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Frontotemporal dementia (FTD) is a heterogenous neurodegenerative disorder,
characterized by diverse clinical presentations, neuropathological characteristics and
underlying genetic causes. Emerging evidence has shown that FTD is characterized
by a series of changes in several neurotransmitter systems, including serotonin,
dopamine, GABA and, above all, glutamate. Indeed, several studies have now provided
preclinical and clinical evidence that glutamate is key in the pathogenesis of FTD.
Animal models of FTD have shown a selective hypofunction in N-methyl D-aspartate
(NMDA) and α-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid (AMPA) receptors,
while in patients, glutamatergic pyramidal neurons are depleted in several areas,
including the frontal and temporal cortices. Recently, a selective involvement of the
AMPA GluA3 subunit has been observed in patients with autoimmune anti-GluA3
antibodies, which accounted for nearly 25% of FTD patients, leading to a decrease of the
GluA3 subunit synaptic localization of the AMPA receptor and loss of dendritic spines.
Other in vivo evidence of the involvement of the glutamatergic system in FTD derives
from non-invasive brain stimulation studies using transcranial magnetic stimulation, in
which specific stimulation protocols have indirectly identified a selective and prominent
impairment in glutamatergic circuits in patients with both sporadic and genetic FTD.
In view of limited disease modifying therapies to slow or revert disease progression in
FTD, an important approach could consist in targeting the neurotransmitter deficits,
similarly to what has been achieved in Parkinson’s disease with dopaminergic therapy
or Alzheimer’s disease with cholinergic therapy. In this review, we summarize the current
evidence concerning the involvement of the glutamatergic system in FTD, suggesting
the development of new therapeutic strategies.

Keywords: frontotemporal dementia, frontotemporal lobar degeneration, glutamate, neurotransmitter,
autoimmunity, transcranial magnetic stimulation

INTRODUCTION

Frontotemporal dementia (FTD) is one of the most common neurodegenerative conditions after
Alzheimer’s Disease (AD), characterized by behavioral abnormalities, language impairment, and
deficits of executive functions (Bang et al., 2015). The different clinical features have been grouped
in different variants, represented by the behavioral variant of FTD (bvFTD) (Rascovsky et al., 2011),
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the agrammatic variant of Primary Progressive Aphasia (avPPA)
and the semantic variant of PPA (svPPA) (Gorno-Tempini
et al., 2011). Over the past ten years, for a common sharing
of the same genetic and pathological determinants, atypical
extrapyramidal conditions, including Corticobasal Syndrome
(CBS) and Progressive Supranuclear Palsy (PSP), but also
motor neuron disease (MND), were grouped under the same
frontotemporal lobar degeneration (FTLD) disease spectrum
(Litvan et al., 1996; Armstrong et al., 2013; Burrell et al.,
2016). Concomitantly, the structural and functional brain
correlates of each phenotype have been precisely reported
(Rohrer et al., 2011). FTLD selectively affects the frontal
and temporal regions, in which the main neuropathological
hallmarks are constituted primarily by tau or TAR DNA-binding
protein 43 (TDP-43) depositions (Spillantini and Goedert, 2013;
Neumann and Mackenzie, 2019).

