showed that the solution of the (ACP) related to the CIR problem
can be expressed as the limit of a sequence of approximate solutions computed by
the Lie-Trotter-Daletskii formula, in Section 5.2 we described the methodology
provided by A. Batkai et al [8], to compute similar approximate solutions for non-
autonomous Cauchy problems. The existence of an evolution family solving the
problem (5.20) and the representation of the corresponding evolution semigroup is
under investigation. In this section we give some hints to apply Theorem 5.2.3 to
the problem (5.20).
We let X = C0[0,+∞) and assume that σ(t), θ(t) ∈ BUC1(R+). As made in
Theorem 1.2.8 we can split the entire operator L(t) as the sum of the operators
ν2(t)G2 and (Q(t) + P ), where

Gu(x) =
√
xu′(x), G2u(x) = xu′′(x) + 1

2u
′(x),



5.4 Some Hints for the CIR Process with Time-Dependent Coefficients 85

Q(t)u(x) = (α(t) + βx)u′(x), Pu(x) = −xu(x),

with ν(t) = σ(t)√
2 , α(t) =

(
kθ(t) − ν2(t)

2
)
, β = −k, for any x ∈ R+. It is clear that

also ν(t), α(t) are of class BUC1. Now, in order to apply Theorem 5.2.3, we have to
solve the two following (nACP):{

ut(x) = ν2(t)G2u(x), t ≥ s, x ∈ R+

u(s, x) = f(x), f ∈ X, x ∈ R+,
(5.23)

and {
ut(x) = (Q(t) + P )u(x), t ≥ s, x ∈ R+

u(s, x) = f(x), f ∈ X, x ∈ R+.
(5.24)

The evolution family solving problem (5.23) is given by∫ +∞

−∞
f([
√
x+ y]2)q(t, y) dy, (5.25)

where q(t, y) is defined in (5.18) (see [40, Lemma 1, Section 3]). This solution is
analogous to formula (1.36) for the autonomous case, by the substitution

ν2 → 1
t− s

∫ t

s
ν2(ζ) dζ.

To solve the second problem (5.24) we start to consider the following sub-problems{
ut(x) = Q(t)u(x), t ≥ s, x ∈ R+

u(s, x) = f(x), f ∈ X, x ∈ R+,
(5.26)

{
ut(x) = Pu(x), t ≥ s, x ∈ R+

u(s, x) = f(x), f ∈ X, x ∈ R+.
(5.27)

By a direct inspection we see that the evolution family solving problem (5.26) is
given by

f

(
e(t−s)βx+

∫ t

s
α(ζ)eζβ dζ

)
, (5.28)

while the solution of (5.26) is given by e−(t−s)xf(x). In particular, we note that
formula (5.28) is analogous to formula (1.37) for the autonomous case, by replacing1

α

∫ t

s
e(ζ−s)β dζ →

∫ t

s
α(ζ)e(ζ−s)β dζ. (5.29)

Again, by a direct inspection we can see that the evolution family solving problem
(5.24) is given by

exp

(
−
(
x

∫ t

s
e(ζ−s)β dζ+

∫ t

s
α(ζ)

(∫ ζ

s
e(q−s)β dq

)
dζ

))
f

(
e(t−s)βx+

∫ t

s
α(ζ)e(ζ−s)β dζ

)
.

(5.30)
1We use the equivalent (integral) form

∫ t
s
e(ζ−s)β dζ for the term e(t−s)β−1

β
of (1.37) and (1.38).
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We note that the expression (5.30) is analogous to formula (1.38), by (5.29) and
replacing

α

β

(∫ t

s
e(ζ−s)β dζ − (t− s)

)
→
∫ t

s
α(ζ)

(∫ ζ

s
e(q−s)β dq

)
dζ. (5.31)

Once we have computed the evolution families solving the sub-problems (5.23) and
(5.24) we can apply Theorem 5.2.3 to find the approximate solution to problem
(5.20) if and only if we are able to prove that it is well-posed. As mentioned above
this is under investigation. The most challenging task consists in proving that the
operator L(t) is independent of t, for all t.
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Chapter 6

Appendices

6.1 Boundary Classification for Diffusion Processes
In this appendix, we describe the Feller boundary classification introduced by Karlin
and Taylor in [58, Chapter XV, Paragraph 6.1] using a proababilistic approach. Let
(Ω,F , (Ft)t≥0,P) a filtered probability space. Recall that a diffusion process (Xt)t≥0
is a Markov process with dynamics governed by

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt X0 = x0, (6.1)

whose sample paths are continuous functions of t ≥ 0.

