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Abstract: Extracellular vesicles (EVs) are lipid membrane vesicles released by all human cells and are
widely recognized to be involved in many cellular processes, both in physiological and pathological
conditions. They are mediators of cell-cell communication, at both paracrine and systemic levels, and
therefore they are active players in cell differentiation, tissue homeostasis, and organ remodeling.
Due to their ability to serve as a cargo for proteins, lipids, and nucleic acids, which often reflects the
cellular source, they should be considered the future of the natural nanodelivery of bio-compounds.
To date, natural nanovesicles, such as exosomes, have been shown to represent a source of disease
biomarkers and have high potential benefits in regenerative medicine. Indeed, they deliver both
chemical and bio-molecules in a way that within exosomes drugs are more effective that in their
exosome-free form. Thus, to date, we know that exosomes are shuttle disease biomarkers and
probably the most effective way to deliver therapeutic molecules within target cells. However,
we do not know exactly which exosomes may be used in therapy in avoiding side effects as well.
In regenerative medicine, it will be ideal to use autologous exosomes, but it seems not ideal to use
plasma-derived exosomes, as they may contain potentially dangerous molecules. Here, we want to
present and discuss a contradictory relatively unmet issue that is the lack of a general agreement on
the choice for the source of extracellular vesicles for therapeutic use.

Keywords: extracellular vesicles (EVs); exosomes; biomarkers; nanodelivery; theranostics;
regenerative medicine

1. Introduction

Cells are able to communicate with each other and with the surrounding environment through
direct contact or the secretion of soluble factors [1–4]. The three major types of communication that
cells use are active transport, passive transport, and vesicular transport [5,6]. This has generated
in medicine the idea to exploit the natural system for cellular communication with therapeutic
purposes. In particular, the intercellular transfer of molecular and genetic material through extracellular
vesicles (EVs) has aroused considerable attention in recent years [3,7,8]. In fact, EVs represent an
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evolutionarily conserved mechanism to transfer biologically active molecules between cells locally
and at distance, thereby regulating gene expression and cellular function in recipient cells. EVs are
heterogeneous in origin, size, antigenic composition, and functional properties [7]. It is intriguing that
microenvironmental conditions may change both the EVs’ composition at both protein and lipid levels,
and the amount of EVs released, as far as cancer is concerned [9–11]. EVs are small phospholipid
bilayer vesicles released by all prokaryotic and eukaryotic cells, including cancer cells, which can
contain different types of RNA, proteins, mitochondrial DNA, and both single strand DNA and double
strand DNA [7,12–14]. EVs can be classified according to their size, mode of biogenesis, functions, and
composition into categories based: Exosomes (20–150 nm of diameter), apoptotic bodies (>800 nm),
microparticles (0.1–1 µm), prostasomes (50–500 nm), and tolerosomes (~40 nm) [12,15]. Many recent
reports have focused on the use of EVs, among these the exosomes in particular, as biomarkers
for early diagnosis and as accurate therapeutic agents for various pathologic conditions, such as
inflammation, cancer, and cardiovascular disease [9,16–18]. Considering the plethora of research
on personalized therapies has involved EVs as well, in particular, those of nanosize, i.e., exosomes,
through this work, we will predominantly focus the attention on exosomes, because they are currently
the best characterized EVs. Effectively, for their own features, exosomes are easily accessible and
capable of representing their parental cells, and these properties, for instance, may be exploited to
overcome the most critical issue of regenerative medicine, such as the invasiveness and safety of
therapies. Nevertheless, much remains to be made in this field of research. Indeed, the current efforts
of researchers and clinicians are aimed to better characterize and to the engineering of these vesicles in
order to modify their content and to use them as delivery systems for therapeutic purposes [19].

Cells produce a wide spectrum of EVs, which are believed to serve various functions depending
on their origin and molecular composition. Among to the heterogeneous group of EVs, there are two
main types of phospholipid vesicles, which have been classified in microvesicles (50–1000 nm) and are
generated by outward budding of the plasma membrane, and exosomes (20–150 nm), generated by
invagination of endosomal membranes and by the subsequent release of the multivesicular bodies
(MVBs) [20,21]. Both EVs may help cells to dispose of cellular material and transfer signaling molecules,
such as miRNAs, mRNAs, proteins, and lipids, to specific target cells.

