

Supporting Information

Synthesis and structure affinity relationships of spirocyclic benzopyrans with exocyclic amino moiety

Elisabeth Kronenberg,^a Frauke Weber,^a Stefanie Brune,^a Dirk Schepmann,^a Carmen Almansa,^b Kristina Friedland,^c Erik Laurini,^d Sabrina Pricl,^d Bernhard Wünsch^{a,e}

^a Institut für Pharmazeutische und Medizinische Chemie der Universität Münster, Corrensstraße 48, D-48149 Münster, Germany

Tel.: +49-251-8333311; Fax: +49-251-8332144; E-mail: <u>wuensch@uni-muenster.de</u>

^b Esteve Pharmaceuticals S.A., Baldiri Reixach 4-8, 08028 Barcelona, Spain.

^c Pharmakologie und Toxikologie, Institut für Pharmazie und Biochemie, Universität Mainz, Staudinger Weg 5, D-55128 Mainz, Germany

^d Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, 34127 Trieste, Italy

 ^e Cells-in-motion Cluster of Excellence (EXC 1003-CiM), University of Münster, D-48149 Münster, Germany

Content

1. Purity data of prepared compounds	2
2. Experimental Part chemistry	4
3. Receptor binding studies	24
4. Inhibition of CYP enzymes	28
5. Cytotoxicity assay	28
6. In vitro metabolic stability in human liver microsomes	29
7. Table S1	30
8. References	31
9. NMR spectra	32
10. HPLC chromatograms	60

*To whom correspondence should be addressed: Tel: #49-251-8333311; Fax: #49-251-8332144; Email: <u>wuensch@uni-muenster.de</u>

1. Purity data of prepared compounds

compound	purity by HPLC	elemental analysis
3	96.6 %	
4a	94.7 %	
4b	97.1 %	
5a	96.0 %	
5b	98.7 %	
6	98.7 %	
7a	99.0 %	
7b	99.9 %	
8a	98.2 %	
8b	98.5 %	
10a	96.7 %	
10b	98.6 %	
11a	96.3 %	
11b	98.9 %	
14a [#]		C ₂₁ H ₃₁ NO ₂ (329.5).
		calcd. C, 76.55, H, 9.48, N, 4.25
		found C, 76.30, H, 9.44, N, 4.25.
14b [#]		C ₂₁ H ₃₁ NO ₂ (329.5)
		calcd. C, 76.55, H, 9.48, N, 4.25
		found C, 76.30, H, 9.44, N, 4.25.
15a [#]		C22H33NO2 (343.6)
		calcd. C, 76.92, H, 9.68, N, 4.08
		found C, 76.96, H, 9.74, N, 3.82.
15b [#]		C22H33NO2 (343.6)
		calcd. C, 76.92, H, 9.68, N, 4.08
		found C, 76.68, H, 9.80, N, 3.92.
17	98.3 %	
18	99.5 %	
19a	99.1 %	
19b	99.7 %	
20a	92.5 %	

20b	97.1 %	
21a	99.4 %	
21b	99.9 %	
22a	98.6 %	
22b	99.8 %	
23a [#]		C ₂₅ H ₂₅ NO ₂ (323.5)
		calcd. C, 78.0, H, 7.80, N, 4.33
		found C, 77.7, H, 8.02, N, 3.99.
23b [#]		C ₂₅ H ₂₅ NO ₂ (323.5)
		calcd. C, 78.0, H, 7.80, N, 4.33
		found C, 77.8, H, 7.95, N, 4.06.
24a	99.2 %	
24b	99.0 %	

[#] Not stable during the standard HPLC analysis.

2. Experimental Part chemistry

General

Moisture sensitive reactions were conducted under dry nitrogen. THF was dried with and was freshly distilled before sodium/benzophenone use. Thin layer chromatography: Silica gel 60 F254 plates (Merck). Flash chromatography (fc): Silica gel 60, 40–43 µm (Merck); parentheses include: diameter of the column, eluent, R_f value. Melting point: Melting point apparatus SMP 3 (Stuart Scientific), uncorrected. ¹H NMR (400 MHz), ¹³C NMR (100 MHz): Mercury Plus AS 400 NMR spectrometer (Varian); δ in ppm related to tetramethylsilane; coupling constants are given with 0.5 Hz resolution; the assignments of ¹³C and ¹H NMR signals were supported by 2D NMR techniques. MS: MAT GCQ (Thermo-Finnigan): EI, MAT LCQ (Thermo Finnigan): ESI, IR: IR spectrophotometer 480Plus FT-ATR-IR (Jasco) or FT/IR Prestige 21 (Shimadzu). Elemental analysis: CHNOS-Elementar Analysator Vario EL III (Elementar).

HPLC methods to determine the purity

The purity of the test compounds was determined by HPLC analysis. Merck Hitachi Equipment; UV detector: L-7400; autosampler:L-7200; pump: L-7100; degasser: L-7614; column: LiChrospher[®] 60 RP-select B (5 μ m); LiCroCART[®] 250-4 mm cartridge; pre-colimn LiChrospher[®] 60 RP-select B (5 μ m) with LiCroCART[®] 4-4 mm cartridge; flow rate: 1.0 mL/min; injection volume: 5.0 μ L; detection at λ = 210 nm; temperature 20 °C.

HPLC, method A: Solvent A: demineralized H_2O with 0.05 % (v/v) trifluoroacetic acid; solvent B: acetonitrile with 0.05 % (v/v) trifluoroacetic acid: gradient elution (% A): 0-4 min: 90 %; 4-29 min: gradient from 90 % to 0 %; 29-31 min: 0 %; 31-31.5 min: gradient from 0 % to 90 %; 31.5-40 min: 90 %.

HPLC method B: Solvent A: demineralized H₂O with 0.05 % (v/v) trifluoroacetic acid; solvent B: methanol with 0.05 % (v/v) trifluoroacetic acid: gradient elution (% A): 0-1 min: 80 %; 1-22 min: gradient from 80 % to 0 %; 22-30 min: 0 %; 30-31.5 min: gradient from 0 % to 80 %; 31.5-40 min: 80 %.

The purity was calculated as ratio between the peak area of compound and the sum of areas of all detected peaks. According to these HPLC analyses the purity of all test compounds was >95 %. The purity of few compounds was determined by elemental analysis.

Synthesis of starting compounds

The synthesis of the following compounds is reported in reference¹: 2-[2-(1-Hydroxy-4-oxocyclohexyl)phenyl]acetaldehyde dimethyl acetal (**2**); 3-Methoxy-3,4-dihydrospiro[[2]benzopyran-1,1`-cyclohexan]-4`-one (**9**); *trans-N*-Benzyl-3-methoxy-3,4-dihydrospiro-[[2]benzopyran-1,1`-cyclohexan]-4`amine (**21a**); *cis-N*-Benzyl-3-methoxy-3,4-dihydrospiro-[[2]benzopyran-1,1`-cyclohexan]-4`-amine

trans-N-Benzyl-3-methoxy-N-methyl-3,4-dihydrospiro-[[2]benzopyran-1,1`-

cyclohexan]-4`-amine (22a);

cis-N-Benzyl-3-methoxy-*N*-methyl-3,4-dihydrospiro-[[2]benzopyran-1,1`-cyclohexan]-4`-amine (**22b**).

The synthesis of 2-bromobenzaldehyde dimethyl acetal (12) is reported in reference².

Synthetic procedures

Spiro[[2]benzopyran]-1,1'-cyclohexan-4'-one (3)

A solution of hydroxy acetal **2** (102 mg, 0.37 mmol) and *p*-toluenesulfonic acid monohydrate (12 mg, 0.06 mmol) in CH₂Cl₂ (8 mL) was stirred at rt for 6 d. Subsequently, CH₂Cl₂ (10 mL) was added and the mixture was washed with 0.2 M NaOH (10 mL) and H₂O (10 mL). The aqueous layer was re-extracted with CH₂Cl₂ (10 mL). The combined organic layers were dried (K₂CO₃), concentrated in vacuo and the residue was purified by fc (\emptyset 3 cm, cyclohexane/ethyl acetate = 4/1, 22 cm, 10 mL). R_f: (cyclohexane/ethyl acetate = 4/1, 0.38). Colorless solid, mp 104 °C, yield 78.5 mg (25 %). C₁₄H₁₄O₂ (214.3). MS (EI): m/z (%) = 214 [M, 13], 157 [M – CH₃ CH₂C*=O, 100]. IR: v (cm⁻¹) = 30583 (w, v, C-H, arom), 2960, 2926, 2901, 2851 (s, v, C-H, alkyl), 1702 (s, v, C=O), 1636 (s, v, C=C, conj. to arom), 1598, 1490 (w, v, C=C arom), 1447 (m, δ , C-H, Alkyl), 754 (s, δ , C-H, o-disubst. arom). ¹H NMR (CDCl₃): δ (ppm) = 2.09 ("td", J = 13.8/4.9 Hz, 2H, (CH₂CH₂)₂C=O), 2.31 – 2.39 (m, 2H, (CH₂CH₂)₂C=O), 2.61 – 2.69 (m, 2H, (CH₂CH₂)₂C=O), 2.84 ("td", J = 14.4/6.3 Hz, 2H, (CH₂CH₂)₂C=O), 5.85

(d, J = 5.6 Hz, 1H, ArC*H*CHO), 6.58 (d, J = 5.7 Hz, 1H, ArCHC*H*O), 7.00 (dd, J = 7.2/1.6 Hz, 1H, Ar-H), 7.06 (dd, J = 7.5/1.2 Hz, 1H, Ar-H), 7.18 ("td", J = 7.4/1.6 Hz, 1H, Ar-H), 7.22 ("td", J = 7.3/1.4 Hz, 1H, Ar-H). Purity (HPLC method A): 96.6 %, t_R = 19.2 min.

trans-N-(Cyclohexylmethyl)spiro[[2]benzopyran-1,1'-cyclohexan]-4'-amine (4a) and

cis-N-(Cyclohexylmethyl)spiro[[2]benzopyran-1,1'-cyclohexan]-4'-amine (4b)

Under N₂, a mixture of ketone **3** (75 mg, 0.35 mmol), cyclohexylmethylamine (98 %, 63 mg, 0.54 mmol), acetic acid (20 µL, 0.45 mmol), NaBH(OAc)₃ (95 %, 141 mg, 0.63 mmol) and THF (7 mL) was stirred at rt for 3 h. Subsequently, 1 M NaOH (10 mL) was added and the mixture was extracted with CH₂Cl₂ (3 x 20 mL) and with Et₂O (20 mL). The combined organic layers were dried (K₂CO₃), concentrated in vacuo and the residue was purified by fc (\emptyset 2.5 cm, cyclohexane/ethyl acetate = 19/1 + 0.5 % *N*,*N*-dimethylethanamine, 15 cm, 10 mL). R_f (cyclohexane/ethyl acetate = 19/1 + 0.5 % *N*,*N*-dimethylethanamine, **4a**: R_f = 0.18, **4b**: R_f = 0.05).

4a: Colorless solid, mp 35 °C, yield 31 mg (28 %). C₂₁H₂₉NO (311.5). MS (EI): m/z (%) = 311 [M, 44], 228 [M-cyclohexyl*, 79], 181 [C₁₃H₉O)⁺, 40], 152 [CH₂=CHCH=HN⁺CH₂ cyclohexyl, 60], 124 [($C_8H_{14}N$)⁺, 100]. IR: v (cm⁻¹) = 3061, 3027 (w, v, C-H, arom), 2920, 2849 (s, v, C-H, alkyl), 2802 (m, v, N-CH₂), 1629 (m, v, C=C, conj. to arom), 1601, 1486 (w, v, C=C, arom), 1449 (m, δ, C-H, Alkyl), 766, 746 (s, δ, C-H, o-disubst. arom). ¹H NMR (CDCl₃): δ (ppm) = 0.92(,,qd⁴, J = 11.9/2.9 Hz, 2H, NCH₂(cyclohexyl-*H*)), 1.11 - 1.32 (m, 4H, NCH₂(cyclohexyl-H)), 1.38 - 1.50 (m, 1H, NCH₂(cyclohexyl-H)), 1.55 -1.64 (m, 2H, (CH₂CH₂)₂CHN), 1.64 – 1.83 (m, 4H, NCH₂(cyclohexyl-H)), 1.87 – 2.04 (m, 6H, (CH₂CH₂)₂CHN), 2.43 (d, J = 6.6 Hz, 2H, NCH₂(cyclohexyl-H), 2.87 ("quint", J = 3.0 Hz, 1H, 4'-H_e), 5.72 (d, J = 5.7, 1H, OCH=CHAr), 6.49 (d, J = 5.7 Hz, 1H, OCH=CHAr), 6.89 – 6.94 (m, 1H, Ar-H), 7.12 – 7. 17 (m, 3H, Ar-H). A signal for the NH-proton is not seen in the spectrum. Purity (HPLC method A): 94.7 %, t_R = 19.5 min. **4b:** Colorless solid, mp 85 °C, yield 57 mg (52 %). C₂₁H₂₉NO (311.5). MS (EI): m/z (%) = 311 [M, 38], 228 [M-Cyclohexyl^{*}, 100], 181[C₁₃H₉O)⁺, 19], 152 [CH₂=CHCH=HN⁺CH₂ Cyclohexyl, 41], 124[($C_8H_{14}N$)⁺, 50]. IR: v (cm⁻¹) = 3069, 3017 (w, v, C-H, arom), 2922, 2850 (s, v, C-H, alkyl), 2791 (m, v, N-CH₂), 1626 (m, v, C=C, conj. to arom), 1595, 1484 (w, v, C=C, arom), 1451 (m, δ, C-H, Alkyl), 769, 744 (s, δ, C-H, o-disubst. arom). ¹H NMR (CDCl₃): δ (ppm) = 0.86 – 0.96 (m, 2H, NCH₂(Cyclohexyl-*H*)), 1.11 – 1.33 (m,

4H, NCH₂(cyclohexyl-*H*)), 1.40 – 1.50 (m, 1H, NCH₂(cyclohexyl-*H*)), 1.54 – 1.87 (m, 10H, NCH₂(cyclohexyl-*H*) (4H), (CH₂CH₂)₂CHN) (6H)), 2.28 – 2.39 (m, 2H, 2'-H_e, 6'-H_e), 2.47 – 2.57 (m, 1H, 4'-H_a), 2.50 (d, J = 6.7 Hz, 2H, NCH₂(cyclohexyl-H)), 5.75 (d, J = 5.7 Hz, 1H, OCH=CHAr), 6.47 (d, J = 5.6 Hz, 1H, OCH=CHAr), 6.92 – 6.94 (m, 1H, Ar-H), 7.05 – 7.07 (m, 1H, Ar-H), 7.12 – 7.19 (m, 2H, Ar-H). A signal for the NH-proton is not seen in the spectrum. Purity (HPLC method A): 97.1 %, t_R = 19.2 min.

trans-N-(Cyclohexylmethyl)-N-methylspiro[[2]benzopyran-1,1'-cyclohexan]-4'amine (5a)

Under N₂, cyclohexylmethylamine 4a (23.6 mg, 0.08 mmol) was dissolved in CH₂Cl₂ (5 mL). Formalin (37 %, stabilized with 10-15 % MeOH, 114 µL, 1.50 mmol) and NaBH(OAc)₃ (95 %, 27 mg, 0.12 mmol) were added and the reaction mixture was stirred at rt for 2 h. Subsequently, H₂O (10 mL) was added and the mixture was extracted with CH₂Cl₂ (3 x 20 mL) and once Et₂O (20 mL). The combined organic layers were dried (K_2CO_3), concentrated in vacuo and the residue was purified by fc (\emptyset 2 cm, cyclohexane + 0.5% *N*,*N*-dimethylethanamine, 15 cm, 10 mL). R_f (cyclohexane + 0.5 % *N*,*N*-dimethylethanamine, 0.09, cyclohexane + 1 % N,N-dimethylethanamine, 0.35). Colorless oil, yield 20 mg (81 %). C₂₂H₃₁NO (325.5). MS (EI): m/z (%) = 326 [MH, 10], 242 [M-cyclohexyl*, 100], 199 [M-H₃CN*CH₂cyclohexyl, 20], 181 [C₁₃H₉O)⁺, 43], 171 [48], 138 [69]. IR: v (cm⁻¹) = 3062, 3030 (w, v, C-H, arom), 2920, 2847 (s, v, C-H, alkyl), 2784 (m, v, N-CH₂), 1630 (m, v, C=C, conj. to arom), 1600, 1486 (w, v, C=C, arom), 1449 (m, δ, C-H, Alkyl), 766, 747 (s, δ, C-H, o-disubst. arom). ¹H NMR (CDCl₃): δ $(ppm) = 0.79 - 0.89 (m, 2H, NCH_2(cyclohexyl-H)), 1.10 - 1.31 (m, 4H,)$ NCH₂(cyclohexyl-*H*)), 1.44 – 1.55 (m, 1H, NCH₂(cyclohexyl-*H*)), 1.63 – 1.75 (m, 3H, NCH₂(cyclohexyl-H)(1H), (CH₂CH₂)₂CHN (2H)), 1.78 - 1.88 (m, 5H, NCH₂(cyclohexyl-H) (3H), (CH₂CH₂)₂CHN (2H)), 1.91 – 1.99 (m, 2H, (CH₂CH₂)₂CHN), 2.03 – 2.12 (m, 2H, (CH₂CH₂)₂CHN), 2.13 (d, J = 7.1 Hz, 2H, NCH₂(cyclohexyl-H), 2.17 (s, 3H, NCH₃), 2.24 ("quint", J = 3.3 Hz, 1H, 4'-He), 5.72 (d, J = 5.6 Hz, 1H, OCH=CHAr), 6.49 (d, J = 5.6 Hz, 1H, OCH=CHAr), 6.90 – 6.94 (m, 1H, Ar-H), 7.11 – 7.18 (m, 3H, Ar-H). Purity (HPLC method A): 96.0 %, $t_R = 20.0$ min.

cis-N-(Cyclohexylmethyl)-N-methylspiro[[2]benzopyran-1,1'-cyclohexan]-4'amine (5b)

Under N₂, cyclohexylmethylamine **4b** (42.6 mg, 0.14 mmol) was dissolved in CH₂Cl₂ (5 mL). Formalin (37 %, stabilized with 10-15 % MeOH, 205 µL, 2.70 mmol) and NaBH(OAc)₃ (95 %, 48 mg, 0.22 mmol) were added and the reaction mixture was stirred at rt for 2 h. Subsequently, H₂O (10 mL) was added and the mixture was extracted with CH₂Cl₂ (3 x 20 mL) and once with Et₂O (20 mL). The combined organic layers were dried (K₂CO₃), concentrated in vacuo and the residue was purified by fc (\varnothing 2 cm, cyclohexane + 0.5% *N*,*N*-dimethylethanamine, 15 cm, 10 mL). R_f (cyclohexane + 0.5 % N,N-dimethylethanamine, 0.05, cyclohexane + 1 % N,Ndimethylethanamine, 0.12). Colorless solid, mp 73 °C, yield 40 mg (90 %). C₂₂H₃₁NO (325.5). MS (EI): m/z (%) = 325 [M, 6], 242 [M-cyclohexyl*, 100], 181 [C₁₃H₉O)⁺, 12]. IR: v (cm⁻¹) = 3031 (w, v, C-H, arom), 2918, 2855 (s, v, C-H, alkyl), 2772 (m, v, N-CH₂), 1631 (m, v, C=C, conj. to arom), 1485 (w, v, C=C, arom), 1445 (m, δ, C-H, alkyl), 768, 748 (s, δ , C-H, o-disubst. arom). ¹H NMR (CDCl₃): δ (ppm) = 0.79 - 0.92 (m, 2H, NCH₂(cyclohexyl-*H*)), 1.11 – 1.32 (m, 4H, NCH₂(cyclohexyl-*H*)), 1.35 – 1.47 (m, 1H, $NCH_2(cyclohexyl-H)$, 1.52 – 1.84 (m, 10H, $NCH_2(cyclohexyl-H)$ (4H), $(CH_2CH_2)_2CHN$) (6H)), 2.23 – 2.27 (m, 2H, (CH₂CH₂)₂CHN), 2.30 (s, 3H, NCH₃), 2.36 – 2.40 (m, 2H, NCH_2 (cyclohexyl-H), 2.43 – 2.54 (m, 1H, 4'-Ha), 5.74 (d, J = 5.6 Hz, 1H, OCH=CHAr), 6.51 (d, J = 5.6 Hz, 1H, OCH=CHAr), 6.92 - 6.94 (m, 1H, Ar-H), 7.05 - 7.09 (m, 1H, Ar-H), 7.12 – 7.18 (m, 2H, Ar-H). Purity (HPLC method A): 98.7 %, t_R = 20.2 min.

3-Ethoxy-3,4-dihydrospiro[[2]benzopyran-1,1'-cyclohexan]-4'-one (6)

A solution of hydroxy acetal **2** (474 mg, 1.70 mmol) and *p*-toluenesulfonic acid mono hydrate (29.3 mg, 0.15 mmol) in CHCl₃ (40 mL, stabilized with 1 % ethanol) was stirred at rt for 8 d. Subsequently, CH₂Cl₂ (40 mL) was added and the mixture was washed with 0.2 M NaOH (20 mL) and H₂O (20 mL). The organic layer was dried (Na₂SO₄), concentrated in vacuo and the residue was purified by fc (\emptyset 4.5 cm, cyclohexane/ethyl acetate = 9/1, 20 cm, 30 mL). R_f (cyclohexane/ethyl acetate = 9/1, 0.09, cyclohexane/ethyl acetate = 4/1, 0.22). Colorless solid, mp 106 °C, yield 233 mg (53 %). C₁₆H₂₀O₃ (260.4). MS (EI): m/z (%) = 260 [M, 6], 214 [M – EtOH, 29], 203 [M – CH₃CH₂C*=O, 65], 157 [M – EtOH, - CH₃CH₂C*=O, 100]. IR: v (cm⁻¹) = 2981, 2943, 2919, 2893 (s, v, C-H, alkyl), 2868 (m, v, OCH₂CH₃), 1703 (s, v, C=O), 1493 (w, v, C=C aromt), 1437 (m, δ , C-H alkyl), 768 (s, δ , C-H, o-disubst. arom). ¹H NMR (CDCl₃): δ (ppm) = 1.29 (t, J = 7.1 Hz, 3H, OCH₂CH₃), 2.12 ("td", J = 14.2/4.9 Hz, 1H, (CH₂CH₂)₂C=O), 2.22 - 2.43 (m, 5H, (CH₂CH₂)₂C=O), 2.84 ("td", J = 14.5/6.4 Hz, 1H, (CH₂CH₂)₂C=O), 2.95 - 3.04 (m, 3H, (CH₂CH₂)₂C=O (1H), ArCH₂OCH₃ (2H)), 3.62 (dq, J = 9.3/7.1 Hz, 1H, OCH₂CH₃), 3.64 (dq, J = 9.3/7.1 Hz, 1H, OCH₂CH₃), 5.07 (dd, J = 6.3/4.6 Hz, 1H, ArCH₂CHOCH₃), 7.06 - 7.10 (m, 1H, Ar-H), 7.12 - 7.16 (m, 1H, Ar-H), 7.18 - 7.23 (m, 2H, Ar-H). ¹³C NMR (CDCL₃): δ (ppm) = 15.6 (1C, OCH₂CH₃), 35.7 (1C, CH₂CHOCH₂CH₃), 37.0 (1C, (CH₂CH₂)₂C=O), 37.7 (2C, (CH₂CH₂)₂C=O), 39.4 (1C, (CH₂CH₂)₂C=O), 64.7, (1C, OCH₂CH₃), 75.8 (1C, Spiro-C), 95.9 (1C, CH₂CHOCH₂CH₃), 124.5 (1C, arom), 127.0 (1C, arom), 127.5 (1C, arom), 129.8 (1C, arom), 132.0 (1C, arom), 140.0 (1C, arom), 211.8 (1C, C=O). Purity (HPLC method A): 98.7 %, t_R = 18.9 min.