The identification of genetic mutations associated with FTLD
helped to elucidate the underlying pathology, with mutations
in Microtubule Associated Protein Tau (MAPT) causing tau
accumulation, and Granulin (GRN) or the expansion on
chromosome 9 open reading frame 72 (C9orf72) being associated
with TDP-43 inclusions (Borroni and Padovani, 2013). Lastly,
reappraisal of the pathological criteria for subtyping FTLD
cases has benefited from some refinements, being updated
with recent immunohistochemical, biochemical, and genetic
advances (Cairns et al., 2007). In addition to FTLD-Tau or
FTLD-TDP, several other neuropathological depositions have
been defined, including FTLD-FET [with positivity for the FET
family of DNA/RNA-binding proteins, comprising the fused
in sarcoma (FUS), TATA-binding protein-associated factor 2N
(TAF-15) and Ewing sarcoma protein (EWS)], FTLD-UPS (with
inclusions of proteins of the ubiquitin-proteasome system) and
FTLD-ni (with no inclusions observed) (Sieben et al., 2012; Van
Mossevelde et al., 2018). Other uncommon genetic mutations
have been described, including valosin containing protein (VCP)
(Watts et al., 2004; van der Zee et al., 2009), sequestosome 1
(SQSTM1) (Rubino et al., 2012; Le Ber et al., 2013; van der Zee
et al., 2014; Kovacs et al., 2016), and TANK-binding kinase 1
(TBK1) (Freischmidt et al., 2015; Gijselinck et al., 2015; Pottier
et al., 2015), with an underlying TDP-43 pathology, charged
multivesicular body protein 2B (CHMP2B) (Skibinski et al.,
2005; Holm et al., 2009), associated with FTLD-UPS, and FUS
mutations (Broustal et al., 2010; Van Langenhove et al., 2010)
probably associated to FTLD-FET (no autopsy confirmation in
patients with FTD to date but only in patients with amyotrophic
lateral sclerosis) (Benussi et al., 2015a).

Despite the giant step forward in the knowledge of clinical,
imaging, genetic and biological underpinnings of the disease,
the absence of a reliable biomarker to predict the ongoing
neuropathology represents a major limit to develop disease-
modifying therapies that target tau or TDP-43 deposits, and that
could be administered only to subjects with known pathogenetic
mutations (Bang et al., 2015; Borroni et al., 2015). Moreover, it
is still unknown whether tau and TDP-43 deposits represent the
initial mechanism or simply the result of other trigger events.

Indeed, two different approaches might be pursued in the
next future for treatment purposes: on one hand, there is urgent

need to develop diagnostic markers able to identify the specific
proteinopathies associated with FTLD, on the other, it might be
possible to characterize neurotransmitter deficits shared by the
entire FTLD spectrum (Rohrer et al., 2011).

Emerging evidence has now shown that FTD is characterized
by a series of changes in several neurotransmitter systems,
including serotonin, dopamine, GABA and, above all, glutamate
(Murley and Rowe, 2018) (see Table 1).

The recent identification of anti-AMPA GluA3 antibodies
in the serum and in the cerebrospinal fluid (CSF) from
FTLD patients (Borroni et al., 2017) has suggested that
the impairment of glutamate neurotransmission through an
autoimmune mechanism might be considered as a possible
target to slow or revert the disease. In this framework,
we can hypothesize that a restoration of the appropriate
glutamatergic stimulation could be reached by modulating
(i) the immune system or (ii) the glutamatergic receptors,
developing the latter approach in analogy to what has been
demonstrated effective for Parkinson or Alzheimer disease,
with dopaminergic and cholinergic therapies, respectively
(Murley and Rowe, 2018).

In this review, we summarize the current evidence concerning
the involvement of the glutamatergic system in FTD, suggesting
the development of new therapeutic strategies.

MOLECULAR BIOLOGY

Glutamate, which represents the main excitatory
neurotransmitter in the brain, largely contributes to memory
and learning processes (Bliss and Collingridge, 1993), while
being also involved in brain damage when abnormally activated
in several conditions, including brain ischemia, epilepsy and
neurodegeneration (Bowie, 2008). Glutamate exerts its functions
at the synaptic level through both ionotropic (iGluR) and
metabotropic glutamate receptors (mGluR).

iGluR are cation permeable tetramers, distinguished in
N-methyl D-aspartate (NMDA), α-amino-3-hydroxyl-5-methyl-
4-isoxazolepropionic acid (AMPA) and kainate (KA) on the basis
of their affinity properties, the selectivity for different ions and
the ability to generate rapid or slow electric kinetics. NMDA
receptors (NMDAR) are known to mediate plasticity phenomena,
as long-term potentiation (LTP) (Lescher et al., 2012), with
a critical role of extra synaptic receptor subtype 2B (NR2B)
subunit-containing ones (Paoletti et al., 2013). AMPA receptors
are primarily involved in synaptic plasticity by modifications
of subunits editing and composition, or interactions with
different receptors and phosphorylation (Opazo et al., 2010;
Huganir and Nicoll, 2013).

