Polynomial multiplication over binary finite fields: new upper bounds

Alessandro De Piccoli¹, Andrea Visconti¹, Ottavio Giulio Rizzo²

¹ Department of Computer Science "Giovanni Degli Antoni", Università degli Studi di Milano via Comelico 39/41, 20135, Milano, Italy Tel.: +39 02 50316361 ORCID: 0000-0002-6399-3164 alessandro.depiccoli@unimi.it ORCID: 0000-0001-5689-8575 andrea.visconti@unimi.it http://www.di.unimi.it/visconti
² Department of Mathematics "Federigo Enriques", Università degli Studi di Milano ottavio.rizzo@unimi.it

Abstract. When implementing a cryptographic algorithm, efficient operations have high 1 relevance both in hardware and software. Since a number of operations can be performed via 2 polynomial multiplication, the arithmetic of polynomials over finite fields plays a key role in real-life implementations — e.g. accelerating cryptographic and cryptanalytic software (preand post-quantum) [18]. One of the most interesting paper that addressed the problem has been published in 2009. In [5], Bernstein suggests to split polynomials into parts and presents a new recursive multiplication technique which is faster than those commonly used. In order to further reduce the number of bit operations [6] required to multiply *n*-bit polynomials, researchers adopt different approaches. In [19] a greedy heuristic has been applied to linear straight-line sequences listed in [6]. In 2013, D'angella, Schiavo and Visconti [21] skip some 10 redundant operations of the multiplication algorithms described in [5]. In 2015, Cenk, Negre 11 and Hasan [12] suggest new multiplication algorithms. In this paper, (a) we present a "k-1"-12 level Recursion algorithm that can be used to reduce the effective number of bit operations 13 required to multiply *n*-bit polynomials; and (b) we use algebraic extensions of \mathbb{F}_2 combined 14 with Lagrange interpolation to improve the asymptotic complexity. 15

Keywords: Polynomial multiplication, Karatsuba, Two-level Seven-way Recursion algorithm, bi nary fields, fast software implementations.

18 1 Introduction

Finite fields have applications in many areas of computer science and engineering, such as digital signal processing [29,9], coding theory [3,8], cryptography [30,2,10,31,25] and so on. Such applications usually need efficient implementations both in hardware [34,15,14,1,28,26] and software [5,21,19,12], thus a fast execution of arithmetic operations over finite fields is a crucial issue. In this paper particular attention is paid to binary fields, i.e., finite fields of characteristic 2, because they are very attractive for several cryptographic applications, especially for those who play with elliptic curves [4,7,5].

2 Alessandro De Piccoli, Andrea Visconti, Ottavio Giulio Rizzo

A binary field \mathbb{F}_{2^n} is composed of binary polynomials modulo a *n*-degree irreducible polynomial. The multiplication between two elements of \mathbb{F}_{2^n} is one of the most crucial low-level arithmetic operations. It consists of an ordinary polynomial multiplication and a modular reduction by an irreducible polynomial. Whereas the modular reduction is a relatively simple operation, the polynomial multiplication turns out to be a costly operation.

A real case scenario can help readers to understand the problem in details. In 2009, Bernstein show that, on a binary Edwards curve [5], a 251-bit single-scalar multiplication requires 44,679,665 bit operations, 43,011,084 of which (about 96%) are for field multiplications. That said, it is not difficult to understand why fast software implementations for polynomial multiplication over finite fields are desired.

It is well known that the naive polynomial multiplication algorithm — the so-called School-book algorithm — is not the optimal way to multiply two polynomials. If the polynomials involved in the product have the same degree, say n, the multiplication takes n^2 multiplications and $(n-1)^2$ additions. Thus, its complexity is $2n^2 + \mathcal{O}(n)$. Many researchers have tried to improve this algorithm, following two main directions: (1) provide a better asymptotic estimation [34,16,35,24]; (2) reduce the effective number of bit operations [5,12,14,22,21].

A number of interesting approaches that improves the school-book algorithm have been pub-42 lished in literature — see for example Karatsuba [27], Toom [38], Cook [20], Schönhage and Strassen 43 [37], Bernstein [5], and so on. More precisely, Karatsuba [27] achieves an asymptotic complexity 44 of $7n^{1.58} + \mathcal{O}(n)$. Toom [38] and Cook [20] reduced the number of steps needed to multiply two 45 polynomials introducing an algorithm with complexity $\mathcal{O}(n^{1+\epsilon})$, for arbitrary small $\epsilon > 0$. In [37] 46 Schönhage and Strassen showed how to achieved complexity $\mathcal{O}(n \log n \log \log n)$ using a procedure 47 based on the Fast Fourier Transform (FFT). In 2009, Bernstein [5] improves the Karatsuba identity 48 (Three-way Recursion algorithm), obtaining the following asymptotic complexity $6.5n^{1.58} + O(n)$. 49 Cenk, Negre and Hasan in [12] suggest to change the field for the polynomials, getting an asymptotic 50 complexity of $15.125n^{1.46} - 2.67n \log_3(n) + \mathcal{O}(n)$. 51 Notice that asymptotic estimations are not explicit bounds and real-world applications have to 52 deal with issues of hardware and software implementations — e.g., hardware constraints, software 53

deal with issues of hardware and software implementations — e.g., hardware constraints, software speedups, and so on. Therefore, in order to get the minimum number of bit operations needed to multiply two *n*-bit polynomials — for sake of simplicity we call such a number M(n) — researchers analyze, rearrange and modify the algorithms that provide interesting asymptotic estimations. Their aim is to improve bounds published in literature for specific value (small) of *n*, and these improvements that are not visible in the asymptotics. Consequently, a number of papers tries to reduce the effective number of bit operations [34,16,35,24]. As far as we know, the best explicit upper bounds for the polynomial multiplication appear in [6,19,21,12].

Karatsuba [27] was the first one who reduces the number of bit operations of the School-61 book algorithm. A different approach has been described by Bernstein in 2009 [5]. He refines 62 the Karatsuba identity and suggests to use a polynomial multiplication technique which employs 63 (recursively) different multiplication algorithms, picking, at each step, the best one. Moreover, he 64 presents three new multiplication algorithms — i.e., Three-way Recursion, Five-way Recursion, 65 and Two-level Seven-way Recursion algorithm — that are used to reduce the effective number of 66 bit operations. The technique presented in [5] not only results in new software speed records [6], 67 but also avoids well-known software side-channel attacks. Indeed, all computations are expressed 68 as straight-line sequences of AND/XOR operations, thus they are data-independent. In [19] are 69 published improvements for specific value of n obtained by applying Boyar-Peralta heuristic [11] on 70

the linear part of straight-line sequences reported in [6]. In 2013, D'angella, Schiavo and Visconti [21] skip some redundant operations of the multiplication algorithms described in [5], reducing the number of bit operations for many values of n. The authors focus in particular on Five-way Recursion algorithm because such an algorithm is widely used. In 2015, Cenk, Negre and Hasan [12] present new multiplication algorithms which improve many of the explicit upper bounds previously described.

77 **1.1 Our contributions**

In this paper we investigate the possibility to (a) further reduce the effective number of bit operations required to multiply *n*-bit polynomials, and (b) improve the asymptotic complexity.

Firstly, we refine the Two-level Seven-way Recursion algorithm [5]. As shown in [5], it seems that Lagrange Interpolation is a useful tool to arrange the order of operations. Although in many cases this is true, in others it is not. Rearranging the operations in a different way, we present a "k-1"-level Seven-way Recursion algorithm, or "k-1"-level Recursion for short. We show that Three-, Four-, and Five-level Recursion can be used to improve the explicit upper bounds published in literature.

Secondly, we use algebraic extensions of \mathbb{F}_2 combined with Lagrange interpolation to improve the asymptotic complexity. We will show an interesting connection between this technique and the computation of the values of a polynomial in all of the field elements.

⁸⁹ 1.2 Organization of the paper

The remainder of the paper is organized as follows. In Section 2, we state definitions and some preliminary concepts that are useful to understand the following sections. In Section 3, starting with the classical school-book algorithm, we introduce some of the approaches currently adopted to multiply polynomials in an efficient way. Section 4 is the heart of this paper. We present our contribution, showing the new speed records achieved and explaining the techniques adopted. Finally, conclusions are drawn in Section 5.

96 2 Preliminaries

We restrict our analysis to polynomials over finite fields of characteristic 2, so we will not ever use the minus sign. If F(t) and G(t) are two of these polynomials, we will call their product H(t).

To denote the cost of the multiplication in \mathbb{F}_g between two polynomials of degree n-1 we will use $M_g(n)$.

101 2.1 Projective Lagrange Interpolation

As pointed out in [12], Lagrange Interpolation leads us to efficient multiplication algorithms. How does this technique work? Consider a field \mathbb{K} and a polynomial $H \in \mathbb{K}[x]$,

$$H(x) = h_0 + h_1 x + h_2 x^2 + \dots + h_n x^n$$

Algebra tells us that we need to fix the value of the polynomial in n+1 points in order to uniquely determine it. So, given a set of n+1 distinct points $\{k_0, \ldots, k_n\} \subseteq \mathbb{K}$, we define the Lagrange polynomials as follows:

4 Alessandro De Piccoli, Andrea Visconti, Ottavio Giulio Rizzo

$$l_i(x) = \prod_{j \neq i} \frac{x - k_j}{k_i - k_j} \qquad i = 0, \dots, n$$

Notice that we have $l_i(k_i) = 1$ and $l_i(k_j) = 0$, $\forall j \neq i$. This feature allows us to exactly reconstruct any polynomial $H \in \mathbb{K}[x]$ as

$$H(x) = \sum_{i=0}^{n} H(k_i) \cdot l_i(x)$$

For our purposes, the above technique is not optimal. Given the same problem with only n points $\{k_0, ..., k_{n-1}\}$, define the degree n-1 polynomial

$$\overline{H} = \sum_{i=0}^{n-1} H(k_i) \cdot l_i(x)$$

We still have $\overline{H}(k_i) = H(k_i)$, for i = 0, ..., n - 1. Let

$$l_{\infty}(x) = \prod_{j=0}^{n-1} (x - k_i)$$

and $H(\infty) = h_n$. Since $H(\infty) \cdot l_\infty$ vanishes at every k_i and has degree n, we can reconstruct H_{106} with the so-called Projective Lagrange Interpolation formula,

$$H(x) = \sum_{i=0}^{n-1} H(k_i) \cdot l_i(x) + H(\infty) \cdot l_\infty(x).$$

107 2.2 Which field?

Lagrange Interpolation requires n+1 points, but we just have two points in \mathbb{F}_2 ! Projective Lagrange 108 Interpolation will do with n points since it makes use of the point at infinity: where can we find 109 even more points? A possible answer is to consider finite algebraic extensions of \mathbb{F}_2 , generated 110 by a monic irreducible polynomial γ over \mathbb{F}_2 of degree d. Indeed, an extension \mathbb{F} is a quotient 111 $\mathbb{F}_2[X]/\langle \gamma(X) \rangle$, so the elements of \mathbb{F} are all *d*-bit polynomials, i.e., the set of polynomials over \mathbb{F}_2 112 of degree at most d-1, and \mathbb{F} has 2^d elements. If δ is another irreducible polynomial of degree 113 d, there is a, non canonical, isomorphism $\mathbb{F}_2[X]/\langle \gamma(X)\rangle \simeq \mathbb{F}_2[X]/\langle \delta(X)\rangle$, so we will call such an 114 extension \mathbb{F}_{2^d} . 115

¹¹⁶ $\mathbb{F}_{2^d}^{\times}$ is a cyclic group: let α be a fixed generator, we can see \mathbb{F}_{2^d} as a vector space over \mathbb{F}_2 with ¹¹⁷ basis $\{1, \alpha, \alpha^2, \ldots, \alpha^{d-1}\}$. At last, note that \mathbb{F}_{2^d} is the splitting field of $X^{2^d} + X$: its roots are all ¹¹⁸ the elements of the field.

¹¹⁹ 3 Current approaches

120 3.1 School-book algorithm

121 Given two n-bit polynomials

$$F = f_0 + f_1 t + \dots + f_n t^n$$
 and $G = g_0 + g_1 t + \dots + g_n t^n$.