*trans-*N-(Cyclohexylmethyl)-3-ethoxy-3,4-dihydrospiro[[2]benzopyran-1,1'cyclohexan]-4'-amine (7a) and

cis-(Cyclohexylmethyl)-3-ethoxy-3,4-dihydrospiro[[2]benzopyran-1,1'cyclohexan]-4'-amine (7b)

Under N₂, a solution of ketone **6** (98 mg, 0.38 mmol), cyclohexylmethylamine (98 %, 65 mg, 0.56 mmol), acetic acid (22 µL, 0.39 mmol) and NaBH(OAc)₃ (95 %, 151 mg, 0.68 mmol) in THF (7 mL) was stirred at rt for 3 h. Subsequently, 1 M NaOH (10 mL) was added and the mixture was extracted with CH₂Cl₂ (3 x 20 mL) and Et₂O (20 mL). The combined organic layers were dried (K₂CO₃), concentrated in vacuo and the residue was purified by fc (3 cm, cyclohexane + 1 % N,N-dimethylethanamine, 20 cm, 10 mL). R_f (cyclohexane + 1 % N,N-dimethylethanamine, **7a**: R_f = 0.21, **7b**: R_f = 0.06). 7a: Colorless oil, yield 50 mg (37 %). C₂₃H₃₅NO₂ (357.6). MS (EI): m/z (%) = 357 [M, 2], 312 [M-O*CH₂CH₃, 5], 274 [M-cyclohexyl*, 21], 228 [M-CH₃CH₂OH,-cyclohexyl*, 43], 199 [M-HN*CH₂cyclohexyl, 40], 181 [(C₁₃H₉O)⁺, 100], 152 [CH₂=CHCH=HN⁺CH₂ cyclohexyl, 87], 124 [(C₈H₁₄N)⁺, 31]. IR: v (cm⁻¹) = 3025 (w, v, C-H, arom), 2920, 2849 (s, v, C-H, alkyl), 2793 (m, v, N-CH₂), 1489 (w, v, C=C, arom), 1448 (m, δ, C-H, alkyl), 752 (s, δ , C-H, o-disubst. arom). ¹HNMR (CDCl₃): δ (ppm) = 0.91 – 1.01 (m, 2H, NCH₂(cyclohexyl-*H*)), 1.13 – 1.34 (m, 4H, NCH₂(cyclohexyl-*H*)), 1.29 (t, J = 7.1 Hz, 3H, OCH₂CH₃), 1.41 – 1.52 (m, 1H, NCH₂(cyclohexyl-H)), 1.57 – 1.87 (m, 8H, NCH₂(cyclohexyl-*H*) (4H), (CH₂CH₂)₂CHN) (4H)), 1.89 – 2.09 (m, 3H, (CH₂CH₂)₂CHN), 2.25 ("td", J = 13.4/3.6 Hz, 1H, 2'-H_a), 2.45 (d, J = 6.5 Hz, 2H, NCH₂(cyclohexyl-H), 2.87 - 2.96 (m, 3H, 4'-H_e (1H), ArCH₂CHOCH₂CH₃ (2H)), 3.60 (dq, J = 9.4/7.0 Hz, 1H, OCH_2CH_3), 4.09 (dq, J = 9.4/7.0 Hz, 1H, OCH_2CH_3), 4.94 (dd, J = 6.8/4.4 Hz,1H, ArCH_2CHOCH_2CH_3), 7.05 – 7.10 (m, 1H, Ar-H), 7.11 – 7.22 (m, 3H, Ar-H). A signal for the NH-proton is not seen in the spectrum. Purity (HPLC method A): 99.0 %, t_R = 19.7 min.

7b: Colorless oil, yield 73 mg (54 %). $C_{23}H_{35}NO_2$ (357.6). MS (ESI): m/z (%) = 358 [MH, 2], 312 [M-O*CH₂CH₃, 5], 274 [M-cyclohexyl*, 11], 228 [M-CH₃CH₂OH,-cyclohexyl*, 100], 181 [C₁₃H₉O)⁺, 49], 152 [CH₂=CH=HN*CH₂cyclohexyl, 45], 124 [(C₈H₁₄N)⁺, 18]. IR: v (cm⁻¹) = 3021 (w, v, C-H, arom), 2920, 2850 (s, v, C-H, alkyl), 1490 (w, v, C=C, arom), 1447 (m, δ , C-H, alkyl), 754 (s, δ , C-H, o-disubst. arom). ¹H NMR (CDCl₃): δ (ppm) = 0.86 – 0.98 (m, 2H, NCH₂(cyclohexyl-*H*)), 1.11 – 1.33 (m, 4H, NCH₂(cyclohexyl-*H*)), 1.27 (t, J = 7.0 Hz, 3H, OCH₂CH₃), 1.42 – 1.53 (m, 1H, NCH₂(cyclohexyl-*H*)), 1.55 – 1.86 (m, 9H, NCH₂(cyclohexyl-*H*) (4H), (CH₂CH₂)₂CHN) (5H)), 1.87 – 2.00 (m, 2H, (CH₂CH₂)₂CHN), 2.12 (m, 1H, 2'-H_e), 2.52 – 2.60 (d, J = 6.9 Hz, 2H, NCH₂(cyclohexyl-H)), 2.51 – 2.60 (m, 1H, 4'-H_a), 2.88 – 2.96 (m, 2H, ArCH₂CHOCH₂CH₃), 3.57 (dq, J = 9.5/7.0 Hz, 1H, OCH₂CH₃), 4.10 (dq, J = 9.5/7.1 Hz, 1H, OCH₂CH₃), 4.93 (dd, J = 6.2/4.8 Hz, 1H, ArCH₂CHOCH₂CH₃), 7.06 – 7.12 (m, 2H, Ar-H), 7.13 – 7.21 (m, 2H, Ar-H). A signal for the NH-proton is not seen in the spectrum. Purity (HPLC method A): 99.9 %, t_R = 19.4 min.

trans-N-(Cyclohexylmethyl)-3-ethoxy-N-methyl-3,4-dihydrospiro[[2]benzopyran-1,1'-cyclohexan]-4'-amine (8a)

Under N₂, cyclohexylmethylamine **7a** (37.5 mg, 0.11 mmol) was dissolved in CH₂Cl₂ (2.5 mL). Formalin (37 %, stabilized with 10-15 % MeOH, 157 µL, 2.10 mmol) and NaBH(OAc)₃ (95 %, 38 mg, 0.17 mmol) were added and the reaction mixture was stirred at rt for 2 h. Then, H₂O (10 mL) was added and the mixture was extracted with CH₂Cl₂ (3 x 20 mL) and Et₂O (1 x 20 mL). The combined organic layers were dried (K₂CO₃), concentrated in vacuo and the residue was purified by fc (\emptyset 2,5 cm, cyclohexane + 2 % N,N-dimethylethanamine, 24 cm, 10 mL). Rf (cyclohexane + 2 % N,N-dimethylethanamine: 0.50, cyclohexane + 1 % N,N-dimethylethylamine: 0.18). Colorless solid, mp 79 °C, yield 35 mg (90 %). C₂₄H₃₇NO₂ (371.6). MS (EI): m/z (%) = [M, 2], 326 [M-*OCH₂CH₃, 3], 288 [M-cyclohexyl*, 100], 371 199 [M-CH₃N*CH₂cyclohexyl], 181 [C₁₃H₉O)⁺, 80], 166 [CH₂=CHCH=N⁺(-CH₃)-CH₂cyclohexyl, 52]. IR: v (cm⁻¹) = 2920, 2848 (s, v, C-H, alkyl), 2782 (m, v, N-CH₂), 1487 (w, v, C=C, arom), 1447 (m, δ, C-H, alkyl), 752 (s, δ, C-H, o-disubst. arom). ¹H NMR (CDCl₃): δ

(ppm) = 0.81 - 0.95 (m, 2H, NCH₂(cyclohexyl-*H*)), 1.11 - 1.34 (m, 3H, NCH₂(cyclohexyl-*H*)), 1.29 (t, J = 7.1 Hz, 3H, OCH₂CH₃), 1.5 - 1.62 (m, 2H, NCH₂(cyclohexyl-*H*)), 1.64 - 1.79 (m, 4H, NCH₂(cyclohexyl-*H*) (2H), $(CH_2CH_2)_2CHN$) (2H)), 1.82 - 1.93 (m, 5H, NCH₂(cyclohexyl-*H*) (2H), $(CH_2CH_2)_2CHN$ (3H)), 1.93 - 2.07 (m, 2H, $(CH_2CH_2)_2CHN$), 2.16 (dd, J = 7.1/2.8 Hz, 2H, NCH₂(cyclohexyl-H))), 2.19 (s, 3H, NCH₃), 2.19 - 2.30 (m, 2H, $(CH_2CH_2)_2CHN$ (1H), 4° -H_e (1H)), 2.89 (dd, J = 15.8/4.0 Hz, 1H, ArCH₂CHOCH₂CH₃), 2.93 (dd, J = 16.0/7.5 Hz, 1H, ArCH₂CHOCH₂CH₃), 3.60 (dq, J = 9.5/7.1 Hz, 1H, ArCH₂CHOCH₂CH₃), 4.94 (dd, J = 7.0/4.3 Hz, 1H, ArCH₂CHOCH₂CH₃), 7.06 - 7.08 (m, 1H, Ar-H), 7.13 - 7.22 (m, 3H, Ar-H). Purity (HPLC method A): 98.2 %, t_R = 19.57 min.

cis-N-(Cyclohexylmethyl)-3-ethoxy-N-methyl-3,4-dihydrospiro[[2]benzopyran-1,1'-cyclohexan]-4'-amine (8b)

Under N₂, cyclohexylmethylamine **7b** (57 mg, 0.16 mmol) was dissolved in CH₂Cl₂ (3 mL). Formalin (37 %, stabilized with 10-15 % MeOH, 240 µL, 3.20 mmol) and NaBH(OAc)₃ (95 %, 57 mg, 0.26 mmol) were added and the reaction mixture was stirred at rt for 2 h. Then, H₂O (10 mL) was added and the mixture was extracted with CH₂Cl₂ (3 x 20 mL) and Et₂O (1 x 20 mL). The combined organic layers were dried (K₂CO₃), concentrated in vacuo and the residue was purified by fc (\emptyset 2 cm, cyclohexane + 1 % N,N-dimethylethanamine, 15 cm, 10 mL). R_f (cyclohexane + 1 % N,N-dimethylethanamine: 0.16, cyclohexane + 2% N,N-dimethylethanamine: 0.27). Colorless oil, yield 54 mg (92 %). C₂₄H₃₇NO₂ (371.61). MS (EI): m/z (%) = 371 [M, 1], 288 [M-cyclohexyl*, 100], 242 [M-CH₃CH₂OH, -cyclohexyl*, 8], 181 [C₁₃H₉O)+, 27], 166 $[CH_2=CHCH=N^+(-CH_3)-CH_2cyclohexyl, 20]$. IR: v (cm⁻¹) = 3024 (w, v, C-H, arom), 2921, 2848 (s, v, C-H, Alkyl), 2788 (m, v, N-CH₂), 1490 (w, v, C=C, arom), 1447 (m, δ, C-H, Alkyl), 754 (s, δ , C-H, o-disubst. arom). ¹H NMR (CDCl₃): δ (ppm) = 0.79 – 0.92 (m, 2H, NCH₂(cyclohexyl-*H*)), 1.10 – 1.33 (m, 3H, NCH₂(cyclohexyl-*H*)), 1.31 (t, J = 9.4 Hz, 3H, OCH₂CH₃), 1.37 – 1.48 (m, 1H, NCH₂(cyclohexyl-H)), 1.55 – 1.84 (m, 9H, NCH₂(cyclohexyl-*H*) (5H), (CH₂CH₂)₂CHN) (4H)), 1.84 – 2.01 (m, 3H, (CH₂CH₂)₂CHN), 2.11 - 2.19 (m, 1H, (CH₂CH₂)₂CHN), 2.25 (d, J = 6.5 Hz, 2H, NCH₂(cyclohexyl-H)), 2.31 (s, 3H, NCH₃), 2.48 – 2.60 (m, 1H, 4'-H_a), 2.92 (d, J = 5.6 Hz, 2H, ArCH₂CHOCH₂CH₃), 3.63 (dq, J = 9.4/7.1 Hz, 1H, OCH₂CH₃), 4.09 (dq, J = 9.4/7.1 Hz,

1H, OC*H*₂CH₃), 4.95 (t, J = 5.6 Hz, 1H, ArCH₂C*H*OCH₂CH₃), 7.07 – 7.13 (m, 2H, Ar-H), 7.13 – 7.22 (m, 2H, Ar-H). Purity (HPLC method A): 98.5 %, t_R = 19.93 min.

trans-N-(Cyclohexylmethyl)-3-methoxy-3,4-dihydrospiro[[2]benzopyran-1,1'cyclohexan]-4'-amine (10a) and

cis-N-(Cyclohexylmethyl)-3-methoxy-3,4-dihydrospiro[[2]benzopyran-1,1'cyclohexan]-4'-amine (10b)

Under N₂, ketone **9** (146 mg, 0.59 mmol) was dissolved in THF (5 mL). Cyclohexylmethylamine (98 %, 89 mg, 0.77 mmol), acetic acid (34 µL, 0.60 mmol) and NaBH(OAc)₃ (95 %, 212 mg, 0.95 mmol) were added and the mixture was stirred at rt for 4 h. Subsequently, 1 M NaOH (15 mL) was added and the mixture was extracted with Et₂O (3 x 15 mL). The combined organic layers were dried (K₂CO₃), concentrated in vacuo and the residue was purified by fc (\emptyset 4 cm, cyclohexane + 2 % *N*,*N*-dimethylethanamine, 20 cm, 20 mL). R_f (cyclohexane + 2 % *N*,*N*-dimethylethanamine, 10a: R_f = 0.24, 10b: R_f = 0.05).

10a: Colorless solid, mp 56 °C, yield 75 mg (37 %). C₂₂H₃₃NO₂ (343.6). MS (ESI): m/z (%) = 344 [MH, 100]. FT-IR: v (cm⁻¹) = 3063, 3032 (w, C-H, arom), 2963, 2915 (s, v, C-H, alkyl), 2845 (s, v, OCH₃), 2783 (m, v, N-CH₂), 1478 (w, C=C, arom), 1445 (m, δ , C-H, alkyl), 756 (s, δ , C-H, o-disubst. arom). ¹H NMR (CDCl₃): δ (ppm) = 0.90 – 1.03 (m, 2H, NCH₂(cyclohexyl-*H*)), 1.13 – 1.35 (m, 4H, NCH₂(cyclohexyl-*H*)), 1.40 – 1.53 (m, 1H, NCH₂(cyclohexyl-*H*)), 1.57 – 1.87 (m, 8H, NCH₂(cyclohexyl-*H*) (4H), (CH₂CH₂)₂CHN) (4H)), 1.90 – 2.12 (m, 3H, (CH₂CH₂)₂CHN), 2.25 ("td", J = 13.6/3.9 Hz, 1H, 2'H_a), 2.45 (d, J = 6.6 Hz, 2H, NCH₂(cyclohexyl-H), 2.86 – 2.95 (m, 3H, 4'-H_e (1H), ArCH₂CHOCH₃ (2H)), 3.57 (s, 3H, OCH₃), 4.85 (dd, J = 6.7/4.2 Hz, 1H, ArCH₂CHOCH₃), 7.05 – 7.10 (m, 1H, Ar-H), 7.12 – 7.24 (m, 3H, Ar-H). A signal for the NH-proton is not seen in the spectrum. (HPLC method A): 96.7 %, t_R = 19.0 min.

10b: Colorless solid, mp 95 °C, yield 107 mg (53 %). C₂₂H₃₃NO₂ (343.6). MS (ESI): m/z (%) = 344 [MH, 100]. FT-IR: v (cm⁻¹) = 2918, 2851 (s, v, C-H, Alkyl), 1489 (w, v, C=C, arom), 1442 (m, δ , C-H, Alkyl), 766 (s, δ , C-H, o-disubst. arom).¹H NMR (CDCl₃): δ (ppm) = 0.86 - 0.98 (m, 2H, NCH₂(cyclohexyl-*H*)), 1.10 - 1.33 (m, 4H, NCH₂(cyclohexyl-*H*)), 1.42 - 1.53 (m, 1H, NCH₂(cyclohexyl-*H*)), 1.55 - 1.99 (m, 11 H, NCH₂(cyclohexyl-*H*) (4H), (CH₂CH₂)₂CHN) (7H)), 2.06 - 2.12 (m, 1H, 2'-H_e), 2.51 -2.60 (m, 3H, NCH₂(cyclohexyl-H) (2H), 4'-H_a (1H)), 2.89 (dd, J = 15.5/6.5 Hz, 1H, ArCH₂CHOCH₃), 2.94 (dd, J = 15.6/3.7 Hz, 1H, ArCH₂CHOCH₃), 3.56 (s, 3H, OCH₃), 4.85 (dd, J = 6.7/3.9 Hz, 1H, ArCH₂CHOCH₃), 7.07 – 7.13 (m, 2H, Ar-H), 7.13 – 7.22 (m, 2H, Ar-H). A signal for the NH-proton is not seen in the spectrum. Purity (HPLC method A): 98.6 %, t_R = 18.8 min.

trans-N-(Cyclohexylmethyl)-3-methoxy-N-methyl-3,4-dihydrospiro[2benzopyran-1,1'-cyclohexan]-4'-amine (11a)

Under N₂, cyclohexylmethylamine **10a** (44 mg, 0.13 mmol) was dissolved in CH₂Cl₂ (2.5 mL). Formalin (37 %, stabilized with 10-15 % MeOH, 190 µL, 2.55 mmol) and NaBH(OAc)₃ (95 %, 46 mg, 0.20 mmol) were added and the reaction mixture was stirred at rt for 2 h. Then, H₂O (10 mL) was added and the mixture was extracted with CH₂Cl₂ (3 x 20 mL) and Et₂O (1 x 10 mL). The combined organic layers were dried (K₂CO₃), concentrated in vacuo and the residue was purified by fc (\emptyset 2 cm, cyclohexane + 0.5 % N,N-dimethylethanamine, 20 cm, 10 mL). Rf (cyclohexane + 0.5 % N,N-dimethylethanamine: 0.09). Pale yellow solid, mp 60 °C, yield 41 mg (90 %). $C_{23}H_{35}NO_2$ (357.6). MS (ESI): m/z (%) = 358 [MH, 100]. IR: v (cm⁻¹) = 3063, 3020 (w, C-H, arom), 2919 (s, v, C-H, alkyl), 2847 (s, v, OCH₃), 2781 (m, v, N-CH₃), 1604, 1489 (w, C=C, arom), 1445 (m, δ, C-H, alkyl), 752 (s, δ, C-H, o-disubst. arom). ¹H NMR $(CDCI_3)$: δ (ppm) = 0.80 - 0.95 (m, 2H, NCH₂(cyclohexyl-H)), 1.11 - 1.34 (m, 4H, NCH₂(cyclohexyl-H)), 1.50 - 1.62 (m, 3H, NCH₂(cyclohexyl-H)), 1.65 - 1.80 (m, 4H, NCH₂(cyclohexyl-*H*) (2H), (CH₂CH₂)₂CHN) (2H)), 1.84 – 1.90 (m, 3H, (CH₂CH₂)₂CHN), 1.90 - 2.08 (m, 2H, (CH₂CH₂)₂CHN), 2.16 (dd, J = 7.2/1.5 Hz, 2H, NCH₂(cyclohexyl-H)), 2.20 – 2.33 (m, 5H, NCH₃ (3H), 4'-H_e (1H), 2'-H_a (1H)), 2.89 (dd, J = 15.7/7.0 Hz, 1H, $ArCH_2CHOCH_3$), 2.94 (dd, J = 15.8/4.0 Hz, 1H, $ArCH_2CHOCH_3$), 3.58 (s, 3H, OCH₃), 4.86 (dd, J = 6.6/4.3 Hz,1H, ArCH₂CHOCH₃), 7.05 – 7.09 (m, 1H, Ar-H), 7.12 -7.24 (m, 3H, Ar-H). Purity (HPLC method A): 96.3 %, t_R = 18.94 min.

cis-N-(Cyclohexylmethyl)-3-methoxy-N-methyl-3,4-dihydrospiro[2-benzopyran-1,1'-cyclohexan]-4'-amine (11b)

Under N₂, cyclohexylmethylamine **10b** (46 mg, 0.14 mmol) was dissolved in CH₂Cl₂ (2.5 mL). Formalin (37 %, stabilized with 10-15 % MeOH, 201 μ L, 2.70 mmol) and NaBH(OAc)₃ (95 %, 48 mg, 0.22 mmol) were added and the reaction mixture was stirred at rt for 2 h. Then, H₂O (10 mL) was added and the mixture was extracted with CH₂Cl₂ (3 x 20 mL) and Et₂O (1 x 10 mL). The combined organic layers were dried (K₂CO₃), concentrated in vacuo and the residue was purified by fc (\emptyset 2 cm,

cyclohexane + 1 % *N*,*N*-dimethylethanamine, 20 cm, 10 mL). R_f (cyclohexane + 1 % *N*,*N*-dimethylethanamine: 0.15). Pale yellow solid, mp 77 °C, yield 43 mg (89 %). C₂₃H₃₅NO₂ (357.6). MS (ESI): m/z (%) = 358 [MH, 100]. IR: v (cm⁻¹) = 3061, 3015 (w, C-H, arom), 2921 (s, v, C-H, alkyl), 2840 (s, v, OCH₃), 2793 (m, v, N-CH₃), 1488 (w, C=C, arom), 1447 (m, δ , C-H, alkyl), 756 (s, δ , C-H, o-disubst. arom).¹H NMR (CDCl₃): δ (ppm) = 0.79 – 0.91 (m, 2H, NCH₂(cyclohexyl-*H*)), 1.10 – 1.32 (m, 3H, NCH₂(cyclohexyl-*H*)), 1.36 – 1.49 (m, 1H, NCH₂(cyclohexyl-*H*)), 1.57 – 1.75 (m, 6H, NCH₂(cyclohexyl-*H*) (5H), (C*H*₂C*H*₂)₂CHN (1H)), 1.76 – 1.84 (m, 3H, (C*H*₂C*H*₂)₂CHN), 1.85 – 2.01 (m, 3H, (C*H*₂C*H*₂)₂CHN), 2.09 – 2.17 (m, 1H, 2'-H₆), 2.25 (d, J = 6.8 Hz, 2H, NC*H*₂(cyclohexyl-H)), 2.31 (s, 3H, NC*H*₃), 2.49 – 2.59 (m, 1H, 4'-H_a), 2.89 (dd, J = 15.5/6.5 Hz, 1H, ArC*H*₂CHOCH₃), 2.94 (dd, J = 15.5/3.5 Hz, 1H, ArC*H*₂CHOCH₃), 3.59 (s, 3H, OC*H*₃), 4.86 (dd, J = 6.9/3.9 Hz, 1H, ArCH₂C*H*OCH₃), 7.06 – 7.22 (m, 4H, Ar-H). Purity (HPLC method A): 98.9 %, t_R = 18.99 min.

