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A B S T R A C T

A parametric mechanical model based on a Lagrangian formulation is here proposed to predict the dynamic
response of roller batteries during the vehicles transit across the so-called compression towers in ropeways
transportation systems. The model describes the dynamic interaction between the ropeway substructures
starting from the modes and frequencies of the system to the forced dynamic response caused by the vehicles
transit. The analytical model is corroborated and validated via an extensive experimental campaign devoted to
the dynamic characterization of the roller battery system. The data acquired on site via a custom-design sensor
network allowed to identify the frequencies and damping ratios by employing the Frequency Domain
Decomposition (FDD) method. The high fidelity modeling and the system identification procedure are discussed.

1. Introduction

Ropeways are cable-drawn transport systems used for centuries to
move goods or passengers, conveyed in cars (or vehicles) connected to
the cable, in hardly accessible environments. At the beginning, these
systems were mainly based on funicular railways whereas, over the
years, the interest of the designers turned towards aerial ropeways. The
latter find their main application in mountain regions with ski resorts
and in sightseeing areas. In recent years, aerial ropeways are becoming
increasingly popular also in urban environments [1] as a valid alter-
native to classical public transportation solutions. The development
over time of different cable-drawn passenger transportation systems
and their working principles are discussed in [2,3] with particular
emphasis on ropeways suited for urban mobility solutions.

Two main criteria can be adopted to classify these aerial transpor-
tation systems, namely, the number of adopted cables (i.e., mono-, bi-
and multi-cable ropeways) and the operating mode (i.e., continuous or
reversible motion of the cable). However, other distinct technical ele-
ments can be taken into account to further classify aerial ropeways,
such as the type and size of cabins, or the type of connection to the
cable (i.e., the grip) that may include the possibility of their detachment
at the terminal stations.

Within the large variety of cable-drawn aerial transport systems,
mono-cable ropeways, in which one or two ropes have both functions of
carrying and hauling, are often employed as effective technical

solutions for covering long distances and significant elevations. The
cable continuously circulates in the same direction at a uniform speed
that can reach values up to 28 km/h and the tension in the cable can be
regulated at one of the end-line station. During the motion along the
closed-loop path the cable crosses line support tower structures. In the
most common aerial ropeways, such supporting structures are equipped
with an ensemble of rollers whose geometric configuration is not fixed
but such as to accommodate the shape of the cable and allow its smooth
transit across the tower.

Given the large variety of ropeways architectures universal me-
chanical models to investigate the static and dynamic behavior of such
structures do not exist. Indeed, the literature on this topic is mainly
limited to investigations of the dynamic response of the hauled cars
(i.e., the cabins) to cross-wind loading and other dynamic effects [4,5].
Moreover, some further works [6–8] investigated the dynamic behavior
of carrying-hauling ropes dealing with peculiar aspects such as the
study of the effects of moving loads in an existing ropeway system.
More recently, the nonlinear dynamic effects were studied in bi-cable
circulating gondola ropeway systems [9]. In particular, the nonlinear
coupling between the motion of the hauling cable and the swaying
dynamics of the cabins was addressed and shown to depend on the track
inclination.

On the other hand, little attention has been paid to the study of the
local dynamic interactions between the cabin, the cable, the roller
battery and the supporting tower. Only a few works investigated some
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aspects of the dynamics of the cable-roller battery system, although
neglecting the tower and the cabin dynamics [10].

The present work proposes a high-fidelity, parametric model of
moving cable including the presence of swaying vehicle which inter-
acts, through the grip connection, with the supporting roller battery
system and the tower. A preliminary study of this complex multibody
dynamic system including four subsystems partly rigid and partly
elastic was proposed in [11]. The model is based on a finite kinematic
formulation for the description of the rollers and the cabin dynamic
configurations, and provides the equations of motion by employing the
Euler-Lagrange equations. The parametric nature of the proposed
model facilitates design and optimization studies as demonstrated in
previous works where container cranes were also treated via a similar
parametric modeling approach [12–14]. Moreover, the results of an
extensive experimental campaign aimed at a comprehensive char-
acterization of the dynamic response of a compression-type roller bat-
tery carried out on a ropeway in the French Alps are discussed. Such
full-scale tests were targeted to (i) identify the frequencies and damping
ratios via the Frequency Domain Decomposition method [15–20] and
(ii) to validate the proposed parametric model by comparing the ex-
perimental dynamic response with the numerically predicted response.

2. Problem formulation and modeling approach

The analytical model describing roller batteries of monocable ro-
peways is here illustrated. In particular, roller batteries assembled
within the so-called compression towers are addressed whereby the
moving cable and the vehicles attached to it transit below the rollers
system. The alternative roller battery configuration adopted in
monocable ropeways considers the cable and the attached vehicles
transiting above the rollers system. For such configuration the model
formulation does not differ from that proposed in this work except for
the modeling of the cabin-rollers interaction during transit. Although,
since the validation of the proposed model is based on the experimental
campaign conducted on a compression-tower system, hereafter the at-
tention will be paid only on compression-type roller-batteries.

The mechanical system shown in Fig. 1 (top) is represented by the
assembly of four mechanical subsystems, namely, the elastic cable
traveling across the ropeway, the cabin attached to the cable, the roller
battery and, finally, the hoisting beam supporting the roller battery
and, in turn, suspended from the tower. Due to the symmetry of the two
roller battery systems positioned atop each tower (see Fig. 1 top) and
because of the significant rigidity of the hosting frame accommodating

Fig. 1. Three-dimensional view of a compression tower roller battery system (top), and planar schematic representation of the model (bottom).
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the batteries, only a single roller battery system is modeled. The four
substructures of the roller battery clearly interact with each other al-
though they differ substantially in their mechanical behavior. Fur-
thermore, the interaction between distributed-parameter systems, such
as the hoisting beam and the cable, and multi-body systems, such as the
roller battery and the vehicle, represents the main modeling challenge.
The cable is a mono-dimensional continuum which carries transverse
loads by means of tension forces tangent to the cable configuration.
Given the fact that the cable segment across the rollers is almost
straight and it is pushing on the rollers under a given tension, it is
treated as a pre-stressed string, moreover, any flexural behavior is ne-
glected [21]. On the other hand, the roller battery is a mechanism made
of several stages of rollers rigidly connected to each other by means of
hierarchical balancers rotating around moving hinges, and globally,
around the master hinge fixed to the tip of the hoisting beam. The
hoisting system, which connects the roller battery to the top part of the
tower, is modeled as an equivalent 1D Euler beam element undergoing
bending deflections. Finally, the vehicle behaves like a pendulum with
the support point fixed to the moving cable. An elastomeric support
element is positioned between the vehicle roof and the hanger attached
to the cable. The grip connecting the vehicle with the cable exhibits a
particular wedge shape which allows a smooth cabin transit across
compression roller batteries below the rollers.

By considering the planar representation shown in Fig. 1, the roller
battery comprises 8 rollers positioned symmetrically with respect to the
connection point C with the hoisting beam. As shown in Fig. 1 (bottom),
15 points are identified in the roller battery system as the characteristic
support points of the mechanical model. Points Pi ( = …i 1, ,8) represent
the contact points between the rollers and the cable (contact forces
between the cable and the rollers are exchanged through these points);
points Aj ( = …j ,1, , 4) indicate the 4 hinges about which each pair of
rollers rotates (first local rotation). Hinges B1 and B2 are the rotation
points of each group of four rollers connected through Aj (second local
rotation). Finally, the connection point C between the roller battery and
the hoisting beam tip is the main hinge about which the rotation of the
whole roller battery (third global rotation) takes place. On the other

hand, the characteristic points of the vehicle are the cabin center of
mass G and the grip-cable contact point T.