¹²³ The steps of the algorithm are:

- Recursively multiply $f_0 + f_1 t + \dots + f_{n-1} t^{n-1}$ by $g_0 + g_1 t + \dots + g_{n-1} t^{n-1}$;
- Compute $(f_ng_0 + f_0g_n)t^n + (f_ng_1 + f_1g_n)t^{n+1} + \dots + f_ng_nt^{2n}$. This takes 2n+1 multiplications and n additions;
- Add the former to the latter. This takes n-1 additions for the coefficients of $t^n, ..., t^{2n-2}$; the other coefficients do not overlap.

We get the recursion formula $M(n+1) \leq M(n) + 4n$ and the best case bound $M(n) \leq 2n^2 - 2n + 1$.

This algorithm is efficient only in low degrees. Indeed, as reported in [6], the cost of the school-book
algorithm is too high from degree 14 on.

132 3.2 Karatsuba

Given two 2*n*-bit polynomials F and G, write them as $F = F_0 + F_1 t^n$, $G = G_0 + G_1 t^n$ for some other *n*-bit polynomials F_0 , F_1 , G_0 , G_1 . The Karatsuba algorithm [27] can be described by the product.

$$(F_0 + t^n F_1)(G_0 + t^n G_1)$$

= $(1 + t^n)F_0G_0 + t^n(F_0 + F_1)(G_0 + G_1) + (t^n + t^{2n})F_1G_1$

- 136 The operations involved are:
- 137 $M_2(n)$: multiplication F_0G_0
- 138 -n-1: sum $S_1 = (1+t^n)F_0G_0$
- ¹³⁹ 2n: sums $F_0 + F_1$, $G_0 + G_1$
- ¹⁴⁰ $M_2(n)$: multiplication $(F_0 + F_1)(G_0 + G_1)$
- ¹⁴¹ $M_2(n)$: multiplication F_1G_1
- ¹⁴² n 1: sum $S_2 = (t^n + t^{2n})F_1G_1$
- ¹⁴³ 2n 1: sum $S_3 = S_1 + t^n (F_0 + F_1) (G_0 + G_1)$
- 144 -2n-1: sum S_3+S_2

¹⁴⁵ Summing all costs, we get

$$M_2(2n) \le 3M_2(n) + 8n - 4 \tag{1}$$

146 3.3 Bernstein

Bernstein improves the Karatsuba algorithm defining the so-called *Refined Karatsuba* algorithm [5]. As described in Section 3.2, we consider two 2*n*-bit polynomials F, G and take F_0 , G_0 as *n*-bit polynomials and F_1 , G_1 as *k*-bit polynomials. The Refined Karatsuba algorithm can be described as follows.

$$(F_0 + t^n F_1)(G_0 + t^n G_1)$$

= $(1 + t^n)F_0G_0 + t^n(F_0 + F_1)(G_0 + G_1) + (t^n + t^{2n})F_1G_1$
= $(1 + t^n)F_0G_0 + t^n(F_0 + F_1)(G_0 + G_1) + (1 + t^n)t^nF_1G_1$
= $(1 + t^n)(F_0G_0 + t^nF_1G_1) + t^n(F_0 + F_1)(G_0 + G_1)$

¹⁵¹ The cost estimation of the algorithm is

$$M_2(n+k) \le 2M_2(n) + M_2(k) + 4k + 3n - 3 \qquad n/2 \le k \le n \tag{2}$$

¹⁵² This improves that of Karatsuba described in Section 3.2.

¹⁵³ Moreover in [5] we can find another improvement but for higher degrees. In fact, Bernstein ¹⁵⁴ presents the so-called *Two-level Seven-way Recursion*. Consider the problem of multiplying two ¹⁵⁵ polynomial of 4n bits. Applying the Refined Karatsuba identity three times and factoring out ¹⁵⁶ $1 + t^n$, we get

$$(F_0 + t^n F_1 + t^{2n} F_2 + t^{3n} F_3)(G_0 + t^n G_1 + t^{2n} G_2 + t^{3n} G_3)$$

= $(1 + t^{2n}) \Big((1 + t^n) (F_0 G_0 + t^n F_1 G_1 + t^{2n} F_2 G_2 + t^{3n} F_3 G_3) + t^n (F_0 + F_1) (G_0 + G_1) + t^{3n} (F_2 + F_3) (G_2 + G_3) \Big)$
+ $t^{2n} \Big(F_0 + F_2 + t^n (F_1 + F_3) \Big) \Big(G_0 + G_2 + t^n (G_1 + G_3) \Big)$

The cost evaluation for polynomials with 3n + k coefficients, assuming $n/2 \le k \le n$, is

- ¹⁵⁸ 3M(n): multiplications F_0G_0, F_1G_1, F_2G_2 .
- 159 M(k): multiplication F_3G_3 .
- ¹⁶⁰ 3(n-1): sums $S_1 = F_0 G_0 + t^n F_1 G_1 + t^{2n} F_2 G_2 + t^{3n} F_3 G_3.$
- ¹⁶¹ -2n+2k-1: sum $(1+t^n)S_1$.
- ¹⁶² 2n + M(n): multiplication $S_2 = (F_0 + F_1)(G_0 + G_1)$.
- ¹⁶³ 2k + M(n): multiplication $S_3 = (F_2 + F_3)(G_2 + G_3)$.
- ¹⁶⁴ 4n 2: sums $S_4 = (1 + t^n)S_1 + t^nS_2 + t^{3n}S_3$.
- ¹⁶⁵ 2n + 2k + M(2n): multiplication $S_5 = (F_0 + F_2 + t^n(F_1 + F_3))(G_0 + G_2 + t^n(G_1 + G_3)).$
- ¹⁶⁶ 6n + 2k 2: sum $(1 + t^{2n})S_4 + t^{2n}S_5$.

¹⁶⁷ Hence, summing all the costs, we obtain

$$M(3n+k) \le M(2n) + 5M(n) + M(k) + 19n + 8k - 8 \qquad n/2 \le k \le n \tag{3}$$

¹⁶⁸ 3.4 Cenk, Negre, Hasan

In [12] and [13], the authors suggest to use a field bigger than \mathbb{F}_2 for Projective Lagrange Interpolation. They consider two 3*n*-bit polynomials F and G, written as $F = F_0 + F_1 t^n + F_2 t^{2n}$, $G = G_0 + G_1 t^n + G_2 t^{2n}$ with F_0 , F_1 , F_2 , G_0 , G_1 , G_2 *n*-bit polynomials. Then, they make computations using the elements of \mathbb{F}_4 . If α is a generator of \mathbb{F}_4^{\times} , and assuming *n* odd, the new algorithm can be written as follows.

¹⁷⁴ Notice that if n is even, we just exchange the formulae for $H(\alpha)$ and $H(\alpha + 1)$. As described in ¹⁷⁵ [12], the cost evaluation for the *CNH 3-way split algorithm* is

$$M_2(3n) \le 2M_4(n) + 3M_2(n) + 29n - 12$$

An improvement of this algorithm is described in [12]: using two polynomials C_0 and C_1 to rearrange equations $H(\alpha)$ and $H(\alpha + 1)$

$$H(\alpha) = \left(F_0 + F_2 + \alpha(F_1 + F_2)\right) \left(G_0 + G_2 + \alpha(G_1 + G_2)\right) = C_0 + \alpha C_1$$

$$H(\alpha + 1) = \left(F_0 + F_1 + \alpha(F_1 + F_2)\right) \left(G_0 + G_1 + \alpha(G_1 + G_2)\right) = (C_0 + C_1) + \alpha C_1$$

¹⁷⁸ it is possible to redefine (4) as

$$\begin{aligned} & (F_0 + t^n F_1 + t^{2n} F_2)(G_0 + t^n G_1 + t^{2n} G_2) \\ & = H(\infty) t^{4n} + H(0) \\ & + \Big(H(0) + H(1) + C_1 \Big) t^{3n} + \Big(C_0 + H(1) + C_1 \Big) t^{2n} + \Big(H(\infty) + H(1) + C_0 \Big) t^n. \end{aligned}$$

¹⁷⁹ The relative cost for this algorithm is

$$\begin{cases} M_2(3n) \le 3M_2(n) + M_4(n) + 20n - 5\\ M_4(3n) \le 5M_4(n) + 56n - 19 \end{cases}$$
(5)

However, (5) does not perform well for low degrees as shown in [12] (see table 2). More encouraging
is the best case bound, but it requires the following two results.

Result 1 (From Master Theorem) Let a, b and i be positive integers and assume that $a \neq b$. Let $n = b^i$ and $a \neq 1$. The solution to the inductive relation

$$\begin{cases} r_1 = e \\ r_n = ar_{n/b} + cn + d \end{cases}$$

is

$$r_n = \left(e + \frac{bc}{a-b} + \frac{d}{a-1}\right) n^{\log_b a} - \frac{bc}{a-b}n - \frac{d}{a-1}.$$

Proof. The proof is trivial. Substituting in the inductive relation the expression for r_n and $r_{n/b}$, we find an identity.

Result 2 (From Master Theorem) Let a, b and i be positive integers. Let $n = b^i$, a = b, $a \neq 1$ and $\delta \neq 1$. The solution to the inductive relation

$$\begin{cases} r_1 = e \\ r_n = ar_{n/b} + cn + fn^{\delta} + d \end{cases}$$

is

$$r_n = \left(e + \frac{fb^{\delta}}{a - b^{\delta}} + \frac{d}{a - 1}\right)n - n^{\delta}\left(\frac{fb^{\delta}}{a - b^{\delta}}\right) + cn\log_b n - \frac{d}{a - 1}$$

¹⁸⁴ *Proof.* Similar to the previous one

¹⁸⁵ Going back to (5), we can apply the first lemma to the second inequality, getting

$$M_4(n) \le 30.25n^{1.46} - 28n + 4.75$$

¹⁸⁶ and replacing it in the first inequality, we obtain

$$M_2(3n) \le 3M_2(n) + 30.25n^{1.46} - 8n - 0.25$$

¹⁸⁷ Finally, using the second lemma we get the best case bound

 $M_2(n) \le 15.125n^{1.46} - 14.25n - 2.67n \log_3 n + 0.125.$

188 3.5 Find and Peralta

199

In [23], authors develop a new method based on Karatsuba algorithm. They consider kn-bit polynomials F and G, written as $F = F_0 + F_1 t^n + \ldots + F_{k-1} t^{(k-1)n}$ and $G = G_0 + G_1 t^n + \ldots + G_{k-1} t^{(k-1)n}$ for some n-bit polynomials F_i and G_i , $i = 0, \ldots, k-1$.

The sketch of their idea is the following: (a) compute all possible subsets of $\{F_0, F_1, \ldots, F_{k-1}\}$ and $\{G_0, G_1, \ldots, G_{k-1}\}$, excluding the emptyset; (b) take the sum of the elements in every subsets, thus having $2^k - 1$ sums for F and G respectively; (c) multiply the $2^k - 1$ sums for F by the corresponding sum for G — for example, $F_6 + F_8 + F_9$ will be multiplied by $G_6 + G_8 + G_9$ obtaining H, a set of $2^k - 1$ elements; (d) a computer search gives a minimal subset $\mathcal{H} \subset H$, containing only the elements needed to multiply FG.

¹⁹⁸ For example, if we consider k = 4 we get

$$F = F_0 + F_1 t^n + F_2 t^{2n} + F_3 t^{3n} \quad \text{and} \quad G = G_0 + G_1 t^n + G_2 t^{2n} + G_3 t^{3n}$$

(a)-(b) After computing all possible subsets, the $2^4 - 1$ possible sums for F and G are

$$\{F_0, F_1, F_2, F_3, F_0 + F_1, F_0 + F_2, F_0 + F_3, F_1 + F_2, F_1 + F_3, F_2 + F_3, F_0 + F_1 + F_2, F_0 + F_1 + F_3, F_0 + F_2 + F_3, F_1 + F_2 + F_3, F_0 + F_1 + F_2 + F_3\}$$

$$\{G_0, G_1, G_2, G_3, G_0 + G_1, G_0 + G_2, G_0 + G_3, G_1 + G_2, G_1 + G_3, G_2 + G_3, G_0 + G_1 + G_2, G_0 + G_1 + G_3, G_0 + G_2 + G_3, G_1 + G_2 + G_3, G_0 + G_1 + G_2 + G_3\}$$

 $_{201}$ (c) It is straightforward and give us

$$H = \{H_0, H_1, H_2, H_3, H_{01}, H_{02}, H_{03}, H_{12}, H_{13}, H_{23}, H_{123}, H_{023}, H_{013}, H_{012}, H_{0123}\}$$

- 202 where $H_{i_1...i_k} = (F_{i_1} + \ldots + F_{i_k})(G_{i_1} + \ldots + G_{i_k}).$
- 203 (d) Now, a computer search will give the following

$$\mathcal{H} = \{H_0, H_1, H_{01}, H_2, H_{02}, H_3, H_{13}, H_{23}, H_{0123}\},\$$

The elements of \mathcal{H} are the only ones needed to multiply FG. Then, the authors split each $H_{i_1...i_k}$

in three parts, say H_L , H_M and H_H , and find the SLPs that compute $f(x) = (H_M)x$ and $f(x) = (H_L, H_H)x$ over GF(2).

