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ON THE VANISHING OF WEIGHT ONE KOSZUL COHOMOLOGY OF

ABELIAN VARIETIES

MARIAN APRODU AND LUIGI LOMBARDI

Abstract. In this Note we prove the vanishing of (twisted) Koszul cohomology groups Kp,1

of an abelian variety with values in powers of an ample line bundle. It complements the work

of G. Pareschi on the property (Np) [Pa].

Let L be an ample line bundle on a complex abelian variety X. The powers of L have
very interesting geometric properties. It is classically known that L2 is globally generated, L3

is very ample, and the image of X in PH0(X,L3)∗ is projectively normal [BL]. For the fourth
power of L, Kempf proved that the ideal of X is generated by quadrics [BL]. The syzygies of
X via the embeddings given by the powers La acquire some regular behavior when a grows.

Specifically, a remarkable conjecture of R. Lazarsfeld, solved by G. Pareschi [Pa], states that
for any a ≥ p + 3, La has property (Np). This means that the image of X is projectively
normal, the ideal is generated by quadrics, and all the syzygies up to the p–th step are linear.
(Syzygies of abelian varieties have also been studied further in [PP2] and [LPP].) The property

(Np) describes the beginning of the minimal resolution of the ideal of X [Gr]. It is natural to
ask what happens towards the end of the minimal resolution of the ideal of X embedded by
powers of L and if a similar type of regularity can be described. More precisely, the question

raised here is which syzygies at the end of the minimal resolution are zero. Since syzygies can
be computed by Koszul cohomology [Gr], the question reduces to verifying the vanishing of
corresponding Koszul cohomology groups.

In this Note, we prove the vanishing of Koszul cohomology groups Kp,1(X,La) for suitable
p and a, Theorem 2.4, and we remark that there is a linear function in a such that number of

the zeroes at the end of the linear strand of the Betti table of X with values in La is bounded
from below by this function. To this end, we reduce the vanishing of Koszul cohomology to the
surjectivity of some suitable multiplication maps, Lemma 2.1. Cokernels of multiplication maps

can be expressed as twisted Koszul cohomology groups [Gr], hence a good control of twisted
Koszul cohomology yields the surjectivity of multiplication maps. Here, we apply a reversed
principle. To verify the surjectivity of multiplication maps we use the theory developed by G.

Pareschi and M. Popa in [Pa], [PP1], [PP2], [PP3], and hence we eventually relate it to the
vanishing of syzygies in the linear strand. Note that one of the main ideas in Pareschi’s proof
of Lazarsfeld’s conjecture was also a reduction to the surjectivity of some multiplication maps
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2 MARIAN APRODU AND LUIGI LOMBARDI

[Pa]. Another result of our Note is Theorem 2.9 where we obtain the vanishing of twisted
Koszul cohomology groups Kp,1(X,B;L) where L satisfies some positivity assumptions and B

is a line bundle such that L − B is ample. As a consequence we prove in Corollary 2.12 an
asymptotic vanishing result for line bundles of type dL + P where L is ample and globally
generated and P is arbitrary, in the spirit of [EL2]. Throughout the paper, we work over the

field of complex numbers.

1. Preliminaries

1.1. Regularity on abelian varieties. Let (X,H) be a polarized abelian variety and F a
coherent sheaf on X. We define the non-vanishing loci associated to F as the algebraic closed

subsets:
V i(F) :=

{
α ∈ Pic0(X) |H i(X,F ⊗ α) 6= 0

}
.

We say that F is M -regular if codimPic0(A) V
i(F) > i for all i > 0. Moreover we say that F

satisfies I.T.0 if V i(F) = ∅ for all i > 0. Note that a line bundle on an abelian variety is ample

if and only if it is M -regular, and hence I.T.0 [PPs]. Recall also that the tensor product of an
I.T.0 bundle with a nef line bundle is I.T.0 ([PPgv, Theorem B] and [PP3, Proposition 3.1]),
and the tensor product of two I.T.0 bundles remains I.T.0 [PP1, Proposition 2.9]. Pareschi

and Popa proved furthermore that the tensor product of two M -regular bundles is M -regular
[PPs, Theorem 3.9].