A full modeling of the whole ropeway line would be necessary to
model with the highest accuracy the interaction between the ropeway
system and the traveling cabins. Such global approach would be sui-
table for performing analyses that account for the initial equilibrium of
the whole cable under the action of its-own weight and the prestress
configuration of the roller battery and the tower. However, the com-
putational effort to perform dynamic simulations of the whole system
would be too cumbersome. In this work a local modeling approach is
adopted to address the interactions between the traveling vehicle, an
equivalent cable segment across the tower, the roller battery and the
elastic beam connecting the battery to the tower. In order to ensure the
optimal comfort of the passengers, ropeways configurations are such
that the transit of the rope across each tower through the roller-battery
system takes place by ensuring a very small deflection of the cable. Such
geometrical constraint, together with the slow transit speed reached by
the cable, implies that the effects of Coriolis or inertia forces in the
cable are negligible. Therefore, in the proposed model the cable seg-
ment across the tower is assumed to be fixed and the dynamics of the
roller battery system are activated essentially by three excitation me-
chanisms. The first is given by the cabin, a traveling mass modeled as a
viscoelastic pendulum, whose support moves along the cable and, thus,
transfers its inertial forces to the cable and the rollers through the re-
action force at the grip. The second mechanism is provided by the grip
whose interaction with the roller battery is modelled through the en-
suing kinematics imposed to the rollers. The third mechanism is the
even spacing of the wires wrapped around the axis of the traveling
cable which causes a harmonic excitation to the roller battery. This
forcing is here simulated by considering an equivalent periodic train of
1-cosine forces acting on the rollers.

2.1. Kinematics

The kinematic formulation starts with setting the orthonormal
frames in which both the reference and the current configurations are

Fig. 2. Characteristic lengths of the roller battery system in compression towers.
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described. To this end, an updated Lagrangian formulation is adopted.
Due to the symmetry of the problem and the mechanical constraints
inherent in the roller battery, the motion is assumed to be restrained
within the plane containing the vertical (gravity) direction and the
direction collinear with the cable configuration. Let e e( , )1

o
2
o be the

fixed frame (see Fig. 2), with origin C and e1
o and e2

o collinear with the
horizontal and vertical directions, respectively. A second fixed frame
e e( , )1 2 , centered in C, is oriented along the roller battery inclined di-
rection and is thus rotated with respect to the fixed (global) frame by

R. The geometric parameters characterizing the reference configura-
tion of the roller battery, the cable, the cabin and the grip are shown in
Fig. 2. In particular, along the direction e d, C1 denotes the distance
between C and Bk ( =k 1, 2), dB is the distance between Bk and Aj, and
dA represents the distance between Aj and each of the two corre-
sponding rollers-cable contact points Pi. Similarly, the distances h h,C B,
and hA represent the distances along e2 between the mentioned couples
of hinges. The parameters characterizing the reference geometry of the
cable are the side lengths LS1 and LS2 (i.e., the distances of the two
supports from the first and last rollers P1 and P8, respectively). On the
other hand, the length = + +L d d d2( )A B Ccar represents the distance
between P1 and P8. Finally, Lcab is the distance between the grip-cable
contact point T and the cabin center of mass G.

As mentioned, all towers accommodate a pair of roller battery sys-
tems on each side thus allowing the vehicle traveling both downhill on
one side and uphill on the other side, respectively. To account for this
circumstance, by modeling only one side of the tower (i.e., a single
roller battery) and assuming the traveling direction from right to left, as
shown in Fig. 3, a counterclockwise rotation > 0R denotes the in-
clination of the roller in the case in which the vehicle moves downhill
(Fig. 3 left); on the other hand, < 0R represents the case in which the
vehicle moves uphill (Fig. 3 right).

2.1.1. Roller battery
The most straightforward definition of the position vectors de-

scribing the reference configuration of the roller can be given in the
local frame e e( , )1 2 , where the coordinates of the 15 relevant points can
be determined according to the roller symmetric geometry. By applying
the rotation R according to the orthogonal matrix RR, whose expres-
sion is given in the Appendix, it is possible to obtain the expressions of
the position vectors in the fixed frame e e( , )1

0
2
0 . In particular, in the local

frame e e( , )1 2 the position vector of the hinge C is r oC
o and the vectors

describing the positions of the 2 hinges Bk can be expressed as
=r e ec d hB k C C

o
1 2k ( =k 1, 2) where =c 11 and =c 12 . The vectors

describing the reference position of the 4 hinges Aj can be obtained as
= +r r e ec d hA B j B B

o o
1 2j k where, for =j 1, 2 set = =k c1, 11 , and

=c 12 , while for =j 3, 4 set = =k c2, 13 , and =c 14 . Finally, the
position vectors of the rollers-cable interaction points in the reference
configuration can be written as: = +r r e ec d hP A i A A

o o
1 2i j , where, for

=i 1, 2 assume and =c 12 , for =i 3, 4 assume = =j c2, 13 and
=c 14 , for =i 5, 6 assume = =j c3, 15 and =c 16 , and for =i 7, 8

assume = =j c4, 17 and =c 18 .
Due to the rigid-body motion assumption enforced on the roller

battery system, its motion can be fully described through the seven

finite rotations taking place about the 7 hinges and the displacement of
hinge C. The latter, due to the constraint of the roller battery, takes
place in the vertical direction e2

o. Thus, the roller battery subsystem
possesses 8 degrees of freedom (dofs): the 4 local rotations about hinges
Aj, denoted by t t t t( ), ( ), ( ), ( )A A A A1 2 3 4 , the 2 local rotations
about hinges Bk, denoted by t( )B1 and t( )B2 , the rotation t( )C and the
tip deflection of the hoisting beam denoted by v L t( , )b (see Fig. 4).

The current configuration of the roller battery (i.e., the current
positions of points P A B, ,i j k and C) can be described by the vectors
r r rt t t( ), ( ), ( )P A Bi j k , and r t( )C whose expressions in the local frame
can be given according to the sequence of finite rotations
( , , , , , )A A A B B C2 3 4 1 2 displayed in Fig. 4. The latter are col-
lected in the orthogonal matrices R R,C Bk ( =k 1, 2), and R Aj
( = …j 1, ,4), whose expressions are given in the Appendix. Finally, the
displacements of each relevant point of the roller are defined by the
following vectors: =u r u r rt t t t( ) ( ), ( ) ( )C C B B B

o
k k k ( =k 1, 2),

=u r rt t( ) ( )A A A
o

j j j ( = …j 1, ,4), =u r rt t( ) ( )P P P
o

i i i ( = …i 1, ,8).

2.1.2. Deformable continuous subsystems
The hoisting structure (see Fig. 5) is modeled as an equivalent Euler-

Bernoulli (EB) cantilever beam whose stiffness and inertial properties
are determined so as to reflect the static and dynamic flexural behavior
of the real structure connecting the roller battery to the tower. In
particular, by enforcing static and dynamic equivalences, the equiva-
lent length Lb, flexural stiffness EIeq and mass per unit length Aeq are
derived.