Each class of EVs has specific markers, for example, tetraspanins, such as Alix, Tsg101, CD9, CD63,
CD81, and CD82, are typical exosomal markers, together with heat shock proteins (Hsps) and MHC
molecules as reported in the main EVs databases [22,23]. However, the increasing interest regarding the
application of EVs in therapies prompted the discovery of new potential markers [24,25]. Exosomes and
microvesicles have particular biological functions [26–28], but, due to the technical limitations in
the methods of isolation and characterization, the term “extracellular vesicle” (EV) is often used
generically to indicate all the classes together [21]. EVs are active players in intercellular communication
mechanisms [11,27,29,30]. All cell types (including T cells, B cells, dendritic cells, platelets, epithelial
cells, and cancer cells) are able to release EVs, such as exosomes, into the extracellular environment
in vitro and in vivo, in both normal and pathological conditions. In fact, exosomes have been detected
in virtually all biological fluids, including urine, breast milk, plasma, saliva, cerebralspinal fluid,
amniotic fluid, seminal plasma, and bronchoalveolar lavage fluid [7,12,31–39]. It is believed that
exosomes have a biogenesis mechanism that involves the endosomal pathway. After endocytosis, the
early endosomes become part of the multivesicular bodies (MVBs), undergoing an unconventional
inward budding and gradual manipulation of the content. Thereafter, the intraluminal vesicles (ILVs)
of the MVBs, following the merging of them with the plasma membrane, are released in extracellular
milieu and became exosomes [20].

The endosomal sorting complexes required for transport (ESCRT)-I play a central role in MVB
formation, sorting, and secretion [40], because it has been shown to assist the sorting of cargo proteins at
the endosome membranes and ALIX (apoptosis-linked gene 2-interacting protein X) is a key regulator
of this function [41]. However, some evidence assumes the intervention of ESCRT-independent
mechanisms of exosomes’ release, which require sphingolipid ceramide and depends on raft-based
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microdomains [42]; probably used for sorting of proteolipid molecules. The pathways might not be
entirely separated and both pathways might work together [43–45].

Exosomes are easily accessible and their content reflects the characteristics of their cellular source.
This, of course, allows monitoring of exosomes obtained from human body fluids while this approach
is not entirely safe due to the uncompleted knowledge on the exosome composition. Of course, it is an
exciting challenge for scientists to both better characterize and possibly modify the composition of
these vesicles, making natural exosomes a promising delivery system for therapeutic purposes [19].
In the following paragraphs, we describe the current knowledge and possible perspectives in exosome
application for disease treatment, including regenerative medicine.

2. EVs: Nano-Sized Carrier of Cellular Messages in Pathological Conditions

Many reports suggest that the EVs’ content is dependent on the cellular source [9,12,14,46–48].
Because they have an ability to bind target cells and/or exchange molecules, they can modulate
the activity of other cells [9], thus exosomes, for instance, carry and deliver information that is
essential for health, and participate in the activation of the immune system and in pathological events,
including malignant transformation [30,49,50]. These vesicles have been identified in the plasma and
in the serum of patients with different types of tumor, such as glioblastoma [51], lung cancer [52],
melanoma [53,54], prostate cancer [10,55], and colon-rectal cancer [33,56,57]. Many data support the
hypothesis that cancer cells can secrete more exosomes than healthy cells, and, more importantly,
the lipid, nucleic acid, and protein content of exosomes are tumor-specific, and this effect is related
to the tumor extracellular acidity [10,12]. This, in turn, suggests that exosomes contain stimulatory
and inhibitory components that, when delivered to the recipient cells, enable crosstalk between
tumor cells and their surrounding environment [58,59]. Among the molecules contained in the
exosomes, special attention has been given to miRNA, which can modulate the gene expression of
target cells also very far from the site of the tumor [60]. Other findings demonstrate how exosomal
miRNAs can be important mediators of inflammatory responses, such as in asthma [61], diabetic
nephropathy [62], and in dementia progression [63]. In addition, many reports have shown that
circulating exosomes could be changed in number and composition upon cardiac injury, such as
myocardial infarction, myocardial ischemia-reperfusion injury, atherosclerosis, hypertension, and
sepsis cardiomyopathy [64–66]. However, plasmatic exosomes may represent the shuttle of potentially
dangerous molecules in healthy conditions as well. As an example, exosomes may deliver both
Epstein-Barr virus (EBV)-related proteins and nucleic acids [67]; but also prion proteins that are
normally detectable in human exosomes, but that may contain prion-disease-related proteins as
well [68].