mGluR are a family of receptors coupled to G proteins,
activating different transduction signals, mainly represented by
phospholipase C and adenylate cyclase (Castillo et al., 2010).
mGluRs contribute to neuronal plasticity and cognitive abilities,
being able to mediate self-dependent forms of LTP and long-term
depression (LTD) (Wang et al., 2015; Longhena et al., 2017).

Several evidences arise from both preclinical and
clinical studies, showing the involvement of the glutamate
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neurotransmitter receptors, both iGluR and mGluR in the
pathogenesis of FTLD.

In murine cortical neurons, silencing the FTD-associated
gene granulin (GRN) decreases the expression of extra synaptic
NR2B-containing NMDAR (Longhena et al., 2017); on the other
hand, hyper-phosphorylated tau enhances glutamate release and
produces an overactivation of the same receptor ending with
neuron death, that can eventually be reduced by stimulating
its reuptake through the astrocytic glutamate transporter 1
(GLT1)/excitatory amino acid transporter 2 (EAAT2) (Decker
et al., 2016). Furthermore, FTLD has been related to the
dysfunction in RNA pathways (Sephton and Yu, 2015), as
corroborated by evidence that FUS depletion downregulates the
transcription of GluA1, an essential AMPA-subunit involved in
LTP phenomena (Udagawa et al., 2015). In that regard, also
charged multivesicular body protein 2b (CHMP2B) FTD-related
mutation increases GluA2 expression by disrupting microRNA
levels (Gascon et al., 2014).

Knock out of the glutamate ionotropic receptor AMPA type
subunit 3 gene (GRIA3) produces modifications in social behavior
with an increase in aggressiveness (Adamczyk et al., 2012): in a
recent study GluA3-containing AMPAR turned to be dormant
receptors, triggered by a peculiar intracellular signaling pathway
(Renner et al., 2017). Neuronal activity stimulated by AMPAR
activation induces tau release from mature cortical neurons
in a calcium-dependent way, suggesting the glutamatergic
modulation as a further approach to prevent tau depositions
(Pooler et al., 2013). Autoantibodies for the GluA3 subunit
of AMPARs have been identified both in the serum and CSF
of FTD patients (Borroni et al., 2017), characterized by a
bvFTD phenotype with presenile onset, absence of an autosomal
dominant pattern of inheritance, and greater bitemporal atrophy.
These anti-GluA3 antibodies lead to a reduction of the synaptic
levels of GluA3-containing AMPARs both in rat primary
neurons and in human neurons differentiated from induced
pluripotent stem cells (iPSCs). In addition, the presence of GluA3
antibodies in the CSF induced a loss of dendritic spine density,
and increased levels of tau protein in vitro human neurons
(Borroni et al., 2017).

Interestingly, Leuzy et al. (2016) reported a reduced
availability of mGlur5 in bvFTD patients. Several observations
argued for a link between autoimmunity and FTD (Alberici
et al., 2018), and more recently, it was demonstrated a significant

increase in frequency of anti-nuclear antibodies (ANA) observed
in FTD patients, as compared to normal control subjects
(Cavazzana et al., 2018). According to these findings, it might be
hypothesized that an immune system dysregulation results into
an abnormal production of autoantibodies directed against the
GluA3 subunit, causing a deficit in glutamatergic transmission,
eventually leading to FTLD.

The involvement of glutamatergic transmission has also
been reported in amyotrophic lateral sclerosis (ALS), which
is part of the FTLD-ALS spectrum disorder, in which a
glutamate-induced excitotoxicity of motor neurons has been
hypothesized (Blasco et al., 2014). Deficient editing of the
GluR2 AMPA receptor subunit (Kawahara et al., 2004) and
a diminished functional transport of glutamate and reduced
EAAT2 immunoreactivity has been observed in motor neurons
of patients with ALS (Rothstein et al., 1992, 1995). These findings
further support the possible complex role of glutamatergic
transmission abnormalities in the pathophysiology of FTD-ALS.

