

UCC Library and UCC researchers have made this item openly available. Please <u>let us know</u> how this has helped you. Thanks!

Title	Visualizing the colonization dynamics of pathogenic bacteria labelled by upconverting nanoparticles inside the gut
Author(s)	Dumlupinar, Gokhan; Singh, Raminder; Komolibus, Katarzyna; Melgar, Silvia; Andersson-Engels, Stefan
Publication date	2019
Original citation	Dumlupinar, G., Singh, R., Komolibus, K., Melgar, S. and Andersson- Engels, S. (2019) 'Visualizing the colonization dynamics of pathogenic bacteria labelled by upconverting nanoparticles inside the gut', Biophotonics Congress: Optics in the Life Sciences 2019, Tucson, Arizona, United States, 14-17 April. Available at: https://www.osapublishing.org/abstract.cfm?uri=BODA-2019-JT4A.4 (Accessed: 16 April 2019)
Type of publication	Conference item
Link to publisher's version	http://www.osapublishing.org/abstract.cfm?URI=BODA-2019-JT4A.4 https://www.osa.org/en- us/meetings/osa_meetings/osa_biophotonics_congress/program/bio- optics_design_and_application/ Access to the full text of the published version may require a subscription.
Rights	© 2019, the Authors. Published by the Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited.
Item downloaded from	http://hdl.handle.net/10468/7769

Downloaded on 2019-04-30T23:19:18Z

Coláiste na hOllscoile Corcaigh

Visualizing the colonization dynamics of pathogenic bacteria labelled by upconverting nanoparticles inside the gut

<u>Gokhan Dumlupinar^{1, 2*}</u>, Raminder Singh³, Katarzyna Komolibus¹, Silvia Melgar³ and Stefan Andersson-Engels^{1, 2}

1. Biophotonics, Tyndall National Institute, Lee Maltings Complex, Dyke Parade, T12R5CP, Cork, Ireland

2. Department of Physics , University College Cork, Kane Building, T12YN60, Cork, Ireland

3. APC Microbiome Institute, Bioscience Building, T12YN60, Cork, Ireland

*Corresponding author: gokhan.dumlupinar@tyndall.ie

Abstract: This study intends to show the use of upconversion photoluminescence imaging to investigate the colonization and infection dynamics of a natural murine intestinal pathogen, *Citrobacter rodentium (C.rodentium)*, which induces inflammation in mice. © 2019 The Author(s).

OCIS codes: 170.2680, 170.3880, 170.6280

Inflammatory Bowel Diseases (IBDs) including Crohn's disease (CD) and ulcerative colitis (UC) are associated with the chronic inflammatory state of gastrointestinal tract. The exact causes of IBD are still unknown, however, the recent studies show that gut microbiota is a contributing factor to IBD [1]. Although the role of intestinal microbes in the development of IBD in animals is revealed, the interaction mechanisms between the host and these microbes are yet not precisely defined. To understand these interactions in vivo, C.rodentium infection model has been studied. C.rodentium is the most widely used model to study host-pathogen interactions as it shows high genetic similarities to human pathogens, including enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E.coli (EHEC) [2]. These pathogens are associated with the development of IBD in human. C.rodentium infection model has been studied by different *in vivo* imaging techniques, including fluorescence imaging (FI) and bioluminescence (BL) [3, 4]. FI employs custom designed fluorophores as contrast markers, whereas BL rely on genetically modified pathogen strains that are able to catalyse luciferin molecule by luciferase enzyme. However, using fluorescent probes in vivo studies has some limitations such as tissue autofluorescence, photobleaching and photodamage. In case of BL, the process is dependent on the metabolic state of the pathogen and the oxygen content in the environment (*i.e.* requires *in vivo* studies with blood circulation). In addition, it is not always possible to genetically engineer all types of bacteria for BL use.

In this study, lanthanide based upconverting nanoparticles (Ln-UCNPs), a class of photoluminescent nanomaterials, are being exploited as labelling agent as well as contrast marker to visualise infection dynamics of *C.rodentium*. Ln-UCNP are promising candidates to overcome the aforementioned limitations of FI and BL. Ln-UCNPs are capable of photon

upconversion, *i.e.* the conversion of incoming photons with lower energy into emitted photons with higher energy. The photon upconversion is as a result of two or multiple sequential photon absorption and has anti-Stokes nature. In this work, near infra-red (NIR) laser light at 976nm is used as an excitation source and Ln-UCNPs emits upconverted photons at 804 nm, which also falls in NIR region. In NIR region, most of the tissue molecules have relatively low absorption scattering coefficients, which results in higher light penetration depths, low and autofluorescence, and high signal-noise ratio. Thereby, C.rodentium infected mice is labelled by means of Ln-UCNPs conjugated with anti C.rodentium antibody. 108-109 colony forming unit (CFU) of C.rodentium are orally administered to mice at different time points to quantify C.rodentium. The infection kinetics of C.rodentium is consisted of three distinct phases. Phase one, from day 0 to day 3 is known as initiation of infection. Phase two is the peak of infection, from day 7 to day 10. Third phase is known as resolution phase, begins after day 10, where C.rodentium is cleared out from the host. Upconversion photoluminescence from C.rodentium labelled with UNCP-antibody in mice is imaged by a custom modified commercial in vivo imaging system (IVIS Lumina III, Perkin Elmer) through these three distinct phases. Herein, it should be noted that major optical design modifications has been done to IVIS Lumina III to be employed in NIR region. For this purpose, fiber coupled multi-mode NIR laser is attached to the system. An optical cage has been designed particularly for this system, in which laser beam is expanded and its spot size is selectively varied in a range from 5 mm up to 38 mm. Wisely selected spectral filters are also placed to overexpose the existing camera inside the imaging system. These Ln-UCNPs are chemically stable, *i.e.* no photo degradation is observed, as compared to widely used organic fluorescent dyes. In addition, they show high photo stability, no photoblinking is observed, as compared quantum dyes that are commonly used in FI. Thereby, Ln-UNCPs can be used for studies in which long/repeated exposure times are required, e.g. bacteria dissemination studies.

The upconversion photoluminescence is being compared with the BL in terms of light intensities. Moreover, the success of the bio-conjugation between UCNP-antibody and *C.rodentium* is being investigated. In addition the monitoring of the bacterial colonisation dynamics inside the gut, biodistribution and pharmacokinetics of Ln-UCNPs are being studied.

References:

[1] Wirtz, S., and M. F. Neurath. "Mouse models of inflammatory bowel disease." Advanced drug delivery reviews 59, (2007): 1073-1083.

[2] Silberger, D.J., C.L. Zindl, and C.T. Weaver, *Citrobacter rodentium: a model enteropathogen for understanding the interplay of innate and adaptive components of type 3 immunity.* Mucosal Immunology **10**, (2017): 1108.

[3] Leevy, W. Matthew, et al. "Optical imaging of bacterial infection in living mice using a fluorescent near-infrared molecular probe." Journal of the American Chemical Society **128**, (2006): 16476-16477.

[4] Andreu, N., A. Zelmer, and S. Wiles. "*Noninvasive biophotonic imaging for studies of infectious disease*." FEMS microbiology reviews **35**, (2011): 360-394.

Acknowledgments: This work is supported by a grant from the Science Foundation of Ireland (SFI-15/RP/2828).