The exosomes influence the immune system and exert physiological and pathological effects
through mechanisms not completely understood. A pioneer paper was in 1996 from Raposo et al. [1],
showing, through an in vitro study, how the B lymphocytes secrete antigen-presenting vesicles, capable
of triggering potent T cells responses [1]. Probably, exosomes are able to stimulate naïve CD4+ T
cells both in vitro and in vivo conditions, by the transfer of MHC-peptide complexes to denditic cells
(DCs), conferring them a maturation signal necessary to naïve T cell priming [69]. Almost all cells of
both innate and adaptive immunity are able to secrete exosomes that carry, for instance, MHC class I
or II-peptide complexes as a mode of antigen presentation [70]. These exosomes represent a critical
component of the immunoregulatory network and may help to distribute antigens, favor the induction
of DCs maturation and promote secretion of pro-inflammatory cytokines, and induce a proper immune
reaction against pathogens [71].

Evidence is accumulating that exosomes induce cellular-source-related functions. In fact, mature
DCs release exosomes, which have the effect to promote pro-inflammatory functions [69], while many
tumor cells release EVs with anti-inflammatory and immune escape effects [29,33,47,48,72]. It appears
therefore conceivable that EVs and exosomes may be involved in the pathogenesis of several human
diseases [72–75].
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During tumorigenesis, tumor cells release exosomes that are not only a cargo to deliver
molecules considered generally as biomarkers, but also factors that have the capability to alter
phenotypic and functional attributes of recipient cells, favoring metastasis, tumor progression, and
immunosuppression [76–78]. Tumor cells, in fact, secrete immunologically active exosomes with
pro-inflammatory and/or immune suppressive factors. Then, tumor exosomes are involved in the
tumor immune escape through different mechanisms, including the direct killing of anti-tumor
lymphocytes through either a death-receptors-ligand interaction [79,80] or inhibiting the Natural Killer
(NK) cells function [81]. A study performed with NK-cell derived exosomes has shown that NK-cell
release exosomes that express both typical NK cell markers and killing molecules, and a comparable
pattern has been shown in exosomes purified from the plasma of healthy individuals [82]. Notably,
NK-cell derived exosomes induce the killing of target cells, and this was demonstrated with both
exosomes purified from supernatants of NK-cell culture and those purified from human plasma [82].
The ensemble of these results triggered further studies, showing that exosomes secreted by tumour
cells and engineered to express specific molecules could improve antitumor immunity [29].

3. Therapeutic Potential of EVs and Exosomes: From Cancer to Regenerative Medicine

In the last decade, many efforts have been made in order to set up stable and bio-compatible
carriers for the delivery of chemical drugs and small molecules to be used in the treatment of human
diseases. However, the Food and Drug Administration (FDA) have approved few of these [83].
The reason for this slowing down in the search for effective vectors is due to the difficulties related to
immunogenity and side effects.

The use of exosomes for therapy of human disease is becoming a central issue in NanoMedicine for
their ability to deliver biologically active material to target cells [84]. For their natural ability to deliver
biologically active material to target cells, exosomes may be defined as a natural nano bullet with high
therapeutic potential [3]. However, the effective therapeutic advantage and the safeness of their use is
still controversial. Most scientific reports produced in the last years were aimed at investigating the
role of exosomes in favouring some pathological conditions or tissue degeneration. Moreover, there is
a vacuum in the translation of the pre-clinical studies into clinical use, as is unfortunately occurring all
too frequently in the translational research in medicine. This is the case of exosome research as well
and presently we have no clear data on a number of important issues, including the potential of the
natural exosome content as a new therapeutic tool, and which exosome source is more suitable to be
exploited as a delivery for therapeutic molecules.

The most investigated as an artificial cargo for drugs have been the liposomes [85]. The liposomes
are spherical lipid bilayers synthesized easily in the laboratory, whose features are dependent on the
lipids of which are constituted [83–85]. However, there are a number of concerns on both their real
efficacy in delivering the drugs to the disease site, and, more importantly, on the side effects due to the
high catabolic index [86–88]. It is therefore mandatory to investigate the whole potential of exosomes
as a natural delivery for both chemical and biological therapeutic molecules.