Calling $M_{\wedge}(\mathcal{C})$ the cardinality of \mathcal{H} , s(T) the number of operations needed to compute all the sums of the form $F_{i_1} + \ldots + F_{i_k}$, s(R) the number of operations of a SLP that computes $f(x) = (H_M)x$ over GF(2), and s(E) the number of operations of a SLP that computes $f(x) = (H_L, H_H)x$ over GF(2), the general estimate for multiplying two kn-bit polynomials will be

$$M(kn) \le n_{\wedge}M(n) + 2n \cdot s(T) + (n-1) \cdot s(E) + s(R).$$

211 Setting $k = 4, 5, 6, 7, \dots$, we get

$$M(4n) \le 9M(n) + 34n - 12$$

$$M(5n) \le 13M(n) + 54n - 19$$

$$M(6n) \le 17M(n) + 85n - 29$$

$$M(7n) \le 22M(n) + 107n - 33$$

...
(6)

Notice that finding the number of operations of a SLP that computes $f(x) = (H_M)x$ and $f(x) = (H_L, H_H)x$ over GF(2) may require heavy use of HW resources.

²¹⁴ **4** Our contribution

In this section, we define a more efficient algorithm rearranging the order of operations and improve the general complexity through best case bounds. In the sequel, we will denote these two approaches with (I) and (II) respectively.

218 4.1 Improvements of Two-level Seven-way (I)

We can now give an improvement of the preceding algorithm for higher degrees. In fact, we consider polynomials of 8n bits and apply the same technique of the Two-level Seven-way Recursion. We can collect t^{4n} , apply the Refined Karatsuba and apply Two-level Seven-way Recursion for inner multiplication. We will call the following algorithm *Three-level Recursion*.

$$\begin{split} & \left(\sum_{i=0}^{7} t^{in} F_{i}\right) \left(\sum_{i=0}^{7} t^{in} G_{i}\right) \\ &= \left(\sum_{i=0}^{3} t^{in} F_{i} + t^{4n} \sum_{i=0}^{3} t^{in} F_{i+4}\right) \left(\sum_{i=0}^{3} t^{in} G_{i} + t^{4n} \sum_{i=0}^{3} t^{in} G_{i+4}\right) \\ &= (1 + t^{4n}) \left(\left(\sum_{i=0}^{3} t^{in} F_{i}\right) \left(\sum_{i=0}^{3} t^{in} G_{i}\right) + t^{4n} \left(\sum_{i=0}^{3} t^{in} F_{i+4}\right) \left(\sum_{i=0}^{3} t^{in} G_{i+4}\right)\right) + \\ & t^{4n} \left(\sum_{i=0}^{3} t^{in} F_{i} + \sum_{i=0}^{3} t^{in} F_{i+4}\right) \left(\sum_{i=0}^{3} t^{in} G_{i} + \sum_{i=0}^{3} t^{in} G_{i+4}\right) \\ &= (1 + t^{4n}) \left(\left(\sum_{i=0}^{3} t^{in} F_{i}\right) \left(\sum_{i=0}^{3} t^{in} G_{i}\right) + t^{4n} \left(\sum_{i=0}^{3} t^{in} F_{i+4}\right) \left(\sum_{i=0}^{3} t^{in} G_{i+4}\right) \right) + \\ & t^{4n} \left(\sum_{i=0}^{3} t^{in} (F_{i} + F_{i+4})\right) \left(\sum_{i=0}^{3} t^{in} (G_{i} + G_{i+4})\right) \end{split}$$

$$= (1+t^{4n}) \left((1+t^{2n}) \left((1+t^n) \left(\sum_{i=0}^7 t^{in} F_i G_i \right) + \right. \\ \left. \sum_{j=0}^3 t^{(2j+1)n} (F_{2j} + F_{2j+1}) (G_{2j} + G_{2j+1}) \right) + \\ \left. + t^{2n} (F_0 + F_2 + (F_1 + F_3)t^n) (G_0 + G_2 + (G_1 + G_3)t^n) + \right. \\ \left. + t^{6n} (F_4 + F_6 + (F_5 + F_7)t^n) (G_4 + G_6 + (G_5 + G_7)t^n) \right) + \\ \left. t^{4n} \left(\sum_{i=0}^3 t^{in} (F_i + F_{i+4}) \right) \left(\sum_{i=0}^3 t^{in} (G_i + G_{i+4}) \right) \right)$$

The cost evaluation for polynomials with 7n + k coefficients, assuming $n/2 \le k \le n$, is

- 7M(n): multiplication F_iG_i , for $i = 0, \ldots, 6$ 224 - M(k): multiplication F_7 by G_7 225 -7(n-1): sum $S_1 = \sum_{i=0}^{7} t^{in} F_i G_i$ 226 -6n + 2k - 1: sum $S_2 = (1 + t^n)S_1$ 227 -3(2n+M(n)): multiplication $(F_{2j}+F_{2j+1})(G_{2j}+G_{2j+1})$, for j=0,1,2228 -2k+M(n): multiplication $(F_6+F_7)(G_6+G_7)$ 229 - 4(2n - 1): sum $S_3 = S_2 + \sum_{j=0}^3 t^{(2j+1)n} (F_{2j} + F_{2j+1}) (G_{2j} + G_{2j+1})$ 230 -6n + 2k - 1: sum $S_4 = (1 + t^{2n})S_3$ 231 - 4n + M(2n): multiplication $S_5 = (F_0 + F_2 + (F_1 + F_3)t^n)(G_0 + G_2 + (G_1 + G_3)t^n)$ 232 - 2n + 2k + M(2n): multiplication $S_6 = (F_4 + F_6 + (F_5 + F_7)t^n)(G_4 + G_6 + (G_5 + G_7)t^n)$ 233 -2(4n-1): sum $S_7 = S_4 + t^{2n}S_5 + t^{6n}S_6$ 234 -6n + 2k - 1: sum $S_8 = (1 + t^{4n})S_7$ 235 $-6n + 2k + M(4n): \text{ multiplication } S_9 = \left(\sum_{i=0}^3 t^{in}(F_i + F_{i+4})\right) \left(\sum_{i=0}^3 t^{in}(G_i + G_{i+4})\right)$ 236 -8n-1: sum $S_8 + t^{4n}S_9$ 237

Hence, summing all the costs, we get

$$M(7n+k) \le M(4n) + 2M(2n) + 11M(n) + M(k) + 67n + 12k - 17 \qquad n/2 \le k \le n$$

One could continue in the same fashion of the *Three-level*, consider polynomials of $2^k n$ bits, collect $t^{2^{k-1}n}$, apply the *Refined Karatsuba* and the "k-1"-level Recursion. We are going to see that this is not a totally right way.

We want to see which kind of improvements are given from algorithms of the Section 3.3. They are of two types: the best case bound (for n large enough) and concrete (only on low degree). Lemma 1 will help us to state the best case bounds.

If we go back to the recursion (2), we see that, when k is equal to n, it could be rewritten as

$$M(2n) \le 3M(n) + 7n - 3 \tag{7}$$

245 so, also as

$$M(n) \le 3M(n/2) + \frac{7}{2}n - 3.$$

²⁴⁶ We can now apply Lemma 1, finding

$$M(n) \le 6.5n^{\log_2 3} - 7n + 1.5$$

²⁴⁷ What about (3)? If we state k = n, we get

$$M(4n) \le M(2n) + 6M(n) + 27n - 8$$

so, we cannot apply Lemma 1, but if we substitute M(2n) with the recursion formula (7), we find

$$M(4n) \le 9M(n) + 34n - 11 \tag{8}$$

249 finally, we obtain

$$M(n) \le 6.43n^{\log_2 3} - 6.8n + 1.38$$

²⁵⁰ Notice that (8) is not the best known, in fact, in [23] we can find

$$M(4n) \le 9M(n) + 34n - 12 \tag{9}$$

²⁵¹ so, for higher levels of recursion we will use (9) instead of (8).

To enable an easy comparison of different algorithms, in Table 1 we present the the best case

²⁵³ bounds. Notice that the first and the third coefficients of each estimation are decreasing, instead ²⁵⁴ the second one is growing.

Algorithm	Best case bound	Number of bits
[5] Refined Karatsuba	$M(n) \le 6.50n^{\log_2 3} - 7.00n + 1.50$	$n = 2^x$
[5] Two-level Seven-way	$M(n) \le 6.43n^{\log_2 3} - 6.80n + 1.38$	$n = 4^x$
[23]4-way split	$M(n) \le 6.30n^{\log_2 3} - 6.80n + 1.50$	$n = 4^x$
Three-level	$M(n) \le 6.34n^{\log_2 3} - 6.68n + 1.35$	$n = 8^x$
Four-level	$M(n) \le 6.30n^{\log_2 3} - 6.62n + 1.31$	$n = 16^x$
Five-level	$M(n) \le 6.28n^{\log_2 3} - 6.57n + 1.30$	$n = 32^x$

 Table 1. Best case bounds: comparison of different algorithms

²⁵⁵ By exploiting the recursion formulae, we can also improve the cost of the multiplication between ²⁵⁶ two polynomials of low degree (see Table 2).

²⁵⁷ 4.2 Product in finite fields: general case (II)

There are several approaches that can be adopted to multiply two polynomials, say F and G, in an efficient way. In this section we provide a new one. In doing so, we make some useful assumptions. We take d a non negative integer and the factors F and G of the form

$$F(t) = \sum_{i=0}^{2^{d-1}} F_i(t) t^{in}$$
 with $F_i \in \mathbb{F}_2[t], \ \deg F_i \le n-1$

In order to simplify notation, given a factor F(t) of the above form, we define

$$\widetilde{F}(x) = \sum_{i=0}^{2^{d-1}} F_i(t) x^i$$

²⁶² We are now ready to suggest a new efficient algorithm.