3-Methoxy-3*H*-spiro[[2]-benzofuran-1,1'-cyclohexan]-4'-one (13)

Under N₂, a solution of 2-bromobenzaldehyde dimethyl acetal (12, 257 mg, 1.11 mmol) in THF abs. (12 mL) was cooled to -78 °C. Subsequently, n-BuLi (1.6 M in n-hexane, 0.84 mL, 1.34 mmol) was added dropwise. After 20 min, cyclohexane-1,4-dione (250 mg, 2.23 mmol in THF abs., 2 mL) was added rapidly and the mixture was stirred at -78 °C for 20 min and 1 h at rt. Then, H₂O was added and the mixture was extracted with Et₂O (2x) and CH₂Cl₂ (2x). The organic layer was concentrated in vacuo and the residue was purified by fc (4 cm, cyclohexane/ethyl acetate = 2/1, 24 cm, 20 mL, Rf (cyclohexane/ethyl acetate = 2/1, 0.21). The isolated product (contaminated, 177 mg) was dissolved in THF, p-toluenesulfonic acid monohydrate (23 mg, 0.12 mmol) was added and the mixture was stirred at rt for 24 h. Subsequently, 0.2 M NaOH (20 mL) was added and the aqueous layer was extracted with Et₂O (3 x 20 mL). The combined organic layers were dried (K₂CO₃), concentrated in vacuo and the residue was purified by fc (\emptyset 4.5 cm, cyclohexane/ethyl acetate = 6/1, 21 cm, 20 mL). R_f (cyclohexane/ethyl acetate = 6/1, 0.20). Colorless solid, mp 129 °C, yield 113 mg (44 %). C₁₄H₁₆O₃ (232.3). MS (EI): m/z (%) = 232 [M, 2], 201 [M - OCH₃, 17], 175 [M - CH₃CH₂C*=O,100]. HRMS-ESI (CH₃OH): m/z: $[M + Na]^+$ calculated for C₁₄H₁₆O₃Na: 255.0997 found: 255.9920; m/z [2M + Na]⁺ calculated for (C₂₈H₃₂O₆)Na: 487.2097 found: 487.2091. IR: v (cm⁻¹) = 2946, 2931(s, v, C-H, alkyl), 2853 (m, v, OCH₃), 1707 (s, v, C=O), 1483 (m, δ, C-H, C-H, alkyl), 769(s, δ, C-H, o-disubst. arom). ¹H NMR (CDCl₃): δ (ppm) = 2.01

- 2.08 (m, 1H, $(CH_2CH_2)_2C=O$), 2.14 - 2.29 (m, 3H, $(CH_2CH_2)_2C=O$), 2.39– 2.46 (m, 2H, $(CH_2CH_2)_2C=O$), 2.90– 3.00 (m, 2H, $(CH_2CH_2)_2C=O$), 3.54 (s, 3H, OCH₃), 6.16 (s, 1H, ArC*H*OCH₃), 7.12 – 7.17 (m, 1H, Ar-H), 7.35 – 7.42 (m, 3H, Ar-H). ¹³C NMR (CDCL₃): δ (ppm) = 37.9 (1C, $(CH_2CH_2)_2C=O$), 38.2 (1C, $(CH_2CH_2)_2C=O$), 38.6 (1C, $(CH_2CH_2)_2C=O$), 39.2 (1C, $(CH_2CH_2)_2C=O$), 55.3 (1C, OCH₃), 85.3 (1C, spiro-C), 106.5 (1C, ArCHOCH₃), 120.8 (1C, arom), 123.6 (1C, arom), 128.8 (1C, arom), 129.9 (1C, arom), 137.8 (1C, arom), 145.8 (1C, arom), 211.7 (1C, C=O).

trans-N-(Cyclohexylmethyl)-3-methoxy-3H-spiro[[2]benzofuran-1,1'-

cyclohexan]-4'-amine (14a) and

cis-N-(Cyclohexylmethyl)-3-methoxy-3*H*-spiro[[2]benzofuran-1,1'-cyclohexan]-4'-amine (14b)

Under N₂, ketone **13** (90 mg, 0.39 mmol) was dissolved in THF (5 mL). Cyclohexylmethylamine (98 %, 69 mg, 0.58 mmol) in THF abs. (1 mL), acetic acid (25 μ L, 0.44 mmol) and NaBH(OAc)₃ (95 %, 156 mg, 0.67 mmol) were added and the mixture was stirred at rt for 3 h. Subsequently, 1 M NaOH (10 mL) was added and the mixture was extracted with CH₂Cl₂ (3 x 20 mL) and Et₂O (20 mL). The combined organic layers were dried (K₂CO₃), concentrated in vacuo and the residue was purified by fc (\emptyset 3 cm, cyclohexane + 2 % *N*,*N*-dimethylethanamine, **14a**: R_f = 0.20, **14b**: R_f = 0.10).

14a: Colorless oil, yield 36 mg (28 %). C₂₁H₃₁NO₂ (329.5). ¹H NMR (CDCl₃): δ (ppm) = 0.94 ("qd", J = 12.0/2.8 Hz, 2H, NCH₂(cyclohexyl-*H*)), 1.12 – 1.33 (m, 4H, NCH₂(cyclohexyl-*H*)), 1.41 – 1.53 (m, 1H, NCH₂(cyclohexyl-*H*)), 1.55 – 1.85 (m, 8H, NCH₂(cyclohexyl-*H*) (4H), (CH₂CH₂)₂CHN) (4H)), 1.93 – 2.10 (m, 4H, (CH₂CH₂)₂CHN), 2.47 (d, J = 6.4 Hz, 2H, NCH₂(cyclohexyl-H), 2.80 – 2.87 (m, 1H, 4'-H_e), 3.46 (s, 3H, OCH₃), 6.06 (s, 1H, ArC*H*OCH₃), 7.29 – 7.38 (m, 4H, Ar-H). A signal for the NH-proton is not seen in the spectrum. Anal. calcd. for C₂₁H₃₁NO₂ (329.5). C, 76.55, H, 9.48, N, 4.25, found C, 76.30, H, 9.44, N, 4.25.

14b: Colorless oil, yield 86 mg (67 %). $C_{21}H_{31}NO_2$ (329.5). MS (ESI): m/z (%) = 330 [MH, 20], 298 [M-OCH₃, 17], 246 [M-cyclohexyl^{*}, 20], 214 [100], 167 [93], 152 [CH₂=CHCH=HN⁺CH₂cyclohexyl, 86]. ¹H NMR (CDCl₃): δ (ppm) = 0.85 – 0.99 (m, 2H, NCH₂(cyclohexyl-*H*)), 1.11 – 1.33 (m, 4H, NCH₂(cyclohexyl-*H*)), 1.41 – 1.52 (m, 1H, NCH₂(cyclohexyl-*H*)), 1.60 – 1.85 (m, 9H, NCH₂(cyclohexyl-*H*) (4H), (CH₂CH₂)₂CHN) (5H)), 1.85 – 1.97 (m, 3H, (CH₂CH₂)₂CHN), 2.49 – 2.61 (m, 1H, 4'-H_a), 2.52 (d, J = 7.4

Hz, 2H, NC*H*₂(cyclohexyl-H), 3.48 (s, 3H, OCH₃), 6.04 (s, 1H, ArC*H*OCH₃), 7.09 – 7.13 (m, 1H, Ar-H), 7.28 – 7.38 (m, 3H, Ar-H). A signal for the NH-proton is not seen in the spectrum. Anal. calcd. for C₂₁H₃₁NO₂ (329.5). C, 76.55, H, 9.48, N, 4.25, found C, 76.54, H, 9.42, N, 4.38.

trans-N-(Cyclohexylmethyl)-3-methoxy-N-methyl-3*H*-spiro[[2]benzofuran-1,1'cyclohexan]-4'-amine (15a)

Under N₂, cyclohexylmethylamine **14a** (21.8 mg, 0.07 mmol) was dissolved in CH₂Cl₂ (3 mL). Formalin (37 %, stabilized with 10-15 % MeOH, 99 µL, 1.30 mmol) and NaBH(OAc)₃ (95 %, 24 mg, 0.11 mmol) were added and the reaction mixture was stirred at rt for 2 h. Then, H₂O (10 mL) was added and the mixture was extracted with CH₂Cl₂ (3 x 20 mL) and Et₂O (1 x 20 mL). The combined organic layers were dried (K₂CO₃), concentrated in vacuo and the residue was purified by fc (\emptyset 2 cm, cyclohexane + 1% *N*,*N*-dimethylethanamine, 15 cm, 10 mL). Rf (cyclohexane + 1 % N,N-dimethylethanamine: 0.16). Pale yellow oil, yield 22.5 mg (99 %). C₂₂H₃₃NO₂ (343.6). MS (EI): m/z (%) = 343 [M, 1], 312 [M-OCH₃, 7], 260 [M-cyclohexyl*, 100], 185 [36], 167 [*CH₂CH₂CH=N⁺(-CH₃)CH₂cyclohexyl), 69]. IR: v (cm⁻¹) = 3033 (w, v, C-H, arom), 2920, 2848 (s, v, C-H, alkyl), 2783 (m, v, N-CH₂), 1613, 1462 (w, v, C=C, arom), 1447 (m, δ , C-H, Alkyl), 751 (s, δ , C-H, o-disubst. arom). ¹H NMR (CDCl₃): δ (ppm) = 0.82 – 0.92 (m, 2H, NCH₂(cyclohexyl-*H*)), 1.12 – 1.33 (m, 4H, NCH₂(cyclohexyl-*H*)), 1.45 – 1.53 (m, 1H, NCH₂(cyclohexyl-*H*)), 1.60 – 1.78 (m, 4H, NCH₂(cyclohexyl-*H*) (2H), $(CH_2CH_2)_2CHN)$ (2H), 1.79 - 1.93 (m, 6H, $NCH_2(cyclohexyl-H)$ (2H), $(CH_2CH_2)_2CHN$ (4H)), 2.00 – 2.09 (m, 2H, $(CH_2CH_2)_2CHN)$, 2.21 (d, J = 7.0 Hz, 2H, NCH₂(cyclohexyl-H), 2.26 (s, 3H, NCH₃), 2.4 ("quint", J = 5.4 Hz, 1H, 4'-H_e), 3.46 (s, 3H, OCH₃), 6.06 (s, 1H, ArCHOCH₃), 7.30 - 7.38 (m, 4H, Ar-H). Anal. calcd. for C₂₂H₃₃NO₂ (343.6). C, 76.92, H, 9.68, N, 4.08, found C, 76.96, H, 9.74, N, 3.82.

cis-N-(Cyclohexylmethyl)-3-methoxy-N-methyl-3*H*-spiro[[2]benzofuran-1,1'cyclohexan]-4'-amine (15b)

Under N₂, cyclohexylmethylamine **14b** (64.6 mg, 0.20 mmol) was dissolved in CH₂Cl₂ (3 mL). Formalin (37 %, stabilized with 10-15 % MeOH, 294 μ L, 3.92 mmol) and NaBH(OAc)₃ (95 %, 70 mg, 0.31 mmol) were added and the reaction mixture was stirred at rt for 2 h. Then, H₂O (10 mL) was added and the mixture was extracted with CH₂Cl₂ (3 x 20 mL) and Et₂O (1 x 20 mL). The combined organic layers were dried

(K₂CO₃), concentrated in vacuo and the residue was purified by fc (\emptyset 2 cm, cyclohexane + 1% *N*,*N*-dimethylethanamine, 15 cm, 10 mL). R_f (cyclohexane + 1% *N*,*N*-dimethylethanamine: 0.12).Pale yellow oil, yield 65 mg (97%). C₂₂H₃₃NO₂ (343.6). MS (EI): m/z (%) = 343 [M, 0.4], 312 [M-OCH₃, 3], 260 [M-cyclohexyl*, 100], 167 [*CH₂CH₂CH=N⁺(-CH₃)CH₂cyclohexyl), 51]. IR: v (cm⁻¹) = 2922, 2847 (s, v, C-H, alkyl), 2787 (m, v, N-CH₂), 1466 (w, v, C=C, arom), 1446 (m, δ , C-H, alkyl), 754 (s, δ , C-H, o-disubst. arom). ¹H NMR (CDCl₃): δ (ppm) = 0.80 – 0.93 (m, 2H, NCH₂(cyclohexyl-*H*)), 1.11 – 1.32 (m, 4H, NCH₂(cyclohexyl-*H*)), 1.37 – 1.48 (m, 1H, NCH₂(cyclohexyl-*H*)), 1.58 – 1.87 (m, 11 H, NCH₂(cyclohexyl-*H*) (4H), (C*H*₂C*H*₂)₂CHN) (7H)), 1.90 – 1.99 (m, 1H, 2'-H_e), 2.26 (d, J = 6.6 Hz, 2H, NC*H*₂(cyclohexyl-H)), 2.32 (s, 3H, NCH₃), 2.46 – 2.57 (m, 1H, 4'-H_a), 3.48 (s, 3H, OCH₃), 6.09 (s, 1H, ArC*H*OCH₃), 7.11 – 7.13 (m, 1H, Ar-H), 7.29 – 7.37 (m, 3H, Ar-H). Anal. calcd. for C₂₂H₃₃NO₂ (343.6). C, 76.92, H, 9.68, N, 4.08, found C, 76.68, H, 9.80, N, 3.92.

3,4-Dihydrospiro[[2]benzopyran-1,1'-cyclohexan]-4'-one ethylene ketal (17)

Under N₂ and ice cooling, PBr₃ (3.17 mL, 0.11 g, 33.7.mmol) was added slowly to alcohol 16 (4.84 g, 24 mmol). Then, the mixture was heated to 80 °C for 4 h. The mixture was poured on ice, a saturated solution of NaHCO₃ (20 mL) was added and the mixture was stirred for 30 min at rt. The mixture was extracted with CH₂Cl₂ (4 x 60 mL) and the organic layer was washed with saturated solutions of NaHCO₃ (60 mL) and NaCl (60 mL). The organic layer was dried (Na₂SO₄), concentrated in vacuo and the residue was purified by fc (\oslash 8 cm, cyclohexane/ethyl acetate = 9/1, 20 cm, 65 mL, R_f (cyclohexane/ethyl acetate 9/1). Colorless oil (1-bromo-2-(2bromoethyl)benzene), yield 4.58 g (72 %). $C_8H_8Br_2$ (264.0). MS (EI): m/z (%) = 266, 264, 262 [M, 12 (2*Br⁸¹), 40(Br⁷⁹+Br⁸¹), 16(2*Br⁷⁹)], 185, 183 [M (Br⁸¹ + Br⁷⁹) - Br, 86 ,100], 171, 169 [M(Br⁸¹ + Br⁷⁹) - CH₂Br, 24, 34], 104 [M(Br⁸¹ + Br⁷⁹) - Br₂, 65].]. IR: v (cm⁻¹) = 3056 (w, v, C-H, arom), 2964 (s, v, C-H, alkyl), 1568, 1469 (w, v, C=C, arom), 1439 (m, δ, C-H alkyl), 1023 (s, ar-Br), 747 (s, o-disubst. arom), 661 (s, alkyl-Br). ¹H NMR (CDCl₃): δ (ppm) = 3.30 (t, J = 7.6 Hz, 2H, ArCH₂CHBr), 3.60 (t, J = 7.6 Hz, 2H, ArCH₂CH₂Br), 7.10-7.16 (m, 1H, Ar-H), 7.26 – 7.28 (m, 2H, Ar-H), 7.55 (d, J = 8.0 Hz, 1H, Ar-H). Purity (HPLC, method B): 99.7 %, t_R = 18.83 min.

Under N₂, a solution of 1-bromo-2-(2-bromoethyl)benzene (202 mg, 0.77 mmol) in THF (10 mL) was cooled to -88 °C. Subsequently, *n*-BuLi (1.6 M in *n*-hexane, 0.58 mL, 0.93 mmol) was added slowly. After stirring for 5 min at -88 °C, cyclohexane-1,4-dione

monoethylene ketal (0.168 g, 1.08 mmol in THF (2 mL) was added rapidly and the mixture was stirred at -88 °C for 5 min. and at rt for additional 1 h. Then, H₂O (10 mL) was added and the mixture was extracted with Et₂O (3 x 40mL). The combined organic layers were dried (K₂CO₃), concentrated in vacuo and the residue was purified by fc (\emptyset 4 cm, cyclohexane/ethyl acetate = 9/1, 20 cm, 20 mL). R_f (cyclohexane/ethyl acetate = 9/1, 0.18). Colorless solid, mp 122 °C, yield 121 mg (61 %). C₁₆H₂₀O₃ (260.4). MS (ESI): m/z (%) = 261 [M+H,100]. IR: v (cm⁻¹) = 2966, 2933, 2881 (s, v, C-H, alkyl), 2864 (m, v, OCH₂), 1488 (w, v, C=C arom), 762 (s, δ , C-H, o-disubst. arom). ¹H NMR (CDCl₃): δ (ppm) = 1.60 - 1.65 (m, 2H, (CH₂CH₂)₂C=O), 1.94 - 2.07(m, 6H, (CH₂CH₂)₂C=O), 2.83 (t, J = 5.4 Hz, 2H,ArCH₂CH₂O), 3.91 (t, J = 5.6 Hz, 2H, ArCH₂CH₂O), 4.00 (s, 4H, OCH₂CH₂O), 7.06 - 7.10 (m, 1H, Ar-H), 7.12 - 7.16 (m, 1H, Ar-H), 7.16 - 7.20 (m, 2H, Ar-H). Purity (HPLC method A): 98.3 %, t_R = 19.4 min.

3,4-Dihydrospiro[[2]benzopyran-1,1'-cyclohexan]-4'-one (18)

A solution of ketal **17** (121 mg, 0.47 mmol) in Et₂O (4 mL) and 2 M HCl (4 mL) was heated to reflux for 48 h. Evaporated Et₂O was supplemented. Subsequently, H₂O (50 mL) and Et₂O (50 mL) were added and the mixture was extracted with Et₂O (3 x 50 mL). The combined organic layers were dried (K₂CO₃), concentrated in vacuo and the residue was purified by fc (\emptyset 2 cm, cyclohexane/ethyl acetate = 9/1, 20 cm, 10 mL). R_f (cyclohexane/ethyl acetate = 9/1, 0.10, cyclohexane/ethyl acetate = 4/1, 0.23). Colorless solid, mp 134 °C, yield 93.5 mg (94 %). C₁₄H₁₆O₂ (216.3). MS (ESI): m/z (%) = 217 [M+H, 2], 159 [M - CH₃CH₂C*=O, 100]. IR: v (cm⁻¹) = 3048, 3020 (w, v, C-H, arom), 2953, 2923, 2861 (s, v, C-H, alkyl), 1703 (s, v, C=O), 1493 (w, v, C=C arom), 755 (s, δ , C-H, o-disubst. arom). ¹H NMR (CDCl₃): δ (ppm) = 2.18 ("td", J = 13.8/4.6 Hz, 2H, (CH₂CH₂)₂C=O), 2.26 - 2.34 (m, 4H, (CH₂CH₂)₂C=O), 2.86 ("td", J = 14.3/6.3 Hz, 2H, (CH₂CH₂)₂C=O), 2.90 (t, J = 5.5 Hz, 2H, ArCH₂CH₂O), 4.01 (t, J = 5.6 Hz, 2H, ArCH₂CH₂O), 7.05 - 7.10 (m, 1H, Ar-H), 7.11 - 7.22 (m, 3H, Ar-H). Purity (HPLC method A): 99.5 %, t_R = 18.3 min.

trans-N-(Cyclohexylmethyl)-3,4-dihydrospiro[[2]benzopyran-1,1'-cyclohexan]-4'-amine (19a) and

cis-N-(Cyclohexylmethyl)-3,4-dihydrospiro[[2]benzopyran-1,1'-cyclohexan]-4'amine (19b)

Under N₂, a solution of ketone **18** (85 mg, 0.39 mmol) in THF (5 mL) was treated with cyclohexylmethylamine (98 %, 68 mg, 0.59 mmol) dissolved in THF (2 mL), acetic acid (23 µL, 0.40 mmol) and NaBH(OAc)₃ (95 %, 158 mg, 0.71 mmol). The mixture was stirred at rt for 3 h. Subsequently, 1 M NaOH (10 mL) was added and the mixture was extracted with CH₂Cl₂ (3 x 20 mL) and Et₂O (20 mL). The combined organic layers were dried (K₂CO₃), concentrated in vacuo and the residue was purified by fc (\emptyset 3 cm, cyclohexane + 2 % *N*,*N*-dimethylethanamine, 20 cm, 10 mL). R_f (cyclohexane + 2 % *N*,*N*-dimethylethanamine, **19a**: R_f = 0.33, **19b**: R_f = 0.09).

19a: Colorless oil, yield 30 mg (24 %). C₂₁H₃₁NO (313.5). MS (EI): m/z (%) = 314 [MH, 20], 230 [M-cyclohexyl*, 37], 183 [C₁₃H₁₁O)⁺, 24], 201 [M-H₃CN*CH₂cyclohexyl, 31], 124 [(C₈H₁₄N)⁺, 15], 152 [CH₂=CHCH=HN*CH₂cyclohexyl,100]. IR: v (cm⁻¹) = 3019 (w, v, C-H, arom), 2919, 2849 (s, v, C-H, alkyl), 2793 (m, v, N-CH₂), 1489 (w, v, C=C, arom), 1448 (m, δ , C-H, alkyl), 751 (s, δ , C-H, o-disubst. arom). ¹H NMR (CDCl₃): δ (ppm) = 0.90 - 1.00 (m, 2H, NCH₂(cyclohexyl-*H*)), 1.13 - 1.34 (m, 4H, NCH₂(cyclohexyl-*H*)), 1.43 - 1.52 (m, 1H, NCH₂(cyclohexyl-*H*)), 1.53 - 1.62 (m, 2H, (CH₂CH₂)₂CHN), 1.62 - 1.70 (m, 4H, NCH₂(cyclohexyl-*H*)), (2H), (CH₂CH₂)₂CHN (2H)), 1.79 - 1.86 (m, 2H, NCH₂(cyclohexyl-*H*), 1.90 ("tt", J = 13.8/3.4 Hz, 2H, 3'-Ha, 5'-Ha), 2.08 ("td", J = 13.7/3.7 Hz, 2H, 2'-Ha, 6'-Ha), 2.44 (d, J = 6.6 Hz, 2H, NCH₂(cyclohexyl-H), 2.82 (t, J = 5.6 Hz, 2H, OCH₂CH₂Ar), 2.85 - 2.90 (m, 1H, 4'-He), 3.90 (t, J = 5.6 Hz, 2H, OCH₂CH₂Ar), 2.85 - 2.90 (m, 1H, 4'-He), 7.18 - 7.19 (m, 2H, Ar-H). A signal for the NH-proton is not seen in the spectrum. Purity (HPLC method A): 99.1 %, t_R = 19.0 min.