The kinematics of this structural element, coupled with those of the
roller battery through the connection at the beam tip C, are described
by the transverse (vertical) displacement function v x t( , ), where x re-
presents the local coordinate along the equivalent beam axis.

Due to the rigid-body assumption for the roller battery and the cabin
(the latter modeled as an elastic pendulum), it is necessary to discretize
in space the functions governing the kinematics of the distributed-
parameter models of the hoisting system and the cable. According to
the Galerkin method, the beam deflection is expressed as a linear
combination of trial functions, taken as the eigenfunctions of the
equivalent cantilever beam with a lumped mass (corresponding to the

Fig. 3. Compression roller battery: reference frames and their orientation in the case of downhill (left) and uphill (right) cabin transit.

Fig. 4. Representation of the roller battery system degrees-of-freedom.
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mass of the roller battery) at the tip. Namely,

=
v x t q t x( , ) ( ) ( ),

i

N

i i
1

m

(1)

where q t( )i ( = …i N1, , m) are the time-dependent generalized co-
ordinates, x( )i is the ith eigenfunction of the equivalent cantilever
beam, and Nm is the number of trial functions.

Finally, the kinematics of the fixed cable are described by the
transverse displacement w s t( , ) (orthogonal to the string direction),
where s represents the arclength along the equivalent string.

Due to the multiple contact points Pi between the cable and the
roller battery, the cable discretization is carried out according to the
finite element (FE) method. In particular, the cable length is divided
into ne elements such that each contact point Pi coincides with a finite
element node while the cable support points are the boundary nodes
(see Fig. 6). The shape functions in each element are chosen to be first-
order Lagrangian polynomials (i.e., linear functions). Thus, the cable
transverse displacement w s t( , ) is expressed as

=w t tNe TeX( , ) ( ) ( ),e (2)

where represents the local arclength of each FE, Ne( ) is the ×1 2
matrix collecting the shape functions for each of the two element nodes,

tX( ) is the + ×ne( 1) 1 vector of the nodal degrees of freedom, i.e.,
= … +t p t p tX( ) [ ( ), , ( )]ne1 1 and Te is the × ne2 extraction matrix (i.e., it

selects the nodal DOFs from tX( ) corresponding to each element). Due
to the cable boundary conditions (i.e., fixed cable), it turns out that

= =+p t p t( ) ( ) 0ne1 1 .
Cable-rollers interaction. The cable and the rollers are unilaterally in

contact at points Pi ( = …i 1, ,8) and since the rotation of the rollers
pairs about their hinges is expected to be relatively small, the location
of the contact points can be assumed to be almost fixed. Due to the
modeling complexity of the multibody system, the contact description
is simplified by introducing fictitious springs at each point Pi that be-
have as internal elastic constraints activated by the relative displace-
ment between cable and rollers and whose stiffness Ki is suitably cali-
brated in order to simulate a rigid behavior. In particular, Ki is assumed
to be of orders of magnitude higher than the hoisting beam flexural
stiffness and the cable geometric and elastic stiffness and such to pre-
vent any numerical issues during the simulations.

2.1.3. Cabin
The cabin is supposed to move along the cable and across the roller

battery and is modeled as an equivalent elastic pendulum. The

parameters describing the cabin configuration are: the length Lcab of the
suspension hanger, the transit speed Vc, the rotation cab with respect to
the vertical direction e2

0 and about the suspension point T at the grip,
and the elongation b t( )c of the suspension system positioned atop the
cabin (see Fig. 4).

The cabin position at time t is described by the position vectors of
the cabin center of mass r t( )G and of the grip r t( )T shown in Fig. 6, both
becoming functions of the parameters illustrated above. These position
vectors are defined for each cable FE and vary linearly in time inside the
FE local arclength due to the constant speed motion of the cabin. The
position of the cabin, in each FE during transit is given by a summation
of Heaviside functions that activate the cabin position vectors corre-
sponding to the FE crossed at time t. In particular, the grip actual po-
sition within the eth finite element is given by the following vector:

= + + +

+ + +
=

r e

e

t d d d L l t V

w t h h h

( ) ( )

[ ( , ) ( )] ,

T e A B C S
r

e

r e c

e A B C

, 1
1

1

1

2 (3)

where the component along e1 represents the local coordinate s of the
grip at time t l, r and le represent the lengths of the rth and eth finite
element, respectively, and e is the cabin transit time at the beginning of
the eth finite element. Therefore, the cabin grip position during transit
across the overall considered cable length is given by

=
=

+r rt t H t H t( ) ( )( ( ) ( )).T
e

ne

T e e e
1

, 1
(4)

Finally, the cabin center of mass position vector can be expressed as

= + +

=
=

+

r r b

r r

t t L b t

t t H t H t

R R( ) ( ) · ·( ( )) ,

( ) ( )( ( ) ( )).

G e T e cab cab c

G
e

ne

G e e e

, , R 1

1
, 1

(5)

where (·) denotes the dot product and Rcab is the cabin rotation matrix
described in the Appendix and b1 represents the direction collinear with
the cabin suspension hanger as shown in Fig. 6.

2.1.4. Grip
In compression towers the cabin transit across the battery is such

that the grip with the cable move underneath the rollers. The grip, fixed
to the cable, due to its smooth trapezoidal shape (see the schematic
representation in Fig. 2), acts as a wedge rising up and lowering down
each roller during transit. In particular, the grip transit below the rollers
results in a smooth trapezoidal-in-time vertical relative displacement
imposed to each roller. The grip smoothed shape is parametrized by the
base width lg, the top width lg2, the grip heights hg1 and hg2, and the
inclination angle 0 shown in Fig. 2.

In the proposed model, the kinematic effect of the grip is reproduced
by imposing a history of relative displacements between each roller and
the cable. Such time-dependent (prescribed) kinematics of the rollers

Fig. 6. Cabin and grip position vectors, cabin local frame and cable FE dis-
cretization (the grey squares indicate the nodes).

Fig. 5. Equivalent EB beam representing the hoisting structure: (top left) three-
dimensional view, (top right) frame model representation, and (bottom) sche-
matic of the statically and dynamically equivalent beam.
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are defined according to the transit speed of the cabin and the shape of
the grip. In particular, the time-dependent law that describes the ver-
tical, upward displacement of a roller due to the passage of the grip
(rollers rising up phase) and the downward displacement (rollers low-
ering down phase) can be expressed as follows:

= + +

= +

+

+ +

g t h t h h V l V t

h h V l V t

g t V h l l V t l l V t

h l l V t l V t

l l l l V t l

V t

( ) tan [3( ) tan ]

[4( ) tan ] ,

( ) { [ (5 4 )( 2 )

4 ( 3 4 )( ) ]

( )( 2 ) (

) tan }.

g l g g c g c

l g g c g c

V l l c g g g c g g c

g g g c g c

g g g g c g

c

1 1 0
4

2 1 1 0
2

4
2 1 1 0

2 3

2
1

( ) 1 2 2
2

2 2
2

2 2
2

0

g

g

c g g

1
2

1
3

2 3

(6)

The shape of the grip is smoothed out in the analytical modeling by
introducing a cubic law that describes the variation in time of the grip
height. This turned out to be necessary in order to avoid numerical
issues in the simulations due to the discontinuity in time introduced by
the trapezoidal shape of the grip. In particular, the cubic shape can
reproduce the initial inclination of the grip (i.e., angle 0) and the
horizontal tangent atop the grip (see Fig. 2).