There are different targeting strategies to enhance the therapeutic potential of exosomes and of
extracellular vesicles. The strategies currently used are focused on two different approaches that focus,
respectively, on cellular modification via engineering techniques or are centred on direct EV alteration
(Figure 1). Cellular modification consists of genetic modification, metabolic labelling, and exogenous
delivery, which have been proven to change the pattern of surface expression molecules and the cargo
of EV [89]. In particular, it has been proven that modification of exosomal tetraspanin complexes (CD63,
CD9, CD81) strongly influences target cell selection both in vitro and in vivo [90], improving targeting
of exosome to tissues and the cell type of interest. This approach may lead to the creation of exosome
containing modified membrane protein with signalling properties using a lentiviral vector, a reporter
system useful to generate a stable integration of the target protein within the exosomal membrane
to be used for in vivo and cell uptake studies [91] (Table 1). Moreover, this system has been widely
used to enhance exosome therapeutic efficacy. Modified exosomes carrying modified transmembrane



Int. J. Mol. Sci. 2019, 20, 236 5 of 20

proteins are of great interest for the treatment of cancer, diabetes mellitus, cardiovascular disease, and
neurological disorders [92]. Together with tetraspanin, other modified transmembrane proteins are
the platelet-derived growth factor receptors [93], the lysosome-associated membrane glycoprotein
2b (Lamp-2b) [94], the lacthadein, and the glycosylphosphatidylinositol (GPI) [95]. For example,
a display of GPI-anchored anti-epidermal growth factor (EGFR) nanobodies on extracellular vesicles
promotes tumour cell targeting [96] and targeted exosomes to neurons and glia expressing Lamp-2b
showed the capacity to cross the blood-brain barrier, delivering loaded siRNA for the knockdown of
BACE 1 [94]. Exosomes derived from dendritic cells and bearing Lamp-2b fused to αv integrin-specific
iRGD peptide (CRGDKGPDC) has been used as an efficient drug delivery system to breast cancer
cells in culture and in vivo [96] (Table 1). Furthermore, using the indirect modification of dendritic
cell-derived exosomes content, it has been proven that these EVs were able to induce and enhance
antigen-specific T cell responses in vivo, compared to the immunotherapy [97]. Numerous studies
have focused on the cytotoxicity of the modified exosomes in different types of cancer. Similarly,
systematically injected exosome carrying specific EGFR peptides fused to platelet-derived growth
factor receptors (PDGF-R) delivered let-7a miRNA in EGFR-expressing xenograft breast cancer tissue
in RAG2(−/−) mice with a therapeutic response [93] (Table 1).

The alternative modification strategy of the EVs that should be mentioned is direct modification.
This approach can be realized whether by passive loading techniques, which exploit spontaneous
membrane interactions; or through physical methods that temporarily destroy the integrity of the
membranes to allow cargo loading (Figure 1). Regarding passive loading, an example has been shown
by Sun et al., which demonstrated the anti-neoplastic properties of curcumin loaded in the exosomes,
exploiting the hydrophobic interactions between the membrane and molecular cargo [98]. Later, active
modifying techniques of EVs have been applied to demonstrate that the modification has made the
EVs more bioactive and bioavailable when administered in vivo [99,100] (Table 1).

The potential application of exosomes and EV in general as therapeutic agents has led to the
development of new and advantageous tools for the intracellular delivery of target proteins. Recently,
EXPLORs (exosomes for protein loading via optically reversible protein-protein interactions) have
been described by integrating a reversible protein-protein interaction module controlled by blue light
with the endogenous process of exosome biogenesis, and are able to successfully load cargo proteins
into newly generated exosomes. The module is controlled by blue light and the results indicated
the potential of EXPLORs as a mechanism for the efficient intracellular transfer of protein-based
therapeutics into recipient cells and tissue [101].

Exosomes can efficiently deliver mRNAs, miRNAs, and siRNAs with a wide range of applications
in genetic therapies and drug discovery [92,102,103] (Figure 1). In particular, miRNAs are commonly
carried by exosomes, representing in the last few years the new frontiers of the therapeutic approach
to different human diseases. miRNAs are easily loaded into exosomes via miRNAs’ expression of
backbones or transfection of precursor or miRNAs’ mimics [92]. For example, exosomes derived from
miR-146a—overexpressing dendritic cells have been shown to suppress the effects of myasthenia
gravis [104] and exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal
stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat
model [105].