Definition 6.1.1. (Regular Diffusion Processes)
Let (Xt)t≥0 a diffusion process with state space the interval J = (r1, r2).1 (Xt)t≥0
is regular if starting from any point in the interior of J any other interior point of
J can be reached with positive probability. In other words, for any point ζ in the
interior of J , let Iζ the event that ζ is even reached; then (Xt)t≥0 is regular if

P(Iζ < +∞|X0 = x0) > 0,

whenever r1 < x0, ζ < r2.

We describe the classification of possible behavior near the boundaries r1, r2 con-
centrating just on the left point r1, the right will be entirely similar. Consider
µ(t, x) = µ(x) and σ(t, x) = σ(x).
We start to define the scale function

S(x) =
∫ x

x0
s(z) dz, (6.2)

with
s(z) = exp

(
−
∫ z

z0

2µ(η)
σ2(η) dη

)
, (6.3)

where x0, z0 are arbitrary fixed point inside (r1, r2) whose choice is no relevant. For
all [c, d] ⊂ (r1, r2), define the scale measure dS(x) on the infinitesimal interval
[x, x+ dx], where

dS(x) = S(x+ dx)− S(x) = s(x)dx.
1J can be also of type (r1, r2], [r1, r2), [r1, r2].
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Similarly we introduce the speed density

m(x) = 1
σ2(x)s(x) , (6.4)

and its speed measure dM(x) = m(x)dx.
Finnaly, we define

S(r1, x0] = lim
a→r1

S[a, x0] = lim
a→r1

∫ x0

a
s(z)dz.

Lemma 6.1.2. For all r1 < a < x0 < b < r2 and for some x ∈ (r1, r2), we have
that

i. S(r1, x0] < +∞ implies P(Ir1+ ≤ Ib|X0 = x0) > 0;

ii. S(r1, x] = +∞ implies P(Ir1+ ≤ Ib|X0 = x0) = 0,

where Ir1+ = lima→r1 Ia ≤ +∞.

In view of Lemma 6.1.2 we define the attracting boundary.

Definition 6.1.3. (Attracting Boundary)
The boundary r1 is of attracting type if S(r1, x0] < +∞ for an arbitrary x0 ∈ (r1, r2).

We define (employing some obvious interchanges of order of integration)

Σ(r1) = lim
a→r1

∫ x0

a
S[a, z] dM(z) =

∫ x0

r1
S(r1, z] dM(z) =

∫ x0

r1

(∫ z

r1
s(η) dη

)
m(z) dz

=
∫ x0

r1

(∫ x0

η
m(z) dz

)
s(η) dη =

∫ x0

r1
M [η, x0] dS(η). (6.5)

Notice that we use the notation Σ(r1) instead of Σ(r1, x0) since the choice of x0
is not relevant, Σ(r1) measures the time needed to reach the boundary r1 starting
from an interior point x0.

Definition 6.1.4. (Attainable/Unattainable Boundary)
The boundary r1 is said to be

i. attainable if Σ(r1) < +∞;

ii. unattainable if Σ(r1) = ±∞.

In particular, r1 is nonattracting if it is unattainable with S(r1, x0] = ±∞.

It easy to verify that S(r1, x0] < +∞ whenever Σ(r1) < +∞, i.e. if r1 is attainable
then it is attracting.
The next lemma shows that an attainable boundary can be reached in finite time
with positive probability, and the expected time to reach an unattainable boundary
is always infinite.

Lemma 6.1.5. Let r1 < x0 < b < r2 with r1 an attracting boundary. The following
statements are equivalent:
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i. P(Ir1 < +∞|X0 = x0) > 0;

ii. Σ(r1) =
∫ x0
r1
S(r1, η] dM(η) < +∞.