Other possible modulators of glutamatergic transmission
which have been shown to be impaired in FTD are serotonin
(5-HT) and GABA. 5-HT has been shown to differently modify
glutamate mediated effects, acting on distinct 5-HT receptor
subtypes both at the pre-synaptic and post-synaptic site and
in different brain regions: in the frontal cortex glutamate
release is inhibited by serotonin whereas in the prefrontal
cortex serotonin enhances glutamatergic transmission (Dawson
et al., 2001; Ciranna, 2006). In FTD, a dysfunction of the
serotoninergic system has been frequently observed (Bowen
et al., 2008; Vermeiren et al., 2016), possibly opening an avenue
for glutamatergic modulation through serotonin regulation
(Huey et al., 2006).

Furthermore, GABA, which is the predominant inhibitory
neurotransmitter in the brain with different functions
other that merely counteracting excitatory glutamatergic
neurons, has been shown to be impaired in FTD patients.
Initial studies have shown that a subgroup of GABAergic
neurons that bind calbinidin-D28k are reduced in the
upper neocortical layers of the frontal and temporal
cortices in FTD (Ferrer, 1999), while gamma oscillations
and coherence, which reflect GABA inhibition, are reduced
between the frontal lobes of patients with behavioral
variant FTD (Hughes et al., 2018). These findings are
corroborated by reports of the toxic effects mediated by tau

TABLE 1 | Evidence for neurotransmitter deficits in frontotemporal dementia.

Type of evidence

Neurotransmitter Neurobiological Neurophysiological Neuroradiological Pharmacological

Glutamate + + + −

GABA + + − −

Serotonin + − + +

Dopamine + − + +

Acetylcholine − − − −

Noradrenaline − − ± +

+: evidence of neurotransmitter deficit; −: no evidence of neurotransmitter deficit.

Frontiers in Neuroscience | www.frontiersin.org 3 March 2019 | Volume 13 | Article 304

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00304 March 27, 2019 Time: 17:51 # 4

Benussi et al. Glutamate Hypothesis of FTD

FIGURE 1 | Proposed model for the involvement of neurotransmitter systems in frontotemporal dementia.

and TDP-43 on GABAergic interneurons, leading to a loss of
GABAergic function in animal models (Levenga et al., 2013;
Yamashita and Kwak, 2014).

NEUROPHYSIOLOGY

Indirect evidence of the involvement of the glutamatergic system
in FTD also comes from neurophysiological studies using both
in vitro and in vivo techniques.

In vitro studies in transgenic mice expressing pathological
human tau (V337M mutation), which is one of the main
pathological hallmarks of FTD, have shown both AMPA and
NMDA receptor hypofunction in the ventral striatum and
insular cortex, which were reversible after the administration of
cycloserine, an NMDA receptor co-agonist (Warmus et al., 2014).
Further in vitro studies in transgenic mice carrying a CHMP2B
mutation, which is another gene associated with FTD, have also
shown altered AMPA receptor composition and function in the
medial prefrontal cortex (Gascon et al., 2014).

In vivo neurophysiological evidence of the involvement
of glutamatergic circuits in FTD mainly comes from non-
invasive brain stimulation studies using transcranial magnetic
stimulation (TMS) (Borroni et al., 2018). In this context,
different paired-pulse TMS paradigms have been implemented
to assess intracortical inhibitory and excitatory interneuronal
circuits (Benussi et al., 2015b; Rossini et al., 2015). In particular,
intracortical facilitation (ICF), which consists in a physiological
facilitation elicited by applying a subthreshold conditioning
magnetic stimulus followed by a suprathreshold test stimulus
at an inter stimulus interval of 6–30 ms, has shown to
depend mainly on glutamatergic circuits in the primary motor
cortex (Ziemann et al., 2015), with NMDA receptor antagonists
decreasing ICF (Ziemann et al., 1998; Schwenkreis et al., 1999).