19b: Colorless oil, yield 89 mg (72 %). C₂₁H₃₁NO (313.5). MS (ESI): m/z (%) = 314 [MH, 3], 230 [M-cyclohexyl*, 100], 183 [C₁₃H₁₁O)⁺, 12], 152 $[CH_2=CH=HN^+CH_2cyclohexyl, 66], 124 [(C_8H_{14}N)^+, 8]. IR: v (cm^{-1}) = 3018 (w, v, C-H, V)$ arom), 2919, 2849 (s, v, C-H, alkyl), 1489 (w, v, C=C, arom), 1448 (m, δ, C-H, alkyl), 753 (s, δ , C-H, o-disubst. arom). ¹H NMR (CDCl₃): δ (ppm) = 0.84 - 0.98 (m, 2H, NCH₂(cyclohexyl-*H*)), 1.10 – 1.31 (m, 4H, NCH₂(cyclohexyl-*H*)), 1.41 – 1.51 (m, 1H, NCH₂(cyclohexyl-*H*)), 1.52 – 1.62 (m, 2H, NCH₂(cyclohexyl-*H*)), 1.63 – 1.84 (m, 8H, NCH₂(cyclohexyl-*H*)(2H), (CH₂CH₂)₂CHN(6H)), 1.94 – 2.03 (m, 2H, 2'-H_e, 6'-H_e), 2.50 (d, J = 6.7 Hz, 2H NC*H*₂(cyclohexyl-H), 2.50 – 2.59 (m, 1H, 4'-H_a), 2.82 (t, J = 5.5 Hz, 2H, OCH₂CH₂Ar), 3.88 (t, J = 5.6 Hz, 2H, OCH₂CH₂Ar), 7.07 – 7.19 (m, 4H, Ar-H). A signal for the NH-proton is not seen in the spectrum. Purity (HPLC method A): 99.7 %, t_R = 18.6 min.

trans-N-(Cyclohexylmethyl)-N-methyl-3,4-dihydrospiro[[2]benzopyran-1,1'cyclohexan]-4'-amine (20a)

Under N₂, cyclohexylmethylamine **19a** (18.6 mg, 0.06 mmol) was dissolved in CH₂Cl₂ (2.5 mL). Formalin (37 %, stab. with 10-15 % MeOH, 89 µL, 1.19 mmol) and NaBH(OAc)₃ (95 %, 21 mg, 0.09 mmol) were added and the reaction mixture was stirred at rt for 2 h. Subsequently, H₂O (10 mL) was added and the mixture was extracted with CH₂Cl₂ (3 x 20 mL) and with Et₂O (1 x 20 mL). The combined organic layers were dried (K₂CO₃), concentrated in vacuo and the residue was purified by fc (Ø 2 cm, cyclohexane + 1 % *N*,*N*-dimethylethanamine, 15 cm, 10 mL). R_f (cyclohexane + 1 % N,N-dimethylethanamine: 0.13). Colorless solid, yield 19 mg (97 %). C₂₂H₃₃NO (327.6). MS (EI): m/z (%) = 327 [M, 4], 244 [M-cyclohexyl*, 100], 201 [M-H₃CN*CH₂cyclohexyl, 51], 183 [C₁₃H₁₁O)⁺, 35], 166 [CH₂=CHCH=N⁺(-CH₃)- $(CH_2 cyclohexyl), 39], 159 [1-Allyl[2]benzopyran, 36]. IR: v (cm⁻¹) = 3062, 3021 (w, v, v)$ C-H, arom), 2919, 2848 (s, v, C-H, alkyl), 2782 (m, v, N-CH₂), 1489 (w, v, C=C, arom), 1447 (m, δ , C-H, alkyl), 751 (s, δ , C-H, o-disubst. arom). ¹H NMR (CDCl₃): δ (ppm) = 0.82 – 0.95 (m, 2H, NCH₂(cyclohexyl-*H*)), 1.12 – 1.34 (m, 4H, NCH₂(cyclohexyl-*H*)), 1.50 - 1.78 (m, 7H, NCH₂(cyclohexyl-H) (3H), (CH₂CH₂)₂CHN) (4H), 1.78 - 1.93 (m, 5H, NCH₂(cyclohexyl-H) (2H), (CH₂CH₂)₂CHN (3H)), 2.05 - 2.16 (m, 2H, $(CH_2CH_2)_2CHN)$, 2.15 (d, J = 7.2 Hz, 2H, NCH₂(cyclohexyl-H), 2.19 (s, 3H, NCH₃), 2.82 (t, J = 5.5 Hz, 2H, OCH₂CH₂Ar), 3.91 (t, J = 5.5 Hz, 2H, OCH₂CH₂Ar), 7.04 – 7.08 (m, 1H, Ar-H), 7.10 – 7.14 (m, 1H, Ar-H), 7.16 – 7.20 (m, 2H, Ar-H). Purity (HPLC method A): 92.5 %, $t_R = 19.52$ min.

cis-N-(Cyclohexylmethyl)-N-methyl-3,4-dihydrospiro[[2]benzopyran-1,1'cyclohexan]-4'-amine (20b)

Under N₂, cyclohexylmethylamine **19b** (61 mg, 0.20 mmol) was dissolved in CH₂Cl₂ (2.5 mL). Formalin (37 %, stab. with 10-15% MeOH, 293 μ L, 3.90 mmol) and NaBH(OAc)₃ (95 %, 70 mg, 0.31 mmol) were added and the reaction mixture was stirred at rt for 2 h. Then, H₂O (10 mL) was added and the mixture was extracted with

CH₂Cl₂ (3 x 20 mL) and Et₂O (1 x 20 mL). The combined organic layers were dried (K₂CO₃), concentrated in vacuo and the residue was purified by fc (\emptyset 2 cm, cyclohexane + 2 % *N*,*N*-dimethylethanamine, 16 cm, 10 mL). R_f (cyclohexane + 2 % *N*,*N*-dimethylethanamine: 0.31). Colorless oil, yield 62 mg (97 %). C₂₂H₃₃NO (327.6). MS (ESI): m/z (%) = 327 [M, 6], 244 [M-cyclohexyl^{*}, 100], 183 [C₁₃H₁₁O)⁺, 10], 166 [CH₂=CHCH=N⁺(-CH₃)-CH₂cyclohexyl,16], 159 [1-Allyl[2]benzopyran, 15]. IR: v (cm⁻¹) = 3062, 3019 (w, v, C-H, arom), 2920, 2848 (s, v, C-H, alkyl), 1489 (w, v, C=C, arom), 1448 (m, δ, C-H, alkyl), 753 (s, δ, C-H, o-disubst. arom). ¹H NMR (CDCl₃): δ (ppm) = 0.79 – 0.93 (m, 2H, NCH₂(cyclohexyl-*H*)), 1.10 – 1.31 (m, 4H, NCH₂(cyclohexyl-*H*)), 1.36 – 1.47 (m, 1H, NCH₂(cyclohexyl-*H*)), 1.55 – 1.84 (m, 10 H, NCH₂(cyclohexyl-*H*)), (4H), (CH₂CH₂)₂CHN) (6H)), 1.98 – 2.09 (m, 2H, 2'-H₆, 6'-H₆), 2.24 (d, J = 6.6 Hz, 2H, NCH₂(cyclohexyl-H)), 2.30 (s, 3H, NCH₃), 2.45 – 2.58 (m, 1H, 4'-H_a), 2.83 (t, J = 5.5 Hz, 2H, OCH₂CH₂Ar), 3.91 (t, J = 5.6 Hz, 2H, OCH₂CH₂Ar), 7.05 – 7.20 (m, 4H, Ar-H). Purity (HPLC method A): 99.1%, t_R = 19.42 min.

trans-N-Benzyl-3-methoxy-3*H*-spiro[[2]benzofuran-1,1'-cyclohexan]-4'-amine (23a) and

cis-N-Benzyl-3-methoxy-3*H*-spiro[[2]benzofuran-1,1'-cyclohexan]-4'-amine (23b) Under N₂, a solution of ketone **13** (70.5 mg, 0.30 mmol), benzylamine (37 µL, 0.32 mmol), acetic acid (17 µL, 0.30 mmol) and NaBH(OAc)₃ (95 %, 98 mg, 0.44 mmol) in THF (5 mL) was stirred at rt for 4 h. Subsequently, 1 M NaOH (10 mL) was added and the mixture was extracted with Et₂O (10 mL) and CH₂Cl₂ (2 x 10 mL). The combined organic layers were dried (K₂CO₃), concentrated in vacuo and the residue was purified by fc (\emptyset 3.5 cm, cyclohexane + 2 % *N*,*N*-dimethylethanamine, 20 cm, 10 mL). R_f (cyclohexane + 2 % *N*,*N*-dimethylethanamine, **23a**: R_f = 0.16, **23b**: R_f = 0.09). **23a:** Pale yellow oil, yield 35.3 mg (36 %). C₂₅H₂₅NO₂ (323.5). MS (ESI): m/z (%) = 324 [MH,100]. IR: v (cm⁻¹) = 3028 (w, v, C-H, arom), 2925 (s, v, C-H, alkyl), 2849 (s, v, OCH₃), 2824 (m, v, N-CH₂), 1611, 1495 (w, C=C, arom), 1452 (m, δ , C-H, alkyl), 752

(s, δ , C-H, o-disubst. arom), 698 (s, δ , C-H, mono-subst. arom). ¹H NMR (CDCl₃): δ (ppm) = 1.55 – 1.62 (m, 1 H, (CH₂CH₂)₂CHN), 1.67 – 1.81 (m, 3H, (CH₂CH₂)₂CHN), 1.98 – 2.17 (m, 4H, (CH₂CH₂)₂CHN), 2.97 ("quint", J = 3.9 Hz, 1H, 4'H_e), 3.46 (s, 3H, OCH₃), 3.83 (s, 2H, NCH₂Ar), 6.07 (s,1H, ArCHOCH₃), 7.25 – 7.29 (m, 1H, Ar-H), 7.29 – 7.40 (m, 8H, Ar-H). A signal for the NH-proton is not seen in the spectrum. Anal. calcd. for C₂₅H₂₅NO₂ (323.5) C, 78.0, H, 7.80, N, 4.33, found C, 77.7, H, 8.02, N, 3.99.

23b: Pale yellow oil, yield 51.9 mg (53 %). $C_{25}H_{25}NO_2$ (323.5). MS (ESI): m/z (%) = 324 [MH,100]. IR: v (cm⁻¹) = 3029 (w, v, C-H, arom), 2928 (s, v, C-H, alkyl), 2849 (s, v, OCH₃), 2820 (m, v, N-CH₂), 1604,1494 (w, C=C, arom), 1460 (m, δ , C-H, alkyl), 755 (s, δ , C-H, o-disubst. arom), 746, 697 (s, δ , C-H, mono-subst. arom). ¹H NMR (CDCl₃): δ (ppm) = 1.65 – 1.85 (m, 5H, (CH₂CH₂)₂CHN), 1.87 – 1.93 (m, 1H, (CH₂CH₂)₂CHN), 1.93 – 2.01 (m, 2H, (CH₂CH₂)₂CHN), 2.65 ("tt", J = 10.4/3.9 Hz, 1H, 4'-H_a), 3.49 (s, 3H, OCH₃), 3.90 (s, 2H, Ar-CH₂-NH), 6.05 (s, 1H, ArCHOCH₃), 7.08 – 7.12 (m, 1H, Ar-H), 7.24 – 7.29 (m, 1H, Ar-H), 7.30 – 7.38 (m, 7H, Ar-H). A signal for the NH-proton is not seen in the spectrum. Anal. calcd. for C₂₅H₂₅NO₂ (323.5) C, 78.0, H, 7.80, N, 4.33, found C, 77.8, H, 7.95, N, 4.06.

trans-N-Benzyl-3,4-dihydrospiro[[2]benzopyran-1,1'-cyclohexan]-4'-amine (24a) and

cis-N-Benzyl-3,4-dihydrospiro[[2]benzopyran-1,1'-cyclohexan]-4'-amine (24b) Under N₂, ketone **18** (72.6 mg, 0.34 mmol) was dissolved in THF (5 mL). Benzylamine (56 µL, 0.50 mmol), acetic acid (19 µL, 0.34 mmol) and Na[BH(OAc)₃] (95 %, 135 mg, 0.60 mmol) were added and the mixture was stirred for 3.5 h at rt. Then, 1 M NaOH (10 mL) was added and the mixture was extracted with CH₂Cl₂ (3 x 20 mL) and Et₂O (2 x 20 mL). The combined organic layers were dried (K₂CO₃), concentrated in vacuo and the residue was purified by fc (\emptyset 3 cm, cyclohexane/ethyl acetate = 9/1 + 1 % *N*,*N*dimethylethanamine, 20 cm, 10 mL). Rf (cyclohexane/ethyl acetate = 9/1 + 1% *N*,*N*dimethylethanamine, **24a**: 0.29, **24b**: 0.08).

24a: Pale yellow oil, yield 27 mg (27 %). C₂₁H₂₅NO (307.5). MS (ESI): m/z (%) = 308 [MH, 100]. IR: v (cm⁻¹) = 3060, 3023 (m, v, C-H, arom), 2924, 2855 (s, v, C-H, alkyl), 1604, 1489 (w, v, C=C, arom), 1450 (s, δ , C-H, alkyl), 751 (s, δ , C-H, o-disubst. arom), 698 (s, δ , C-H, mono-subst. arom). ¹H NMR (CDCl₃): δ (ppm) = 1.59 – 1.74 (m, 4H, (CH₂CH₂)₂CHN), 1.94 ("tt", J = 13.6/3.4 Hz, 2H, (CH₂CH₂)₂CHN), 2.16 ("tt", J = 13.8/3.8 Hz, 2H, (CH₂CH₂)₂CHN), 2.83 (t, J = 5.4 Hz, 2H, OCH₂CH₂Ar), 3.0 ("quint", J = 2.8 Hz, 1H, 4'-H_e), 3.82 (s, 2H, NHCH₂Ar), 3.91 (t, J = 5.4Hz, 2H, OCH₂CH₂Ar), 7.07 – 7.08 (m, 1H, Ar-H), 7.11 - 7.15 (m, 1H, Ar-H), 7.16 – 7.24 (m, 2H, Ar-H), 7.24 – 7.30 (m, 1H, Ar-H), 7.33– 7.43 (m, 4H, Ar-H). A signal for the NH-proton is not seen in the spectrum. ¹³C NMR (CDCL₃): δ (ppm) = 26.2 (2C, 3'-C, 5'-C), 30.1 (1C, ArCH₂CH₂O), 31.3 (2C, 2'-C, 6'-C), 50.8 (1C, 4'-C), 52.0 (1C, NHCH₂Ar), 59.0 (1C, ArCH₂CH₂O), 75.5 (1C, spiro-C), 126.0 (1C, arom), 126.2 (1C, arom), 126.4 (2C, arom), 127.1 (1C, arom),

128.5 (2C, arom), 128.7 (1C, arom), 129.0 (1C, arom), 133.8 (1C, arom), 142.7 (1C, arom), 143.7 (1C, arom). Purity (HPLC method A): 99.2 %, t_R = 17.90 min.

24b: Pale yellow solid, mp 65 °C, yield 68 mg (66 %). C₂₁H₂₅NO (307.5). MS (ESI): m/z (%) = 308 [MH, 100]. IR: v (cm⁻¹) = 3060, 3025 (m, v, C-H, arom), 2925, 2855 (s, v, C-H, arom), 1603,1490 (w, v, C=C, arom), 1450 (m, δ , C-H, alkyl), 753 (s, δ , C-H, o-disubst. arom), 697 (s, δ , C-H, mono-subst. arom). ¹H NMR (CDCl₃): δ (ppm) = 1.59 – 1.76 (m, 4H, (CH₂CH₂)₂CHN), 1.80 – 1.88 (m, 2H, (CH₂CH₂)₂CHN), 1.96 – 2.04 (m, 2H, (CH₂CH₂)₂CHN), 2.64 ("tt", J = 10.9/3.9 Hz, 1H, 4'-H_a), 2.83 (t, J = 5.7 Hz, 2H, OCH₂CH₂Ar), 3.88 (s, 2H, NHCH₂Ar), 3.90 (t, J = 5.7 Hz, 2H, OCH₂CH₂Ar), 7.06 – 7.09(m, 2H, Ar-H), 7.11 - 7.19 (m, 2H, Ar-H), 7.23 – 7.30 (m, 1H, Ar-H), 7.31 – 7.38 (m, 4H, Ar-H). A signal for the NH-proton is not seen in the spectrum. ¹³C NMR (CDCL₃): δ (ppm) = 29.0 (2C, 3'-C, 5'-C), 29.9 (1C, ArCH₂CH₂O), 36.2 (2C, 2'-C, 6'-C), 51.2 (1C, NHCH₂Ar), 55.8 (1C, 4'-C), 58.9 (1C, ArCH₂CH₂O), 74.6 (1C, spiro-C), 125.3 (1C, arom), 126.2 (1C, arom), 126.2 (1C, arom), 127.1 (1C, arom), 128.3 (2C, arom), 128.7 (2C, arom), 129.1 (1C, arom), 133.9 (1C, arom), 141.1 (1C, arom), 142.8 (1C, arom). Purity (HPLC method A): 99.0 %, t_R = 17.6 min.

3. Receptor Binding Studies

Material

Guinea pig brains, rat brains and rat livers were commercially available (Harlan-Winkelmann, Borchen, Germany). Pig brains were a donation of the local slaughterhouse (Coesfeld, Germany). Homogenizers: Elvehjem Potter (B. Braun Biotech International, Melsungen, Germany) and Soniprep[®] 150, MSE, London, UK). Centrifuges: Cooling centrifuge model Eppendorf 5427R (Eppendorf, Hamburg, Germany) and High-speed cooling centrifuge model Sorvall[®] RC-5C plus (Thermo Fisher Scientific, Langenselbold, Germany). Multiplates: standard 96 well multiplates (Diagonal, Muenster, Germany). Shaker: self-made device with adjustable temperature and tumbling speed (scientific workshop of the institute). Harvester: MicroBeta[®] FilterMate 96 Harvester. Filter: Printed Filtermat Typ A and B. Scintillator: Meltilex[®] (Typ A or B) solid state scintillator. Scintillation analyzer: MicroBeta[®] Trilux (all Perkin Elmer LAS, Rodgau-Jügesheim, Germany).

Preparation of membrane homogenates from guinea pig brain

5 guinea pig brains were homogenized with the potter (500-800 rpm, 10 up and down strokes) in 6 volumes of cold 0.32 M sucrose. The suspension was centrifuged at 1,200 x g for 10 min at 4 °C. The supernatant was separated and centrifuged at 23,500 x g for 20 min at 4 °C. The pellet was resuspended in 5-6 volumes of buffer (50 mM TRIS, pH 7.4) and centrifuged again at 23,500 x g (20 min, 4 °C). This procedure was repeated twice. The final pellet was resuspended in 5-6 volumes of buffer and frozen (-80 °C) in 1.5 mL portions containing about 1.5 mg protein/mL.

Preparation of membrane homogenates from rat liver

Two rat livers were cut into small pieces and homogenized with the potter (500-800 rpm, 10 up and down strokes) in 6 volumes of cold 0.32 M sucrose. The suspension was centrifuged at 1,200 x g for 10 min at 4 °C. The supernatant was separated and centrifuged at 31,000 x g for 20 min at 4 °C. The pellet was resuspended in 5-6 volumes of buffer (50 mM TRIS, pH 8.0) and incubated at rt for 30 min. After the incubation, the suspension was centrifuged again at 31,000 x g for 20 min at 4 °C. The final pellet was resuspended in 5-6 volumes of buffer (50 mM TRIS, pH 8.0) and incubated at rt for 30 min at 4 °C. The final pellet was resuspended in 5-6 volumes of buffer and stored at -80 °C in 1.5 mL portions containing about 2 mg protein/mL.

Preparation of membrane homogenates from rat brain

5 rat brains (species: Sprague Dawley rats) were homogenized with the potter (500-800 rpm, 10 up and down strokes) in 6 volumes of cold 0.32 M sucrose. The suspension was centrifuged at 1,200 x g for 10 min at 4 °C. The supernatant was separated and centrifuged at 23,500 x g for 20 min at 4 °C. The pellet was resuspended in 5-6 volumes of buffer (50 mM TRIS, pH 7.4) and centrifuged again at 23,500 x g (20 min, 4 °C). This procedure was repeated twice. The final pellet was resuspended in 5-6 volumes of buffer and frozen (-80 °C) in 1.5 mL portions containing about 1.5 mg protein/mL.

Preparation of membrane homogenates from pig brain cortex

Fresh pig brain cortex was homogenized with the potter (500-800 rpm, 10 up and down strokes) in 6 volumes of cold 0.32 M sucrose. The suspension was centrifuged at 1,200 x g for 10 min at 4 °C. The supernatant was separated and centrifuged at 31,000 x g for 20 min at 4 °C. The pellet was resuspended in 5-6 volumes of TRIS/EDTA buffer (5 mM TRIS/1 mM EDTA, pH 7.5) and centrifuged again at 31,000 x g (20 min, 4 °C). The final pellet was resuspended in 5-6 volumes of buffer and frozen (-80 °C) in 1.5 mL portions containing about 0.8 mg protein/mL.

Protein determination

The protein concentration was determined by the method of Bradford,³ modified by Stoscheck.⁴ The Bradford solution was prepared by dissolving 5 mg of Coomassie Brilliant Blue G 250 in 2.5 mL of EtOH (95 %, v/v). 10 mL deionized H₂O and 5 mL phosphoric acid (85 %, m/v) were added to this solution, the mixture was stirred and filled to a total volume of 50 mL with deionized water. The calibration was carried out using bovine serum albumin as a standard in 9 concentrations (0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0 and 4.0 mg /mL). In a 96 well standard multiplate, 10 µL of the calibration solution or 10 µL of the membrane receptor preparation were mixed with 190 µL of the Bradford solution, respectively. After 5 min, the UV absorption of the protein-dye complex at λ = 595 nm was measured with a plate reader (Tecan Genios[®], Tecan, Crailsheim, Germany).

General procedures for the binding assays

The test compound solutions were prepared by dissolving approximately 10 µmol (usually 2-4 mg) of test compound in DMSO so that a 10 mM stock solution was obtained. To obtain the required test solutions for the assay, the DMSO stock solution was diluted with the respective assay buffer. The filtermats were presoaked in 0.5 % aqueous polyethylenimine solution for 2 h at rt before use. All binding experiments were carried out in duplicates in the 96 well multiplates. The concentrations given are the final concentration in the assay. Generally, the assays were performed by addition of 50 μ L of the respective assay buffer, 50 μ L of test compound solution in various concentrations (10^{-5} , 10^{-6} , 10^{-7} , 10^{-8} , 10^{-9} and 10^{-10} mol/L), 50 µL of the corresponding radioligand solution and 50 µL of the respective receptor preparation into each well of the multiplate (total volume 200 μ L). The receptor preparation was always added last. During the incubation, the multiplates were shaken at a speed of 500-600 rpm at the specified temperature. Unless otherwise noted, the assays were terminated after 120 min by rapid filtration using the harvester. During the filtration, each well was washed five times with 300 µL of water. Subsequently, the filtermats were dried at 95 °C. The solid scintillator was melted on the dried filtermats at a temperature of 95 °C for 5 min. After solidifying of the scintillator at rt, the trapped radioactivity in the filtermats was measured with the scintillation analyzer. Each position on the filtermat corresponding to one well of the multiplate was measured for 5 min with the [³H]counting protocol. The overall counting efficiency was 20 %. The IC₅₀ values were calculated with the program GraphPad Prism® 3.0 (GraphPad Software, San Diego, CA, USA) by non-linear regression analysis. Subsequently, the IC_{50} values were transformed into K values using the equation of Cheng and Prusoff.⁵ The K values are given as mean value ± SEM from three independent experiments.

Performance of the binding assays

σ_1 receptor assay

The assay was performed with the radioligand [3 H]-(+)-pentazocine (22.0 Ci/mmol; Perkin Elmer). The thawed membrane preparation of guinea pig brain cortex (about 100 µg of the protein) was incubated with various concentrations of test compounds, 2 nM [3 H]-(+)-pentazocine, and TRIS buffer (50 mM, pH 7.4) at 37 °C. The non-specific binding was determined with 10 µM unlabeled (+)-pentazocine. The *K*_d value of (+)-pentazocine is 2.9 nM.⁶

σ_2 receptor assay

The assays were performed with the radioligand [³H]di-*o*-tolylguanidine (specific activity 50 Ci/mmol; ARC, St. Louis, MO, USA). The thawed rat liver membrane preparation (about 100 μ g protein) was incubated with various concentrations of the test compound, 3 nM [³H]di-*o*-tolylguanidine and buffer containing (+)-pentazocine (500 nM (+)-pentazocine in TRIS buffer (50 mM TRIS, pH 8.0)) at rt. The non-specific binding was determined with 10 μ M non-labeled di-*o*-tolylguanidine. The *K*_d value of di-*o*-tolylguanidine is 17.9 nM.⁷

MOR receptor assay

The assay was performed with the radioligand [³H]DAMGO (51 Ci/mmol, Perkin Elmer). The thawed guinea pig brain membrane preparation (about 100 μ g of the protein) was incubated with various concentrations of test compounds, 3 nM [³H]DAMGO, and TRIS-MgCl₂-buffer (50 mM TRIS, 8 mM MgCl₂, pH 7.4) at 37 °C. The non-specific binding was determined with 10 μ M unlabeled naloxone. The *K*_d value of DAMGO is 0.57 nM.

KOR receptor assay

The assay was performed with the radioligand [3 H]U-69,593 (55 Ci/mmol, BIOTREND). The thawed guinea pig brain membrane preparation (about 100 µg of the protein) was incubated with various concentrations of test compounds, 1 nM [3 H]U-69,593, and TRIS-MgCl₂-buffer (50 mM TRIS, 8 mM MgCl₂, pH 7.4) at 37 °C. The non-specific binding was determined with 10 µM unlabeled U-69,593. The *K*_d value of U-69,593 is 0.69 nM.

DOR receptor assay

The assay was performed with the radioligand [³H]DPDPE (69 Ci/mmol, BIOTREND). The thawed rat membrane preparation (about 75 μ g of the protein) was incubated with various concentrations of test compounds, 3 nM [³H]DPDPE, and TRIS-MgCl₂-buffer (50 mM TRIS, 8 mM MgCl₂, , pH 7.4) supplemented with SIGMAFAST[®] protease inhibitor mix (Sigma Aldrich Biochemicals, Hamburg, Germany; 1 tablet dissolved in 100 mL of buffer) at 37 °C. The non-specific binding was determined with 10 μ M unlabeled morphine. The *K*_dvalue of DPDPE is 0.65 nM.

PCP binding site of the NMDA receptor

The assay was performed with the radioligand [³H]-(+)-MK-801 (22.0 Ci/mmol; Perkin Elmer). The thawed membrane preparation of pig brain cortex (about 100 μ g of the protein) was incubated with various concentrations of test compounds, 2 nM [³H]-(+)-MK-801, and TRIS/EDTA buffer (5 mM TRIS/1 mM EDTA, pH 7.5) at rt. The non-specific binding was determined with 10 μ M unlabeled (+)-MK-801. The *K*_d value of (+)-MK-801 is 2.26 nM.⁸

4. Inhibition of CYP enzymes⁹

CYP inhibition assay was carried out in a robotic liquid handling system (Packard Multiprobe II, Perkin-Elmer). All incubations were performed in duplicate and individually for each test compound. Compounds were incubated in 96-well plates at 37 °C at final concentrations of 1 µM. The inhibition potential of test compounds was evaluated using fluorescent probe substrates and recombinant human cytochrome P450 isoenzymes (rhCYP1A2, 2C9, 2C19, 2D6 and 3A4). Selective known inhibitors were screened alongside the test compounds as positive controls for the assay. Method including composition of incubation media, time of incubation and substrates used per each isoform are described in detail elsewhere.⁹ Fluorescence per well was measured using a fluorescence plate reader. Results were expressed as percentage of inhibition.