Finally, the grip kinematics imposed to the rollers during the cabin
transit across the whole length of the cable considered in the model
(i.e., + +L L LS Scar 1 2) are represented by the following expression:

=
+
+

h t H t H t g t
H t H t h
H t H t g t

( ) [ ( ) ( )] ( )
[ ( ) ( )]
[ ( ) ( )] ( ),

i P P P

P P g

P P f P

0 1 1

1 3 2

3 2

i i i

i i

i i i (7)

where H is the Heaviside function, = 00 , = + lc V/2 c1 0 1 ,
= + +lg l V( )/2g c3 0 2 , = + l V/f g c0 , and Pi represents the transit time

below the ith roller Pi.

2.2. Equations of motion

The equations of motion describing the incremental response of the
roller battery system, including the interaction between the hoisting
beam, the cable, the cabin and the grip, are obtained employing the
Euler-Lagrange approach. In particular, the potential energies of each
subsystem are first derived together with the kinetic energies to obtain
the Lagrangian of the system, from which the equations governing the
motion of the roller battery are obtained. Due to the pursued modeling
approach which assumes the cable fixed and the cabin moving along
the cable and across the rollers, the study of the dynamics of the roller
battery system (i.e., the oscillations during the cabin transit and the free
oscillations when the cabin leaves the roller battery) requires con-
sideration of two different mechanical scenarios. The first scenario in-
cludes the inertial forces induced by the cabin moving mass and the
grip interaction, while the second scenario neglects the presence of the
cabin.

To this end, the potential and kinetic energies of the system are
calculated according to these two scenarios. Indeed, for the subsystems,
such as the hoisting beam, the roller battery and the cable, which are
present in both scenarios, the potential and kinetic energies are eval-
uated once for all. On the other hand, the stored energy of the fictitious
springs reproducing the interaction between cable and rollers has to be
calculated ad hoc in the case of the grip transit (which simulates an
additional relative displacement varying in time between cable and
rollers) and in its absence. Furthermore, the potential and kinetic en-
ergies of the cabin must vanish in the free oscillation case.

2.2.1. Potential and kinetic energies
The potential and kinetic energies of the hoisting beam can be ex-

pressed as:

=

=

U t v x t EI v x t dx

T t v x t A v x t dx

( ) ( , ) ( , ) ,

( ) ( , ) ( , ) ,

b
L

xx eq xx

b
L

t eq t

1
2 0

1
2 0

b

b
(8)

where x and t represent partial differentiation with respect to the
beam local coordinate x (with origin at the beam clamped cross section)
and time t, respectively. The cable energy contribution to the dynamics
of the system is given by

=

=

U t t t

T t t t

X K X

X M X

( ) ( ) ( ),

( ) ( ) ( ),
c

c

c

c

1
2
1
2 (9)

where the overdot represents total differentiation with respect to time
while Kc, incorporating the cable pretension N0, and Mc, including the
cable mass per unit length Ac, are the global stiffness and mass ma-
trices of the cable, respectively.

By considering the vehicle suspension spring constant Kcab, the
stored energy of the cabin suspension system can be expressed as

=
=

U t K b t
U t

( ) ( ) (Cabin transit),
( ) 0 (Free oscillations),

el cab cab c

el cab

,
1
2

2

, (10)

whereas the energy stored by the fictitious springs connecting the cable
and the rollers is computed as follows:

=

=

=

=

U t K L t h t

U t K L t

( ) ( ( ) ( )) (Cabin transit),

( ) ( ) (Free oscillations),

fict
i

i i i

fict
i

i i

1
2

1

8
2

1
2

1

8
2

(11)

where = u eL i t w t( ) ( )· ( )i P e i2 ,i is the relative displacement along the
roller local direction e2 (corresponding to the transverse direction of the
cable) and w t( )e i, is the cable displacement at the node corresponding to
the ith roller.

In the proposed model, the gravitational potential energy of the
cabin is the only contribution from the gravitational loads since the
motion of the system is studied starting from the equilibrium config-
uration of the roller battery (incremental dynamics). In fact, since the
cabin behaves as a pendulum, except for the elasticity of the cabin
support system, the stiffness is purely geometric. Consequently, the
potential energy of the cabin can be expressed as

=

=
=

+rU t t H t H t

U t

W( ) · ( )( ( ) ( )) (Cabin transit),

( ) 0 (Free oscillations),

g cab
e

ne

G e e e

g cab

c,
1

, 1

,

(12)

where = eM gW R ·( )cabc R 2
0 is the vector of the cabin gravitational

force represented in the local frame e e r t( , ), ( )G e1 2 , is the cabin center of
mass position at the eth finite element, Mcab is the cabin mass and g is
the gravity acceleration. Finally, the Heaviside function H in Eq. (12)
allows to describe the cabin position vector within the corresponding
FE over the time interval of length +e e1 .

The kinetic energy possessed by the roller battery can be determined
as

= +

+ +

= =

=

r r r r

r r

T t m m

m m v L t

( ) 1
2

· 1
2

·

1
2

· 1
2
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P t P t P

j
A t A t A

k
B t B t B tb t b

R
1

8

1

4

1

2
2

i i i j j j

k k k
(13)

where m m,P Ai j, and mBk are the equivalent masses of the roller battery
lumped at P A B, ,i j k, respectively, and mtb is part of the mass of the
roller battery acting at C. Due to the cabin motion, the kinetic energy
possessed by the cabin mass Mcab is evaluated in the eth FE as
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T t
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( ) 0 (Free oscillations),
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1
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and thus its contribution to the dynamics of the system is included by
considering a step variation in time of the cabin kinetic energy through
the adoption of suitable Heaviside functions. This implies that, during
the cabin transit, the dynamics of the system are governed by time-
dependent inertial terms. The stored and kinetic energies of the overall
system are thus given by

= + + +

= + + +
=

+

U t U t U t U t U t U t

T t T t T t T t T t H t H t

( ) ( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( )( ( ) ( )).

b c el cab fict g cab

b c
e

ne

cab e e e

, ,

R
1

, 1

(15)

2.2.2. The system Lagrangian
Once the Lagrangian of the system =L t T t U t( ) ( ) ( ) is calculated,

and the Rayleigh dissipation function is introduced to represent the
damping capacity of each element, the equations of motion can be
written as:

+ =d
dt

L L d 0,
m m

m m
(16)

where d
dt
represents total differentiation with respect to time, dm is the

equivalent linear damping coefficient for each degree of freedom and m
is the mth generalized coordinate extracted out of the

+ + + ×ne N(7 2 1 ) 1m vector t( ) collecting the system degrees of
freedom, namely, =t t( ) [ ( )A1 t( )A2 t( )A3 t( )A4 t( )B1 t( )B2 t( )C

t( )cab b t( ) p t( )2
… p t( )ne q t( )1

… q t( )]Nm .
To account for the effects of the interwire periodicity of the tra-

veling cable, a periodic train of 1-cosine forces orthogonal to the cable
is considered to act on each roller. The interwire distance of the outer
cable layer is denoted by Lper; therefore, the forces will exhibit a fre-
quency given by =f V L/c c per .