We next introduce the functionals

M(r1, x0] = lim
a→x0

M [a, x0] = lim
a→r1

∫ x0

a
m(z)dz,

and
N(r1) =

∫ x0

r1
M(r1, z] dS(z) =

∫ x0

r1
S[η, x0] dM(η). (6.6)

M(r1, x0] measures the speed of the process near r1 and N(r1) measures the time
needed to reach an interior point x0 starting from r1.
The classification of boundary behavior is based on the values of the four functionals
S(r1, x0],Σ(r1), N(r1) and M(r1, x0], as described by the next lemma.

Lemma 6.1.6. The following relations hold between S(r1, x0],Σ(r1), N(r1) and
M(r1, x0]:

i. S(r1, x0] = ±∞ implies Σ(r1) = ±∞;

ii. Σ(r1) < +∞ implies S(r1, x0] < +∞;

iii. M(r1, x0] = ±∞ implies N(r1) = ±∞;

iv. N(r1) < +∞ implies M(r1, x0] < +∞.

Proof. See [58, Chapter XV, Lemma 6.3].

The next definition provides the terminology of the Feller boundary classification.

Definition 6.1.7. (Feller Classification)
In the notations defined above, the following boundary classification holds:

i. r1 is of regular type if S(r1, x0] < +∞ and M(r1, x0] < +∞;

ii. r1 is of exit type if Σ(r1) < +∞ but M(r1, x0] = ±∞;

iii. r1 is of entrance type if S(r1, x0] = ±∞ while N(r1) < +∞;

iv. r1 is of natural type if Σ(r1) = ±∞ and N(r1) = ±∞.

In particular, it easy to verify that a regular or exit boundary is attracting while an
entrance or natural boundary is nonattracting.
Example 6.1.8. Consider the squared Bessel process Xt (of parameter δ ≥ 0) with
dynamic

dXt = δdt+ 2
√
XtdWt,

and boundaries r1 = 0, r2 = +∞. In particular, if we let Yt = X2
t , obtain a Bessel

process satisfying the following SDE

dYt = δ − 1
2Yt

dt+ dWt.



6.1 Boundary Classification for Diffusion Processes 90

With this transformation it is more simple to study the boundaries behavior.
The scale and speed functions are s(z) = z1−δ and m(z) = zδ−1, hence, given x0 = 1,
we have

S(x) =
∫ x

1
z1−δ dz =

{ 1
2−δx

2−δ, if δ 6= 2,
ln x, if δ = 2.

We start to examine the boundary point 0. Let x0 = 1 for comodity. We have

Σ(0) =
∫ 1

0

(∫ 1

z
m(η) dη

)
s(z) dz =

∫ 1

0

1
δ

(1− zδ)z1−δ dz

= 1
δ

∫ 1

0
(z1−δ dz − 1)

{
< +∞, if δ < 2,
= +∞ if δ ≥ 2.

N(0) =
∫ 1

0

(∫ 1

η
s(z) dz

)
m(η) dη = 1

2− δ

∫ 1

0
(1− η2−δ)ηδ−1 dη

= 1
2− δ

∫ 1

0
(ηδ−1 dη − 1

2)
{
< +∞, if δ > 0,
= +∞ if δ = 0.

Hence, the boundary 0 is entrance if δ ≥ 2, regular if 0 < δ < 2 and exit if δ = 0. It
simple to verify that the boundary +∞ is natural for all δ ≥ 0.
Remark 6.1.9. Note that Definition (6.1.7) and Definition (1.1.20) are equivalent.
This is a consequence of Remark 1.1.19.
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6.2 Approximate Solution for the CIR Problem
This appendix contains the calculations given in [40] to obtain the approximate
formula (1.35).
For any t > 0 consider a uniform partition of [0, t] into n ∈ N subintervals of
length t/n, say Πn(t) = {tj,n}nj=0 (0 = t0,n < t1,n < · · · < tn,n = t), such that
tj,n = jt

n , j = 0, 1, . . . , n. Suppose n = 2k for some k ∈ N, so that each partition is
obtained by bisecting its predecessor.
Step 1. Take n = 1 (k = 0). Then

(etG2
et (Q+P ))f(x) =

∫ +∞

−∞
g(S(y1, x)) p(t, y1)dy1,

with g(x) = eZ(t,x) f(R(t, x)), where we denote

S(y, x) = (
√
x+ ν y

2 )2, (6.7)

R(t, x) = et β x+ α

β
(et β − 1), (6.8)

and

Z(t, x) = − r
∫ t

0
R(s, x) ds = − r

β

[α
β

(et β − 1) + (et β − 1)x− α t
]
.