In some in vivo models, the applicability of exosomes derived from stem cells (SCs) for therapeutic
purposes have been shown. The SC-derived exosomes have recently demonstrated the potential to
treat many diseases and disorders, such as cardiovascular ischemia [106–108], and kidney and liver
diseases [109,110], and enhanced wound healing as well as adipose tissue regeneration [111,112]. It has
been demonstrated that exosomes from cardiosphere-derived cells have limited injury and improved
function in myocardial infarction [113]. Furthermore, evidence has been provided that exosomes
purified from pericardial fluid of patients undergoing acute myocardial infarction are related to an
improvement in myocardial performance through a framework, including EMT-mediated epicardial
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activation, arteriogenesis, and reduced cardiomyocyte apoptosis [114]. NK-cell derived exosomes kill
target cells using either Fas-Fas-ligand interaction or perforin activity [115].

As described above, the exosomal surface and content might be modified, giving the possibility
of adding molecules, drugs, or compounds, thus enhancing their therapeutic potential.Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  7 of 20 
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Figure 1. Exosomes as nanomedicine tools. Exosomes can be isolated from the patient, starting from
all body fluids. The less invasive access is represented by a simple blood sample (liquid biopsy), by
which it is possible to isolate circulating exosome (1), potentially released by all body cells. These “self”
exosomes obtained can be loaded with drugs (2), such as peptides or small molecules, otherwise with
therapeutic RNAs or miRNAs and then reinfused in the same patient for the therapeutic purpose (3).
Another approach consists in the possibility to isolate and manipulate, for instance, immature dendritic
cells (iDCs) or mesenchymal stem cells (MSCs) (4), with the aim of producing exosomes bearing
therapeutic molecules (5). The engineered exosomes may be administered to the patient (6) as a
treatment of diseases affecting various organs, or to exploit the recognized regenerative capacities (7).
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Table 1. Experimental studies on EVs modification: Bioactivity and therapeutic implications.

EVs Cell Source EVs Cargo EVs Engineering Strategy Therapeutic Effects Ref.

Rat pancreatic adenocarcinoma cell line
Rat endothelial cell line
Rat lung fibro- blast cell line
Rat lymph node stroma cell line
Human embryonic kidney cell line

Tetraspanin chimeric-complexes Indirect approach Improving of targeting selection [90,91]

Human embryonic kidney cell line
Transmembrane domain of
platelet-derived growth factor
receptor

Indirect approach Targeting to xenograft breast cancer
cells in RAG2−/− mice [93]

Self-derived dendritic cells

Chimeric peptide (Lamp2b-RVG;
MSP; FLAG epitope)
Chimeric peptide (Lamp2b-αv
iRGD peptide)

Indirect approach
Indirect and direct approach

Targeting to neuronal tissue and
muscle tissue
Enhancing of chemotherapy index

[94,96]

Mouse neuroblastoma cells Chimeric peptide
(Lamp2b-GPI-anchor peptide) Indirect approach Targeting of EGFR-expressing

tumour cells [95]

Dendritic cells rAAV/AFP Indirect approach Enhancing antigen-specific T cell
responses in vivo against cancer [97]

Mouse lymphoma cell line
Murine macrophage cell line Curcumin Direct approach Protection against lipopolysaccharide

(LPS)-induced septic shock in mouse [98]

Human cervical cancer-derived) cells
Human epidermoid carcinoma cells
Mouse neuroblastoma cells

Oligoarginine peptides
Targeting ligands conjugated
to PEG

Direct approach Improving of therapeutic effects and
in vivo bioavailability [99,100]