1.2. Surjectivity of multiplication maps. We recall some results on the surjectivity of
multiplication maps of global sections of vector bundles on abelian varieties. These results will
be our main tools to check property (Mq) on abelian varieties.

Given an abelian variety X, we denote by m : X ×X → X the multiplication map and
by p1, p2 : X × X → X the projections onto the first and second factor, respectively. For a

line bundle L and a vector bundle E on X such that L⊗E satisfies I.T.0, we define the skew
Pontrjagin product of L with E as the vector bundle

L ∗̂E := p1∗
(
m∗L⊗ p∗2E

)
.

This bundle is one of the main objects used by Pareschi in [Pa] to prove the (Np) property of
line bundles on abelian varieties.

Theorem 1.1 (Kempf, Pareschi, Pareschi–Popa). Let (X,H) be a polarized abelian variety
and E and F be vector bundles on X. Moreover let L be a line bundle.

(i) ([PP3, Theorem 7.34]) If E(−2H) and F (−2H) are M -regular sheaves, then the mul-
tiplication map H0(X,E) ⊗H0(X,F ) → H0(X,E ⊗ F ) is surjective.

(ii) ([Pa, Theorem 3.1]) If both L⊗ E and (L ∗̂E)(−H) satisfy I.T.0, then the multipli-
cation map H0(X,L)⊗H0(X,E) → H0(X,L ⊗ E) is surjective.

(iii) (Kempf, see [Pa, §3, p. 660]) If for some integer a > 1 the bundle E ⊗ La satisfies
I.T.0 and H i

(
X, (La ∗̂ (L−1 ⊗ α)) ⊗ E

)
= 0 for all i > 0 and α ∈ Pic0(X), then the

multiplication map H0(X,La)⊗H0(X,E) → H0(X,La ⊗ E) is surjective.
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1.3. Koszul cohomology and property (Mq). This time we denote by X an arbitrary
smooth projective variety. Let L be a globally generated line bundle on X and denote by

ML := ker
(
H0(X,L) ⊗OX

ev
−→ L

)

the kernel bundle associated to L defined as kernel of the evaluation map of L. Note that the
rank of ML is r := h0(X,L)−1. Moreover let B be an arbitrary line bundle on X. For integers

p ≥ 0 and q ≥ 0 we define twisted Koszul cohomology groups as (R. Lazarsfeld [La], cf. also
[AN, Remark 2.7]):

Kp,q(X,B;L) := ker
(
H1(X,∧p+1ML ⊗Lq−1 ⊗B)

ϕp,q,B,L
−→ ∧p+1H0(X,L)⊗H1(X,Lq−1 ⊗B)

)

where the map ϕp,q,B,L is induced by the following short exact sequence passing to cohomology

0 −→ ∧p+1ML ⊗ Lq−1 ⊗B −→ ∧p+1H0(X,L)⊗ Lq−1 ⊗B −→ ∧pML ⊗ Lq ⊗B −→ 0.

The word “twisted” is related to the presence of B in the picture. If B ≃ OX , then we simply
speak about Koszul cohomology. As a matter of notation, if B is trivial, we set Kp,q(X,L) :=

Kp,q(X,OX ;L). If L is very ample and the image of X is projectively normal, then Koszul
cohomology groups compute the syzygies of X [Gr]. The table formed with the dimensions of
the spaces Kp,q(X,L) varying p and q is called the Betti table of X with values in L.

The Koszul cohomology groups Kp,1(X,L) play a particularly important role. From the
syzygetic view-point, K1,1(X,L) computes the number of quadrics in the ideal of the image of

X, K2,1(X,L) computes the linear relations among those quadrics, K3,1(X,L) computes the
linear relations among the linear relations among those quadrics etc. For this reason, the raw
in the Betti table corresponding the Kp,1’s is called the linear strand.

An important problem in syzygy theory is to know when we stop having linear syzygies.
This is controlled by the following definition. We say that L satisfies property (Mq) if

Kp,1(X,L) = 0 for all p ≥ r − q.