2.3. Nondimensional parameters

The here proposed model is adopted to simulate the dynamic
response of an existing roller battery system. In particular, the tower
of a ropeway system, hosting a compression-type roller battery
system, was considered in the simulations. The equations of motion
together with the kinematic descriptors of the roller battery
system are conveniently rendered nondimensional by rescaling the
geometric parameters by the length Lb of the hoisting beam and
time by the characteristic time =t A L EI/c eq b eq

4 , respectively.
Henceforth, the nondimensional parameters are indicated
by the overbar and their values are reported in Table 1. The nu-
merical simulations are carried out considering a number of trial
functions =N 2m for the hoisting beam discretization and =ne 20
finite elements for the cable; moreover, the cabin nondimensional

transit speed Vc is varied in a range between 0.0071 and 0.028. Finally,
the nondimensional masses lumped at points P A B, ,i j k and C are
given by = = = …= = =m m m m m¯ ¯ 0.0556, ¯ ¯ 0.0417, ¯ 0.0424P P P P Aj1 8 2 7
( = …j 1, ,4), =m̄ 0.0585Bk ( = …k 1, , 2), and =m̄ 0.0152t . The value of
the stiffness of the fictitious springs simulating the interaction be-
tween the cable and the rollers is assumed equal to =K̄ 0.1074i
( = …i 1, ,8).

It is worth noting that, due to the model assumptions, the con-
sidered cable segment across the tower is not symmetric with respect to
the battery connection point C. This is due to the fact that the con-
sidered compression tower is situated very close to the end-line station
and far away from the adjacent tower. Therefore, the side lengths LS1
and LS2 are unequal.

3. Experimental campaign

The data acquisition campaign was carried out in a ski resort facility
in the French Alps on a gondola lift ropeway designed by POMA. The
experiments and the following identification procedure were focused on
the investigation of the dynamic response of the roller battery located
on one of the compression towers together with the response of one of
the vehicles (i.e., passengers cabins) of the ropeway. The compression
tower was instrumented and monitored by employing 14 synchronized
sensors. Each sensor was equipped with a micro electromechanical
Inertial Measurement Unit (IMU) including a tri-axial gyroscope, a tri-
axial linear accelerometer, and a temperature sensor.

The above mentioned components are shown in Fig. 7 which also
depicts the orientation of the sensor-fixed frame with respect to which
the linear accelerations and angular speeds are measured. The three
directions denoted by e e,x y and ez are collinear to the width (larger
size), height and thickness of the sensor box, respectively.

The data acquired by each sensor was stored in a 2 GB microSD
memory card with a sampling frequency of 1 kHz and, at the same time,
was sent to a receiving base station at the lower rate of 10 Hz. The data
transmission to a computer at the base station allowed to evaluate in
real-time the low-frequency response of the system. Each sensor had a
radio transceiver working in the 2.4 GHz bandwidth, licensed for in-
dustrial, scientific and medical (ISM) applications worldwide.
Moreover, this system uses a simple protocol to maintain the acquisi-
tion highly synchronized during short loggings without the need of
resynchronization. The protocol works as follows: first, each sensor,
once powered on remains in standby indefinitely; then, when the re-
mote sends the start command as a broadcast message, each sensor
synchronizes its internal real time clock (RTC) to the starting beacon
and begins the logging. This simple protocol was preferred with respect
to other solutions (such as FTSP [22] or NTP [23]) because of the ab-
sence of overhead in terms of power consumption and bandwidth re-
quirements. Finally, the power source of each sensor completely runs
out after a maximum logging interval of about 18 h.

The acquisition units were collocated on the 3 subsystems: the roller

Table 1
Nondimensional geometric and mechanical parameters of the roller battery.

R d̄A d̄B d̄C l̄g l̄g2 h̄g1

0.253 0.126 0.253 0.505 0.431 0.077 0

h̄g2 0 h̄A h̄B h̄C L̄car L̄S1

0.022 0.126 0.023 0.0077 0 1.769 0.177

L̄S2 L̄per L̄cab M̄cab K̄cab Āc N̄0

0.884 0.0236 1.19 1.054 0.074 0.031 0.009
Fig. 7. The sensor units and the sensor-fixed reference frame.
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battery, the tower, and the vehicle. Fig. 8 shows the roller instrumented
with the sensors Si with = …i 1, ,6. The first 6 sensors were placed on
the last stage of the roller battery of the compression tower. These
sensors were placed between the hinges Aj and rollers axis (corre-
sponding in the model to points Pi). The sensors, in the roller battery
reference configuration, have the ex-axes oriented along the local di-
rection e2. Sensors S7 and S8 are placed atop the hinges A1 and A2 while
S9 and S10 are placed atop the hinges B1 and C, respectively. The latter
four sensors present the ez-axis oriented along the local direction e2.
Sensor S11 is positioned atop the tower with the ez-axis oriented along
the vertical, global direction e2

0. Sensors S12 and S13 are attached atop
and below the vehicle suspensions hanger, respectively and their ex axis
is aligned with the local direction b1. Finally, sensor S14 is placed near
the cabin center of mass and oriented so as to have the ey-axis collinear
with the cabin local direction b1, the ex-axis lying in the vertical plane
e e( , )1

0
2
0 , and the ez-axis along the lateral direction.

The implemented experimental protocols featured two types of
tests, namely, the full sensor acquisition during the ropeway opera-
tional conditions (in particular, when the vehicle moved in the uphill
direction) and the free oscillation tests in the longitudinal and lateral
directions of the cabin (i.e., the direction e1 and the out-of-plane di-
rection e3, respectively). The data acquired at the monitored points
allowed the reconstruction of the tower, roller battery and vehicle
motions and the identification of the modal features in terms of fre-
quencies, mode shapes and associated damping ratios. To this end, the
Frequency Domain Decomposition Method (FDD) was employed. In
particular, the frequencies of the cabin pendular motion in the hor-
izontal (in-plane) and lateral (out-of-plane) directions and the asso-
ciated damping ratios were obtained by processing the time histories of
the free oscillation tests and employing the logarithmic decrement
method. The FDD method [15,16], together with the Modal Assurance
Criterion (MAC), was used for extracting the natural frequencies of the
roller. FFD is an output-only technique which allows the evaluation of
the resonance frequencies, damping ratios and mode shapes of a multi-
degree-of-freedom system employing the time histories of a certain
number of synchronized sensors [17]. In their rest configuration, the
sensors present one body-fixed axis aligned with the local roller direc-
tion e2 in the reference configuration of the roller battery. Therefore,
these sensors axes are not collinear with the direction of the gravity
acceleration (i.e., axis e2

0 in the model). The deviation can be evaluated
with the mean acceleration values a a a¯ , ¯ , ¯x y z recorded along the three
local axes. The mean acceleration = + +a a a a¯ ¯ ¯x y z

2 2 2 is equal to 9.81
m/s2 and the ratios between the acceleration components and the ac-
celeration magnitude, =g a a/i i , ( =i x y z, , ), represent the direction
cosines of the gravity acceleration along the local sensor axes. In this
way the orientation of the sensors body-fixed frames can be accurately
determined.