\overline{n}	Best known	Our	Gates	Depth	Depth of our	Depth	Algorithm
		contribution	gained	best known	contribution	gained	used
24	702 [12]	697	5	10	9	1	3-lev
32	1156 [12]	1148	8	11	10	1	3-lev
40	1703 [23]	1700	3	14	13	1	3-lev
47	2228 [23]	2214	14	13	11	2	4-lev
48	2259 [23]	2238	21	13	11	2	4-lev
63	3626 [23]	3612	14	14	12	2	4-lev
64	3673 [23]	3640	23	13	12	1	4-lev
72	4510 [23]	4510	0	25	15	10	3-lev
79	5329 [23]	5313	16	16	15	1	4-lev
80	5366 [23]	5345	21	16	15	1	4-lev
95	7073 [23]	6978	95	15	13	2	5-lev
96	7110 [23]	7006	104	16	13	3	5-lev
120	10438 [5]	10294	144	130	17	113	3-lev
127	11447 [5]	11277	170	17	14	3	5-lev
128	11466 [12]	11309	157	16	14	2	5-lev

Let's start with an observation. There is an interesting connection between $x^{2^d} + x$ and Lagrange polynomials. Indeed, we can prove the following three equalities:

265 1.
$$l_0(x) = \frac{x^{2^d} + x}{x} = x^{2^d - 1} + 1$$

266 2. $l_{\alpha^i}(x) = \frac{x^{2^d} + x}{x + \alpha^i}$ $i = 0, 1, \dots, 2^d - 2$
267 3. $l_{\infty} = x^{2^d} + x = x(x^{2^d - 1} + 1) = x \cdot l_0(x)$

 $_{\rm 268}$ $\,$ We now rewrite the interpolation law as follows:

$$\begin{split} \widetilde{H}(x) &= \widetilde{H}(0) \cdot l_0(x) + \sum_{i=0}^{2^d-2} \widetilde{H}(\alpha^i) \cdot l_{\alpha^i}(x) + \widetilde{H}(\infty) \cdot l_{\infty}(x) \\ \widetilde{H}(x) &= \widetilde{H}(0) \cdot l_0(x) + \sum_{i=0}^{2^d-2} \widetilde{H}(\alpha^i) \cdot l_{\alpha^i}(x) + x \widetilde{H}(\infty) \cdot l_0(x) \\ \widetilde{H}(x) &= \widetilde{H}(0) \cdot (1 + x^{2^d-1}) + \sum_{i=0}^{2^d-2} \widetilde{H}(\alpha^i) \frac{x^{2^d} + x}{x + \alpha^i} + x \widetilde{H}(\infty) \cdot (1 + x^{2^d-1}) \\ \widetilde{H}(x) &= (1 + x^{2^d-1}) (\widetilde{H}(0) + x \widetilde{H}(\infty)) + \sum_{i=0}^{2^d-2} \widetilde{H}(\alpha^i) \frac{x^{2^d} + x}{x + \alpha^i} \end{split}$$
(10)

269

Notice that fractions
$$\frac{x^2 + x}{x + \alpha^i}$$
 of Equation (10) are Lagrange polynomials of $\mathbb{F}_{2^d}^{\times}$. Using the naive division algorithm, we obtain

$$l_{\alpha^{i}}(x) = \frac{x^{2^{d}} + x}{x + \alpha^{i}} = \sum_{j=1}^{2^{d}-1} (\alpha^{i})^{(j-1)} x^{2^{d}-j}$$
(11)

²⁷² and replacing Equation (11) in (10), we get

d

$$\widetilde{H}(x) = (1 + x^{2^{d}-1})(\widetilde{H}(0) + x\widetilde{H}(\infty)) + \sum_{i=0}^{2^{d}-2} \widetilde{H}(\alpha^{i}) \sum_{j=1}^{2^{d}-1} \alpha^{i(j-1)} x^{2^{d}-j}$$

$$\widetilde{H}(x) = \underbrace{(1 + x^{2^{d}-1})(\widetilde{H}(0) + x\widetilde{H}(\infty))}_{S_{A}} + \underbrace{\sum_{j=1}^{2^{d}-1} \left(\sum_{i=0}^{2^{d}-2} \alpha^{i(j-1)} \widetilde{H}(\alpha^{i})\right) x^{2^{d}-j}}_{S_{B}}$$
(12)

- ²⁷³ We will now discuss the costs of this algorithm.
- Consider S_A : it will always be the same in every field \mathbb{F}_{2^d} . The cost of the operations in S_A is:
- ²⁷⁵ $M_2(n)$: multiplication $\tilde{H}(0) = F_0 G_0$ ²⁷⁶ - $M_2(n)$: multiplication $\tilde{H}(\infty) = F_{2^{d-1}} G_{2^{d-1}}$ ²⁷⁷ - n - 1: sum $\tilde{H}(0) + x \tilde{H}(\infty)$ ²⁷⁸ - 0: sum $(1 + x^{2^d - 1})(\tilde{H}(0) + x \tilde{H}(\infty))$

The last estimate holds only for $d \neq 1$, otherwise polynomials $\widetilde{H}(0) + x\widetilde{H}(\infty)$ and $x(\widetilde{H}(0) + x\widetilde{H}(\infty))$ overlap on some bits and it becomes 2n - 1.

Consider now the sum $S_A + S_B$. The degree of S_A is $(2^d + 2)n - 2$, but its structure lacks many powers. Indeed, S_A is a polynomial that has two parts, the first with powers whose degrees are running from 0 to 3n - 2, the second from $(2^d - 1)n$ to $(2^d + 2)n - 2$. This is very useful because S_B has powers with degrees from n to $(2^d + 1)n - 2$, so, S_A and S_B overlaps only in two parts. The first in (3n - 2) - n + 1 = 2n - 1 bits and the second in $(2^d + 1)n - 2 - (2^d - 1)n + 1 = 2n - 1$. Since the cost of $S_A + S_B$ does not depend on the field, it is

287
$$-4n-2$$
: sum $H(t) = S_A + S_B$

Finally, consider the sums in S_B . Supposing that the internal summation has been computed, the external one is conducted over $2^d - 1$ polynomials. These polynomials have powers from cn to cn + 2n - 2, with $c = 1, ..., 2^d - 1$ and each one overlaps the following on n - 1 bit. Therefore, the cost of the external sum in S_B is

²⁹² -
$$(2^d - 2)(n - 1)$$
: sum $S_1x + S_2x^2 + \dots + S_{2^d - 1}x^{2^d - 1}$

We are left to compute the internal sums in S_B . We will show that we do not need to compute all $\widetilde{H}(\alpha^i)$.

Firstly, we start with showing that if $i = 2^q i'$ for some q, then there will be a connection between the coefficients of $\tilde{H}(\alpha^i)$ and $\tilde{H}(\alpha^{i'})$.

Theorem 1. If we take integers i and i' such that $i' = 2^q i$ for some q, then we can express the coefficients of $\widetilde{H}(\alpha^{i'})$ as a linear combination of the coefficients of $\widetilde{H}(\alpha^i)$.

²⁹⁹ *Proof.* We have

$$\widetilde{H}(\alpha^{i}) = \widetilde{F}(\alpha^{i}) \cdot \widetilde{G}(\alpha^{i}) = \sum_{j=0}^{2^{d-1}} F_{j} \alpha^{ij} \sum_{k=0}^{2^{d-1}} G_{k} \alpha^{ik} = \sum_{l=0}^{2^{d}} \left(\sum_{\substack{j+k=l\\0 \le j,k \le 2^{d-1}}} F_{j} G_{k} \right) (\alpha^{i})^{l}.$$

300 We define

14 Alessandro De Piccoli, Andrea Visconti, Ottavio Giulio Rizzo

$$H_l = \sum_{\substack{j+k=l\\0\le j,k\le 2^{d-1}}} F_j G_k$$

301 thus

$$\widetilde{H}(\alpha^i) = \sum_{l=0}^{2^d} H_l \alpha^{il}$$
(13)

Remember that the field \mathbb{F}_{2^d} can be viewed as vector space over \mathbb{F}_2 . So, we can write every power of α as a linear combination of the elements of the basis $\{1, \alpha, \alpha^2, \dots, \alpha^{d-1}\}$

$$\alpha^{il} = \sum_{b=0}^{d-1} c_{b,il} \alpha^b \tag{14}$$

and substitute (14) in (13), getting

$$\widetilde{H}(\alpha^{i}) = \sum_{l=0}^{2^{d}} H_{l} \sum_{b=0}^{d-1} c_{b,il} \alpha^{b} = \sum_{b=0}^{d-1} \left(\sum_{l=0}^{2^{d}} H_{l} c_{b,il} \right) \alpha^{b}$$

Take now $\widetilde{H}(\alpha^{iw})$ with w > 1, from (14) we have

$$\alpha^{ilw} = (\alpha^{il})^w = \left(\sum_{b=0}^{d-1} c_{b,il} \alpha^b\right)^w.$$

In order to write coefficients of $\widetilde{H}(\alpha^{iw})$ as linear combinations of the coefficients of $\widetilde{H}(\alpha^{i})$, we need the following equality:

$$\left(\sum_{b=0}^{d-1} c_{b,il} \alpha^b\right)^w = \sum_{b=0}^{d-1} c_{b,il} \alpha^{bw}$$
(15)

308 Suppose it holds, then

$$\widetilde{H}(\alpha^{iw}) = \sum_{l=0}^{2^d} H_l \left(\sum_{b=0}^{d-1} c_{b,il} \alpha^b \right)^w = \sum_{l=0}^{2^d} H_l \sum_{b=0}^{d-1} c_{b,il} \alpha^{bw} = \sum_{b=0}^{d-1} \left(\sum_{l=0}^{2^d} H_l c_{b,il} \right) \alpha^{bw}.$$

 $_{309}$ Finally, using (14), we obtain

$$\widetilde{H}(\alpha^{iw}) = \sum_{b=0}^{d-1} \left(\sum_{l=0}^{2^d} H_l c_{b,il} \right) \alpha^{bw} = \sum_{b=0}^{d-1} \left(\sum_{l=0}^{2^d} H_l c_{b,il} \right) \sum_{t=0}^{d-1} c_{t,bw} \alpha^t =$$
$$= \sum_{t=0}^{d-1} \left(\sum_{b=0}^{d-1} c_{t,bw} \left(\sum_{l=0}^{2^d} H_l c_{b,il} \right) \right) \alpha^t$$

Let's go back to (15): since we are in characteristic two, the equality holds when $w = 2^q$, for some q_1 .

Secondly, we have to remember that $\alpha^{2^d} = \alpha$. So, for every $\widetilde{H}(\alpha^i)$, with $i \not\equiv 0 \mod 2^d - 1$, there are at most d different evaluations of \widetilde{H} that can be computed with $\widetilde{H}(\alpha^i)$. They are the following set:

$$P_i = \{ \widetilde{H}(\alpha^i), \widetilde{H}(\alpha^{2i}), \widetilde{H}(\alpha^{2^{2i}}), \dots, \widetilde{H}(\alpha^{2^{d-1}i}) \}$$

We can count the number of P_i for every algebraic extension of \mathbb{F}_2 , because it depends only on the degree d.

Theorem 2. The number of different P_i is

$$P = -1 + \frac{1}{d} \sum_{k=0}^{d-1} \gcd(2^k - 1, 2^d - 1)$$

317 In particular, if $2^d - 1$ is prime, $P = (2^d - 2)/d$.

We define an action of the (additive) group \mathbb{Z} on $\mathbb{Z}/(2^d-1)\mathbb{Z}$ as $k \cdot i = 2^k i$. Since d acts trivially, this action induces an action of $\mathbb{Z}/d\mathbb{Z}$ on $\mathbb{Z}/(2^d-1)\mathbb{Z}$: if O(i) is the orbit of $i \in \mathbb{Z}/(2^d-1)\mathbb{Z}$, then $P_i = \{\widetilde{H}(\alpha^j) : j \in O(i)\}$. We have a trivial orbit $O(0) = \{0\}$ which would correspond to the set $P_0 = \{\widetilde{H}(1)\}$ which we will not count. In order to prove the Theorem 2, we need a couple of additional lemmata.

Lemma 1 (Burnside's Lemma). If the finite group G acts on the finite set X, then the number of orbits is

$$\frac{1}{\#G}\sum_{g\in G}\#\operatorname{Fix}(g)$$

- ³²³ where $Fix(g) = \{x \in X : g \cdot x = x\}.$
- ³²⁴ *Proof.* See [36], chapter 3.

Lemma 2. Fix an integer N and let $x \in \mathbb{Z}/N\mathbb{Z}$. Then

$$\#\{y \in \mathbb{Z}/N\mathbb{Z} : xy = 0\} = \gcd(x, N)$$

Proof. Let $\mathcal{Z} = \{y \in \mathbb{Z}/N\mathbb{Z} : xy = 0\}$: it is not empty since it includes 0 and it is straightforward to verify that \mathcal{Z} is an ideal in $\mathbb{Z}/N\mathbb{Z}$, thus $\mathcal{Z} = \langle d \rangle$ where d is a divisor of N and \mathcal{Z} has N/d elements. Let $D = \gcd(x, N), \ \nu = N/D$ and define \tilde{x} as the smallest positive integer such that $\tilde{x} \equiv x \mod N$. Since

$$\nu x = \frac{N}{D}x \equiv N\frac{\tilde{x}}{D} \equiv 0 \mod N$$

we have that $\nu \in \mathcal{Z}$. Viceversa, if $y \in \mathcal{Z}$ and \tilde{y} is the smallest positive integer such that $\tilde{y} \equiv y \mod N$, we have that $\tilde{y}\tilde{x} = kN$ for some integer $k \ge 0$. Thus

$$\tilde{y}\frac{\tilde{x}}{D} = k\frac{N}{D} = k\nu;$$
 i.e., $\tilde{y}\frac{\tilde{x}}{D} \equiv 0 \mod \nu$

Since \tilde{x}/D and $\nu = N/D$ are relatively prime, this implies $\tilde{y} \equiv 0 \mod \nu$, i.e., ν divides \tilde{y} , thus

- $_{326}$ $y \in \langle \nu \rangle$. This shows that $\mathcal{Z} = \langle \nu \rangle$, hence that $\# \mathcal{Z} = N/\nu = \gcd(x, N)$.
- Proof (Theorem 2). Fix $k \in \mathbb{Z}/d\mathbb{Z}$: we want to compute Fix $(k) = \{x \in \mathbb{Z}/(2^d 1)\mathbb{Z} : k \cdot x = x\}$. If $x \in \text{Fix}(k)$ then $2^k x = x$, that is $(2^k - 1)x = 0$; and, viceversa, if $(2^k - 1)x = 0$ then $k \cdot x = x$.
- Hence, Fix $(k) = \{x \in \mathbb{Z}/(2^d 1)\mathbb{Z} : (2^k 1)x = 0\}$ has, by the previous lemma, $gcd(2^k 1, 2^d 1)$ elements.
- ³³¹ The thesis now follows from Burnside's Lemma.