This property (Mq) was introduced by M. Green and R. Lazarsfeld in a slightly different form
[GL]. One manifestation of this property is in connection with the gonality of curves. It has

been conjectured by Green and Lazarsfeld, and proved recently by L. Ein and R. Lazarsfeld
[EL2], that on a smooth curve X of gonality d we have Kp,1(X,L) = 0 for any line bundle L

of sufficiently large degree and any p ≥ h0(X,L) − d. In other words, the property (Md+1)

holds for L. Hence the gonality of a curve can be read off from the tail of linear strand of the
Betti table. We remark that for line bundles of sufficiently large degree on a curve there is no
difference between the original definition of (Mq) and the definition we work with.

On varieties of arbitrary dimension a geometric manifestation of (the failure of) the prop-
erty (Mq) is through syzygy schemes [Gr], [Eh], [AN]. A syzygy scheme is a scheme containing

X whose equations are the quadrics involved in a given non-zero class in Kp,1(X,L). The
intersection of all the syzygy schemes associated to classes in Kp,1(X,L) is called the syzygy
scheme of weight p. If p is very close to r, the syzygy schemes of weight p can be classified,

and turn out to be varieties of small degree [Gr, Theorem (3.c.1)], [Eh, Theorem 7.1]. Hence
one reason for the non-vanishing of Kp,1 for large p is that the original variety lies on varieties
with special geometry. The classification of syzygy schemes for smaller p is a very interesting

open problem.
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2. Twisted Koszul cohomology groups of weight one

In this section we study the vanishing of Koszul cohomology groups of type Kp,1(X,B;L)
where X is an abelian variety of dimension n, L is a sufficiently ample line bundle with
r := h0(X,L)− 1, and B is a line bundle such that L−B is ample. The property (Mq) for L

follows at once by applying our vanishings to B ≃ OX . From the Kp,1-Theorem [Gr, Theorem
(3.c.1)] we obtain the vanishing of Kr−n,1(X,L). However, we can prove much more using the
techniques developed by Pareschi and Popa.

2.1. Sufficient conditions for the vanishing of Kp,1. The following lemma gives a sufficient
criterion for the vanishing of twisted Koszul cohomology groups of type Kp,1(X,B;L) in terms

of multiplication maps of global sections of special vector bundles. We remark that it works
for any complex smooth projective variety and not just for abelian varieties.

Lemma 2.1. Let X be a complex smooth projective variety of dimension n ≥ 2 and L be an

ample and globally generated line bundle. Set r := h0(X,L) − 1 and let 1 ≤ p ≤ r − n be an
integer. Moreover let B be another line bundle on X such that L− B is ample and denote by
ωX the canonical bundle of X. If the multiplication maps

µk : H0(X,L) ⊗H0
(
X,M⊗k

L ⊗ ωX ⊗ Ln−1 ⊗B−1
)
−→ H0

(
X,M⊗k

L ⊗ ωX ⊗ Ln ⊗B−1
)

are surjective for all k = 0, . . . , r − n − p, then H1(X,∧p+1ML ⊗ B) = 0 and, in particular,
Kp,1(X,B;L) = 0.

Proof. The vanishing of H1
(
X,∧p+1ML ⊗B

)
is equivalent, via Serre duality and the isomor-

phism ∧p+1M∨

L ≃ ∧r−p−1ML ⊗ L, to the vanishing

(1) Hn−1
(
X,∧r−p−1ML ⊗ ωX ⊗ L⊗B−1

)
= 0.

We claim there is an isomorphism

Hn−1
(
X,∧r−p−1ML ⊗ ωX ⊗ L⊗B−1

)
≃ H1

(
X,∧r−p−n+1ML ⊗ ωX ⊗ Ln−1 ⊗B−1

)
.