Then

(etG2
et (Q+P ))f(x) =

∫ +∞

−∞
eZ(t,S(y1,x)) f(R(t, S(y1, x))) p(t, y1)dy1. (6.9)

After some calculation, we get

R(t, S(y, x)) = R(t, x) + etβ ν y (
√
x+ ν y

4 ),

Z(t, S(y, x)) = Z(t, x)− r
[(etβ − 1)

β
ν y (
√
x+ ν y

4 )
]
.

Step 2. Take n = 2 (k = 1). By applying (6.9) and replacing t by t/2, we get

(e
t
2G

2
e
t
2 (Q+P ))2 f(x) = (e

t
2 G

2
e
t
2 (Q+P ))h(x)

=
∫ +∞

−∞
eZ(t/2,S(y1,x)) h(R(t/2, S(y1, x))) p(t/2, y1)dy1,

where, again from (6.9)

h(x) = (e
t
2G

2
e
t
2 (Q+P )) f(x) =

∫ +∞

−∞
eZ(t/2,S(y2,x))f(R(t/2, S(y2, x)))p(t/2, y2)dy2.

Then

(e
t
2G

2
e
t
2 (Q+P ))2 f(x) =

∫ +∞

−∞

∫ +∞

−∞
eZ(t/2,S(y1,x))+Z(t/2,S(y2,R(t/2,S(y1,x))))

· f(R(t/2, S(y2, R(t/2, S(y1, x)))))
2∏
i=1

p(t/2, yi) dy1 dy2. (6.10)
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After many calculations, we get

R(t/2, S(y2, R(t/2, S(y1, x)))) = R(t, x) + etβ ν y1
(√

x+ ν y1
4
)

+ etβ/2 ν y2
(√

R(t/2, S(y1, x)) + ν y2
4
)
, (6.11)

and

Z(t/2, S(y1, x)) + Z(t/2, S(y2, R(t/2, S(y1, x)))) = Z(t, x)

− r
[(etβ − 1)

β
νy1(
√
x+ νy1

4 )− (etβ/2 − 1)
β

νy2
(√

R(t/2, S(y1, x)) + νy2
4
)]
.

Step 3. Take n = 4 (k = 2). By applying (6.10) and replacing t/2 by t/4, we get

(e
t
4G

2
e
t
4 (Q+P ))4f(x) = (e

t
4G

2
e
t
4 (Q+P ))2 h(x)

=
∫ +∞

−∞

∫ +∞

−∞
eZ(t/4,S(y1,x))+Z(t/4,S(y2,R(t/4,S(y1,x))))

· h(R(t/4, S(y2, R(t/4, S(y1, x)))))
2∏
i=1

p(t/4, yi) dy1 dy2,

where, again from (6.10)

h(x) = (e
t
4G

2
e
t
4 (Q+P ))2 f(x)

=
∫ +∞

−∞

∫ +∞

−∞
eZ(t/4,S(y3,x))+Z(t/4,S(y4,R( t4 ,S(y3,x))))

· f(R(t/4, S(y4, R(t/4, S(y3, x)))))
2∏
i=1

p(t/4, yi) dy3 dy4.

Then

(e
t
4G

2
e
t
4 (Q+P ))4f(x) =

∫ +∞

−∞
· · ·
∫ +∞

−∞︸ ︷︷ ︸
4 times

eZ(t/4,S(y1,x))+Z(t/4,S(y2,R(t/4,S(y1,x))))+Z(t/4,S(y3,R(t/4,S(y2,R(t/4,S(y1,x))))))

· eZ(t/4,S(y4,R(t/4,S(y3,R(t/4,S(y2,R(t/4,S(y1,x))))))))

· f(R(t/4, S(y4, R(t/4, S(y3, R(t/4, S(y2, R(t/4, S(y1, x)))))))))
4∏
i=1

p(t/4, yi)dy1 · · · dy4. (6.12)