5. Cytotoxicity¹⁰

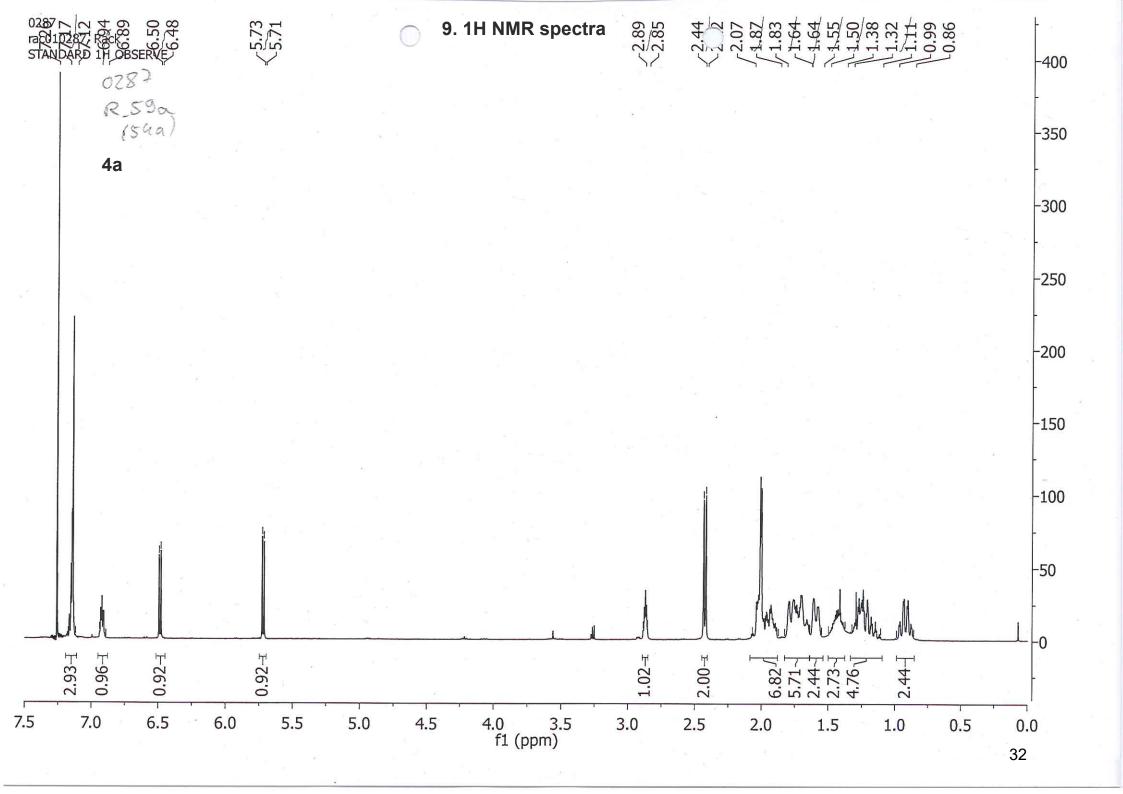
Assay: Compound-induced cytotoxicity was analyzed in human HepG2 cells using two different colorimetric methodologies: MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and RN (Neutral Red Uptake). Briefly, 3×10^4 cells/well were seeded in 96 well plates containing culture media: MEM (GIBCO) supplemented with 10 % FBS (Sigma), 2 mM L-glutamine (Sigma), 1 % non-essential amino acids (Sigma), 1 % pyruvate (Sigma) and 100 U/µg/mL of penicillin/streptomycin (Sigma). Plates were incubated at 37 °C and 5 % CO₂ for approximately 24 h. At this time, cells were treated with 1, 10 and 100 µM DMSO solutions of the test compounds during 20 h in serum-free culture media, using the same incubation conditions as mentioned above. Afterwards, compounds were washed out with PBS (Sigma). For MTT assay,

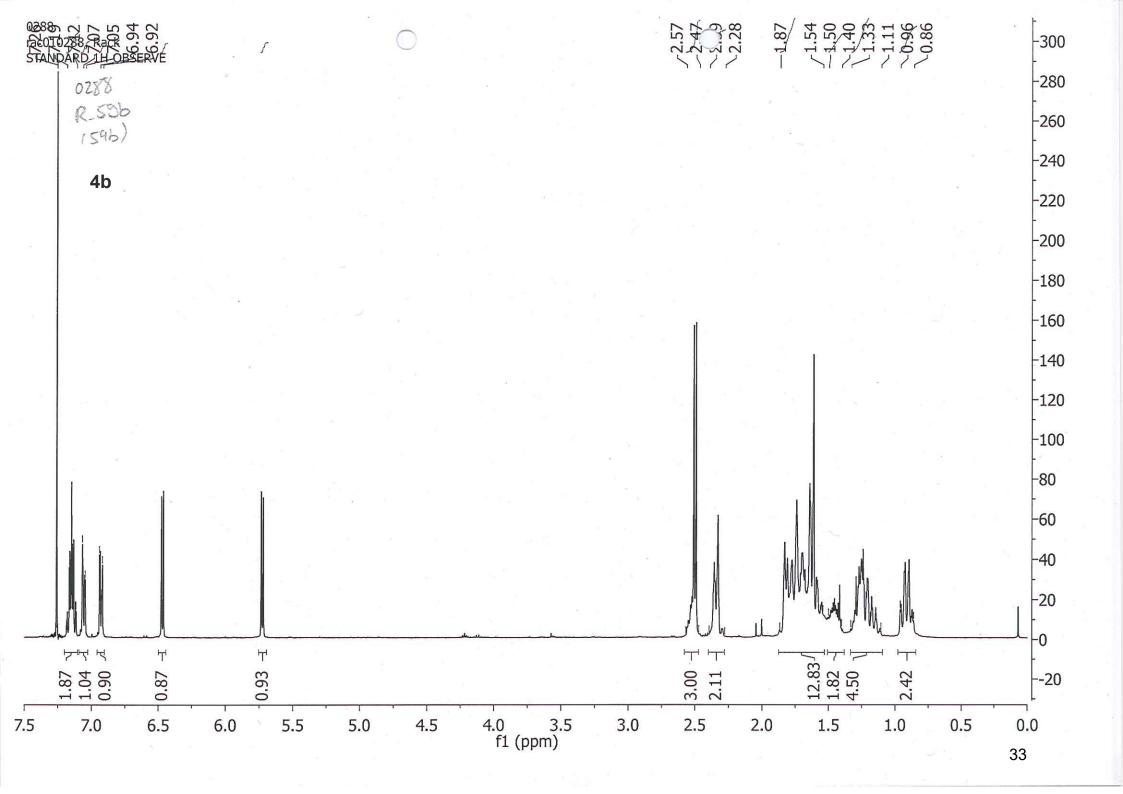
MTT solution (Sigma, 100 µL) at a final concentration of 0.5 mg/ml was added to each well and cells were incubated at 37 °C and 5 % CO₂. After 4 h, MTT solution was removed and DMSO (100 µL) was added to dissolve formazan crystals. Light absorption was then measured at 550 nm (SpectraMax® 340PC384, Molecular Devices). For Red Neutral Uptake, RN solution (Sigma, 100 µL) at a final concentration of 50 µg/mL was added to the well and cells were incubated at 37 °C and 5 % CO₂ for 3 h. Then, RN solution was removed by filtration, washing of each well with PBS and 100 µL of a solution of 50 % ethanol and 1 % of acetic acid in water was performed to extract the Neutral Red. Likewise, light absorption was then measured at 550 nm. The lowest compound concentration (1, 10 or 100 µM) producing more than 50 % of cytotoxicity, compared to non-treated cells, was taken as IC₅₀ value. Each compound was analyzed in duplicates in two different assays (n = 4).

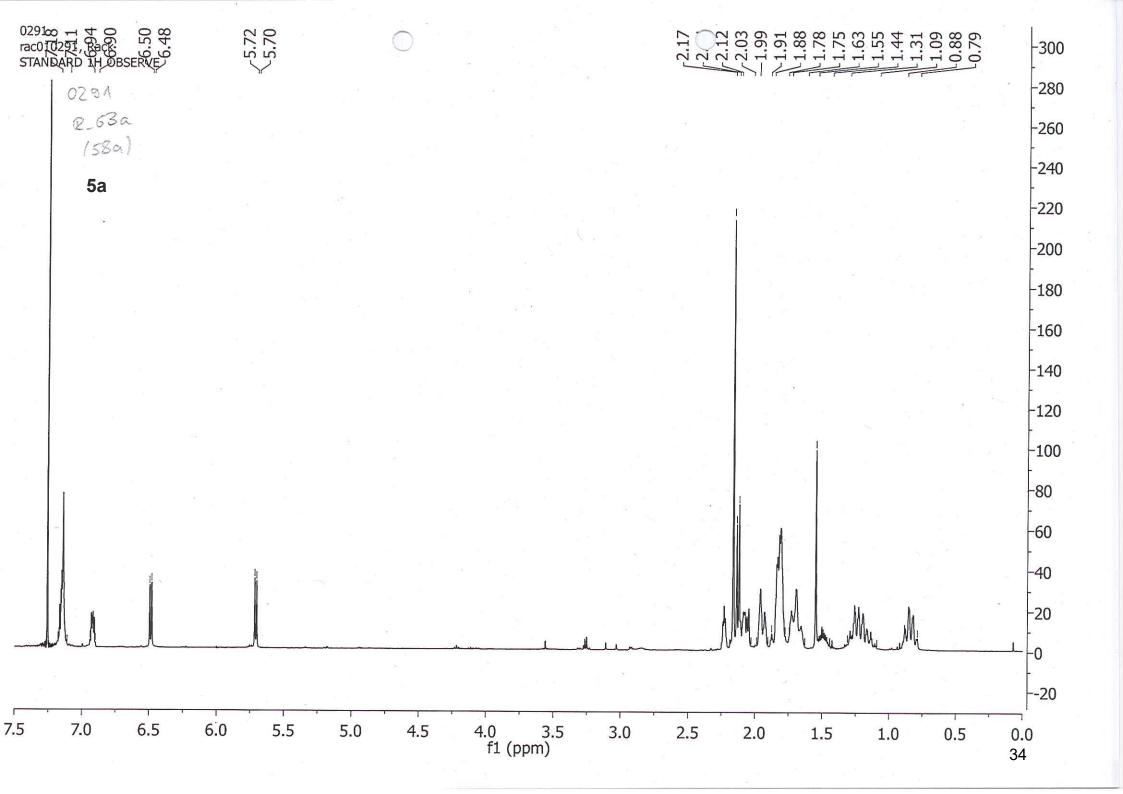
6. In vitro metabolic stability in human liver microsomes¹¹

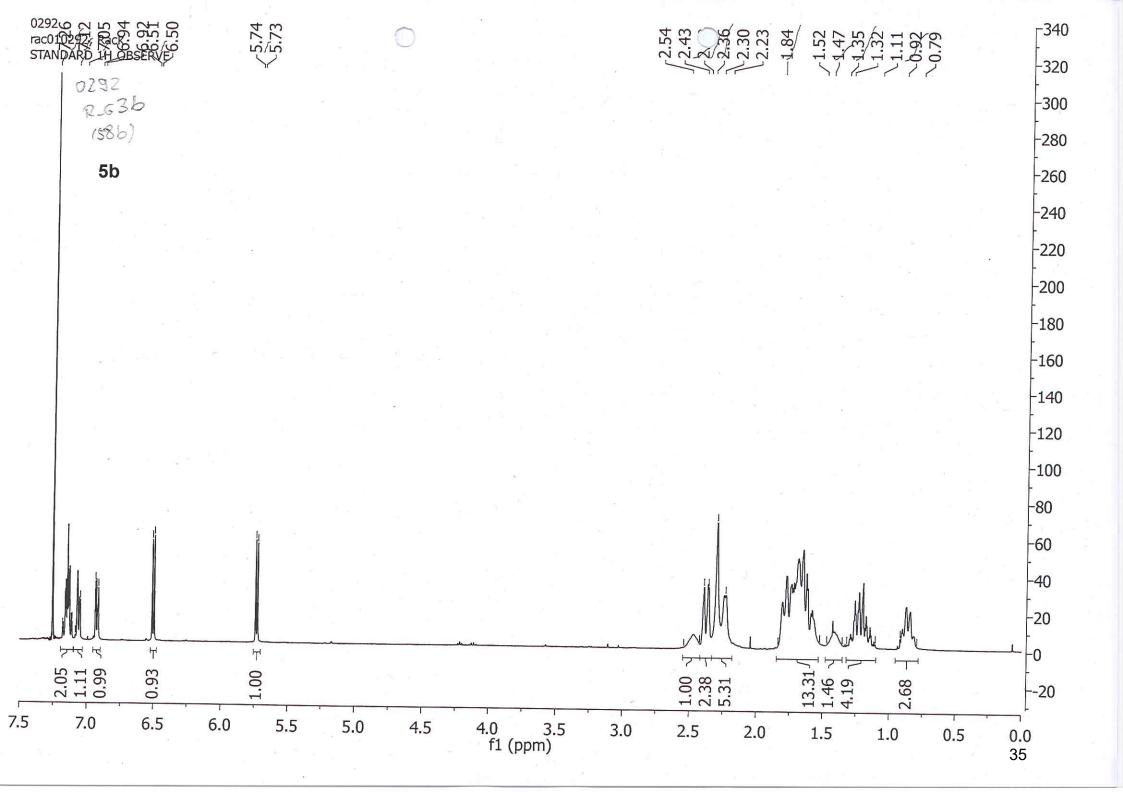
<u>Assay:</u> The assay was carried out in a robotic liquid handling system (Freedom Evo, Tecan). All incubations were performed individually and in duplicates for each test compound. Compounds (1 µM) were incubated in 96-well plates at 37 °C during 1 h under standard incubation conditions: sodium-potassium phosphate buffer (50 mM, pH 7.4), MgCl₂ (3 mM), the NADPH-regenerating system and CYP content (0.3 nmol/mL). At defined time points (0, 10, 20, 40 and 60 min) aliquots of the reaction mixture were stopped with an equal volume of cold acetonitrile. Upon centrifugation of the resulting mixture, supernatants were analyzed by a generic UPLC-MS/MS method. Metabolic stability was determined by the disappearance of compound over time. Ln-linear plots of the % of compound remaining based on chromatographic peak area versus time were plotted, and the slope was calculated by linear fitting of the curve. Results were expressed as percentage of test compound remaining at the end of the incubation period. Terfenadine was used as positive control in all assays.

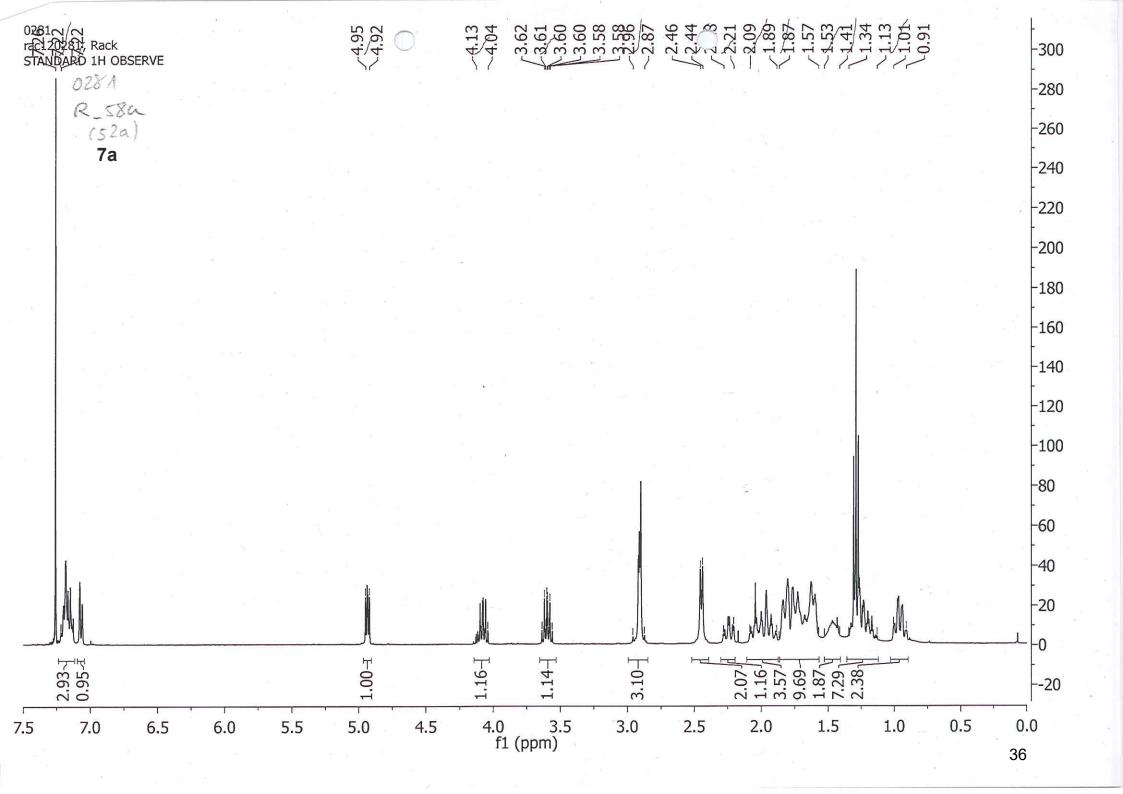
7. Table S1

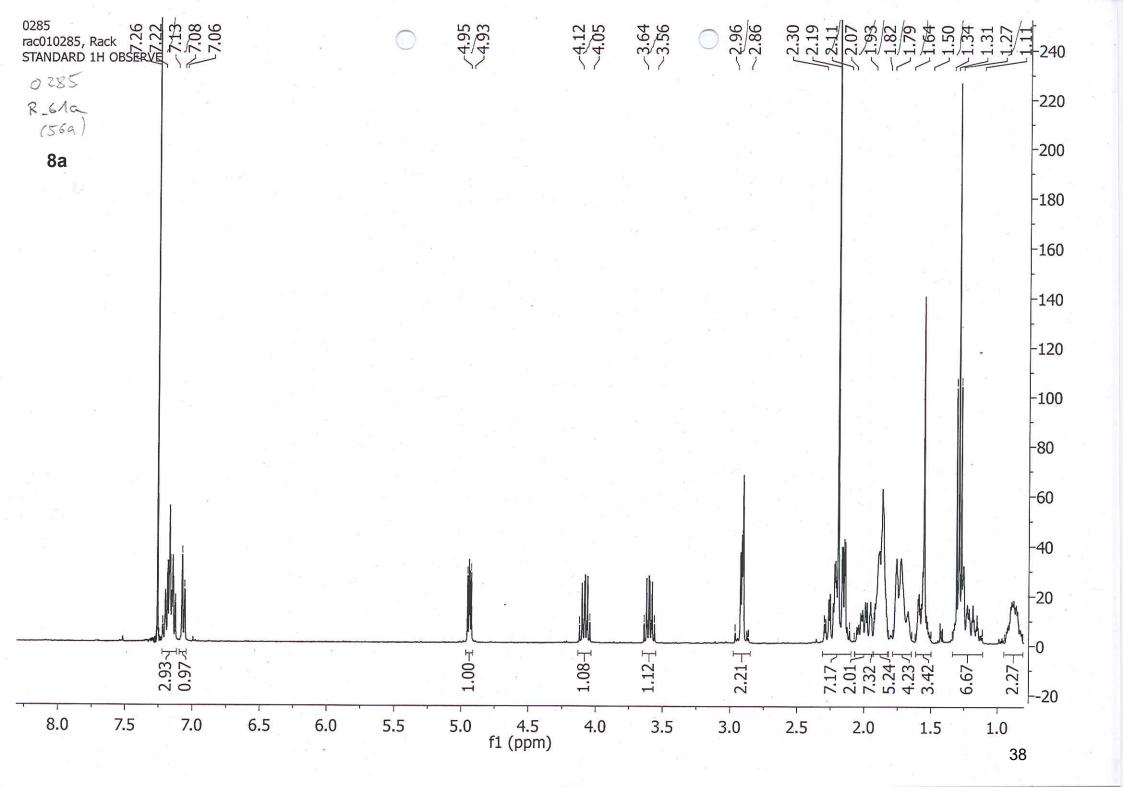

Experimental binding free energies (ΔG_{exp}), computational binding free energies (ΔG_{comp}), computational enthalpic contribution (ΔH_{comp}) and computational entropic contributions (-T ΔS_{comp}) for the entire set of the 28 bioactive ligands in complex with σ_1 receptor.

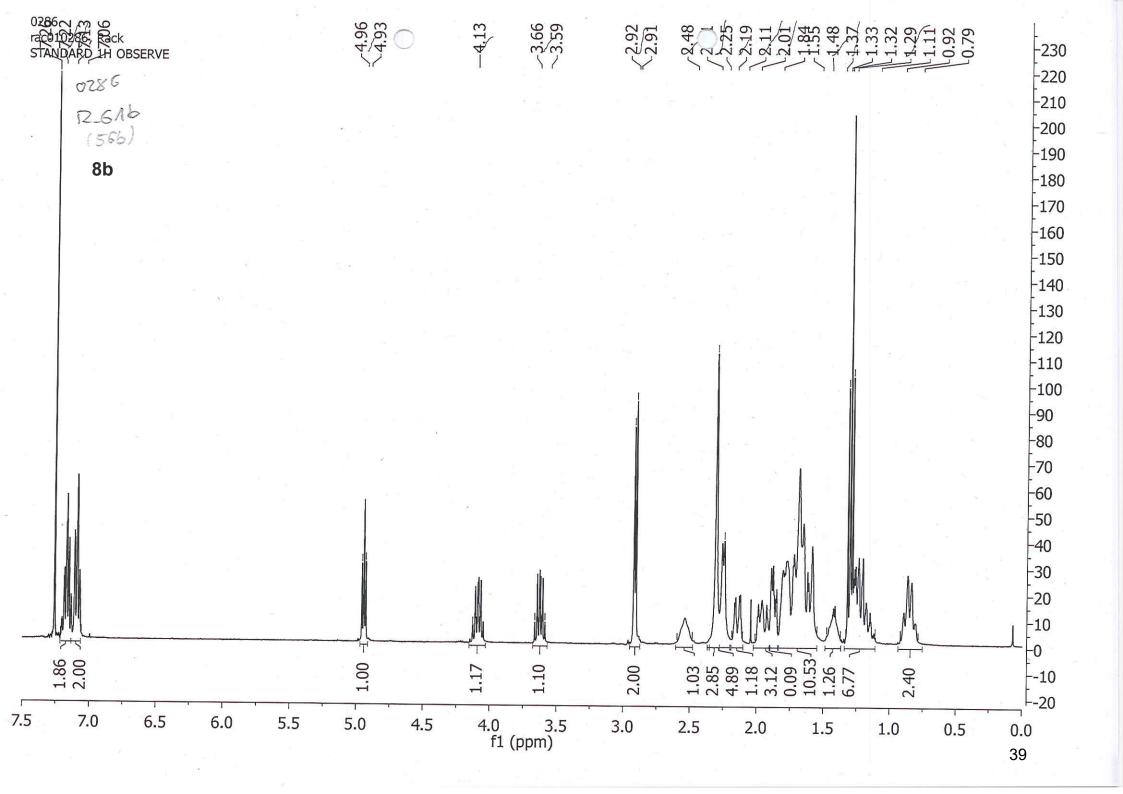

Compound	∆G _{exp} (kcal/mol)	∆G _{comp} (kcal/mol)	∆H _{comp} (kcal/mol)	-T∆S _{comp} (kcal/mol)
4a	-9.45	-9.38	-21.35	11.97
4b	-9.89	-9.56	-21.54	11.98
5a	-9.98	-9.72	-21.76	12.04
5b	-10.42	-9.83	-21.79	11.96
7a	-7.83	-9.01	-20.78	11.77
7b	-8.79	-9.04	-20.89	11.85
8a	-9.31	-9.21	-21.28	12.07
8b	-9.68	-9.36	-21.31	11.95
10a	-9.17	-9.88	-21.81	11.93
10b	-9.88	-9.99	-21.96	11.97
11a	-10.25	-10.21	-22.27	12.06
11b	-10.54	-10.63	-22.74	12.11
14a	-9.17	-9.40	-21.03	11.63
14b	-9.14	-9.57	-21.15	11.58
15a	-9.69	-9.52	-21.08	11.56
15b	-9.67	-9.61	-21.13	11.52
19a	-9.31	-9.39	-20.90	11.51
19b	-9.21	-9.53	-21.01	11.48
20a	-9.69	-9.61	-21.05	11.44
20b	-10.25	-9.67	-21.07	11.40
21a	-7.19	-8.24	-19.38	11.14
21b	-7.92	-8.31	-19.47	11.16
22a	-8.69	-8.69	-19.68	10.99
22b	-9.03	-8.81	-19.93	11.12
23a	-7.62	-8.31	-19.52	11.21
23b	-8.60	-8.35	-19.58	11.23
24a	-7.63	-8.28	-19.12	10.84
24b	-8.21	-8.33	-19.21	10.88