This is clear for n = 2, while for n > 2 it follows from Kodaira vanishing applied to the
following exact sequences:

0 → ∧r−p−1ML ⊗ ωX ⊗ L⊗B−1 → ∧r−p−1H0(X,L) ⊗ ωX ⊗ L⊗B−1 →

→ ∧r−p−2ML ⊗ ωX ⊗ L2 ⊗B−1 → 0

0 → ∧r−p−2ML ⊗ ωX ⊗ L2 ⊗B−1 → ∧r−p−2H0(X,L) ⊗ ωX ⊗ L2 ⊗B−1 →

→ ∧r−p−3ML ⊗ ωX ⊗ L2 ⊗B−1 → 0

. . .

0 → ∧r−p−n+2ML ⊗ ωX ⊗ Ln−2 ⊗B−1 → ∧r−p−n+2H0(X,L) ⊗ ωX ⊗ Ln−2 ⊗B−1 →

→ ∧r−p−n+1ML ⊗ ωX ⊗ Ln−1 ⊗B−1 → 0.
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Since in characteristic zero exterior powers are direct summands of tensor products, in order
to prove (1) it suffices to show the vanishing

(2) H1
(
X,M

⊗(r−p−n+1)
L ⊗ ωX ⊗ Ln−1 ⊗B−1

)
= 0.

To this end, we note that the surjectivity of µ0, Kodaira vanishing, and the following exact
sequence

0 → ML ⊗ ωX ⊗ Ln−1 ⊗B−1 → H0(X,L)⊗ ωX ⊗ Ln−1 ⊗B−1 → Ln ⊗ ωX ⊗B−1 → 0

immediately yield

(3) H1
(
X,ML ⊗ ωX ⊗ Ln−1 ⊗B−1

)
= 0.

By tensorizing the previous sequence by ML, we see that the vanishing in (3), together with
the surjectivity of µ1, yields the vanishing

H1
(
X,M⊗2

L ⊗ ωX ⊗ Ln−1 ⊗B−1
)
= 0.

Therefore we get (2) by proceeding in this way r − n− p times.

�

Remark 2.2. The previous theorem holds in particular if B−1 is nef, but more generally if

one has the following vanishings

H1(X,ωX ⊗Ln−1 ⊗B−1) = H1(X,ωX ⊗Ln−1 ⊗B−1) = H2(X,ωX ⊗Ln−2 ⊗B−1) = . . . =

= Hn−3(X,ωX ⊗ L2 ⊗B−1) = Hn−2(X,ωX ⊗ L2 ⊗B−1) = Hn−2(X,ωX ⊗ L⊗B−1) =

= Hn−1(X,ωX ⊗ L⊗B−1) = 0

in place of the ampleness of L−B.

Remark 2.3. The sufficient conditions in Lemma 2.1 are not necessary. For instance, let X

be a K3 surface and let L be a very ample line bundle on X such that the hyperplane section

is a hyperelliptic curve. For p = r− 2 and B ≃ OX we obtain Kr−2,1(X,L) = 0 since X is not
of minimal degree [Gr, Theorem (3.c.1)]. On the other hand, the multiplication map

H0(X,L) ⊗H0(X,L) → H0(X,L2)

is not surjective, as the hyperplane section is hyperelliptic. Indeed, the cokernel of this map is
isomorphic to K0,2(X,L) which is furthermore isomorphic to K0,2(C,KC ) by the hyperplane

section Theorem on Koszul cohomology, [Gr, Theorem (3.b.7)].

2.2. Powers of a line bundle. In case of powers of a fixed line bundle we can use Theorem

1.1 (iii) to establish the surjectivity of multiplication maps appearing in Lemma 2.1. We prove:

Theorem 2.4. Let L be an ample line bundle on an abelian variety X of dimension n ≥ 3.
Let a ≥ 2 be an integer and set ra := h0(X,La) − 1. Moreover let B be a line bundle on X

such that bL−B is ample for some integer b ≥ 1. Then for p ≤ ra − n we have

Kp,1(X,B;La) = 0

provided that

(4) p ≥ ra − a (n − 1) + b
(
1 −

1

a

)
and a ≥ b.
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Proof. First of all we notice that La is globally generated for a ≥ 2. According to Lemma 2.1
we need to prove the surjectivity of multiplication maps