Analogous calculations as before show that

R(t/4, S(y4, R(t/4, S(y3, R(t/4, S(y2, R(t/4, S(y1, x))))))))

= R(t, x) + etβ ν y1
(√

x+ ν y1
4
)

+ e3tβ/4ν y2
(√

R(t/4, S(y1, x)) + ν y2
4
)

+ e2tβ/4ν y3
(√

R(t/4, S(y2, R(t/4, S(y1, x)))) + ν y3
4
)

+ etβ/4ν y4
(√

R(t/4, S(y3, R(t/4, S(y2, R(t/4, S(y1, x)))))) + ν y4
4
)
, (6.13)
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and

Z(t/4, S(y1, x)) + Z(t/4, S(y2, R(t/4, S(y1, x))))
+ Z(t/4, S(y3, R(t/4, S(y2, R(t/4, S(y1, x))))))
+ Z(t/4, S(y4, R(t/4, S(y3, R(t/4, S(y2, R(t/4, S(y1, x))))))))

= Z(t, x)− r
[(etβ − 1)

β
νy1(
√
x+ νy1

4 )

− (e3tβ/4 − 1)
β

νy2
(√

R(t/4, S(y1, x)) + ν y2
4
)

− (e2tβ/4 − 1)
β

ν y3
(√

R(t/4, S(y2, R(t/4, S(y1, x)))) + ν y3
4
)

− (etβ/4 − 1)
β

ν y4
(√

R(t/4, S(y3, R(t/4, S(y2, R(t/4, S(y1, x)))))) + ν y4
4
)]
.

A straightforward but rather tedious induction argument yields for n = 2k, k ∈ N,

R(t/n, S(yn, R(t/n, S(yn−1, R(t/n, . . . , R(t/n, S(y1, x)))))))

= R(t, x) + etβνy1
(√

x+ ν y1
4
)

+ et(n−1)β/nνy2
(√

R(t/n, S(y1, x)) + νy2
4
)

+ et(n−2)β/nν y3
(√

R(t/n, S(y2, R(t/n, S(y1, x)))) + ν y3
4
)

+ · · ·

+ etβ/nν yn
(√

R(t/n, S(yn−1, R(t/n, . . . , R(t/n, S(y1, x))))) + ν yn
4
)
, (6.14)

and

Z(t/n, S(y1, x)) + Z(t/n, S(y2, R(t/n, S(y1, x))))
+ Z(t/n, S(y3, R(t/n, S(y2, R(t/n, S(y1, x)))))) + · · ·
+ Z(t/n, S(yn, R(t/n, S(yn−1, R(t/n, · · · , R(t/n, S(y1, x)))))))

= Z(t, x)− r
[(etβ − 1)

β
ν y1 (

√
x+ ν y1

4 )

− (et(n−1)β/n − 1)
β

ν y2
(√

R(t/n, S(y1, x)) + ν y2
4
)

− (et(n−2)tβ/n − 1)
β

ν y3
(√

R(t/n, S(y2, R(t/n, S(y1, x)))) + ν y3
4
)
− · · ·

− (etβ/n − 1)
β

ν yn
(√

R(t/n, S(yn−1, R(t/n, . . . , R(t/n, S(y1, x))))) + ν yn
4
)]
.

Let

L(t, n, ν, {yj}1≤j≤n, x, f) = eZ(t/n,S(y1,x))+Z(t/n,S(y2,R(t/n,S(y1,x)))))

·eZ(t/n,S(y3,R(t/n,S(y2,R(t/n,S(y1,x))))))+···+Z(t/n,S(yn,R(t/n,S(yn−1,R(t/n,··· ,R(t/n,S(y1,x)))))))

· f(R(t/n, S(yn, R(t/n, S(yn−1, R(t/n, . . . , R(t/n, S(y1, x)))))))). (6.15)

In particular, the (6.15) can be rewritten as

L(t, n, ν, {yj}1≤j≤n, x, f) = eZn(t/n,x,y1,...,yn) · f(Rn(t/n, x, y1, ..., yn)), (6.16)
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where
R1(t, x, y1) = etβx + α

β
(etβ − 1) + etβνy1S(y1, x),

Z1(t, x, y1) = − 1
β

(
(etβ − 1)