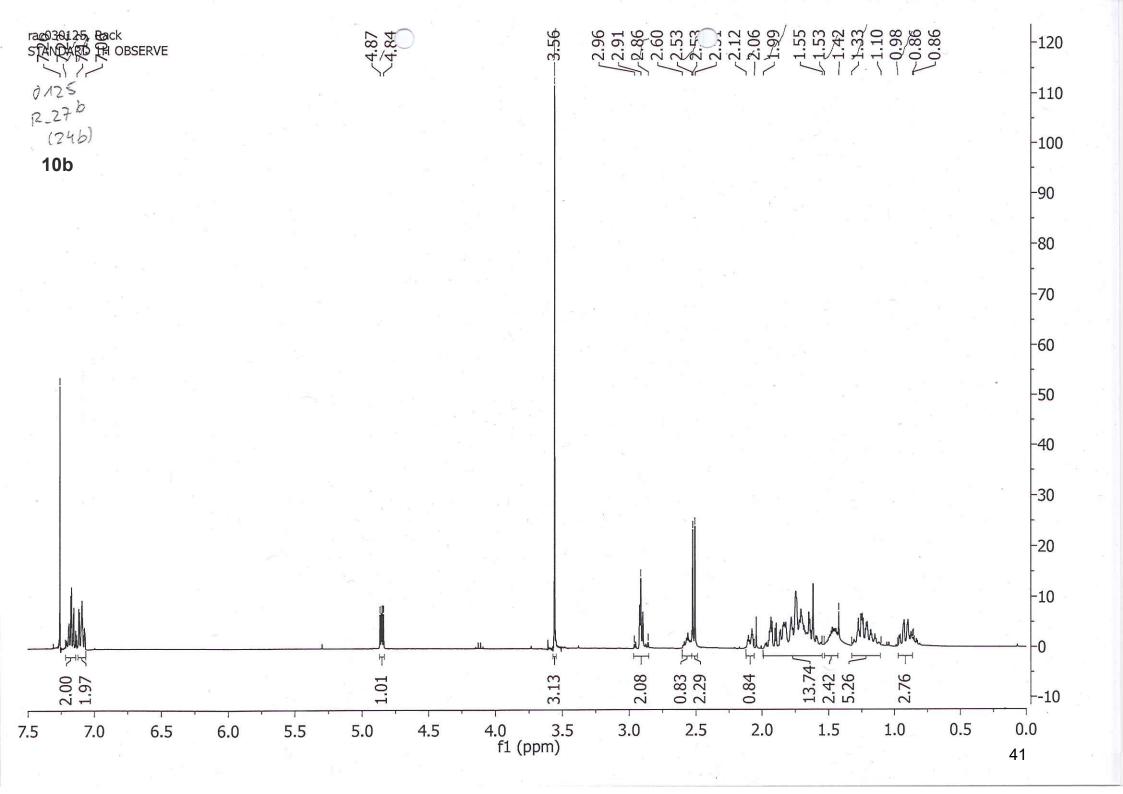

^{*}The ΔG_{exp} values were obtained from the corresponding K_i σ_1 values using the relationship $\Delta G_{exp} = -RT \ln(1/K_i\sigma_1)$. Errors on the calculated total binding free energy and its components within 5%.

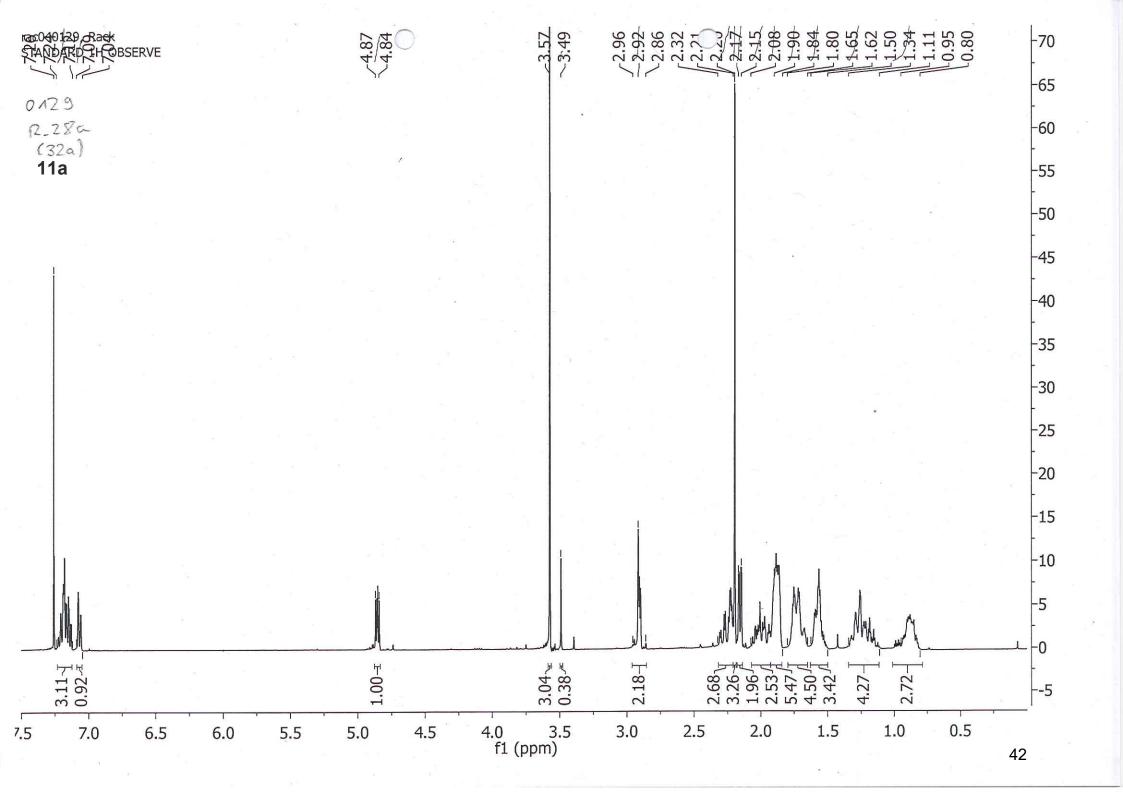

8. References

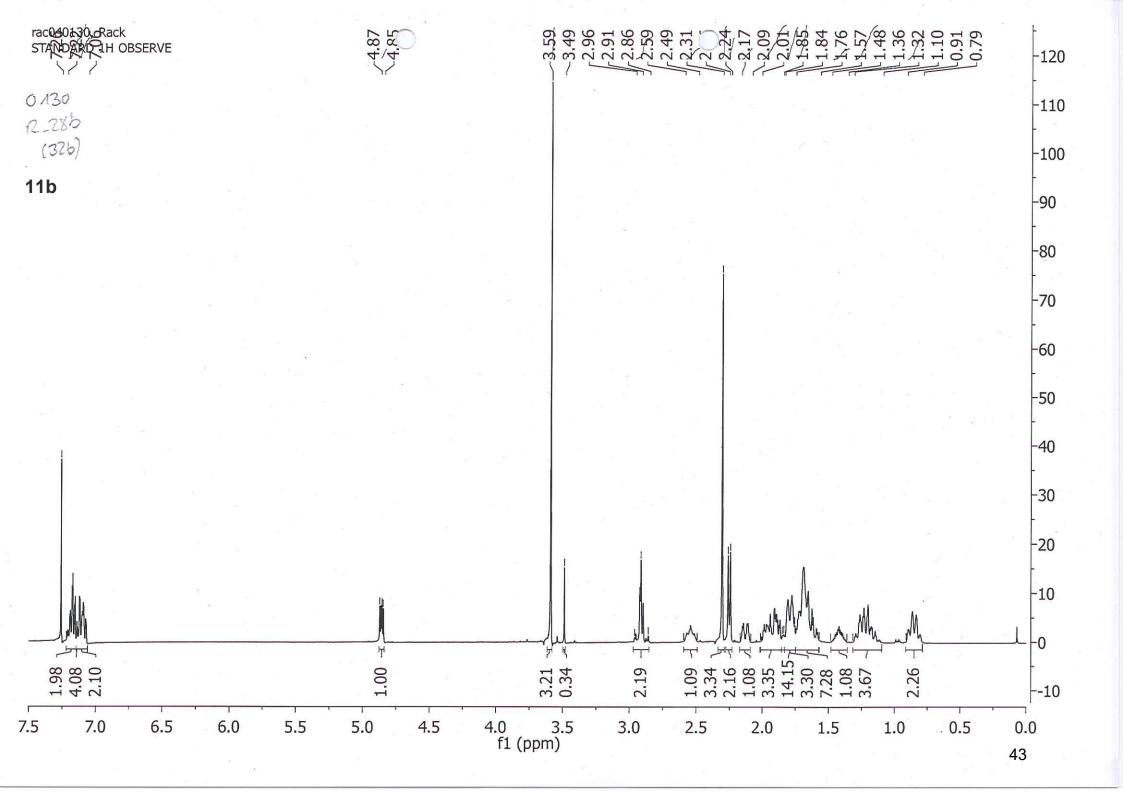

- 1. Rack, E.; Fröhlich, F.; Schepmann, D.; Wünsch, B. Design, synthesis and pharmacological evaluation of spirocyclic σ1 receptor ligands with excocyclic amino moiety (increased distance 1), *Bioorg. Med. Chem.* **2011**, *19*, 3141-3151.
- Maier, C. A.; Wünsch, B. Novel Spiropiperidines as Highly Potent and Subtype Selective σ Receptor Ligands. Part 1. *J. Med. Chem.* 2002, *45*, 438-448.
- 3 Bradford, M. M. A Rapid and sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding, *Anal. Biochem.* **1976**, *72*, 248-254.
- Stoscheck, C. Quantification of Protein, *Methods in Enzymology* **1990**, *182*, 50-68.
- 5 Cheng, Y.-C.; Prusoff, W. H. Relationship between the inhibition constant (KI) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction, *Biochem. Pharmacol.* **1973**, *22*, 3099-3108.
- 6 DeHaven-Hudkins, D. L.; Fleissner, L. C.; Ford-Rice, F. Y. Characterization of the binding of [³H](+)-pentazocine to σ recognition sites in guinea pig brain, *Eur. J. Pharmacol., Mol. Pharmacol. Sect.* **1992**, 227, 371-378.
- 7 Mach, R. H.; Smith, C. R.; Childers, S. R. Ibogaine possesses a selective affinity for σ2 receptors, *Life Sci.* **1995**, *57*, PL57-PL62.
- 8 Utech, T. PhD thesis, University of Freiburg (**2003**).
- Stresser, D.M. High-Throughput Screening of Human Cytochrome P450 Inhibitors Using Fluorometric Substrates. Methodology for 25 Enzyme/Substrate Pairs. In Optimization in Drug Discovery: In Vitro Methods; Yan, Z., Caldwell, G. W., Eds.; Humana Press: Totowa, NJ, **2004**; pp 215-230.
- 10. Putman, K. P. Evaluation of eight in vitro assays for assessing the cytotoxicity of cigarette smoke condensate. *Toxicol. vitro* **2000**, *16*, 599-607.
- Di, L.; et al. Optimization of a higher throughput microsomal stability screening assay for profiling drug discovery candidates. *J. Biomol. Screen.* 2003, *8*, 453-462.