Let's sum up the costs of Equation (12).

- $M_2(n)$: multiplication $\widetilde{H}(0) = F_0 G_0$ 333 - $M_2(n)$: multiplication $\widetilde{H}(\infty) = F_{2^{d-1}}G_{2^{d-1}}$ 334 -n-1: sum $\widetilde{H}(0) + x\widetilde{H}(\infty)$ 335 $- 0: \operatorname{sum} (1 + x^{2^d - 1})(\widetilde{H}(0) + x\widetilde{H}(\infty))$ 336 $-4n-2: \operatorname{sum} H(t) = S_A + S_B$ 337 - $(2^d - 2)(n - 1)$: sums $S_1x + S_2x^2 + \dots + S_{2^d - 1}x^{2^d - 1}$ 338 $-\Delta_1$: evaluation $\widetilde{F}(\alpha^i), \ \widetilde{G}(\alpha^i)$ 339 $-M_2(n)$: multiplication H(1)340 - $PM_{2^d}(n)$: multiplications $H(\alpha^i)$ 341 $-\Delta_2$: sums $S_i, i = 1, ..., 2^d - 1$ 342

Some of the previous costs are left blank, in particular Δ_1 and Δ_2 , since the evaluation of F, Gand the sums S_i depends on the polynomial used to generate the field \mathbb{F}_{2^d} . Roughly speaking, we can say that $\Delta_1 = An$ and $\Delta_2 = B(2n-1)$, obtaining the following estimation:

$$M((2^{d-1}+1)n) \le 3M_2(n) + PM_{2^d}(n) + \underbrace{(2^d+3+A+2B)}_{Q_1}n + \underbrace{(-1-2^d-B)}_{Q_2}$$
$$M((2^{d-1}+1)n) \le 3M_2(n) + PM_{2^d}(n) + Q_1n + Q_2$$
(16)

Now, we want to apply the following result.

Result 3 (From Master Theorem) Let a and b be positive real numbers with $a \ge 1$ and $b \ge 2$. Let T(n) be defined by

$$T(n) = \begin{cases} aT\left(\left\lceil \frac{n}{b}\right\rceil\right) + f(n) & n > 1\\ d & n = 1 \end{cases}$$

347 Then

- ³⁴⁸ 1. if $f(n) = \Theta(n^c)$ where $\log_b a < c$, then $T(n) = \Theta(n^c) = \Theta(f(n))$,
- ³⁴⁹ 2. if $f(n) = \Theta(n^c)$ where $\log_b a = c$, then $T(n) = \Theta(n^{\log_b a} \log_b n)$,
- 350 3. if $f(n) = \Theta(n^c)$ where $\log_b a > c$, then $T(n) = \Theta(n^{\log_b a})$.
- ³⁵¹ The same results apply with ceilings replaced by floors.
- ³⁵² *Proof.* See [32], Section 5.2.

We cannot apply Theorem 3 to (16) since both M_2 and M_{2^d} appear: we will have to move everything down to \mathbb{F}_2 -operations.

355 4.3 Bit operations and asymptotic estimation (II)

As seen in Section 4.2, we need to evaluate an \mathbb{F}_{2^d} -polynomial \widetilde{F} of degree $2^d - 1$. Recall that the field \mathbb{F}_{2^d} can be seen as an \mathbb{F}_2 -vector space of dimension d. Thus, for all i, we can evaluate $\widetilde{F}(\alpha^i)$ as follows:

$$\widetilde{F}(\alpha^i) = \sum_{j=0}^{d-1} F_j \alpha^j \qquad F_j \in \mathbb{F}_2[t]$$

To compute $\widetilde{H}(\alpha^i)$ we need to multiply the two evaluations of \widetilde{F} and \widetilde{G} .

$$\widetilde{H}(\alpha^{i}) = \widetilde{F}(\alpha^{i})\widetilde{G}(\alpha^{i}) = \sum_{j=0}^{d-1} F_{j}\alpha^{j} \sum_{k=0}^{d-1} G_{k}\alpha^{k} = \sum_{l=0}^{2d-2} \underbrace{\left(\sum_{\substack{j+k=l\\0\leq j,k\leq d-1\\H_{l}}} F_{j}G_{k}\right)}_{H_{l}} \alpha^{l}$$

We want now to compute H_l . We take care only of multiplications. If we look at H_l , we note that it is formed by the sum of the products between F_j and G_k such that j + k = l. We separate the two cases: j = k and $j \neq k$. If j = k, we need the multiplication F_jG_j . If $j \neq k$, we need two multiplications, which are F_jG_k and F_kG_j . For the latter, we exchange one multiplication with four sums, since char $\mathbb{F}_{2^d} = 2$ and we have already computed F_jG_j .

$$F_jG_k + F_kG_j = (F_j + F_k)(G_j + G_k) + F_jG_j + F_kG_k$$

³⁶⁵ The required multiplications are

$$d + \binom{d}{2} = d + \frac{d(d-1)}{2} = \frac{d^2 + d}{2}$$

Now, we can write the estimation for bit calculations over \mathbb{F}_{2^d} , assuming a generic estimate for the number of bit additions

$$M_{2^{d}}(n) \le \frac{d^{2} + d}{2}M_{2}(n) + Cn + D$$
(17)

³⁶⁸ Substituting (17) in the estimation (16), we obtain a formula which we can apply Theorem 3 to:

$$M_2((2^{d-1}+1)n) \le 3M_2(n) + P\left(\frac{d^2+d}{2}M_2(n) + Cn + D\right) + Q_1n + Q_2$$
$$M_2((2^{d-1}+1)n) \le \left(3 + \frac{P(d^2+d)}{2}\right)M_2(n) + (Q_1 + CP)n + (Q_2 + DP)$$

³⁶⁹ Applying the third case of Theorem 3, we get:

$$M_2(n) = \Theta\left(n^E\right), \text{ where } E = \frac{\log\left(3 + \frac{P(d^2+d)}{2}\right)}{\log(2^d+1)}$$

³⁷⁰ If we compute the exponent E for $1 \le d \le 20$, it is not difficult to see that E decreases from 1.58 ³⁷¹ to 1.17.

372 4.4 Case d=2 (II)

³⁷³ Using Equation (12), we are able to find a better best case bound than that presented in [12] (see ³⁷⁴ CNH 3-way split algorithm (24)). Indeed,

- ³⁷⁵ $M_2(n)$: multiplication $\widetilde{H}(0) = F_0 G_0$
- ³⁷⁶ $M_2(k)$: multiplication $\widetilde{H}(\infty) = F_2 G_2$
- 377 2k: sums $S_1 = F_0 + F_2$, $S_2 = G_0 + G_2$
- ³⁷⁸ 2k: sums $S_3 = F_1 + F_2$, $S_4 = G_1 + G_2$
- ³⁷⁹ 2n: sums $S_5 = S_1 + F_1$, $S_6 = S_2 + G_1$

- $_{380}$ 0: multiplications $P_1 = \alpha S_3, P_2 = \alpha S_3$
- 381 0: sums $S_7 = S_1 + P_1, S_8 = S_2 + P_2$
- $_{382}$ $M_2(n)$: multiplication $\widetilde{H}(1) = S_5 S_6$
- $_{383} M_4(n): \text{ multiplication } \widetilde{H}(\alpha) = S_7 S_8(=C_0 + C_1 \alpha)$
- 384 -2n-1: sum $S_9 = \tilde{H}(1) + C_1$
- 385 -2n-1: sum $S_{10} = S_9 + C_0$
- 386 -2n-1: sum $S_{11} = S_{10} + C_1$
- 387 2(n-1): sums $S_{12} = S_9 x^3 + S_{10} x^2 + S_{11} x$
- 388 -n-1: sum $S_{13} = \widetilde{H}(0) + x\widetilde{H}(\infty)$
- 389 0: sum $S_{14} = (1 + x^3)S_{13}$
- 390 -4n-2: sum $H = S_{14} + S_{12}$

³⁹¹ Summing all the costs, we obtain

$$\begin{cases} M(2n+k) \le 2M_2(n) + M_2(k) + M_4(n) + 15n + 4k - 8 & n/2 \le k \le n \\ M(3n) \le 3M_2(n) + M_4(n) + 19n - 8 & k = n \end{cases}$$
(18)

³⁹² But this is not enough. In order to get the best case bound, we have to compute the costs for the ³⁹³ same algorithm that uses polynomials over \mathbb{F}_4 . In this case, we cannot deduce the expression for

³⁹⁴ $H(\alpha + 1)$ from $H(\alpha)$. In addition, from equation

$$\alpha(a_0 + a_1\alpha) = a_1 + (a_0 + a_1)\alpha$$

we have that the cost of the multiplication by α is 1, and from

$$(a_0 + a_1\alpha) + (b_0 + b_1\alpha) = (a_0 + b_0) + (a_1 + b_1)\alpha$$

- ³⁹⁶ we have that the cost of the sum between two polynomials is doubled. Thus,
- ³⁹⁷ $M_4(n)$: multiplication $\widetilde{H}(0) = F_0 G_0$
- ³⁹⁸ $M_4(n)$: multiplication $\widetilde{H}(\infty) = F_2 G_2$
- ³⁹⁹ 4n: sums $S_1 = F_0 + F_1$, $S_2 = G_0 + G_1$
- 400 4n: sums $S_3 = F_1 + F_2, S_4 = G_1 + G_2$
- 401 2n: multiplications $P_1 = \alpha S_3, P_2 = \alpha S_4$
- 402 4n: sums $S_5 = S_1 + P_1, S_6 = S_2 + P_2$
- 403 4n: sums $S_7 = S_5 + S_3$, $S_8 = S_6 + S_4$
- 404 4*n*: sums $S_9 = S_1 + F_2$, $S_{10} = S_2 + G_2$
- 405 $M_4(n)$: multiplication $H(1) = S_9 S_{10}$
- 406 $M_4(n)$: multiplication $\widetilde{H}(\alpha) = S_7 S_8$
- 407 $M_4(n)$: multiplication $\widetilde{H}(\alpha + 1) = S_5 S_6$
- 408 8*n* 4: sum $S_{13} = \tilde{H}(1) + \tilde{H}(\alpha) + \tilde{H}(\alpha+1)$
- 409 10n 5: sum $S_{14} = \widetilde{H}(1) + \widetilde{H}(\alpha+1) + \alpha(\widetilde{H}(\alpha) + \widetilde{H}(\alpha+1))$
- 410 4n 2: sum $S_{15} = \widetilde{H}(1) + \widetilde{H}(\alpha) + \alpha(\widetilde{H}(\alpha) + \widetilde{H}(\alpha+1))$
- 411 4(n-1): sums $S_{16} = S_{13}x^3 + S_{14}x^2 + S_{15}x$

412 - 2(n-1): sum
$$S_{17} = H(0) + xH(\infty)$$

- 413 0: sum $S_{18} = (1 + x^3)S_{17}$
- 414 -8n-4: sum $H = S_{18} + S_{16}$

415 The sum of the costs in \mathbb{F}_4 is

$$M_4(3n) \le 5M_4(n) + 58n - 21$$

⁴¹⁶ We observe that this is not good as

$$M_4(3n) \le 5M_4(n) + 56n - 19 \tag{19}$$

⁴¹⁷ which can be found in [12]. Applying Lemma 1 to (19), we get

$$M_4(n) \le 30.25n^{1.46} - 28n + 4.75$$

⁴¹⁸ Then, we substitute the preceding inequality to the second of (18) obtaining

 $M_2(3n) \le 3M_2(n) + 30.25n^{1.46} - 9n - 3.25$

⁴¹⁹ Finally, to get the best case bound, we apply Lemma 2:

$$M_2(n) \le 15.125n^{1.46} - 3n\log_3 n - 15.75n + 1.625$$

420 5 Conclusions

⁴²¹ In this paper, we presented a new algorithm to multiply two *n*-bit polynomials. We showed how ⁴²² this new approach can be used to (a) reduce the effective number of bit operations and (b) improve ⁴²³ the asymptotic estimations.