(
x+ α

β

)
− αt

)
− (etβ − 1)

β
νy1S(y1, x),

the functions Ri, Zi are recursively defined for i ∈ {2, ..., n} as follows

Ri(t/i, x, {yh}1≤h≤i)

= R1(t, x, y1) +
i∑

j=2
etβ(n−j+1)/nνyjS(yj , Rj−1(t/i, x, {yh}1≤h≤(j−1))), (6.17)

Zi(t/i, x, {yh}1≤h≤i)

= Z1(t, x, y1)−
i∑

j=2

etβ(n−j+1)/n − 1
β

νyjS(yj , Rj−1(t/i, x, {yh}1≤h≤(j−1))). (6.18)

It is evident that the form (6.16) is more convenient for numerical implementations.
Finally

un(t, x) = (e
t
n
G2
e
t
n

(Q+P ))nf(x)

=
∫ +∞

−∞
. . .︸ ︷︷ ︸

n times

∫ +∞

−∞
L(t, n, ν, {yj}1≤j≤n, x, f) ·

n∏
j=1

p

(
t

n
, yj

)
dy1 · · · dyn, (6.19)

for n = 2k.

6.3 The Case c = 0
We refer to Theorem 2.2.8 and consider the (C0) semigroups U and V defined in
(2.40) and (2.41), respectively. Fix g ∈ C(R), t > 0, z ∈ R.
Step 1. Take n = 1 (k = 0). We have

U(t)V (t)g(z) =
∫ +∞

−∞
g(zeγt + ξy1)p(t, y1)dy1. (6.20)

Step 2: Take n = 2 (k = 1). Then

[U(t/2)V (t/2)]2 g(z) = U(t/2)V (t/2)h(z)

=
∫ +∞

−∞
h(zeγt/2 + ξy1)p(t/2, y1)dy1

where
h(z) = U(t/2)V (t/2)g(z) =

∫ +∞

−∞
g(zeγt/2 + ξy2)p(t/2, y2)dy2.
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Hence,

[U(t/2)V (t/2)]2 g(z)

=
∫ +∞

−∞

∫ +∞

−∞
g((zeγt/2 + ξy1)eγt/2 + ξy2)

2∏
i=1

p(t/2, yi)dy1dy2

=
∫ +∞

−∞

∫ +∞

−∞
g((zeγt + ξ(eγt/2y1 + y2))

2∏
i=1

p(t/2, yi)dy1dy2. (6.21)

By induction, we can conclude that, for n = 2k, k ∈ N,

un(z, t) = [U(t/n)V (t/n)]n g(z)

=
∫ +∞

−∞
...

∫ +∞

−∞︸ ︷︷ ︸
n times

L0(t, n, {yj}1≤j≤n, z, g)
n∏
i=1

p

(
t

n
, yi

)
dy1...dyn, (6.22)

where

L0(t, n, {yj}1≤j≤n, z, g) = g

zeγt + ξ
n∑
j=1

yje
γ(n−j)t/n

 .
6.4 The Case c 6= 0
We refer to Theorem 2.2.15 and consider the (C0) semigroups U and V defined in
(2.62) and (2.63), respectively.
Assume c > 0 and consider J =

(
−d
c ,+∞

)
. Denote β = c/

√
2 and

R(t, x) = etβx+ d

c
(etβ − 1). (6.23)

Observe that for any x0 ∈ J, R(t, x0) ∈ J . Indeed,

R(t, x0) = etβ
(
x0 + d

c

)
︸ ︷︷ ︸

>0

+
(
−d
c

)
> −d

c
.

To compute the approximate functions un(·, ·), n ≥ 1, given in (2.57) we proceed by
steps. Fix g ∈ C(J̄).
Step 1: Take n = 1 (k = 0). Thus

U(t)V (t)g(x) =
∫ +∞

−∞
g(R(y1 + ζt, x+ α2t/c))p(t, y1)dy1, (6.24)

where
R(y1 + ζt, x+ α2t/c) = eβ(y1+ζt)

(
x+ α2

c
t+ d

c

)
− d

c
. (6.25)
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Step 2: Take n = 2, (k = 1). By applying (6.25) and replacing t by t/2, we get[
U(t/2)V (t/2)

]2
g(x) = U(t/2)V (t/2)h(x)

=
∫ +∞

−∞
h(R(y1 + ζt/2, x+ α2 t/2 c))p(t/2, y1)dy1,

where

h(x) = U(t/2)V (t/2) g(x) =
∫ +∞

−∞
g(R(y2 + ζt/2, x+ α2 t/2 c))p(t/2, y2)dy2.