µk : H0(X,La)⊗H0
(
X,M⊗k

La ⊗ La(n−1) ⊗B−1
)
−→ H0

(
X,M⊗k

La ⊗ Lan ⊗B−1
)

for k = 0, . . . , ra − n − p (note that aL − B is ample as a ≥ b). To this end we use Theorem

1.1 (iii) and we start with the case k = 0. Then the map

µ0 : H0(X,La)⊗H0(X,La(n−1) ⊗B−1) −→ H0(X,Lan ⊗B−1)

is surjective as soon as the line bundle Lan ⊗B−1 satisfies I.T.0 (which is true as a ≥ b > b
n
)

and

(5) H i
(
X,La ∗̂ (L−1 ⊗ α)⊗ La(n−1) ⊗B−1

)
= 0 for all α ∈ Pic0(X) and i > 0.

To prove these vanishing we pull-back the involved bundles via the multiplication by (a − 1)
map which we denote by (a − 1)X : X → X. Then by [Pa, Proposition 3.6] the pull-back

(a − 1)∗X
(
La ∗̂ (L−1 ⊗ α)) is isomorphic to a trivial bundle times a line bundle algebraically

equivalent to
(
− a(a − 1)

)
L. On the other hand, the pull-back (a − 1)∗X

(
La(n−1) ⊗ B−1

)
is

isomorphic to a line bundle algebraically equivalent to a(a − 1)2(n − 1)L − (a− 1)2B. Hence

in order to prove (5), by applying Kodaira vanishing, it suffices to prove that the line bundle
(
a (a − 1)2 (n − 1) − a(a− 1)

)
L − (a − 1)2 B

is ample. But this is the case as soon as

(6) a (a − 1) (n − 1) − a ≥ b (a − 1)

which holds true by the second inequality of (4).

We assume now k > 0. In order to prove the surjectivity of µk for k = 1, . . . , ra − n − p,
by Theorem 1.1 (iii) it suffices to prove the vanishings:

(7) H i
(
X,M⊗k

La ⊗ Lan ⊗B−1 ⊗ β
)
= 0 for all i > 0 and β ∈ Pic0(X)

(8)

H i
(
X, (La ∗̂ (L−1⊗α))⊗M⊗k

La ⊗La(n−1)⊗B−1
)
= 0 for all i > 0 and α ∈ Pic0(X).

Set Fα(a) := La ∗̂ (L−1 ⊗ α) and consider the short exact sequences:

0 → M⊗k
La ⊗ Lan ⊗B−1 ⊗ β → H0(X,La)⊗M

⊗(k−1)
La ⊗ Lan ⊗B−1 ⊗ β →

M
⊗(k−1)
La ⊗ La(n+1) ⊗B−1 ⊗ β → 0

0 → M⊗k
La

⊗ Fα(a)⊗ La(n−1) ⊗B−1 → H0(X,La)⊗M
⊗(k−1)
La ⊗ Fα(a)⊗ La(n−1) ⊗B−1

→ M
⊗(k−1)
La ⊗ Fα(a)⊗ Lan ⊗B−1 → 0.

We denote by µ(E,E′) : H0(X,E)⊗H0(X,E′) → H0(X,E ⊗E′) the multiplication map
of global sections of two vector bundles on X. We see then that (7) holds as soon as the

multiplication maps

(9) µ
(
La,M

⊗(k−1)
La ⊗ Lan ⊗B−1 ⊗ β

)
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are surjective for all β and both the sheaves M
⊗(k−1)
La ⊗Lan⊗B−1 and M

⊗(k−1)
La ⊗La(n+1)⊗B−1

satisfy I.T.0. On the other hand, (8) holds if the multiplication maps

(10) µ
(
La,M

⊗(k−1)
La ⊗ Fα(a)⊗ La(n−1) ⊗B−1

)

are surjective for all α ∈ Pic0(X) and both the sheaves M
⊗(k−1)
La ⊗Fα(a)⊗La(n−1) ⊗B−1 and

M
⊗(k−1)
La ⊗Fα(a)⊗Lan ⊗B−1 satisfy I.T.0 for all α ∈ Pic0(A). Since the tensor product of an