The idea described in this paper can be easily implemented to speed up cryptographic software implementations. Notice that further improvements might be obtained avoiding some redundant XOR operations involved in the multiplication algorithms [5]. For example, it is possible to apply a greedy heuristic [33,11,39] to a straight-line sequence such as the one provided in Appendix A. Unfortunately, this approach is computational expensive and often it does not provide a useful result in an acceptable amount of time.

430 References

- Abdulrahman, E.A.H., Reyhani-Masoleh, A.: High-speed hybrid-double multiplication architectures
 using new serial-out bit-level mastrovito multipliers. IEEE Transactions on Computers 65(6), 1734–
 1747 (2016)
- 2. Agnew, G.B., Beth, T., Mullin, R.C., Vanstone, S.A.: Arithmetic operations in $GF(2^m)$. Journal of Cryptology 6(1), 3–13 (1993)
- 3. Berlekamp, E.R.: Algebraic coding theory, vol. 111. McGraw-Hill New York (1968)
- 437
 4. Bernstein, D.J.: Curve25519: New diffie-hellman speed records. In: Yung, M., Dodis, Y., Kiayias, A.,
 438
 438 Malkin, T. (eds.) Public Key Cryptography PKC 2006: 9th International Conference on Theory
 439 and Practice in Public-Key Cryptography, New York, NY, USA, April 24-26, 2006. Proceedings, pp.
- ⁴⁴⁰ 207–228. Springer Berlin Heidelberg, Berlin, Heidelberg (2006)
- 5. Bernstein, D.J.: Batch binary edwards. In: Halevi, S. (ed.) Advances in Cryptology CRYPTO 2009:
 29th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2009.
 Proceedings, pp. 317–336. Springer Berlin Heidelberg, Berlin, Heidelberg (2009)

- 6. Bernstein, D.J.: High-speed cryptography in characteristic 2: Minimum number of bit operations for
 multiplication (2009), http://binary.cr.yp.to/m.html
- 7. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed high-security signatures.
 Journal of Cryptographic Engineering 2(2), 77–89 (2012)
- 8. Blahut, R.E.: Theory and practice of error control codes, vol. 126. Addison-Wesley Reading Massachusetts (1983)
- 9. Blahut, R.E.: Fast algorithms for digital signal processing. Addison-Wesley Longman Publishing Co.,
 Inc. (1985)
- ⁴⁵² 10. Blake, I., Seroussi, G., Smart, N.: Elliptic curves in cryptography, vol. 265. Cambridge university press
 ⁴⁵³ (1999)
- ⁴⁵⁴ 11. Boyar, J., Peralta, R.: A new combinational logic minimization technique with applications to cryp⁴⁵⁵ tology. In: Festa, P. (ed.) Experimental Algorithms: 9th International Symposium, SEA 2010, Ischia
- Island, Naples, Italy, May 20-22, 2010. Proceedings, pp. 178–189. Springer Berlin Heidelberg, Berlin,
 Heidelberg (2010)
- 458 12. Cenk, M., Hasan, M.A.: Some new results on binary polynomial multiplication. Journal of Crypto 459 graphic Engineering 5(4), 289–303 (2015)
- Cenk, M., Negre, C., Hasan, M.A.: Improved three-way split formulas for binary polynomial multipli cation. In: Selected areas in cryptography. pp. 384–398. Springer (2011)
- 462 14. Cenk, M., Negre, C., Hasan, M.A.: Improved three-way split formulas for binary polynomial and
 463 toeplitz matrix vector products. IEEE Transactions on Computers 62(7), 1345–1361 (2013)
- ⁴⁶⁴ 15. Chakraborty, D., Mancillas-Lpez, C., Rodrguez-Henrquez, F., Sarkar, P.: Efficient hardware imple ⁴⁶⁵ mentations of brw polynomials and tweakable enciphering schemes. IEEE Transactions on Computers
 ⁴⁶⁶ 62(2), 279–294 (2013)
- ⁴⁶⁷ 16. Chang, N.S., Kim, C.H., Park, Y.H., Lim, J.: A non-redundant and efficient architecture for Karatsuba⁴⁶⁸ Ofman algorithm. In: Information Security, 8th International Conference, ISC 2005, Singapore, pp.
 ⁴⁶⁹ 288–299. Springer (2005)
- 470 17. Chen, D.D., Yao, G.X., Cheung, R.C.C., Pao, D., Ko, .K.: Parameter space for the architecture of fft471 based montgomery modular multiplication. IEEE Transactions on Computers 65(1), 147–160 (2016)
- 472 18. Chou, T.: Accelerating pre-and post-quantum cryptography. Ph.D. thesis, Technische Universiteit
 473 Eindhoven (2016)
- 474 19. CMT: Circuit minimization work, http://www.cs.yale.edu/homes/peralta/CircuitStuff/CMT.html
- 475 20. Cook, S.A.: On the minimum computation time of functions. PhD thesis, Harvard University (1966)
- ⁴⁷⁶ 21. D'angella, D., Schiavo, C.V., Visconti, A.: Tight upper bounds for polynomial multiplication. In: Applied Computing Conference, 2013. ACC'13. WEAS. pp. 31–37. WEAS (2013)
- 478 22. Fan, H., Sun, J., Gu, M., Lam, K.Y.: Overlap-free karatsuba-ofman polynomial multiplication algo479 rithms. IET Information security 4(1), 8–14 (2010)
- 430 23. Find, M.G., Peralta, R.: Better circuits for binary polynomial multiplication. IEEE Transactions on
 481 Computers 68(4), 624–630 (April 2019)
- 482 24. von zur Gathen, J., Shokrollahi, J.: Fast arithmetic for polynomials over F₂ in hardware. In: Information
 483 Theory Workshop, 2006. ITW'06 Punta del Este. IEEE. pp. 107–111. IEEE (2006)
- 484 25. Homma, N., Saito, K., Aoki, T.: Toward formal design of practical cryptographic hardware based on
 galois field arithmetic. IEEE Transactions on Computers 63(10), 2604–2613 (2014)
- 486 26. Imana, J.L.: Fast bit-parallel binary multipliers based on type-i pentanomials. IEEE Transactions on
 487 Computers PP(99), 1–1 (2017)
- 488 27. Karatsuba, A., Ofman, Y.: Multiplication of multidigit numbers on automata. In: Soviet physics dok489 lady. vol. 7, pp. 595–596 (1963)
- ⁴⁹⁰ 28. Li, Y., Ma, X., Zhang, Y., Qi, C.: Mastrovito form of non-recursive karatsuba multiplier for all trino ⁴⁹¹ mials. IEEE Transactions on Computers 66(9), 1573–1584 (2017)
- 492 29. McClellen, J.H., Rader, C.M.: Number theory in digital signal processing. Prentice Hall Professional
 493 Technical Reference (1979)

- ⁴⁹⁴ 30. McEliece, R.J.: Finite fields for computer scientists and engineers, vol. 23. Kluwer Academic Publishers
 ⁴⁹⁵ Boston (1987)
- 496 31. Menezes, A.J., Van Oorschot, P.C., Vanstone, S.A.: Handbook of applied cryptography. CRC press
 497 (1997)
- 32. Orellana, R.: Course notes in discrete mathematics in computer science, https://math.dartmouth.
 edu/archive/m19w03/public_html/book.html
- 33. Paar, C.: Optimized arithmetic for reed-solomon encoders. In: Proceedings of IEEE International
 Symposium on Information Theory. pp. 250- (1997)
- ⁵⁰² 34. Peter, S., Langendorfer, P.: An efficient polynomial multiplier in *GF*(2^m) and its application to ECC
 ⁵⁰³ designs. In: Design, Automation & Test in Europe Conference & Exhibition, 2007. DATE'07. pp. 1–6.
 ⁵⁰⁴ IEEE (2007)
- ⁵⁰⁵ 35. Rodriguez-Henriquez, F., Koç, Ç.: On fully parallel Karatsuba multipliers for $GF(2^m)$. In: International ⁵⁰⁶ Conference on Computer Science and Technology (CST 2003), Cancun, Mexico. pp. 405–410 (2003)
- ⁵⁰⁷ 36. Rotman, J.J.: An introduction to the theory of groups, vol. 148. Springer Science & Business Media
 (2012)
- ⁵⁰⁹ 37. Schönhage, D.D.A., Strassen, V.: Schnelle multiplikation grosser zahlen. Computing 7(3-4), 281–292
 (1971)
- 38. Toom, A.L.: The complexity of a scheme of functional elements realizing the multiplication of integers.
 In: Soviet Mathematics Doklady. vol. 3, pp. 714–716 (1963)
- 39. Visconti, A., Schiavo, C.V., Peralta, R.: Improved upper bounds for the expected circuit complexity
 of dense systems of linear equations over GF(2). Information Processing Letters 137, 1–5 (2018)

6 Appendix A

We present M(24), the straight-line sequence of bit operations, or straight-line program (SLP), needed to multiply two 24-bit polynomials. This SLP has been obtained by applying *Three-level Recursion* algorithm.