Reduced ICF has been observed in patients with genetic
FTD, carrying a GRN or C9orf72 mutation, even in the
presymptomatic phases of disease, compared to non-carrier
first degree relatives (Benussi et al., 2016). These dysfunctions
correlated with reduced cortical thickness and surface area of
the right insula in presymptomatic GRN carriers, suggesting
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that glutamatergic impairment in the presymptomatic phases
of GRN-related FTD could reflect the beginning of insular
dysfunction, even in absence of cognitive or behavioral
abnormalities (Gazzina et al., 2018).

Recently, the reduction of ICF has been observed up to
30 years before expected symptom onset in a very large cohort
of GRN and C9orf72 mutation carriers compared to non-carriers,
long before the onset of clinical and neuroimaging abnormalities
(Benussi et al., 2019).

An impairment of ICF has also been observed in sporadic
FTD (Burrell et al., 2011; Benussi et al., 2017), confirming
how this biomarker may be useful not only to track disease
progression, but also to distinguish FTD from other forms of
dementias, even in the early disease stages (Benussi et al., 2018a;
Padovani et al., 2018).

Regarding other syndromes in the FTLD spectrum, a reduced
ICF has been also observed in patients with CBS and PSP,
highlighting how this technique may also be used to distinguish
other atypical parkinsonian disorders, including dementia with
Lewy bodies (Benussi et al., 2018b).

Alterations in ICF have been observed also in patients with
both sporadic and familial ALS; however, contrary to what
has been observed in FTD, an increase in ICF seems to be
predominant (Geevasinga et al., 2015; Van den Bos et al., 2018).
It is still debated if cortical hyperexcitability might act as an
adaptive process in response to peripheral neurodegeneration
and could serve as a neuroprotective strategy, or if cortical
hyperexcitability may serve as a final common pathway in ALS,
mediating neuronal degeneration via a trans-synaptic glutamate
process (Geevasinga et al., 2015).

TREATMENT APPROACHES:
TARGETING GLUTAMATERGIC
NEUROTRANSMISSION

Currently there are no approved treatments for FTD, and
there are no therapies able to stop or alter the disease course.
Pharmacological treatments to date have mostly concerned
the off-label use of medications for symptomatic management.
Recent advancements in understanding the molecular and
genetic basis of FTD, and several clinical trials based on
these insights are underway and have been reviewed elsewhere
(Tsai and Boxer, 2016).

Glutamate neurotransmission has been considered a possible
target for FTD symptomatic treatment. Memantine, a NMDA
receptor antagonist with an indication for the treatment of
moderate to severe AD (Tariot et al., 2004), was studied in
two randomized, placebo-controlled trials over 52 and 26 weeks
in FTD (Vercelletto et al., 2011; Boxer et al., 2013). Both
studies failed to demonstrate significant benefits on behavioral
disturbances or clinical global impression of change.

The recent observations of an effect exerted by the
AMPARs activation on tau aggregation renewed the interest of
glutamatergic modulation as a further approach to prevent tau
depositions (Pooler et al., 2013; Borroni et al., 2017). Moreover,
the identification of autoantibodies directed against GluA3

subunits provided evidence for an autoimmune dysregulation
as a possible pathogenetic mechanism in FTD (Alberici
et al., 2018). The link between autoimmune antibodies and
neurodegeneration has been previously shown in the anti-
IgLON5-related tauopathy, in which extensive neuropathological
tau and TDP-43 inclusions have been observed (Sabater
et al., 2014), placing these disorders at the convergence of
neurodegenerative and autoimmune mechanisms. However,
further research is necessary to validate these findings and
elucidate the mechanisms by which these, or still other
unidentified auto-antibodies, induce pathologic protein
aggregates and neurodegeneration.