I.T.0 locally free sheaf with an ample line bundle again satisfies I.T.0, by applying Theorem
1.1 (iii) to the maps (9) and (10), we deduce that (7) and (8) hold if

Fβ(a)⊗M
⊗(k−1)
La ⊗ La(n−1) ⊗B−1 satisfy I.T.0 for all β ∈ Pic0(X) and

Fα(a)⊗Fα′ (a)⊗M
⊗(k−1)
La ⊗La(n−1)⊗B−1 satisfy I.T.0 for all α,α′ ∈ Pic0(X) and

M
⊗(k−1)
La ⊗ La(n−1) ⊗B−1 satisfies I.T.0.

Proceeding in this way k−1 times, we see that all we need to show is that for all 1 ≤ k′ ≤ k+1
the sheaves
(11)
k′⊗

i=1

Fαi
(a)⊗La(n−1)⊗B−1 satisfy I.T.0 for any choice of α1, . . . , αk′ ∈ Pic0(X) and

La(n−1) ⊗B−1 satisfies I.T.0.

Since a(n − 1) ≥ b we have that La(n−1) ⊗ B−1 is ample and hence I.T.0. Now we
determine the range of a for which the bundles in (11) are I.T.0. We notice that a bundle

satisfies I.T.0 if its pull-back under (a − 1)X does so. By [Pa, Proposition 3.6] the bundle
(a− 1)∗XFα(a) is isomorphic to a trivial bundle times a line bundle algebraically equivalent to(
−a(a− 1)

)
L. Therefore (a− 1)∗X

(⊗k′

i=1 Fαi
(a)

)
is isomorphic to a trivial bundle times a line

bundle algebraically equivalent to −ak′(a− 1)L. On the other hand (a− 1)∗X
(
La(n−1) ⊗B−1

)

is isomorphic to a trivial bundle times a line bundle algebraically equivalent to
(
(a − 1)2 a (n − 1)

)
L − (a − 1)2 B.

In conclusion

(a− 1)∗X

( k′⊗

i=1

Fαi
(a)⊗ La(n−1) ⊗B−1

)

is isomorphic to a trivial bundle times a line bundle algebraically equivalent to

(12)
(
(a − 1)2 a (n − 1) − a k′ (a − 1)

)
L − (a − 1)2 B,

which in turn satisfies I.T.0 as soon as

(a − 1)2 a (n − 1)− a k′ (a − 1) ≥ b (a − 1)2.

Hence µk is surjective for all k = 1, . . . , ra − n− p as soon as

(a − 1) a (n − 1) − a (ra − n − p + 1) ≥ b (a − 1),
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but this is equivalent to asking that

(13) (n− 1) a2 − (ra − p+ b) a + b ≥ 0,

which in turn is equivalent to the first inequality of (4). �

Remark 2.5. Theorem 2.4 continues to hold if one assumes n = 2, a ≥ 3, and a > b in place
of n ≥ 3, a ≥ 2, and a ≥ b. The only part where this affects the proof is in (6).

Remark 2.6. From Theorem 2.4, for a = 2 and n ≥ 3 we obtain the vanishing

Kp,1(X,L2) = 0 for p ≥ r2 − 2n+ 3.

Note that in [Pa] property (Np) was established from the cubes of a line bundle on. On the
other hand, in [PP2], property (Np) was proved for the square of a line bundle with no base
divisors. Here we see that in general L2 satisfies (M2n−3) without any further hypotheses.

Theorem 2.4 immediately gives information on property (Mq) for powers of an ample line
bundle on an abelian variety, for a fixed q.

Corollary 2.7. Let X be an abelian variety of dimension n ≥ 2 and let L be an ample line

bundle. For any fixed q ≥ n, the line bundle La satisfies condition (Mq) for all

(14) a ≥
q + 1 +

√
(q + 1)2 − 4(n− 1)

2(n− 1)
.