Hence,

[
U(t/2)V (t/2)

]2
g(x) =

∫ +∞

−∞

∫ +∞

−∞
g(R(y2+ζt/2, R(y1+ζt/2, x+α2 t/2 c)+α2 t/2 c)

2∏
i=1

p(t/2, yi)dy1dy2,

(6.26)

where

R(y2 + ζt/2, R(y1 + ζt/2, x+ α2 t/2 c) + α2 t/2 c)

= eβ(y2+ζt/2)
(
eβ(y1+ζt/2)

(
x+ α2t

2c + d

c

)
− d

c
+ α2t

2c + d

c

)
− d

c

= eβ(y1+y2+ζt)
(
x+ α2t

2c + d

c

)
+ α2t

2c e
β(y2+ζt/2) − d

c
. (6.27)

Step 3: Take n = 4, (k = 2). Analogously[
U(t/4)V (t/4)

]4
g(x) =

[
U(t/4)V (t/4)

]2
h(x),

that is given by (6.26) replacing t/2 by t/4 and g by h. Moreover, h is also given by
(6.26) replacing t/2 by t/4 and y1, y2 by y3, y4. So, after many calculations, we can
write[

U(t/4)V (t/4)
]4
g(x) =∫ +∞

−∞
...

∫ +∞

−∞︸ ︷︷ ︸
4 times

g(R(y4 + ζt/4, R(y3 + ζt/4, R(y2 + ζt/4,

R(y1 + ζt/4, x+ α2 t/4 c) + α2 t/4 c) + α2 t/4 c) + α2 t/4 c)
4∏
i=1

p(t/4, yi)dyi,
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with

R(y4 + ζt/4, R(y3 + ζt/4, R(y2 + ζt/4, R(y1 + ζt/4, x+ α2 t/4 c)+
+ α2 t/4 c) + α2 t/4 c) + α2 t/4 c)

= eβ(
∑4

i=1 yi+ζt)
(
x+ d

c

)
− d

c
+ α2t

4c

[
eβ(
∑4

i=1 yi+ζt) + eβ(
∑4

i=2 yi+3ζt/4)

+ eβ(
∑4

i=3 yi+ζt/2) + eβ(y4+ζt/4)
]

= R
( 4∑
i=1

yi + ζt, x
)

+ α2t

4c

4∑
j=1

e

[
β

(∑4
i=j yi+( 4−j+1

4 )ζt
)]
.

By induction, we can conclude that, for n = 2k, k ∈ N,[
U(t/n)V (t/n)

]n
g(x) =∫ +∞

0
...

∫ +∞

0︸ ︷︷ ︸
n times

L(t, n, {yj}1≤j≤n, x, g)
n∏
j=1

p

(
t

n
, yj

)
dy1...dyn,

where

L(t, n, {yj}1≤j≤n, x, g) = g

R( n∑
i=1

yi + ζt, x
)

+ α2t

nc

n∑
j=1

e

[
β

(∑n

i=j yi+(n−j+1
n )ζt

)] .
6.5 Qualitative analysis related to Table 4.4
We report the qualitative statistical analysis carried out for each group/sub group
according to the results reported in Table 4.4. The qualitative analysis related to
the results in Table 4.6 is analogous and so it is omitted.
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Figure 6.1. Qualitative statistical analysis related to the sub-group 1–8. Top line: ARIMA
(2, 0, 1) standardized residuals versus Johnson’s transformed residuals (left); Q-Q normal
plot for the ARIMA (2, 0, 1) standardized residuals (right). Middle line: AC (left)
and PAC (right) plots. Bottom line: real interest rates versus ARIMA (2, 0, 1) fitted
values (left); comparison of the standard normal cumulative distribution function (CDF)
with the empirical CDF of ARIMA (2, 0, 1) standardized residuals and of Johnson’s
transformed residuals (right).