$\sum_{i=1}^{23} \sum_{j=1}^{23} \sum_{i=1}^{23} \sum_{j=1}^{46} \sum_{i=1}^{46} \sum_{j=1}^{46} \sum_{j=1}^{46} \sum_{i=1}^{46} \sum_{j=1}^{46} \sum_{i=1}^{46} \sum_{j=1}^{46} \sum_{i=1}^{46} \sum_{j=1}^{46} \sum_{i=1}^{46} \sum_{j=1}^{46} \sum_{$						
	$F(x)G(x) = \sum_{x} f(x)$	$f[i]x^i \sum g[j]x^j = \sum$	$\int h[k]x^{\kappa} = H(x)$			
	i=0	j=0 $k=$	=0			
t1 = f[2] * a[2]	t74 = f[15] * a[15]	$t_{147} = a_{2} + a_{5}$	t220 = t121 + t159	t293 = t264 * t271		
t2 = f[2] * g[0]	t75 = t73 + t72	$t_{148} = t_{144} * t_{147}$	t221 = t122 + t160	t294 = t264 * t270		
t3 = f[2] * g[1]	t76 = t71 + t69	t149 = t144 * t145	t222 = t123 + t148	t295 = t293 + t292		
t4 = f[0] * g[2]	t77 = t76 + t67	t150 = t144 * t146	t223 = t125 + t175	t296 = t291 + t289		
t5 = f[1] * g[2]	t78 = t70 + t68	t151 = t142 * t147	t224 = t126 + t176	t297 = t296 + t287		
t6 = f[1] * g[1] t7 = f[1] * g[0]	t79 = f[20] * g[20] t80 = f[20] * g[18]	$t_{152} = t_{143} * t_{147}$ $t_{153} = t_{143} * t_{146}$	t225 = t127 + t178 t226 - t128 + t179	t298 = t290 + t288 t299 = t267 + t270		
$t_1 = f[1] * g[0]$ $t_2 = f[0] * g[1]$	t81 = f[20] * g[10]	$t_{154} = t_{143} * t_{145}$	t220 = t120 + t110 t227 = t129 + t167	$t_{200} = t_{201} + t_{210}$ $t_{300} = t_{268} + t_{271}$		
t9 = f[0] * g[0]	t82 = f[18] * g[20]	t155 = t142 * t146	t228 = t131 + t194	t301 = t269 + t272		
t10 = t8 + t7	t83 = f[19] * g[20]	t156 = t142 * t145	t229 = t132 + t195	t302 = t261 + t264		
t11 = t6 + t4	t84 = f[19] * g[19]	t157 = t155 + t154	t230 = t133 + t197	t303 = t262 + t265		
t12 = t11 + t2	t85 = f[19] * g[18]	t158 = t153 + t151	$t_{231} = t_{134} + t_{198}$	t304 = t263 + t266		
$t_{13} = t_{3} + t_{3}$ $t_{14} = f[5] * a[5]$	$t_{180} = f[18] * g[19]$ $t_{180} = f[18] * a[18]$	$t_{159} = t_{158} + t_{149}$ $t_{160} = t_{152} + t_{150}$	$t_{232} = t_{133} + t_{130}$ $t_{233} = t_{137} + t_{213}$	$t305 \equiv t304 * t301$ $t306 \equiv t304 * t299$		
$t_{15} = f[5] * g[3]$	t88 = t86 + t85	t161 = f[6] + f[9]	t234 = t138 + t214	t307 = t304 * t300		
t16 = f[5] * g[4]	t89 = t84 + t82	t162 = f[7] + f[10]	t235 = t139 + t216	t308 = t302 * t301		
t17 = f[3] * g[5]	t90 = t89 + t80	t163 = f[8] + f[11]	t236 = t140 + t217	t309 = t303 * t301		
t18 = f[4] * g[5]	t91 = t83 + t81	t164 = g[6] + g[9]	t237 = t141 + t205	t310 = t303 * t300		
$t_{19} = f[4] * g[4]$ $t_{20} = f[4] * g[3]$	t92 = f[23] * g[23] t93 = f[23] * g[21]	$t_{105} = g[7] + g[10]$ $t_{166} = g[8] + g[11]$	$t_{238} = t_{221} + t_{9}$ $t_{239} = t_{222} + t_{10}$	$t311 \equiv t303 * t299$ $t312 \equiv t302 * t300$		
$f_{20} = f_{11} + g_{10}$ $f_{21} = f_{13} + g_{14}$	f[23] * g[21] f[23] * g[22]	$t_{167} = t_{163} * t_{166}$	t240 = t124 + t12	t313 = t302 * t299		
t22 = f[3] * g[3]	t95 = f[21] * g[23]	t168 = t163 * t164	t241 = t223 + t218	t314 = t312 + t311		
t23 = t21 + t20	t96 = f[22] * g[23]	t169 = t163 * t165	t242 = t224 + t219	t315 = t310 + t308		
t24 = t19 + t17	t97 = f[22] * g[22]	t170 = t161 * t166	t243 = t225 + t220	t316 = t315 + t306		
$t_{25} = t_{24} + t_{15}$	t98 = f[22] * g[21]	t171 = t162 * t166	t244 = t226 + t221	t317 = t309 + t307		
$t_{20} = t_{18} + t_{10}$ $t_{27} = f[8] * a[8]$	$t_{199} = f[21] * g[22]$ $t_{100} = f[21] * g[21]$	$t_{112} = t_{102} * t_{103}$ $t_{173} = t_{162} * t_{164}$	$t_{245} = t_{227} + t_{222}$ $t_{246} = t_{130} + t_{124}$	$t_{318} = t_{283} + t_{294}$ $t_{319} = t_{273} + t_{295}$		
$t_{28} = f[8] * g[6]$	$t_{101} = t_{99} + t_{98}$	t174 = t161 * t165	t247 = t228 + t223	t320 = t313 + t318		
t29 = f[8] * g[7]	t102 = t97 + t95	t175 = t161 * t164	t248 = t229 + t224	t321 = t314 + t319		
t30 = f[6] * g[8]	t103 = t102 + t93	t176 = t174 + t173	t249 = t230 + t225	t322 = t316 + t297		
t31 = f[7] * g[8]	t104 = t96 + t94	t177 = t172 + t170	t250 = t231 + t226	t323 = t317 + t298		
$t_{32} = f[7] * g[7]$ $t_{33} = f[7] * g[6]$	$t_{105} = t_{15} + t_{22}$ $t_{106} = t_1 + t_{23}$	$t_{178} = t_{177} + t_{168}$ $t_{179} = t_{177} + t_{169}$	$t_{251} = t_{252} + t_{221}$ $t_{252} = t_{136} + t_{130}$	t324 = t303 + t280 t325 = t320 + t281		
t34 = f[6] * g[7]	t107 = t26 + t35	$t_{180} = f[12] + f[15]$	$t_{253} = t_{233} + t_{228}$	t326 = t321 + t282		
t35 = f[6] * g[6]	t108 = t14 + t36	t181 = f[13] + f[16]	t254 = t234 + t229	t327 = t322 + t284		
t36 = t34 + t33	t109 = t39 + t48	t182 = f[14] + f[17]	t255 = t235 + t230	t328 = t323 + t318		
t37 = t32 + t30	t110 = t27 + t49	t183 = g[12] + g[15]	t256 = t236 + t231	t329 = t324 + t319		
$t_{38} = t_{37} + t_{28}$ $t_{39} = t_{31} + t_{29}$	t111 = t52 + t61 t112 = t40 + t62	$t_{184} = g_{[13]} + g_{[16]}$ $t_{185} = a_{[14]} + a_{[17]}$	$t_{257} = t_{237} + t_{232}$ $t_{258} = t_{103} + t_{136}$	$t_{330} = f[12] + f[18]$ $t_{331} = f[13] + f[19]$		
t40 = f[11] * g[11]	t113 = t65 + t74	$t_{186} = t_{182} * t_{185}$	$t_{259} = t_{100} + t_{233}$	t332 = f[14] + f[20]		
t41 = f[11] * g[9]	t114 = t53 + t75	t187 = t182 * t183	t260 = t92 + t234	t333 = f[15] + f[21]		
t42 = f[11] * g[10]	t115 = t78 + t87	t188 = t182 * t184	t261 = f[0] + f[6]	t334 = f[16] + f[22]		
t43 = f[9] * g[11]	t116 = t66 + t88	t189 = t180 * t185	$t_{262} = f[1] + f[7]$	t335 = f[17] + f[23]		
t44 = f[10] * g[11] t45 = f[10] * g[10]	t117 = t91 + t100 t118 = t79 + t101	t190 = t181 * t185 t191 = t181 * t184	$t_{263} = f[2] + f[8]$ $t_{264} = f[3] + f[9]$	t336 = g[12] + g[18] t337 = g[13] + g[19]		
t46 = f[10] * g[9]	t119 = t105 + t9	t192 = t181 * t183	$t_{265} = f[4] + f[10]$	t338 = g[14] + g[20]		
t47 = f[9] * g[10]	t120 = t106 + t10	t193 = t180 * t184	t266 = f[5] + f[11]	t339 = g[15] + g[21]		
t48 = f[9] * g[9]	t121 = t25 + t12	t194 = t180 * t183	t267 = g[0] + g[6]	t340 = g[16] + g[22]		
t49 = t47 + t46	t122 = t107 + t105	t195 = t193 + t192	$t_{268} = g[1] + g[7]$	t341 = g[17] + g[23]		
t50 = t45 + t43 t51 - t50 + t41	t123 = t108 + t106 t124 - t38 + t25	t196 = t191 + t189 t197 - t196 + t187	t269 = g[2] + g[8] $t270 = g[3] + g[9]$	t342 = t332 * t338 t343 = t332 * t336		
t51 = t50 + t41 t52 = t44 + t42	$t_{124} = t_{33} + t_{23}$ $t_{125} = t_{109} + t_{107}$	t198 = t190 + t187 t198 = t190 + t188	$t_{270} = g[0] + g[0]$ $t_{271} = g[4] + g[10]$	t343 = t332 * t333 t344 = t332 * t337		
t53 = f[14] * g[14]	t126 = t110 + t108	t199 = f[18] + f[21]	t272 = g[5] + g[11]	t345 = t330 * t338		
t54 = f[14] * g[12]	t127 = t51 + t38	t200 = f[19] + f[22]	t273 = t263 * t269	t346 = t331 * t338		
t55 = f[14] * g[13]	t128 = t111 + t109	t201 = f[20] + f[23]	t274 = t263 * t267	t347 = t331 * t337		
t56 = f[12] * g[14] t57 = f[12] * g[14]	t129 = t112 + t110 t120 = t64 + t51	t202 = g[18] + g[21] t202 = g[10] + g[22]	t275 = t263 * t268	t348 = t331 * t336		
t57 = f[13] * g[14] t58 = f[13] * g[13]	$t_{130} = t_{04} + t_{31}$ $t_{131} = t_{113} + t_{111}$	$t_{203} = g_{[13]} + g_{[22]}$ $t_{204} = g_{[20]} + g_{[23]}$	$t_{277} = t_{261} * t_{269}$ $t_{277} = t_{262} * t_{269}$	t349 = t330 * t337 t350 = t330 * t336		
t59 = f[13] * g[12]	t132 = t114 + t112	$t_{205} = t_{201} * t_{204}$	t278 = t262 * t268	t351 = t349 + t348		
t60 = f[12] * g[13]	t133 = t77 + t64	t206 = t201 * t202	t279 = t262 * t267	t352 = t347 + t345		
t61 = f[12] * g[12]	t134 = t115 + t113	t207 = t201 * t203	t280 = t261 * t268	t353 = t352 + t343		
t62 = t60 + t59	t135 = t116 + t114	t208 = t199 * t204	t281 = t261 * t267	t354 = t346 + t344		
$t_{00} = t_{00} + t_{00}$ $t_{64} = t_{63} + t_{54}$	$t_{130} = t_{90} + t_{11}$ $t_{137} = t_{117} + t_{115}$	$t_{209} = t_{200} * t_{204}$ $t_{210} = t_{200} * t_{203}$	$t_{202} = t_{200} + t_{279}$ $t_{283} = t_{278} + t_{276}$	$t_{350} = t_{335} * t_{341}$ $t_{356} = t_{335} * t_{339}$		
t65 = t57 + t55	t138 = t118 + t116	t211 = t200 * t202	t284 = t283 + t274	t357 = t335 * t340		
t66 = f[17] * g[17]	t139 = t103 + t90	t212 = t199 * t203	t285 = t277 + t275	t358 = t333 * t341		
t67 = f[17] * g[15]	t140 = t104 + t117	t213 = t199 * t202	t286 = t266 * t272	t359 = t334 * t341		
t68 = f[17] * g[16]	t141 = t92 + t118	t214 = t212 + t211	t287 = t266 * t270	t360 = t334 * t340		
to9 = f[10] * g[17] t70 = f[16] * g[17]	$\iota_{142} = f[0] + f[3]$ $t_{143} = f[1] + f[4]$	$t_{210} = t_{210} + t_{208}$ $t_{216} = t_{215} + t_{206}$	$t_{200} = t_{200} * t_{271}$ $t_{289} = t_{264} * t_{272}$	$t_{301} = t_{334} * t_{339}$ $t_{362} = t_{333} * t_{340}$		
t71 = f[16] * q[16]	$t_{144} = f[2] + f[5]$	t217 = t209 + t207	t290 = t265 * t272	t363 = t333 * t339		
t72 = f[16] * g[15]	t145 = g[0] + g[3]	t218 = t119 + t156	t291 = t265 * t271	t364 = t362 + t361		
t73 = f[15] * g[16]	t146 = g[1] + g[4]	t219 = t120 + t157	t292 = t265 * t270	t365 = t360 + t358		