Proof. Assume first n ≥ 3 so that, without loss of generality, we can suppose a ≥ 2 from (14)

(in particular La is globally generated). In the proof of Theorem 2.4 we set B ≃ OX , b = 1,
and q := ra−p. Then we notice that the discriminant of (13) in terms of q is (q+1)2−4(n−1)
which is non-negative for q ≥ n. Therefore (13) admits a positive solution which is given by

the right-hand side of (14). If n = 2, then we can suppose a ≥ 3 from (14). Then we apply
Remark 2.5 and argue as in the previous case. �

The following corollary gives a geometric interpretation of the non-vanishing of Koszul

cohomology of weight one.

Corollary 2.8. Let L be an ample line bundle on an abelian variety X of dimension n ≥ 3
and let a ≥ 2 be an integer (or choose n = 2 and a ≥ 3). If for some q ≥ 0 we have

Kra−n−q,1(X,La) 6= 0 where ra := h0(X,La)− 1, then

n <
a+ 1

a
+

q + 1

a− 1
.

Proof. In Theorem 2.4 (or Remark 2.5) we set B ≃ OX , b = 1 and p = ra − n− q. Therefore
by the same either p > ra − n (which is excluded by our choice of p), or

a <
n+ q + 1 +

√
(n+ q + 1)2 − 4(n − 1)

2(n − 1)

which translates into the stated inequality for n. �
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2.3. The general case. In this subsection we prove the vanishing of Koszul groups of type
Kp,1(X,B;L) on a polarized abelian variety under some positivity conditions on the line bun-

dles L and B. Although the following result applies to a wider class of line bundles, we remark
that for the case of positive powers of a fixed ample line bundle our previous Theorem 2.4
yields a stronger vanishing.

Theorem 2.9. Let L be a globally generated line bundle on a polarized abelian variety (X,H)

of dimension n ≥ 3 such that L − 2H is ample. Set r := h0(X,L) − 1 and moreover let B be
a line bundle on X such that L−B is ample. Then for p ≤ r − n we have

Kp,1(X,B;L) = 0

if either p > r − 2n+ 2, or p = r − 2n+ 2 and −B is nef.

Proof. We apply Lemma 2.1 so that we only need to verify the surjectivity of the multiplication

maps

µk : H0(X,L) ⊗H0(X,M⊗k
L ⊗ Ln−1 ⊗B−1) −→ H0(X,M⊗k

L ⊗ Ln ⊗B−1)

for all k = 0, . . . , r − n− p. We start with the case k = 0 and will show that

µ0 : H0(X,L) ⊗H0(X,Ln−1 ⊗B−1) −→ H0(X,Ln ⊗B−1)

is surjective. Since n ≥ 3, it follows that both L(−2H) and (Ln−1 ⊗ B−1)(−2H) are ample.

By applying Theorem 1.1 (i) we obtain then the surjectivity of µ0.

We prove now the surjectivity of µk+1 for k = 0, . . . , r−n−p−1 step by step. By Theorem

1.1 (i) this follows if one proves that the bundle M
⊗(k+1)
L ⊗ Ln−1(−2H) ⊗ B−1 is M -regular.

We show actually that it satisfies I.T.0. By looking at the sequence

(15) 0 −→ M
⊗(k+1)
L ⊗Ln−1(−2H)⊗B−1 ⊗α −→ H0(X,L)⊗M⊗k

L ⊗Ln−1(−2H)⊗B−1 ⊗α

−→ M⊗k
L ⊗ Ln(−2H)⊗B−1 ⊗ α −→ 0

we infer that M
⊗(k+1)
L ⊗ Ln−1(−2H) ⊗ B−1 satisfies I.T.0 if the following two conditions are

true (we still use the notation µ(E,E′) : H0(X,E) ⊗H0(X,E′) → H0(X,E ⊗ E′) to denote

the multiplication map of global sections of two vector bundles):

(16) M⊗k
L ⊗ Ln−1(−2H)⊗B−1 satisfies I.T.0

(17) µ
(
L,M⊗k

L ⊗ Ln−1(−2H)⊗B−1 ⊗ α
)

is surjective for any α ∈ Pic0(X)

(one also needs that M⊗k
L ⊗ Ln(−2H) ⊗ B−1 satisfies I.T.0, but this follows from (16)). On

the other hand, by means of Theorem 1.1 (i), it is easy to see that both (16) and (17) hold
true as soon as

M⊗k
L ⊗ Ln−1(−4H)⊗B−1 satisfies I.T.0.