0 2 4 6 8 10 12 14 16
−4

−2

0

2
Standardized Residuals vs Johnson Tranformed Residuals

 

 
stdr
Z

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−4

−2

0

2

Standard Normal Quantiles

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

Standardized Residuals

0 5 10 15
−0.5

0

0.5

1

Lag

S
am

pl
e 

A
ut

oc
or

re
la

tio
n

Sample Autocorrelation Function

0 5 10 15
−1

−0.5

0

0.5

1

LagS
am

pl
e 

P
ar

tia
l A

ut
oc

or
re

la
tio

ns Sample Partial Autocorrelation Function

0 2 4 6 8 10 12 14 16
1.7

1.8

1.9

2
Interest Rates vs ARIMA Forecast

 

 
Data
ARIMA

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1
Standardized Residuals

 

 

Empirical ARIMA CDF
Standard Normal CDF
Empirical Johnson CDF

Figure 6.2. Qualitative statistical analysis related to the sub-group 17–32. Top line:
ARIMA (1, 0, 3) standardized residuals versus Johnson’s transformed residuals (left);
Q-Q normal plot for the ARIMA (1, 0, 3) standardized residuals (right). Middle line:
AC (left) and PAC (right) plots. Bottom line: real interest rates versus ARIMA
(1, 0, 3) fitted values (left); comparison of the standard normal cumulative distribution
function (CDF) with the empirical CDF of ARIMA (1, 0, 3) standardized residuals and
of Johnson’s transformed residuals (right).
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Figure 6.3. Qualitative statistical analysis related to the sub-group 33–48. Top line:
ARIMA (3, 0, 1) standardized residuals versus Johnson’s transformed residuals (left);
Q-Q normal plot for the ARIMA (3, 0, 1) standardized residuals (right). Middle line:
AC (left) and PAC (right) plots. Bottom line: real interest rates versus ARIMA
(3, 0, 1) fitted values (left); comparison of the standard normal cumulative distribution
function (CDF) with the empirical CDF of ARIMA (3, 0, 1) standardized residuals and
of Johnson’s transformed residuals (right).
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Figure 6.4. Qualitative statistical analysis related to the sub-group 49–56. Top line:
ARIMA (3, 1, 2) standardized residuals versus Johnson’s transformed residuals (left); Q-Q
normal plot for the ARIMA (3, 1, 2) standardized residuals (right). Middle line: AC
(left) and PAC (right) plots. Bottom line: real interest rates versus ARIMA (3, 1, 2)
fitted values (left); comparison of the standard normal cumulative function (CDF)
with the empirical CDF of ARIMA (3, 1, 2) standardized residuals and of Johnson’s
transformed residuals (right).
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Figure 6.5. Qualitative statistical analysis related to the sub-group 57–68. Top line:
ARIMA (2, 1, 1) standardized residuals versus Johnson’s transformed residuals (left);
Q-Q normal plot for the ARIMA (2, 1, 1) standardized residuals (right). Middle line:
AC (left) and PAC (right) plots. Bottom line: real interest rates versus ARIMA
(2, 1, 1) fitted values (left); comparison of the standard normal cumulative distribution
function (CDF) with the empirical CDF of ARIMA (2, 1, 1) standardized residuals and
of Johnson’s transformed residuals (right).
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6.6 CIR# parameter estimates
We report the estimates of the CIR# parameters k, θ, σ and, in particular, the
plots of the function Sj(k) defined in (4.3), corresponding to the selected "optimal"
ARIMA models reported in Table 4.4.
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Figure 6.6. Plots of the functions Sj(k) for each group/sub-group

Table 6.1. CIR# parameter estimates based on 68 monthly observed 1-day (overnight)
EUR interest rates

j group/sub-group k̂jk̂jk̂j θ̂ĵθĵθj σ̂jσ̂jσ̂j
1 1–8 20.6364 2.7699 0.4027

2 9–16 5.6621 2.3338 0.3663

3 17–32 5.1649 1.7924 0.0954

4 33–48 4.4462 1.9223 0.1546

5 49–56 1.9092 1.6637 0.0709

6 57–68 1.3555 1.4264 0.0958
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