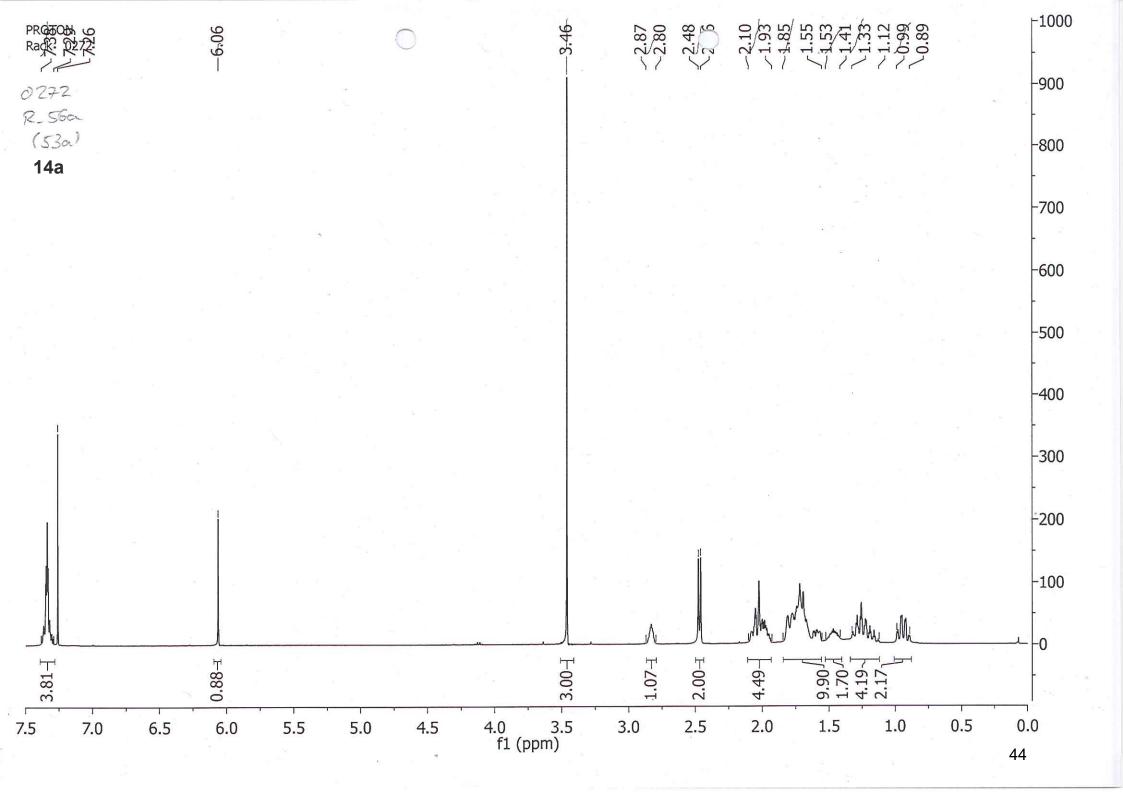


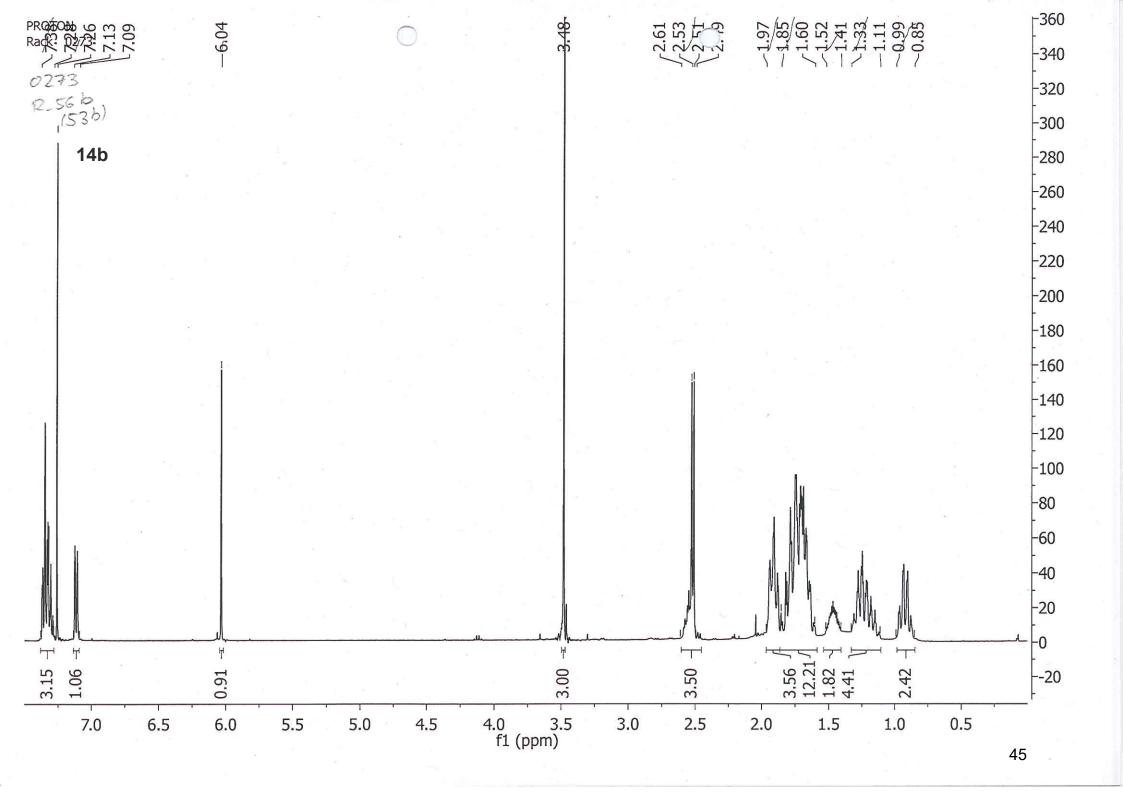


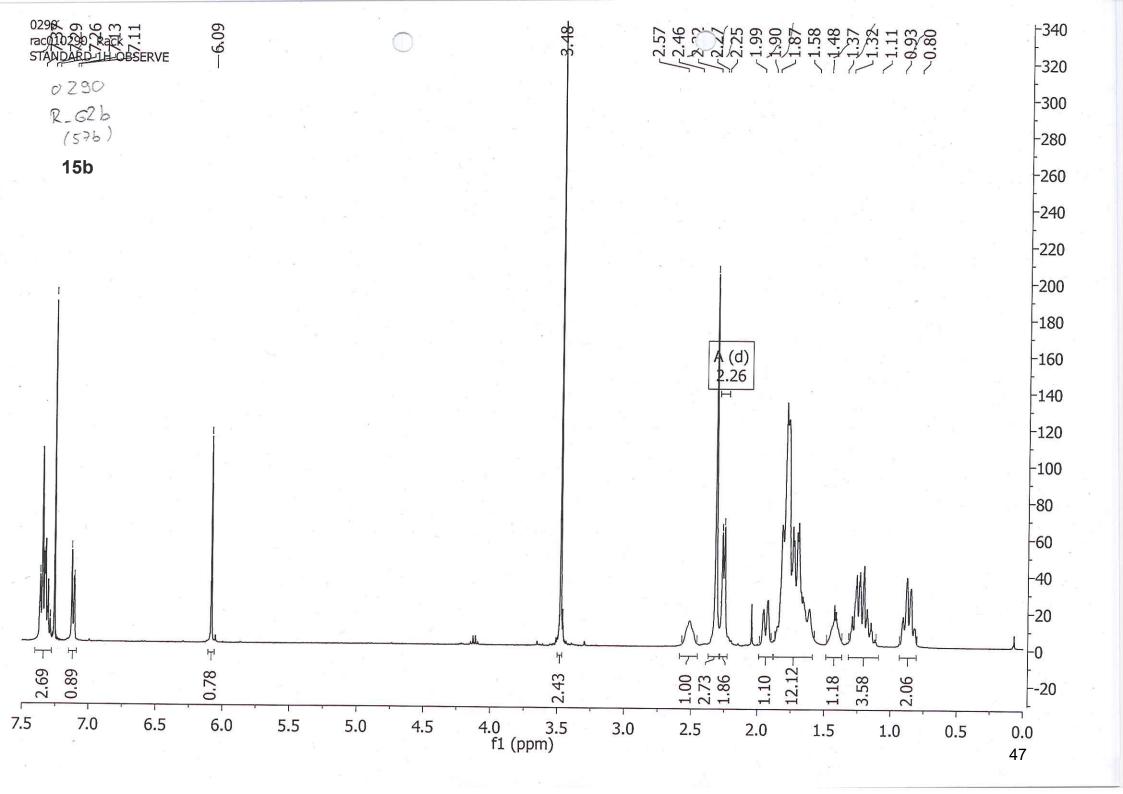


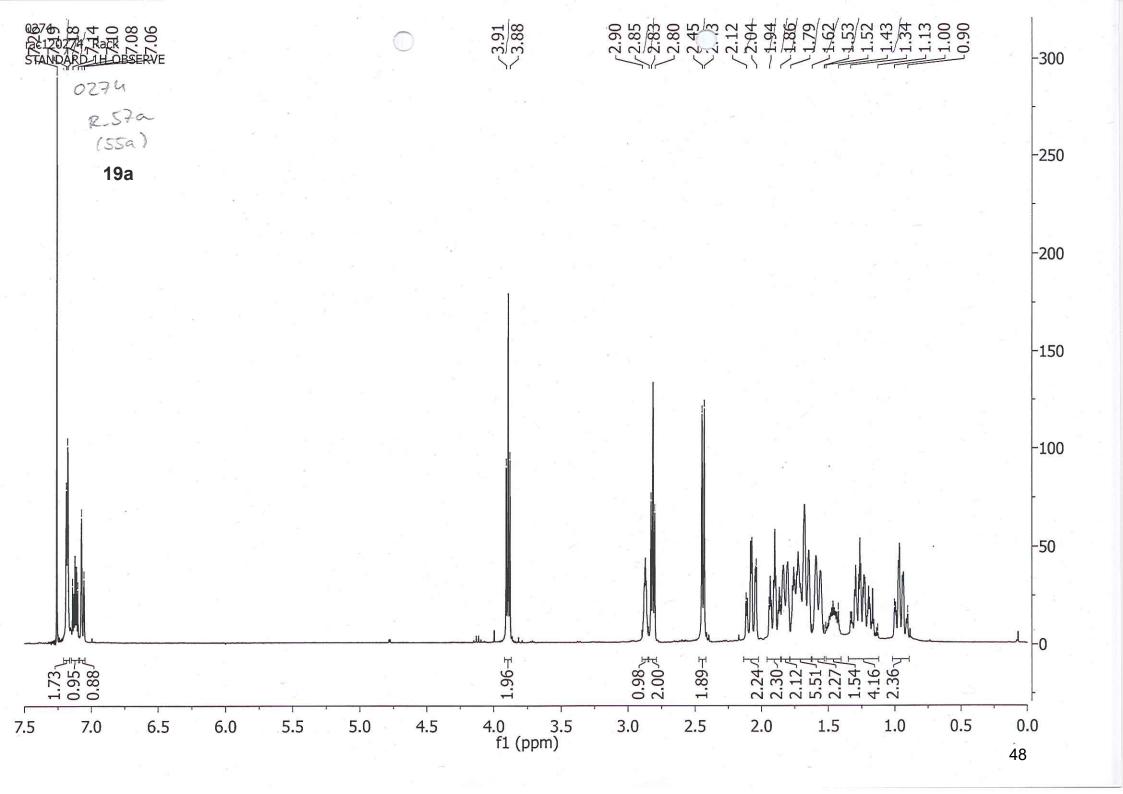


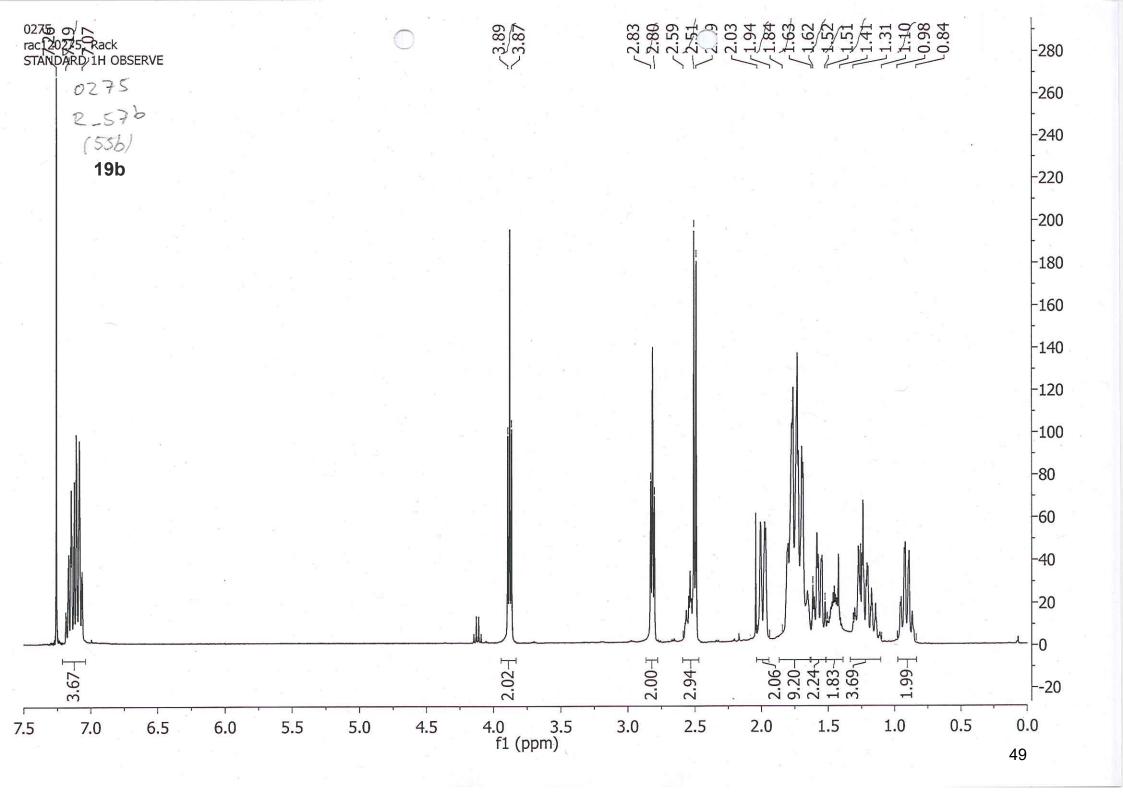


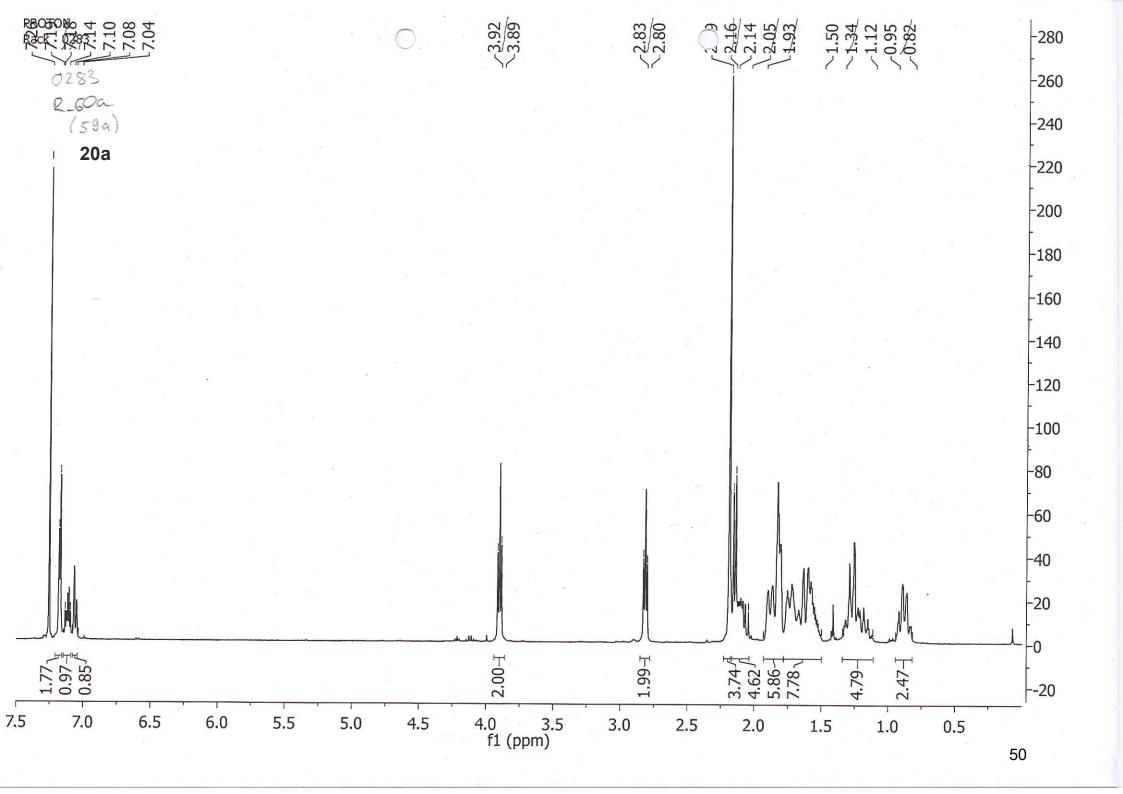

100000124 Back STANDARD THOBSERVE 2.95 -2.86 -2.45 -2.45 -2.45 -2.22 4.87 3.57 1.57 1.57 1.40 1.35 1.13 1.13 1.13 1.03 -2.12 1.90 -1.87 0124 R-27a (24a) -80 10a -70 -60 -50 -40 -30 -20 -10 -0 אירי Ч Ħ Н Ы 2.08 1.07 8.49 10.27 3.13 0.92 00. 8.29 3.05 1.39 4.95 2.21 7.0 6.5 7.5 4.0 3.5 f1 (ppm) 6.0 5.5 5.0 4.5 3.0 2.5 2.0 0.0 40 1.5 1.0 0.5