Abbr.: RAG2, recombination activating gene 2; RVG, rabies viral glycoprotein peptide; MSP, muscle-specific peptide; GPI, glycosylphosphatidylinositol; iRGD, integrin-specific; rAAV/AFP,
recombinant adeno-associated viral vector -carrying alpha-fetoprotein gene; PEG, polyethylene glycol.
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Regenerative medicine has the purposes to functionally restore tissue from damage,
malfunctioning, or to form it when it is missing. There are three main approaches in regenerative
medicine: Cell-based therapies, tissue engineering, and material based approaches. In cell-based
therapies, cells are administered to restore a tissue either directly or through paracrine functions;
tissue engineering consists of the combined use of cells and a biodegradable scaffold to produce
a tissue; and material based approaches are centred on the use of biodegradable materials, often
functionalized with cellular functions. [116]. Recently, research insights have suggested that the local
healing process plays an important role in regenerated tissue rather than the structural contribution
of stem cells per se [117,118]. For instance, it has been demonstrated that direct injection of
hematopoietic stem cells (HSCs) into the mouse heart does not result in de novo cardiomyogenic
events or tissue regeneration. Despite the promising therapeutic applications of SCs, heterogeneous
efficacy data have been reported, probably because this approach still needs to be clearly defined
and standardized [119]. Given that, researchers are increasingly focused on the paracrine hypothesis,
studying the stimulating factors released by stem and progenitor cells, such as growth factors, cytokines,
and EVs, particularly exosomes. As stated above, EVs are involved in angiogenesis, the regulation
of immune responses, and extracellular matrix remodeling, affecting cell phenotype, recruitment,
proliferation, and differentiation [1,120,121]. All these characteristics are considered of great interest
for tissue engineering and in restoring function in damaged tissues.

The most striking evidence supporting the use of exosomes in cell-free therapy and tissue
engineering come from the results obtained from a series of studies on mesenchymal stem cell (MSCs)
transplantation for tissue regeneration [122,123].

However, other reports have shown the ability of MSCs to induce cellular modifications through
the exosomes they produce, supporting the use of exosomes in regenerative medicine [122,124–126].
In addition, exosomes released from monocyte, leukocyte, granulocyte, and lymphocyte are involved
in the recruitment of inflammatory cells, angiogenesis, and coagulation, which trigger tissue repair and
regeneration [127,128]. The clinical applications include different therapeutic protocols from neuronal
regeneration to myocardial, liver, kidney, muscle, skeletal, and chondral regeneration as well as the
regeneration of other tissues and organs (reviewed in 115) (Figure 1). In 2013, Patel and collaborators
isolated a novel kind of stem cell from the sub-epithelial layer of the umbilical cord. These cells were
phenotypically MSCs (i.e., they expressed CD9, SSEA4, CD44, CD90, CD166, CD73, and CD146) [129]
and released large exosomes amounts [129]. In particular, CD146 expression influences periapical
cyst MSCs’ properties [24], even if there is no evidence regarding a direct effect mediated by CD146+
EVs. Interestingly, CD146+ EVs are involved in an increased risk of acute graft-vs-host disease after
allografting [25].

A potent challenge is the nervous tissue repair and regeneration. For example, miR-133b contained
in exosomes extracted from multipotent mesenchymal stromal cells have the properties to boost neurite
outgrowth [130]. Moreover, systemically administered exosomes generated from human bone marrow
mesenchymal stem cells (hBMSCs) attenuated neuroinflammation and enhanced angiogenesis and
neurogenesis in a rat model of traumatic brain injury [131]. In a similar manner, exosomes derived from
human adipose-derived stem cells (hASCs) showed pro-regenerative effects on neuronal cells post
injury [132] and exosomes isolated from BMSCs significantly boost the survival of retinal ganglion cells
via argonaute-2, promoting the regeneration of their axons [133]. Furthermore, the pro-regenerative
properties of exosomes were observed also in spinal cord injuries. After nervous damage, exosomes
derived from Schwann cells could be internalized by axons and drove axonal regeneration, inhibiting
the activity of RhoA responsible for growth cone collapse [134]. Finally, it was demonstrated that
the exosomal retinoic acid receptor β (RARβ) taken up by astrocytes could reduce their proliferation,
preventing scar formation around regenerating axons [135].

Regarding myocardial regeneration, exosomes isolated from cardiosphere-derived cells could
promote the proliferation of cardiomyocytes when injected into mice in a model of ischemic injury [136].
Moreover, preconditioning with MSC exosomes could boost the proliferation, migration, and
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angio-tube formation of cardiac stem cells [137]. Khan and colleagues reported that stem cell-derived
exosomes delivered by the intra-myocardial administration in mice at the time of myocardial infarction
induced neovascularization and cardiomyocyte survival, enhancing c-kit positive cardiac progenitor
cells’ survival and proliferation [138]. Other research groups demonstrated that exosomes derived
from human umbilical cord mesenchymal stem cells (hUCMSCs) might protect myocardial cells
from apoptosis by modulating the expression of members of the Bcl-2 family, thus promoting
angiogenesis [139].