The data acquired during the experimental campaign, as well as the

results of the identification procedure, are here reported in nondime-
sional form suitable for a straightforward comparison with the results
obtained through the numerical simulations. The data acquisition was
performed for three vehicle nondimensional speeds, namely
(0.014, 0.018, 0.021). Due to the large amount of data collected during
the tests and later processed for the identification procedure, the most
representative acquisitions only are here reported together with the
results of the identification procedure.

4. Identification of the modal features of the compression roller

The identification of the natural frequencies of the roller battery has
a high level of complexity mainly because of the presence of the ex-
ternal forcing frequencies which are due to the cable motion. The for-
cing frequencies depend on the cable velocity and are related to the
cabins nondimensional inter-distance (24.65), rollers inter-distance
( =d2 ¯ 0.253A ) and the distance between the wire ridges of the rope
external layer (i.e., the cable periodicity =L̄ 0.0236per ). Table 2 reports
the nondimensional forcing frequencies (i.e., =f f t¯ c) associated with
these spatial periods for the different cabin speeds.

The post-processing of the data acquired for the three cabin non-
dimensional speeds = =V V t L¯ / (0.014, 0.018, 0.021)c c c b highlighted the
fact that the forcing frequencies in Table 2 and their multiples are in-
deed the dominant frequencies. The detection of the roller battery
natural frequencies was carried out by isolating a time window in
which there were no vehicles transits. To this end, the accelerations
along the vertical direction measured by sensors Si ( = …i 1, ,10) were
employed.

Fig. 8. Sensors (red circles) collocation on the roller battery and orientation of
their local axes. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Table 2
System forcing frequencies f f¯ , ¯

1
0

2
0, and f̄3

0 due to the cabins inter-distance, the
inter-roller distance and the wire ridges of the rope external layer, respectively.

V̄c f̄1
0 f̄2

0 f̄3
0

0.014 ×5.78 10 4 0.0560 0.5998
0.018 ×7.15 10 4 0.0701 0.7509
0.021 ×8.71 10 4 0.0845 0.9049

Table 3
Identified compression roller battery natural nondimensional frequencies f̄ ,
damping ratios , and normalized first SVD-PSD.

n f̄ SVD-PSD S1 S2 S3 S4

[–] [%] [–] [–] [–] [–] [–]

1 0.058 5.290 0.127 −0.715 −0.483 −0.298 −0.021
2 0.098 3.877 0.355 −0.684 0.963 −0.245 −1.000
3 0.113 4.408 0.415 −0.870 −0.917 −1.000 −0.078
4 0.139 4.669 0.328 −0.209 0.385 1.000 0.088
5 0.170 4.137 0.249 −1.000 −0.425 0.080 −0.873
6 0.197 3.754 0.315 −1.000 −0.644 0.121 −0.524
7 0.251 3.833 0.984 −0.198 1.000 −0.742 0.586
8 0.291 2.173 0.292 −1.000 −0.659 −0.599 0.339

n S5 S6 S7 S8 S9 S10
[–] [–] [–] [–] [–] [–]

1 0.504 1.000 −0.729 0.289 −0.616 0.023
2 −0.084 0.046 −0.079 −0.524 0.077 0.037
3 −0.699 −0.974 −0.704 −0.566 −0.643 −0.376
4 −0.070 0.318 −0.154 0.016 0.378 0.104
5 −0.887 −0.789 −0.408 −0.632 0.016 0.112
6 0.609 0.718 −0.064 0.021 −0.035 −0.055
7 0.818 0.533 −0.321 0.396 −0.028 0.052
8 −0.817 −0.286 0.043 −0.243 0.334 0.419
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Table 3 shows the identified natural frequencies, damping ratios
and mode shapes of the investigated mechanical system. It is worth
noting that the two lowest frequencies of the roller battery interact with
the frequency f̄2

0 and f̄ /22
0 due to the sheaves spacing. The experimental

data acquired for the three vehicle speeds were processed by distin-
guishing the frequencies due to the forced dynamics from the resonance
frequencies of the system. The results obtained for different vehicle
speeds demonstrated that the natural frequencies of the system are not
influenced by the cable speed. Therefore, the data acquired for the
vehicle speed =V̄ 0.014c were adopted in the modal identification.

Fig. 9 shows the first Singular Value Decomposition of the Power
Spectral Density (SVD-PSD) in the nondimensional frequency band-
width [0, 0.4] where in the roller battery frequencies are detected, and
within the higher frequency bandwidth [0.4, 1.4] in which the frequency
f3

0 shows up. The identified lowest eight natural frequencies of the
roller are in very good agreement with the frequencies predicted by the
model and reported in Table 4.

The FDD method applied together with the MAC criterion was
adopted for identifying the resonance frequencies [15,16], whereas the
SVD-PSD was employed to estimate the damping ratios associated with
each identified resonance frequency [17]. The latter were obtained
through the following procedure: (i) the SVD-PSD, defined in a narrow
range around each resonance frequency, was transformed back to the
time domain by performing the Inverse Fast Fourier Transform (IFFT);

the assumed range around the identified frequency was such that the
MAC values, computed between the eigenvector and the singular vec-
tors corresponding to the frequency lines around the peak, were below
a threshold value; (ii) for all resonance frequencies a range corre-
sponding to ± 10% the frequency was adopted; (iii) the damping ratio
was then obtained by fitting via an exponential function the envelope of
the free decay response given by the IFFT; such function, obtained at
each identified frequency, corresponds to the auto-correlation function
of the equivalent single-degree-of-freedom system.

The mode shapes exhibit mixed contributions from the system de-
grees of freedom. However, the analysis of the excited mass shows that
the 1st mode is dominated by the rotation C, the 2nd and 3rd modes
can be associated with the rotations Bk ( =k 1, 2), and the modes from
the 4th to the 7th mainly involve the rotation Aj ( = …j 1, ,4). Finally,
the 8th reflects the lowest bending mode of the equivalent beam.

The damping ratios associated with the dofs of the mechanical
model are chosen according to the modal features described above. The
damping ratio of equivalent beam is 2.173% (modal damping of the 8th
mode). For the rotations Aj ( = …j 1, ,4), the damping is set to 4.1%
(mean value of the 4th through the 7th modes) while for the rotations

Bk ( =k 1, 2) and C the damping ratio is 3.8% (lowest value of the 1st
through the 3rd modes).

4.1. Vehicle resonance frequency

The pendular frequency of the vehicle and the associated damping
ratio in the longitudinal direction were obtained via the logarithmic
decrement method. The data were acquired by sensor S14 positioned
inside the vehicle.

Fig. 10 shows the time history of the cabin angular speed in the free
oscillation phase; the identified damping ratio and frequency turned out
to be = 8.19%cab and =f̄ 0.0027cab

exp , respectively. The latter corre-
sponds to a nondimensional oscillation period =T̄ 365.97cab

exp .
The damping ratio of the vehicle suspension was found to be 7.0%

and depends on the viscoelasticity of the dampers. Finally, the damping
of the vehicle pendular motion is set to 8% according to the free

Fig. 9. Normalized first SVD-PSD for the compression roller in the nondimensional frequency bandwidths [0 0.4] (left) and [0.4 1.4] (right).

Table 4
Lowest eight nondimensional frequencies of the compression roller battery.

Mode f̄ Mode f̄

1 0.060 5 0.162
2 0.092 6 0.176
3 0.117 7 0.185
4 0.153 8 0.280

Fig. 10. Time history of the cabin nondimensional angular speed (left) and its FFT (right): free oscillations test (sensor S14).
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oscillation test of the cabin.