The feasibility of targeting an autoimmune response
is an attractive potential therapeutic approach, suggesting
immunomodulatory therapies as an evidence-based approach
to treat FTLD. In the absence of prospective and randomized
clinical trials for the treatment of autoimmune encephalitis,
literature data are based on case reports with anti-NMDA,
or more rarely, anti-AMPA receptor encephalitis (Dalmau
and Graus, 2018). We can hypothesize that scavenging anti-
GluA3 antibodies by using immunomodulation might restore
glutamatergic transmission, thus slowing or reverting FTLD
neurodegenerative process. Alternatively, in agreement with
the glutamatergic hypothesis, and in analogy to what has been
proposed for schizophrenia, positive allosteric modulators of
AMPA receptors as well as orthosteric ligands and modulators of
metabotropic glutamatergic receptors in particular ligands acting
on mGlu receptors might be considered promising potential
medications in FTLD (Menniti et al., 2013).

The modulation of glutamatergic transmission via 5-HT
regulation may also be a promising approach to seek. Favorable
evidence with selective serotonin reuptake inhibitors (SSRIs) has
been observed in FTD patients, with several open label and
placebo-controlled studies with SSRIs showing an improvement
of several behavioral symptoms, as disinhibition, irritability and
depression (Moretti et al., 2003; Lebert et al., 2004; Anneser et al.,
2007; Herrmann et al., 2012; Hughes et al., 2015). However,
it is still not known if this is a direct effect on serotoninergic
transmission or possibly an indirect downstream effect on
glutamatergic systems.

Regarding GABAergic therapies, evidence is currently lacking
for a clinical efficacy in FTD patients.

CONCLUSION

We have observed how the involvement of the glutamatergic
system may play a key role in the pathogenesis of FTD both from
a biological and neurophysiological perspective. This implication
may open several avenues regarding treatment options which will
have to be verified experimentally, both from a symptomatic but
also possibly disease modifying approach.

The involvement of glutamate in FTLD may answer
some of the open issues in this field, yet we caution that
FTD symptoms almost certainly do not flow from a single
neurotransmitter abnormality. Indeed, this proposed model
does not negate the involvement of other neurotransmitters,
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which have already been observed in FTLD, including GABA,
serotonin and dopamine, and all of these may be ultimately
brought together in a unified and interconnected framework
(Murley and Rowe, 2018) (see Figure 1). Restoring these deficits,
individually or in combination, has the potential to improve
cognitive, behavioral and motor symptoms. More realistically,
in fact the ultimate phenotypic expression probably arises
from combinations of neurotransmitter abnormalities, genetic
mutations, and environmental factors; combinations that may
vary considerably from patient to patient.

Another interesting avenue worth pursuing is the potential
for this amino-acid to act as a biomarker, either in establishing
the diagnosis or as a measure of disease progression. Direct
measurements in the CSF have shown a negative correlation
between glutamate levels with verbally agitated behavior in FTD
patients (Vermeiren et al., 2013). On the other hand, indirect
measurements come from magnetic resonance spectroscopy of
FTD patients in which glutamate/glutamine levels have been
found to be reduced in the frontal and temporal lobes (Ernst
et al., 1997; Sarac et al., 2008) and from neurophysiological
studies with TMS, showing in both sporadic and genetic FTD
a reduced ICF, which is partially mediated by glutamatergic
transmission. In future, glutamate levels could also be indirectly
assessed with electroencephalography (EEG) (Lally et al., 2014)
or by TMS-EEG evoked potentials (Cash et al., 2016). To
define which direct or indirect biomarker of glutamatergic
neurotransmission might be the most useful and informative
has still to be elucidated, considering the lack of studies
on the subject, with different biomarkers perhaps providing
distinct information from both a physiopathological and
topographical perspective.

In conclusion, it is therefore now clear that the role
of glutamate in FTD can represent an interesting and
innovative approach to better understand the underlying ongoing
neurodegenerative process in this pathology, although further
investigations will be needed in order to increase our biological
understanding of the disease, which will probably be contingent
to the development of appropriate models and biomarkers for
glutamatergic drug development.
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