Interestingly, Agarwal and collaborators demonstrated for the first time that donor age and
hypoxia level could influence the therapeutic efficacy of exosomes derived from human cardiac
progenitor cells [140]. Recently, it has been found that the pericardial fluid also contained exosomes
enriched with miRNAs and that they might improve the survival, proliferation, and networking of
endothelial cells in vitro. Most importantly, the exosomes in the pericardial fluid might boost flow
recovery and angiogenesis in a mouse model of ischemic injury [141].

Exosomes exert a pivotal role also in hepatic and kidney regeneration. Exosomes are used as
specific biomarkers for hepatocyte damage and inflammation in liver diseases [142]. In acute liver
injury, exosomes derived from hepatocytes could promote the proliferation of hepatocytes in culture
and liver regeneration in vivo [110,143]. Moreover, administration of hUCMSC-derived exosomes
could effectively rescue mice from liver failure in a carbon tetrachloride (CCl4)-induced liver injury
mouse model [144]. Regarding kidney regeneration, it has been demonstrated that human umbilical
cord blood-derived endothelial colony forming cells (ECFCs) and derived exosomes intravenous
administration might attenuate renal injuries in mice with ischemic injury [145]. In addition, Wang et al.
found that exosomes derived from engineered MSCs overexpressing miRNA-let7c could attenuate
kidney injury, achieving antifibrotic functions [146].

Other fields of interest for regenerative medicine are skeletal, chondral, and muscle regeneration.
In particular, bone regeneration using MSCs and tissue engineering approaches is one of the most
widely researched fields. Exosomes isolated from MSC-conditioned medium could accelerate
femur fracture healing [147]. Moreover, Zhang et al. investigated the pro-osteogenic potential of
human-induced pluripotent stem cell (hiPSC)-derived MSC-exosomes by activating the PI3K/Akt
signalling pathway [148]. Recently, the therapeutic effects of exosomes derived from human embryonic
mesenchymal stem cells have also been demonstrated on cartilage repair [122]. Moreover, exosomes
secreted by human synovial membrane MSCs and induced pluripotent stem cell-derived MSCs exert a
regenerative potential on osteoarthritis provided new perspectives for cell-free therapies for cartilage
injury [149]. Regarding skeletal muscle, exosomes derived from MSCs could promote myogenesis and
angiogenesis in vitro [150]. Moreover, exosomes derived from human skeletal myoblasts could induce
a myogenesis response during myotube differentiation [151] and could accelerate skeletal muscle
regeneration by reducing collagen deposition and increasing the number of regenerated myofibers in
injured muscles [152].

A number of research groups are involved in cutaneous regeneration. For instance, angiogenesis is
of crucial importance in various physiological processes, including tissue regeneration and cutaneous
wound healing. Exosomes released by human adipose derived MSCs can significantly induce
endothelial cell angiogenesis in vitro and in vivo, promoting the release of miR125a [153]. One of
the most common causes of cutaneous damage is burn injury. Further investigation indicated
that exosomes released from hUCMSC could successfully reverse the burn-induced inflammatory
reaction [154]. Interestingly, exosomes derived from human amniotic epithelial stem cells, when
subcutaneously injected around the wound site, promote the migration and proliferation of fibroblasts,
accelerating healing of full-thickness skin defects in a dose-dependent manner [155]. In a similar
manner, exosomes obtained from platelet-rich plasma and exosomes derived from corneal epithelial
cells could promote angiogenesis and accelerate healing in a number of experimental models both
in vitro and in vivo [156,157].
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The potential of the use of exosomes in regenerative medicine is not limited to the tissue described
above, with studies including pancreas and dental pulp as well [152,158]. Thus, there is an exciting
background supporting the use of nanovesicles in regenerative medicine, but sadly, there is little
clinical evidence. One central topic, which is the key point of this work, is the choice of the source of
exosome to be exploited in the generation of new tissues for therapy.