$t_{366} = t_{365} + t_{356}$	t455 = f[11] + f[23]	t544 = t541 * t537	t633 = t566 + t562	h[24] = t687
1360 = 1360 + 1360	$f_{100} = f_{11} + f_{20}$		1633 = 1500 + 1502	h[24] = 1001 h[25] = 4699
t367 = t359 + t357	$t456 \equiv g[0] + g[12]$	$t_{545} \equiv t_{539} * t_{538}$	$t034 \equiv t507 + t503$	n[25] = t688
t368 = t336 + t339	t457 = g[1] + g[13]	t546 = t540 * t538	t635 = t568 + t564	h[26] = t689
t369 = t337 + t340	t458 = g[2] + g[14]	t547 = t540 * t537	t636 = t478 + t602	h[27] = t690
t370 = t338 + t341	t459 = q[3] + q[15]	t548 = t540 * t536	t637 = t468 + t592	h[28] = t691
+371 - +330 + +333	$t_{460} = a[4] \pm a[16]$	t549 - t539 + t537	$t638 - t630 \pm t563$	h[20] = +602
1371 = 1330 + 1333	$f_{461} = g[4] + g[10]$	1040 = 1000 + 1001	1636 = 1631 + 1563	h[20] = t002
1372 = 1331 + 1334	$f_{1}^{(1)} = g_{1}^{(2)} + g_{1}^{(1)}$	1330 = 1339 * 1330	1039 = 1031 + 1304	n[30] = 1093
t373 = t332 + t335	t462 = g[6] + g[18]	t551 = t549 + t548	t640 = t632 + t626	h[31] = t694
t374 = t373 * t370	t463 = g[7] + g[19]	t552 = t546 + t544	t641 = t633 + t627	h[32] = t695
t375 = t373 * t368	t464 = g[8] + g[20]	t553 = t550 + t510	t642 = t634 + t628	h[33] = t696
t376 = t373 * t369	t465 = q[9] + q[21]	t554 = t514 + t511	t643 = t635 + t629	h[34] = t697
t377 = t371 * t370	$t_{466} = a[10] + a[22]$	$t555 = t515 \pm t513$	$t644 = t636 \pm t565$	h[35] = t415
4278 - 4272 + 4270	$f_{100} = g[10] + g[22]$	4550 = 1010 + 1010	1645 - 1627 + 1566	h[00] = t110 h[20] = t410
1318 = 1312 * 1310	1407 = g[11] + g[23]	$i 550 \equiv i 510 \pm i 542$	1045 = 1057 + 1500	$n[30] \equiv 1410$
t379 = t372 * t369	t468 = t455 * t467	t557 = t517 + t533	t646 = t469 + t471	h[37] = t417
t380 = t372 * t368	t469 = t455 * t465	t558 = t518 + t516	t647 = t473 + t646	h[38] = t418
t381 = t371 * t369	t470 = t455 * t466	t559 = t478 + t517	t648 = t503 + t505	h[39] = t419
t382 = t371 * t368	t471 = t453 * t467	t560 = t468 + t525	t649 = t507 + t648	h[40] = t420
$t_{383} = t_{381} \pm t_{380}$	t472 - t454 + t467	$t561 - t553 \pm t513$	$t650 = t483 \pm t485$	$h[41] = \pm 235$
1360 = 1361 + 1360	+472 = +454 + +466	t=1000 + 1010	t650 = t403 + t400	h[41] = t200 h[40] = t006
t384 = t379 + t377	$t473 \equiv t454 * t466$	$t562 \equiv t554 + t551$	$t051 \equiv t492 + t494$	h[42] = t236
t385 = t384 + t375	t474 = t454 * t465	t563 = t555 + t552	t652 = t496 + t651	h[43] = t237
t386 = t378 + t376	t475 = t453 * t466	t564 = t556 + t514	t653 = t647 + t650	h[44] = t103
t387 = t354 + t363	t476 = t453 * t465	t565 = t557 + t515	t654 = t649 + t652	h[45] = t104
t388 = t342 + t364	t477 = t475 + t474	t566 = t558 + t534	t655 = t526 + t528	h[46] = t92
t389 = t382 + t387	t478 = t472 + t470	$t567 = t559 \pm t535$	$t656 = t530 \pm t655$	
	+470 - +452 + +464			
1390 = 1383 + 1388	l419 = l432 * l464	1508 = 1500 + 1518	los l = los + los +	
$t_{391} = t_{385} + t_{366}$	t480 = t452 * t462	$t_{2009} = t_{459} + t_{465}$	t008 = t043 + t545	
t392 = t386 + t367	t481 = t452 * t463	t570 = t460 + t466	t659 = t547 + t658	
t393 = t374 + t355	t482 = t450 * t464	t571 = t461 + t467	t660 = t654 + t659	
t394 = t389 + t350	t483 = t480 + t482	t572 = t456 + t462	t661 = t582 + t584	
t395 = t390 + t351	t484 = t451 * t464	t573 = t457 + t463	t662 = t586 + t661	
+306 - +301 + +252	+485 = +451 + +462	+574 - +459 + +464	t663 = t502 + t501	
1390 = 1391 + 1353	l485 = l451 * l405	$\iota_{514} = \iota_{458} + \iota_{464}$	1003 = 1393 + 1393	
t397 = t392 + t387	t486 = t451 * t462	t575 = t447 + t453	t664 = t597 + t663	
t398 = t393 + t388	t487 = t450 * t463	t576 = t448 + t454	t665 = t650 + t654	
t399 = t238 + t281	t488 = t450 * t462	t577 = t449 + t455	t666 = t662 + t665	
t400 = t239 + t282	t489 = t487 + t486	t578 = t444 + t450	t667 = t652 + t653	
t401 = t240 + t284	t490 = t484 + t481	$t579 = t445 \pm t451$	t668 = t664 + t667	
$t_{101} = t_{240} + t_{204}$	t401 = t440 + t461	t = 1010 - 1100 + 1101	1000 = 1004 + 1001	
$t402 \equiv t241 + t325$	$t491 \equiv t449 * t461$	$t580 \equiv t446 + t452$	$t669 \equiv t657 + t660$	
t403 = t242 + t326	t492 = t449 * t459	t581 = t580 * t574	t670 = t662 + t610	
t404 = t243 + t327	t493 = t449 * t460	t582 = t580 * t572	t671 = t612 + t614	
t405 = t244 + t328	t494 = t447 * t461	t583 = t580 * t573	t672 = t664 + t671	
t406 = t245 + t329	t495 = t448 * t461	t584 = t578 * t574	t673 = t672 + t670	
t407 = t246 + t297	t496 = t448 * t460	t585 = t579 * t574	t674 = t673 + t669	
t408 = t247 + t298	t497 - t448 * t459	t586 = t579 * t573	t675 = t421 + t510	
$t_{100} = t_{211} + t_{200}$	+408 = +447 + +460	t587 = t570 + t572	t676 = t422 + t511	
$1409 = 1248 \pm 1280$	1498 = 1447 * 1400	1387 = 1379 + 1372	l070 = l422 + l311	
$t410 \equiv t250 + t350$	$t499 \equiv t447 * t459$	$t_{588} \equiv t_{578} * t_{573}$	$t011 \equiv t423 + t049$	
t411 = t251 + t351	t500 = t498 + t497	t589 = t578 * t572	t678 = t424 + t561	
t412 = t252 + t353	t501 = t495 + t493	t590 = t588 + t587	t679 = t425 + t562	
t413 = t253 + t394	t502 = t446 * t458	t591 = t585 + t583	t680 = t426 + t660	
t414 = t254 + t395	t503 = t446 * t456	t592 = t577 * t571	t681 = t427 + t638	
t415 = t255 + t396	t504 = t446 * t457	t593 = t577 * t569	t682 = t428 + t639	
$t_{416} - t_{256} + t_{397}$	t505 - t444 + t458	t594 - t577 + t570	$t683 - t429 \pm t666$	
t410 = t200 + t301	t = 0.000 = t = 1444 + t = 14000		1684 = 1420 + 1640	
$\iota_{417} = \iota_{257} + \iota_{598}$	$l_{500} = l_{443} * l_{458}$	1393 = 1373 * 1371	1084 = 1430 + 1040	
t418 = t258 + t366	t507 = t445 * t457	t596 = t576 * t571	t685 = t431 + t641	
t419 = t259 + t367	t508 = t445 * t456	t597 = t576 * t570	t686 = t432 + t674	
t420 = t260 + t355	t509 = t444 * t457	t598 = t576 * t569	t687 = t433 + t642	
t421 = t405 + t9	t510 = t444 * t456	t599 = t575 * t570	t688 = t434 + t643	
t422 = t406 + t10	$t511 = t509 \pm t508$	t600 = t575 * t569	t689 = t435 + t668	
$t423 - t407 \pm t12$	t512 - t506 + t504	$t601 - t599 \pm t598$	$t690 = t436 \pm t644$	
$t_{120} = t_{100} + t_{12}$	t = 12 = 1000 + 1004	t601 = t605 + t605	1600 = 1400 + 1044	
1 + 2 + - 1 + 0 + 1 + 2 + 8	$1010 = 1012 \pm 1499$	$1002 = 1090 \pm 1094$	$1001 = 1401 \pm 1040$	
t425 = t409 + t219	t514 = t502 + t500	t603 = t572 + t569	t692 = t438 + t657	
t426 = t249 + t220	t515 = t501 + t488	t604 = t573 + t570	t693 = t439 + t567	
t427 = t410 + t399	t516 = t491 + t489	t605 = t574 + t571	t694 = t440 + t568	
t428 = t411 + t400	t517 = t490 + t476	t606 = t578 + t575	t695 = t441 + t647	
t429 = t412 + t401	t518 = t479 + t477	t607 = t579 + t576	t696 = t442 + t478	
t430 = t413 + t402	t519 = t462 + t465	t608 = t580 + t577	t697 = t443 + t468	
$t_{431} = t_{414} \pm t_{402}$	$t520 - t463 \pm t466$	t609 - t608 + t605	h[0] = t9	
1490 - 1415 - 1403	1520 - 1403 - 1400	1000 = 1000 + 1000	$h_{[1]} = 10$	
$t_{432} = t_{415} + t_{404}$	$t_{021} = t_{404} + t_{467}$	to10 = t608 * t603	$n_{[1]} = t_{10}$	
t433 = t416 + t405	t522 = t450 + t453	t611 = t608 * t604	h[2] = t12	
t434 = t417 + t406	t523 = t451 + t454	t612 = t606 * t605	h[3] = t218	
t435 = t418 + t407	t524 = t452 + t455	t613 = t607 * t605	h[4] = t219	
t436 = t419 + t408	t525 = t524 * t521	t614 = t607 * t604	h[5] = t220	
t437 = t420 + t409	t526 = t524 * t519	t615 = t607 * t603	h[6] = t399	
+138 = +225 + +240	t527 = t524 + t520	t616 = t606 + t604	h[7] = t400	
130 = 1200 + 1249	1521 - 1524 * 1520	1010 = 1000 * 1004	$u[i] = i \pm 00$	
$t_{439} = t_{230} + t_{410}$	$t_{028} = t_{022} * t_{021}$	t011 = t000 * t003	$n_{[6]} = t401$	
t440 = t237 + t411	$t_{529} = t_{523} * t_{521}$	t618 = t616 + t615	h[9] = t402	
t441 = t103 + t412	t530 = t523 * t520	t619 = t613 + t611	h[10] = t403	
t442 = t104 + t413	t531 = t523 * t519	t620 = t591 + t600	h[11] = t404	
t443 = t92 + t414	t532 = t522 * t520	t621 = t581 + t601	h[12] = t675	
t444 = f[0] + f[12]	t533 = t522 * t519	t622 = t617 + t589	h[13] = t676	
t445 = f[1] + f[13]	t534 = t532 + t531	t623 = t618 + t590	h[14] = t677	
$t_{446} = f[2] + f[14]$	t535 = t529 + t527	t624 = t619 + t602	h[15] = t678	
$f_{14} = f_{14} + f_{14}$	$1000 = 1029 \pm 1021$	$1024 = 1013 \pm 1002$	h[10] = 1070	
i 444 i = f[3] + f[15]	1330 = 1430 + 1459	$t_{020} = t_{00}9 + t_{5}92$	$n_{10} = t079$	
t448 = f[4] + f[16]	t537 = t457 + t460	t626 = t622 + t620	h[17] = t680	
t449 = f[5] + f[17]	t538 = t458 + t461	t627 = t623 + t621	h[18] = t681	
t450 = f[6] + f[18]	t539 = t444 + t447	t628 = t624 + t620	h[19] = t682	
t451 = f[7] + f[19]	t540 = t445 + t448	t629 = t625 + t621	h[20] = t683	
t452 = f[8] + f[20]	t541 = t446 + t449	t630 = t589 + t510	h[21] = t684	
$f_{453} = f[0] \pm f[21]$	t542 = t541 + t539	$t631 = t590 \pm t511$	h[22] = t685	
$J_{100} = J_{10} + J_{121}$	1540 1541 1500	1001 = 1000 + 1011	$n_{\lfloor 22 \rfloor} = 1000$	
$t_{454} = f[10] + f[22]$	$t_{043} = t_{041} * t_{036}$	$t_{032} = t_{565} + t_{561}$	$n_{[23]} = t686$	