5. Numerical simulations of the compression roller battery

In this section the results of the numerical simulations are illu-
strated. In particular, the eigenvalue problem for the modal char-
acterization of the roller battery without the cabin and the time-de-
pendent system response induced by the cabin transit uphill ( < 0R ,
see Fig. 3 right) are discussed. The parameters selected for the simu-
lations were determined through the system identification based on the
experimental data. Moreover, comparisons with the experimental re-
sults are carried out.

5.1. Eigenvalue analysis

The eigenvalue problem is first studied neglecting the presence of
the traveling mass represented by the vehicle. The lowest eight non-
dimensional natural frequencies of the system reported in Table 4 are
shown in the bar chart of Fig. 11.

As depicted in Figs. 12 and 13, showing the modal coordinate
contributions and the modal configurations of the lowest eight modes,
the geometric nonsymmetry of the mechanical system ( <L LS S1 2) im-
plies a nonperfect symmetry or skew-symmetry of the mode shapes
involving the rollers DOFs. In fact, as shown in Fig. 12, in the funda-
mental mode ( =f̄ 0.060) the modal contribution of C (green bar in the
plot) is nontrivial and proves the nonperfect skew-symmetry of the
mode. The presence of C provides a large difference between the modal
rotations B1 and B2 (blue bars in the plot) and, finally, entails that only
the first pair of rollers (i.e., P1 and P2) undergoes to a counterclockwise
rotation A1 while the other three pairs Aj ( = …j 2, ,4, red bars in the
plot) rotate in the clockwise direction.

The geometric nonsymmetry of the roller battery reflected up to the
third mode, that is, for all modes in which the modal contribution of the
cable DOFs is important. For the higher modes (i.e., the 4th, 5th, 6th,
and 7th modes) almost equal symmetric or skew-symmetric contribu-
tions of the roller battery DOFs (i.e., ,Aj Bk, and C) are exhibited. In
all of these modes, the hoisting beam does not contribute any modal
deflection. All these rollers-cable modes span the nondimensional fre-
quency range between 0.092 and 0.185. Finally, it is worth noting that
the modal participation of the hoisting beam becomes significant only
for the 8th mode ( =f̄ 0.280) which thus exhibits a symmetric config-
uration.

Fig. 11. Lowest eight nondimensional frequencies of the compression roller
battery.

Fig. 12. Modal components and modal configurations of the lowest four mode shapes of the compression roller battery. In red, the DOFs Aj ( = …j 1, ,4), in blue, the
DOFs Bk ( =k 1, 2), in green, the DOF C, in grey, the cable DOFs, and in black the beam DOFs. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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5.2. Dynamic response to traveling vehicle

Time-dependent analyses were carried out to simulate the cabin
transit across the roller battery. First, a single transit was studied by
setting a constant nondimensional speed = =V V t L¯ / 0.014c c c b , which
results into a transit nondimensional time =t t t¯ / c across the whole
cable segment modeled equal to =t̄ 200.3tr . Past the time t̄tr the roller
battery system is subject to free, damped oscillations until the transit of
the next cabin.

Based on the identification procedure performed on the experi-
mental results, the damping ratios for the equivalent beam, cable, and
vehicle suspension are set to 2.2%, 1.50%, and 7.0%, respectively. On the
other hand, the roller battery damping ratios are set to 4.50%, for the
rotations t( )Aj , and 3.8% for t( )Bk and t( )C . Finally, the equivalent
linear damping ratio for the cabin pendular rotation t( )cab is set to 8%.
The time history of the nondimensional displacements =h t h t L¯ ( ) ( )/i i b
imposed to the rollers during the cabin transit across the cable segment,
see Eq. (7), is shown in Fig. 14, where the curve representing the ki-
nematic effect on each roller are indicated by the corresponding point Pi
( = …i 1, ,8).

In Fig. 15, the time histories of the rollers pairs rotations Aj are
shown together with the vertical nondimensional displacements

= u eu vert L¯ ( ) · /Pi Pi b2
0 of one roller per pair (i.e., points =P i, 1, 3, 5, 7i ).

The time histories confirm that the grip induces sequential rotations of
the rollers up to 0.11 rad (Fig. 15 left column) which die out after the

transit nondimensional time t̄tr indicated in the plots by the vertical,
dashed line. On the other hand, the effect of the grip transit below the
rollers is evident in the time histories of the rollers displacements
(Fig. 15 right column). In fact, the grip acts directly to enforce a relative
displacement with respect to the cable proportional to its shape whose

Fig. 13. Modal components and modal configurations of the 5th, 6th, 7th, and 8th mode shape of the compression roller battery. In red, the DOFs Aj ( = …j 1, ,4), in
blue, the DOFs Bk ( =k 1, 2), in green, the DOF C, in grey, the cable DOFs, and in black the beam DOFs. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 14. Rollers nondimensional displacements induced by the grip transit in
compression towers. From left to right: kinematic effect imposed on roller
P P P P P P P, , , , , ,1 2 3 4 5 6 7, and P8, respectively.

A. Arena et al. Engineering Structures 180 (2019) 793–808

803



maximum height is = ×h̄ 2.2 10g2
2 (see Table 1). Moreover, the grip

effect is more pronounced in the first roller at point P1 whereas it turns
out to be slightly lower for the last roller at point P7. This is clearly due
to the presence of the cabin gravitational load that induces the cable
lowering. This effect involves the rollers depending on the vicinity of
the cabin and, mostly, on the position of the rollers along the cable; in
fact, the farthest the rollers from the cable fixed boundaries, the higher
the cable flexibility and thus the rollers lowering.

On the other hand, the rotations of the second and first stages in
Fig. 16 (left column), (i.e., the rotations about hinges Bj), are almost
66% smaller while the rotation about the main hinge C (Fig. 16, left
bottom) is less than 0.01 rad. As shown in Fig. 16 (right column), the
same behavior can be seen in the vertical nondimensional

displacements of the hinges Aj and Bk. Moreover, these responses tend
to die out over a longer time span with respect to the rollers rotations
because they are less damped.

Interestingly, in Fig. 17, the time history of the nondimensional
deflection =v L v L L¯ ( ) ( )/b b b of the hosting beam tip shows a much
higher frequency content due to the much higher stiffness of the
hoisting beam and maximum tip deflection of about ×1.1 10 4;
moreover, the spikes in the vertical deflection v L¯ ( )b induced by the grip
transit are clearly visible. The nontrivial mean deflection of the hoisting
beam which is clearly evident in the cabin post-transit oscillations in-
duced by the inter-wire periodicity of the traveling cable, is due to the
effect of the cabin self-weight transferred to the roller battery through
the cable.

Fig. 15. Left column: time histories of the rotations of Aj ( =j 1, 2, 3, 4). Right column: time histories of the vertical nondimensional displacements of Pi
( =i 1, 3, 5, 7).
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The dynamic response in terms of vertical displacement of the
rollers Pi and of the hinges A B,j k and C, also shows the effect of the
cable periodicity (which acts on the rollers symmetrically across the
battery thus not inducing relevant periodic rotations) which causes a
periodic oscillation that is maintained also after the cabin passage.