Proceeding this way k times, we are reduced to check that

ML ⊗ Ln−1
(
− 2(k + 1)H

)
⊗B−1 satisfies I.T.0.

In turn this follows from the ampleness of Ln−1
(
− 2(k + 2)H

)
⊗B−1 which is ensured by the

assumption p > r − 2n + 2 (which implies that n − 1 > k + 2), and the assumption on the
nefness of B−1 if p = r − 2n+ 2. �
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Remark 2.10. The result remains valid for n = 2 if in addition we assume that B−1 is nef.
Indeed, our numerical conditions force p = r − 2, and hence we have only one multiplication

map involved, namely µ0.

Remark 2.11. The case of elliptic curves is much more specific. Let X be an elliptic curve,
L be a line bundle of degree r + 1 with r ≥ 3 and B be an arbitrary a line bundle on X. We
can identify all the cases when Kr−1,1(X,B;L) = 0.

From Green’s duality theorem, [Gr, Theorem (2.c.6)] (note that the duality does not apply
in general for abelian varieties of dimension ≥ 2), we have an isomorphism

Kr−1,1(X,B;L)∗ ≃ K0,1(X,B−1;L),

and the latter is isomorphic, by definition, to the cokernel of the multiplication map

(18) H0(X,L) ⊗H0(X,B−1) −→ H0(X,L−B).

If deg(B) ≥ 0 and B 6≃ OX , then H0(X,B−1) = 0 and hence we obtain Kr−1,1(X,B;L) 6= 0.

If B ≃ OX then the map (18) is obviously an isomorphism and hence Kr−1,1(X,L) = 0. Note
that the non-vanishing Theorem of Green and Lazarsfeld [Gr, Appendix] for a decomposition
L ≃ L(−2x) ⊗ OX(2x) with x ∈ X implies that Kr−2,1(X,L) 6= 0. If deg(B) ≤ −2, since

h1(X,L−1 ⊗ B−1) = h0(X,L ⊗ B) ≤ h0(X,L) − 2 (L is very ample), we may apply Green’s
H0 Lemma ([Gr, Theorem (4.e.1)] to conclude that the multiplication map (18) is surjective,
i.e. Kr−1,1(X,B;L) = 0. If B = OX(−x) with x ∈ X then the multiplication map (18) is not

surjective which implies Kr−1,1(X,B;L) 6= 0.

It is possible to give an asymptotic version of Theorem 2.9 for line bundles of type Ld :=
dL+ P where L is ample and globally generated and P arbitrary.

Corollary 2.12. Let L,P,B be line bundles on an abelian variety X such that L is ample and

globally generated. Set Ld := dL + P and rd := h0(X,Ld) − 1. Then there exists an integer
d0 = d0(L,P,B) such that if d ≥ d0, then Kp,1(X,B;Ld) = 0 for all rd − 2n+ 2 < p ≤ rd − n.
If in addition −B is nef, then the statement is also true for p = rd − 2n+ 2.

Proof. With the notation of Theorem 2.9, we set H = L and choose integers d1 = d1(L) such
that d1L is very ample (e.g. d1 = 3) and d2 = d2(L,P ) such that (d2 − 2)L + P is globally
generated. Moreover let d3 = d3(L,P,B) be such that d3L + P − B is globally generated.

Then for any d ≥ d0 := max{d1 + d2, d1 + d3} the line bundles Ld − 2L and Ld − B are very
ample. Moreover Ld is globally generated for all d ≥ d0. Now the corollary follows by Theorem
2.9. �

As a final comment, it is natural to ask how far are the results included here from being
optimal. Non-vanishing of syzygies can be obtained from the general result of M. Green and
R. Lazarsfeld [Gr, Appendix], however, the problem is how to decide if between the bounds

given by their result and our bounds the Koszul cohomology groups are zero or not.
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