A key point in the choice of natural nanovesicles as a shuttle for therapeutic molecules is to avoid
the use of exosomes with potential toxic effects. This may be the case of plasmatic exosomes that
in patients may deliver molecules administered in the current treatment schedules. Cancer patients’
exosomes may, for instance, deliver chemotherapeutics as it has been shown both in vitro and
in vivo [155]. However, together with mesenchymal stem cells, monocyte-derived macrophages
have also been shown to represent a safe and valuable source for therapeutic exosomes [156]

The debate is indeed entirely open, most of all because the clinical data represent a negligible
part of what has been published in exosome and EVs research. Figure 1 summarizes what we can
conceivably propose on the basis of the published research.

4. Conclusions and Remaining Challenges

Based on their key function of being natural mediators in cell-cell communication, EVs
are promising candidates in the treatment of numerous pathologies and in tissue regeneration.
As described above, exosomes may have a regenerative potential themselves, but thanks to their
bioavailability and low immunogenicity, they are optimal candidates for use as carriers of drugs
and therapeutic molecules. There is evidence demonstrating that heterologous exosomes released by
mesenchymal stem cells may be considered as a reliable and safe source for therapeutic exosomes.
However, the use of an autologous approach cannot be excluded. In this case, exosomes should be
free of potentially dangerous molecules, but patients’ plasmatic exosomes, for example, are dangerous
by definition. In fact, plasmatic exosomes deliver molecules that may be considered a sort of waste
of the diseased tissues, but they may well deliver drugs with high toxic potential [159]. We have
recently shown that exosomes released by human primary macrophages efficiently deliver drugs that
may, in turn, be used as both tracers and therapeutic molecules [160], with a promising future in
theranostics [161]. These studies support the use of autologous exosomes obtained by peripheral-blood
derived primary monocytes. Of course, we do not mean that they are entirely safe, but they are safer
than plasmatic exosomes.

Thus, there are no doubts on the efficacy of new therapies based on the use of exosomes [162,163].
Clinical investigation is, however, mandatory to establish the real therapeutic potential of EVs, but
also their safety, which remains a point still under debate.

The idea to modify exosomes to render them safer and more effective is of course an amazing
endpoint (Figure 1), but before getting to this point, we should try to establish which are the safest
sources of exosomes for therapeutic use.

For example, the use of the platelets-derived exosomes are a very interesting candidate in
regenerative medicine because of their low immunogenicity [156], but this does not exclude the
possibility that graft versus host disease may arise. The use of exosomes isolated from the same
patient, which undergoes therapies and their manipulation, would avoid all the problems of the
immunogenicity, but it would greatly extend the time for therapy (Figure 1).

Another issue that needs to be addressed is the mechanism/s through which exosomes may exert
their therapeutic effects.

It appears that a key mechanism used by EVs to interact with target cells is the
membrane-to-membrane fusion and the delivery of the vesicles’ content within the target cells.
This of course may per se trigger an effect. For instance, it has been shown that exosomes derived
from different cell types may have preferential targeting towards certain cell types based on their
membrane composition, thus imparting a differential effect on our body [164]. A possible mechanism
that has been investigated in a tumor mice model consists of a modified gene expression profile of
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receiving cells, such as genes involved in down-regulated functions, such as cell death, growth, and
proliferation [165,166]. One of the well-known effects is the contribution to maintain the immune
homeostasis, by modulating the inflammatory expression of immune cells, both in in vitro and in vivo
models [167,168]. Nevertheless, the mechanism on how the EVs function and influence their target
cells remains to be clarified. It is debated whether EVs are able to restore tissue integrity and function
through direct cell activity modulation or by an indirect effect on the immune system. Most likely, the
complete characterization of their content may be a promising challenge to elucidate the full potential
of natural nanovesicles.

To accomplish this, the optimum could be achieved by creating an “exosome-factory”, similar to
cell factories for cell therapy, in which exosomes can be obtained from the same cells of the patient
who must undergo treatment (i.e., MSCs or iDCs) or from other cell types, which are engineered to
internalize within the exosomes’ specific therapeutic molecules (Figure 1). This may be a way to reduce
costs and the delivery of therapeutic molecules easier, hopefully reducing the well-known side effects
of current treatments of chronic diseases.

Given the above, whatever the modification made on the exosomes or the choice of the cell-source,
the problem of their safety remains. In fact, the challenge of research in the next few years probably
will be to predict the exosomes’ behavior once injected. Little wonder all this can be achieved only after
a careful and intense investigation on the characterization of the content of exosomes to be approved
for clinical use.
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