Fig. 18 (top) shows the dynamic response of the vehicle during the
transit nondimensional time t̄tr across the considered cable span. As
expected, the rotational oscillations of the cabin (i.e., rotation cab), for
which a proper initial condition was assigned, exhibit a nondimensional
period equal to =T̄ 352.7cab . The cabin oscillation period turns out to be
lower than the value =L g/ 384.6t

2
cabc

calculated considering an
equivalent rigid pendulum of arm length Lcab. Indeed, in the proposed
model, the cabin is suspended from the cable through a viscoelastic
device which connects the hanger to the top of the cabin. Moreover, the
cabin oscillation period T̄cab evaluated numerically turns out to be

3.6% lower than that calculated via experimental tests and is equal to
=T̄ 365.97cab

exp . This small discrepancy is certainly due to the fact that
sensor S14 was not exactly positioned at the cabin center of mass.

Finally, the nondimensional elongation =b t b t L¯ ( ) ( )/c c b of the sus-
pension system positioned atop the cabin portrayed in Fig. 18 (top)
oscillates around the average value of ×b̄ 4 10c ave,

3, which re-
presents the elongation due to the cabin weight and the maximum
amplitude turns out to be ×b̄ 6 10c max,

3. It is particularly meaningful
to notice that the higher frequency content due to the elastic suspension
is reflected into the time history of the vehicle vertical acceleration,
while the much lower pendular frequency is manifested in the vehicle
horizontal acceleration shown in Fig. 18 (bottom).

Fig. 16. Left column: time histories of the rotations of Bk ( =k 1, 2) and C. Right column: time histories of the vertical nondimensional displacements of Aj ( =j 1, 3)
and B1.

Fig. 17. Time history of the vertical displacement of C.
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6. Model validation: experimental tests vs. numerical simulations

Several sets of data were recorded at various vehicle speeds.
However, only the results obtained for the tests carried out at the
nondimensional speed =V̄ 0.014c are here reported and discussed. By
adopting the identified mechanical parameters of the monitored com-
pression roller battery, the numerical model was calibrated accordingly
and several numerical simulations were performed so as to describe the
dynamical response of the system as closely as possible.

The good accordance between the experimental data and the model

predictions is shown in Fig. 19 (left) depicting a comparison between
the vertical acceleration and its FFT (Fig. 19 right) predicted by the
numerical model (blue line) and obtained by the experimental tests (red
line) acquired by sensor S1 positioned between points P1 and A1 on the
roller battery (see Fig. 8).

In Fig. 20 (left) the experimental response of the cabin is reported in
terms of vertical, nondimensional accelerations. On the other hand,
Fig. 20 (right) shows the comparison between the experimental data
and the numerical results for the vertical acceleration induced in the
cabin during the transit. To compare the simulation, reported in Fig. 18

Fig. 18. Time histories of the cabin rotation cab and the cabin suspension system elongation bc (top); vertical and horizontal cabin accelerations (bottom).

Fig. 19. Left: time history of the vertical, nondimensional acceleration of sensor S1. Right: FFT of the sensor vertical acceleration. The red lines indicate the
experimental results while the blue lines denote the numerical results. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

Fig. 20. Left: experimental time history of the vertical acceleration of the cabin center of mass. Right: comparison between experimental data (red lines) and
numerical results (blue lines). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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bottom right, with the acquired data, the time has been shifted for both
the numerical and the experimental data shown in Fig. 20 (right).

The comparison between experimental data and model is completed
by investigating the response data for the roller battery subject to the
transit of several vehicles in succession. Fig. 21 shows the numerical
simulation for the roller battery when 10 vehicles go across the com-
pression tower, together with the experimental acquisitions and the
ensuing comparison. As it can be noticed from the time histories de-
picted in Fig. 21, the analytical model, calibrated with the mechanical
parameters identified from the experimental tests, is able to reproduce
both qualitatively and quantitatively the response of the rollers to
multiple vehicles transit. In particular, the acceleration peaks, their
frequency, and the maximum accelerations induced by the interwire
periodicity of the traveling cable, are all reproduced with high accu-
racy. Although, Fig. 21 (top right) shows a further interesting phe-
nomenon that the model proposed in this work cannot take into ac-
count. In particular, the experimental time history displays secondary,
timely spaced, spikes that follow the main acceleration peaks and which
are not reproduced by the numerical simulations. The explanation of
this mismatch between numerical and experimental results is due to the
fact that the roller-battery system modeled in the proposed work re-
produces only the battery positioned in the uphill side of the com-
pression tower. Although, each tower holds, through the hoisting
structure, two batteries of rollers: the first allows the transit of the cable
(and the cabins) uphill and the second accommodates the cable (and
the cabins) moving downhill. The cabins are evenly spaced along the
cable which moves in a loop across the whole ropeway thus ensuring a
non simultaneous transit across the same tower of a vehicle moving
uphill and a vehicle moving downhill. Therefore, the secondary spikes
displayed in the experimental time history of Fig. 21 (top right) re-
produce the effect of the downhill cabin transit in the opposite side of
the tower; this effect, not considered in this work, is transferred to the
roller-battery in the uphill side through the hoisting frame.

7. Conclusions

Modeling of the planar dynamics of the tower-cable-roller-battery-
vehicle system of a mono-cable ropeway was addressed together with

its experimental validation. The tackled nonlinear model is conceived
as a reduced-order model featuring the rotational degrees of freedom of
the three stages of the roller battery, the degrees of freedom of the
vehicle, the transverse dynamics of the propelling cable and of the
hoisting beam of the tower. A combination of finite elements to de-
scribe the prestressed cable dynamics (i.e., 20 FEs) with the assumed
modes method to discretize the dynamics of the cantilevered hoisting
beam (i.e., the lowest two bending modes) together with the rigid-body
degrees of freedom of the stages and vehicle yields a set of 30 nonlinear
ordinary differential equations. The constructed model is meant to
capture the main system frequencies and mode shapes that participate
meaningfully to the highly nonstationary response of the ropeway roller
battery subject to the vehicles transit. The predicted frequencies and
acceleration time histories were shown to be in good agreement with
the experimental data. The experimental campaign making use of an ad
hoc designed network of 14 synchronized wireless sensors (i.e., MEMS
accelerometers, gyroscopes, temperature and humidity sensors) led to
the identification of the uncertain system parameters, among which the
damping ratios of the various subsystems. Comparisons between the
response simulated through the numerical model and the acquired ex-
perimental data demonstrated a high fidelity of the multibody dyna-
mical system modeling both in terms of the modal characterization and
the nonstationary dynamical response. The proposed modeling ap-
proach together with the associated reliable mechanical identification
is a key step towards the prediction of the system response under var-
ious transit conditions (i.e., different transit speeds, varying char-
acteristics of the transported vehicles, etc.) and the fine tuning of design
optimization strategies.
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Appendix A

The current position vectors of each relevant point of the roller battery in the frame e e( , )1 2 :

= +
= + + +

= = =

r e e
r r e e

t v L t
t t c d h c d h

k c c

( ) ( , )( sin cos ),
( ) ( ) ( cos sin ) ( sin cos ) ,
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1 2
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for 7, 8, set 4, 1, 1.
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i j j j j j

(19)

The various rotation matrices adopted in the model formulation:

= =R R
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(20)
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j
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=R sin cos
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cab cab

cab cab (22)

Appendix B. Supplementary material

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.engstruct.2018.10.059.
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