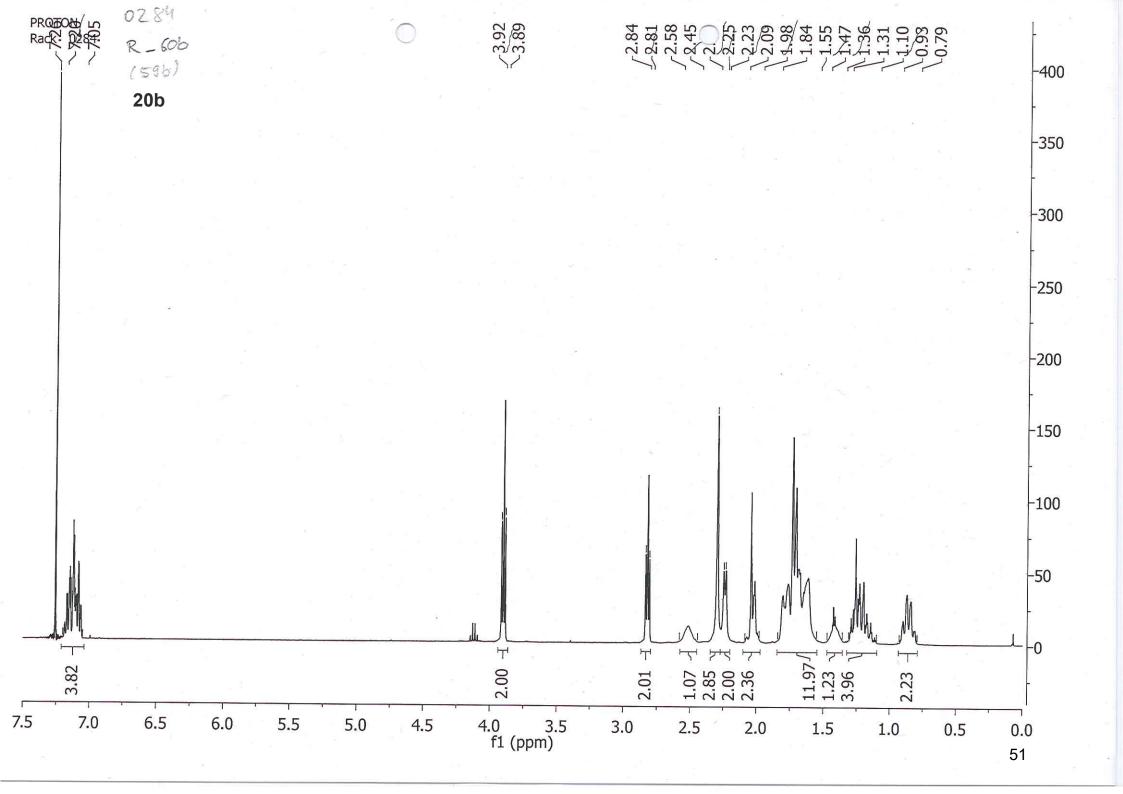

-90

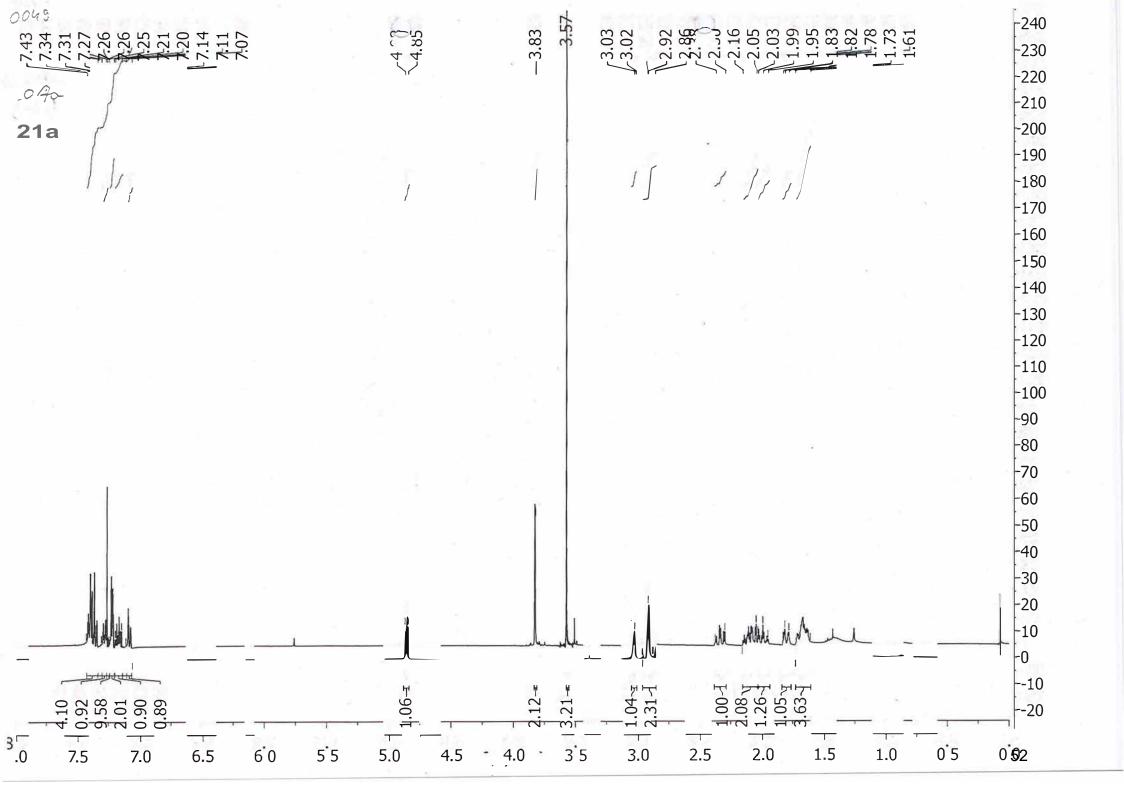


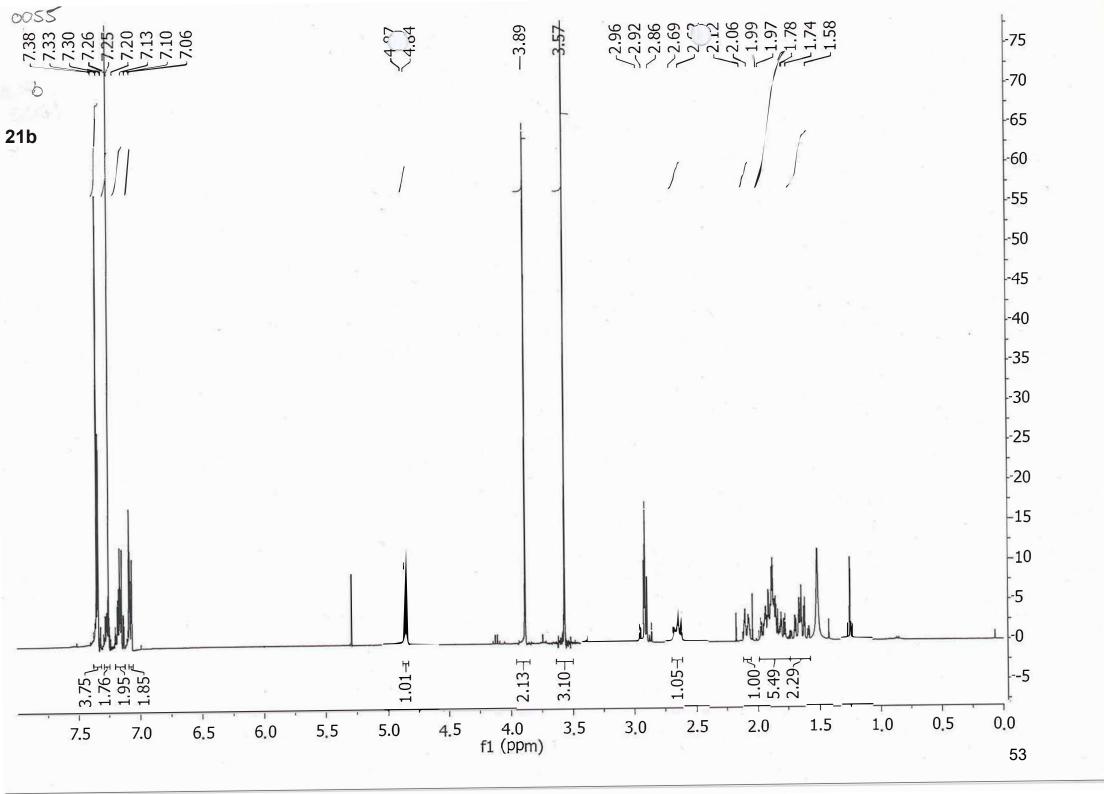


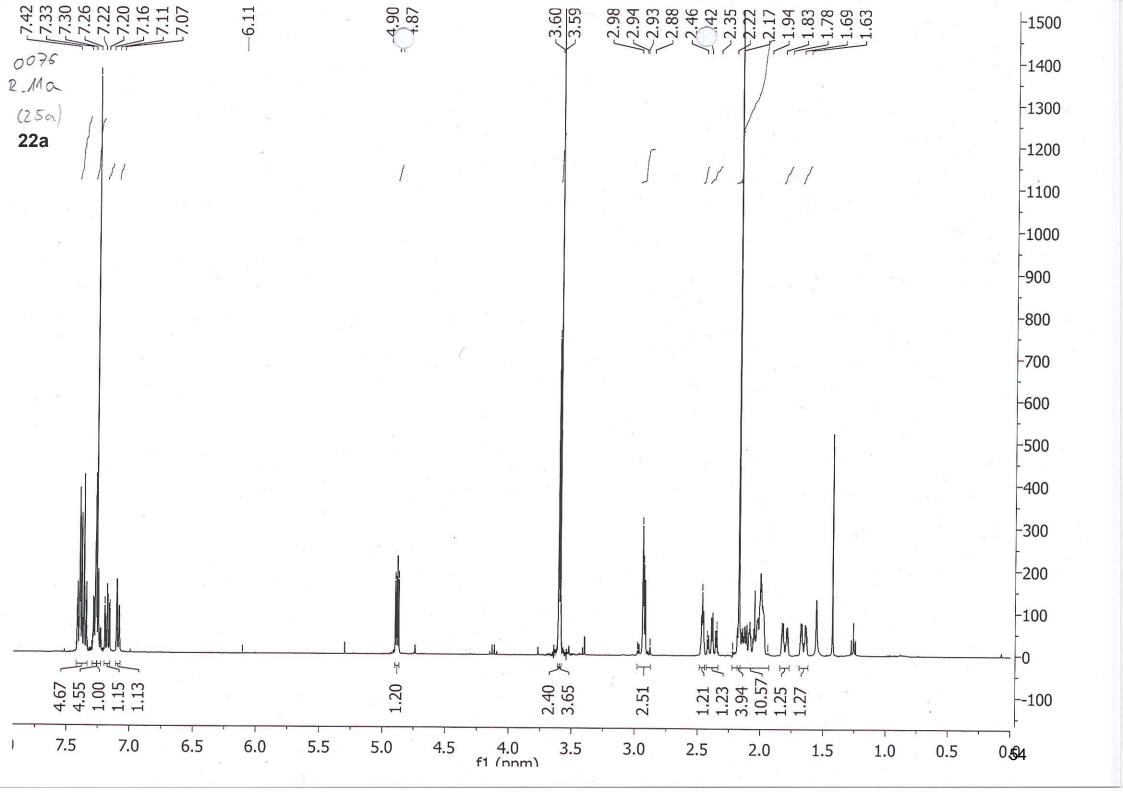


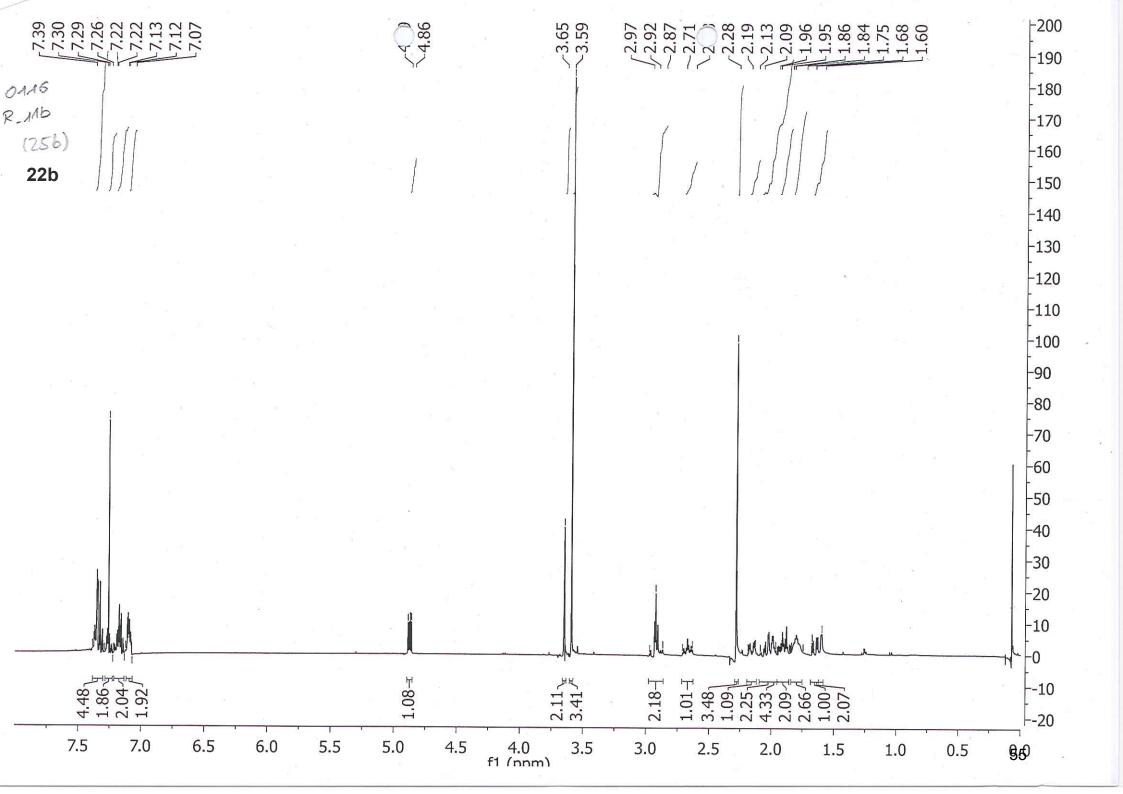


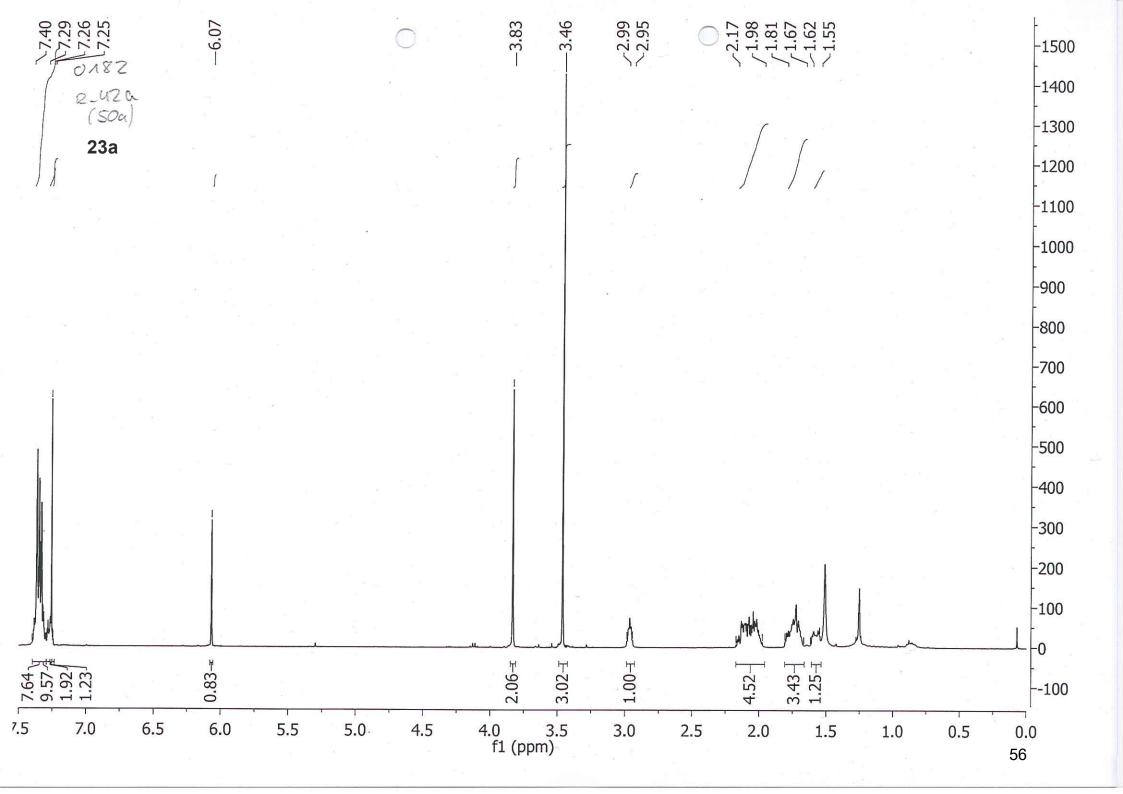


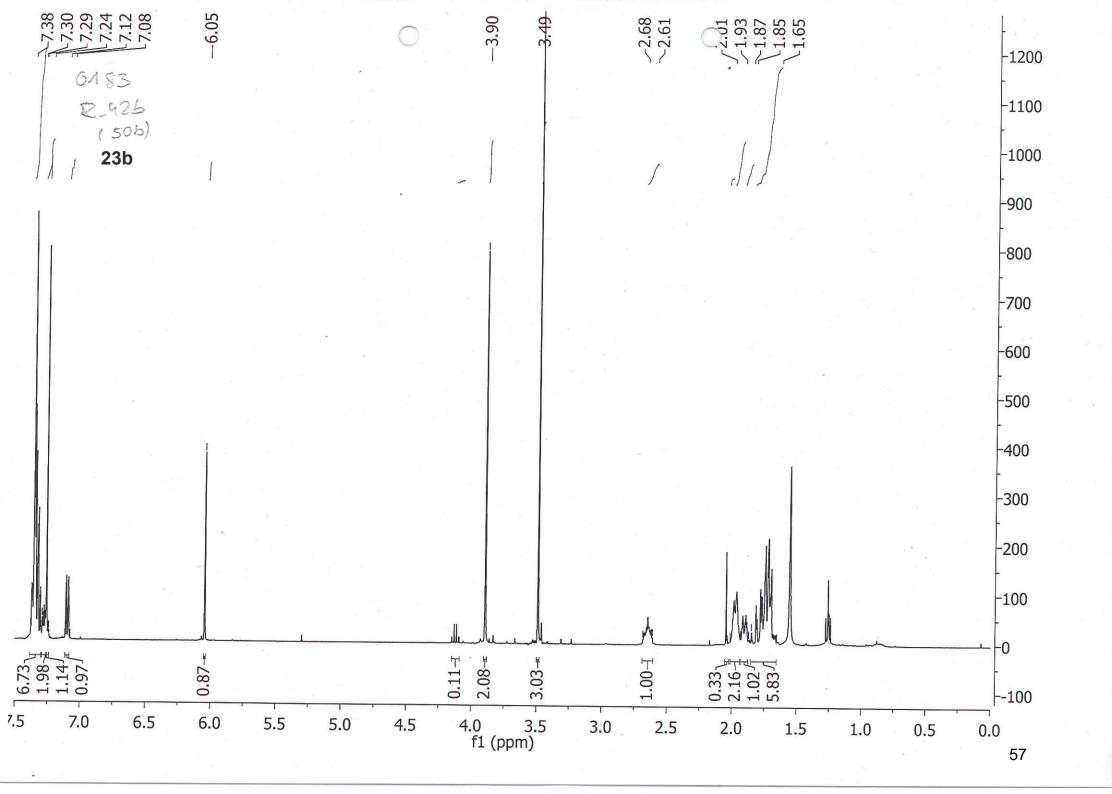


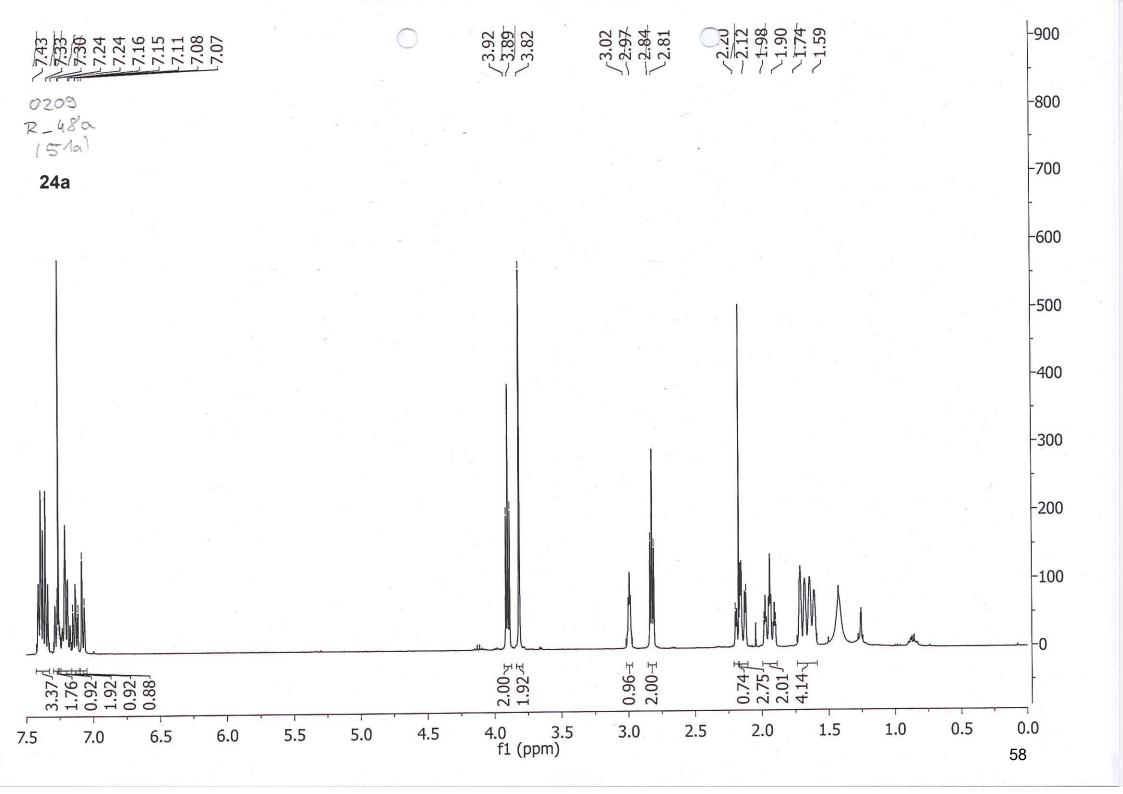


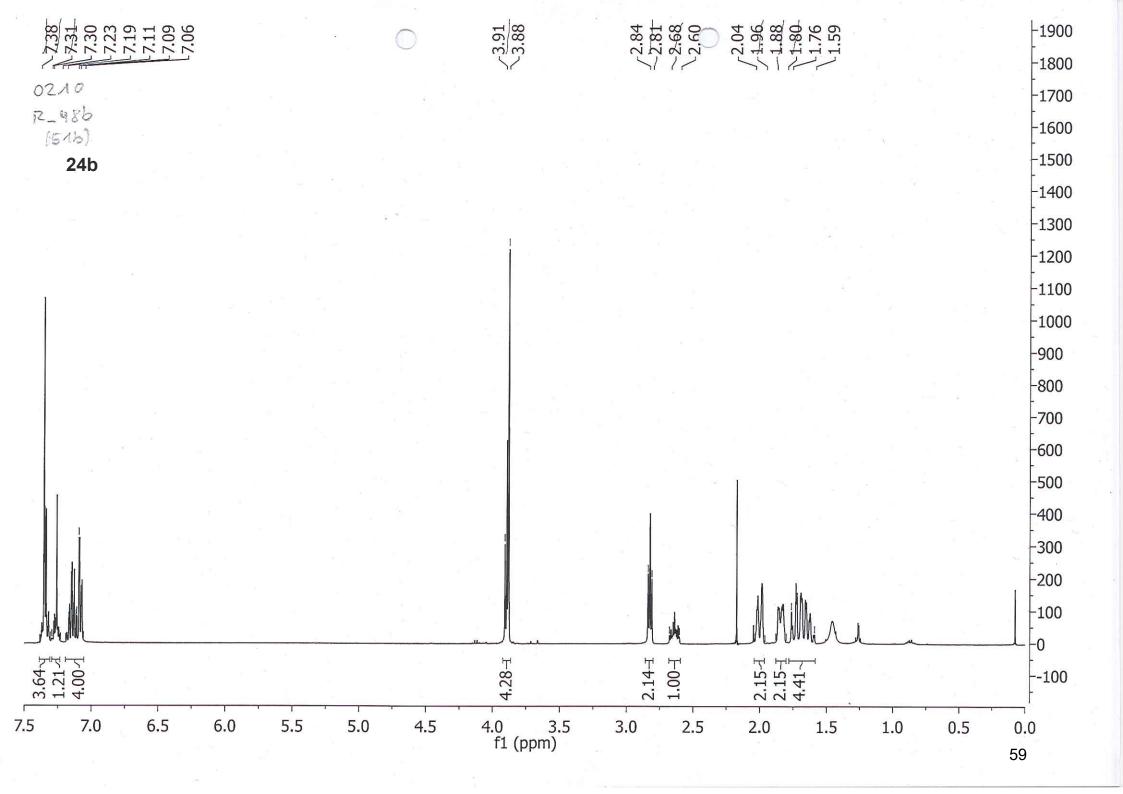


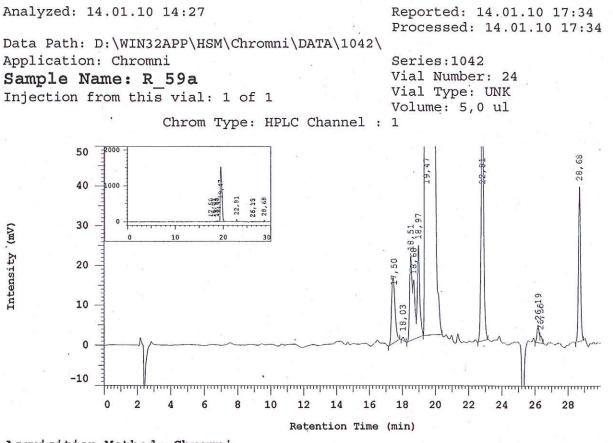












10. HPLC chromatograms

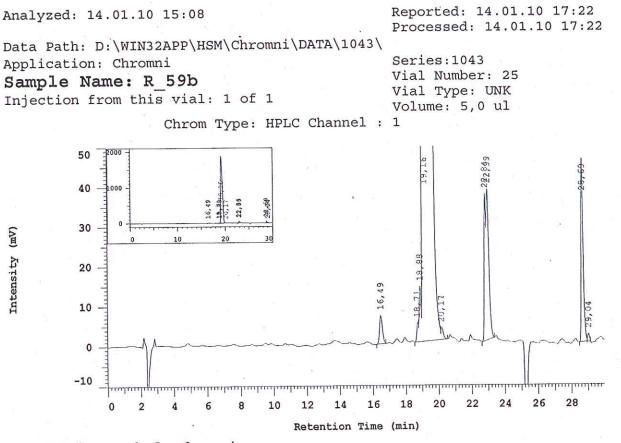
HPLC

Acquisition Method: Chromni Blank Subtr Sample Name: ACN Column Type: 010 Solvent A: Wasser + 0,05%TFA

Developed by: Jens

Solvent B: ACN + 0,05%TFA

No.	RT	Area	Conc 1	BC
1	17,50	233238	0,662	MC
2	18,03	7159	0,020	MC
3	18,51	210003	0,596	MC
4	18,68	138741	0,394	MC
5	18,97	228569	0,649	MC
6	19,47	33335763	94,675	MC
7	22,81	674122	1,915	MC
8	26,19	38208	0,109	MC
9	26,35	13412	0,038	MC
10	10 28,68	331331	0,941	MC
		35210546	100,000	÷


Peak rejection level: 0

4a

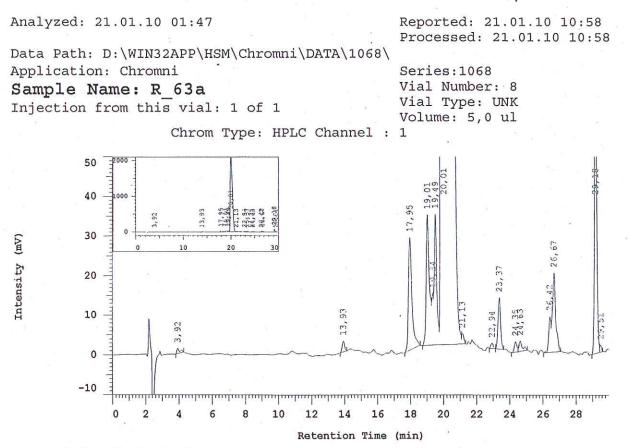
(54a)

(596)

HPLC

Acquisition Method: Chromni Blank Subtr Sample Name: ACN Column Type: 010

Solvent A: Wasser + 0,05%TFA


Developed by: Jens

 SOLA	ent B:	ACN +	0,05	SILU

BC	Conc 1	Area	RT	No.
MC	0,184	84462	16,49	1
MC	0,064	29379	18,71	2
VV	0,231	106082	18,88	3
VV	97,104	44541600	19,16	4
MC	0,065	29949	20,17	5
MC	0,556	254986	22,84	6
MC	0,899	412261	22,99	7
MC	0,864	396118	28,69	8
MC	0,033	15010	29,04	-
	100,000	45869847		

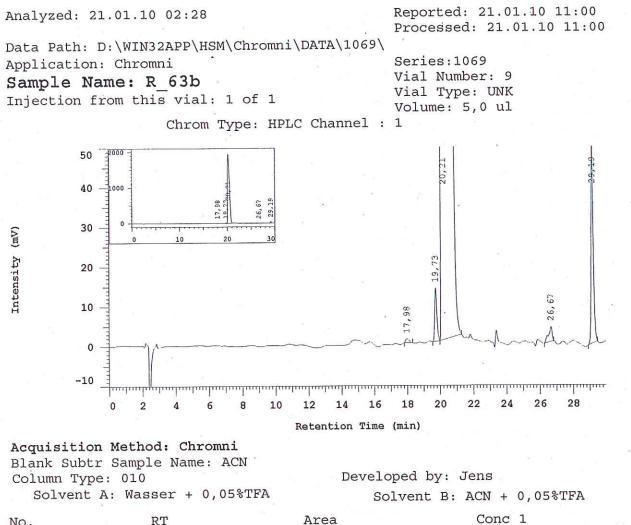
Peak rejection level: 0

4b

Acquisition Method: Chromni Blank Subtr Sample Name: ACN Column Type: 010

158a)

5a

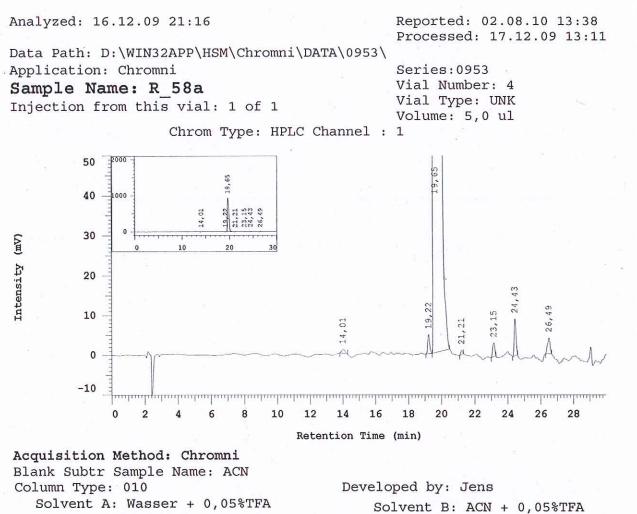

Solvent A: Wasser + 0,05%TFA

Developed by: Jens

Solvent B: ACN + 0,05%TFA

No.	RT	Area	Conc 1	3401 - ¹¹	BC
1	 3,92	16077	0,025		MC
2	13,93	26683	0,041		BB
3	17,95	414680	0,635		MC
4	19,01	422427	0,646		MC
5	19,34	87903	0,135		MC
6	19,49	354747	0,543		MC
7	20,01	62743718	96,007		MC
8	21,13	25071	0,038		MC
9	22,94	14416	0,022	÷	BB
10	23,37	135767	0,208		BB
11	24,35	27120	0,041		BB
12	24,63	35647	0,055		BB
13	26,42	77406	0,118		BV
14	26,67	273139	0,418		VB
15	29,18	686159	1,050		MC
16	29,51	12126	0,019		MC
		65353086	100,000		۵ پار

Peak rejection level: 0

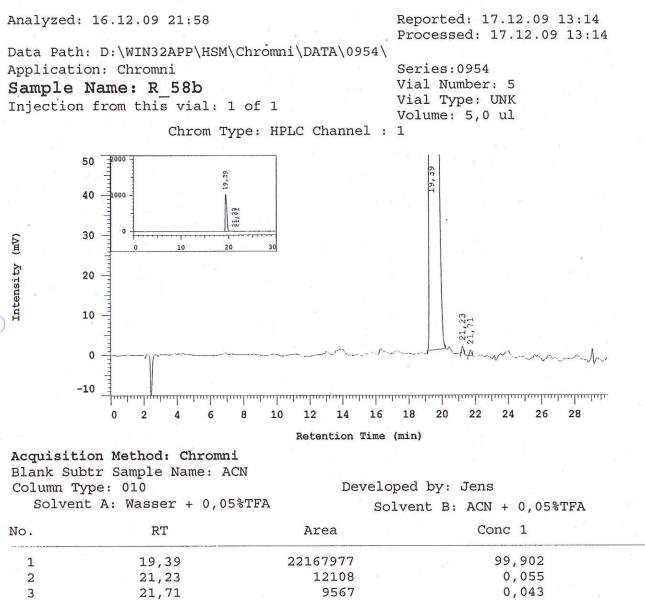


BC	Conc 1	Area	Jo. RT	
MC	0,031	15828	17,98	1
BB	0,236	118899	19,73	2
MC	98,733	49836108	20,21	3
MC	0,105	52980	26,67	4
MC	0,895	451769	29,19	5
	100,000	50475584	•	

Peak rejection level: 0

(58b)

5b


No.	RT	Area	Conc 1	BC
1	14,01	14875	0,077	MC
2	19,22	38980	0,201	MC
3	19,65	19222091	98,958	MC
4	21,21	6869	0,035	MC
5	23,15	30527	0,157	MC
6	24,43	67671	0,348	MC
7	26,49	43571	0,224	MC
		19424584	100,000	
	-	19424584	100,000	

Peak rejection level: 0

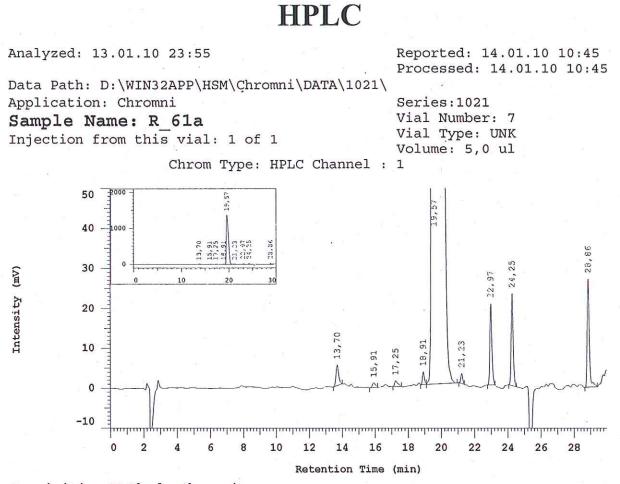
520)

7a

22189652

Peak rejection level: 0

BC

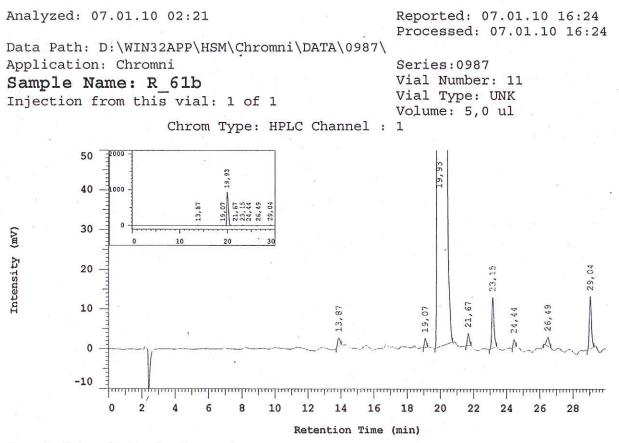

MC

MC

BB

100,000

7b


Developed by: Jens

	ACN + 0,05%TFA	Solvent B: A	TFA	: Wasser + 0,05%TFA	lvent A:	So
BC	Conc 1		Area	RT		No.
MC	0,143		58163	13,70	5-1503-1550 - 5-5	1
MC	0,038		15257	15,91		2
MC	0,046		18602	17,25		3
BB	0,062		25123	18,91		4
BB	98,178		39829011	19,57		5
BB	0,049		19840	21,23		6
BB	0,416		168762	22,97		7
BB	0,466		189035	24,25		8
BB	0,603	•	244486	28,86		9
e E	100,000	2 2	40568279			

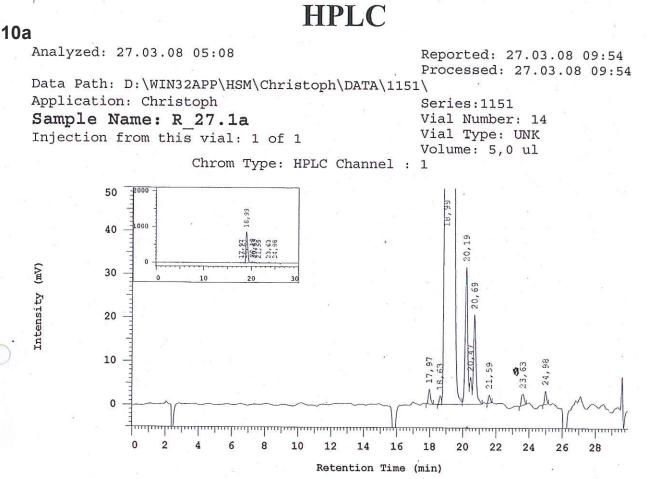
Peak rejection level: 0

8a

156a

Acquisition Method: Chromni Blank Subtr Sample Name: ACN Column Type: 010

Developed by: Jens

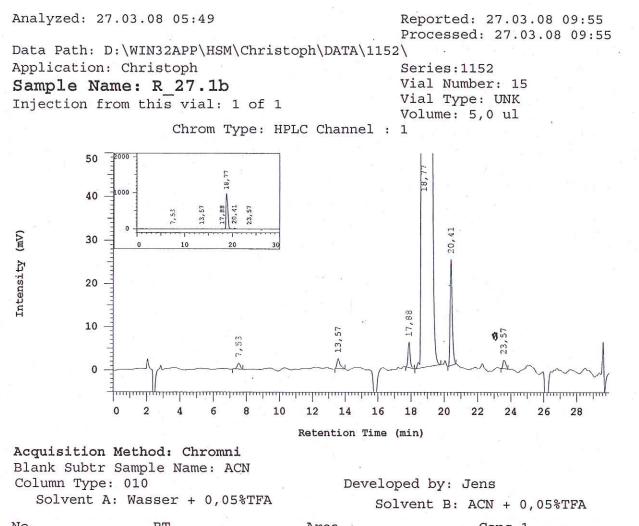

Solvent A: Wasser + 0,05%TFA Solvent B: ACN + 0,05%TFA

10.	RT	Area	Conc 1	BC
1	13,87	19714	0,095	MC
2	19,07	17731	0,085	MC
3	19,93	20467212	98,469	MC
4	21,67	24684	0,119	MC
5	23,15	109487	0,527	BE
6	24,44	13766	0,066	MC
7	26,49	22556	0,109	MC
8	29,04	110234	0,530	MC
	,	20785384	100,000	

Peak rejection level: 0

8b

(566.

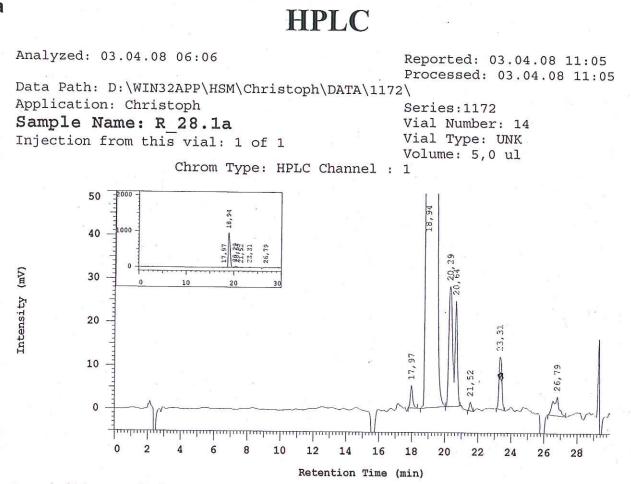

24a

Solvent A: Wasser + 0,05%TFA

Developed by: Jens

Solvent B: ACN + 0,05%TFA

BC	Conc 1		Area	RT	No.
MC	0,142		29484	 17,97	1
BB	0,072		15000	18,63	2
BB	96,665		20055654	18,99	3
MC	1,550		321527	20,19	4
MC	0,250		51834	20,47	5
MC	1,003		208166	20,69	6
BB	0,068		14119	21,59	7
BB	0,140		28980	23,63	8
BB	0,110) 33	22907	24,98	9
· · · · · · · · · · · · · · · · · · ·	100,000		20747671		5 N

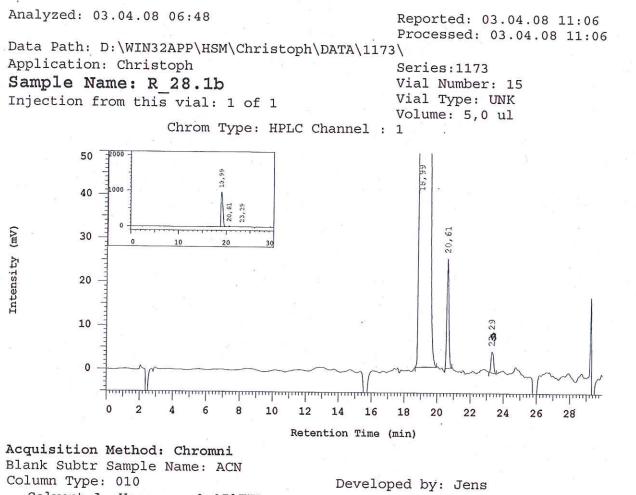


NO.	RT	Area	Conc 1	BC
1	7,53	17399	0,072	MC
2	13,57	31034	0,129	MC
3	17,88	49586	0,206	BB
4	18,77	23754438	98,608	MC
5	20,41	214237	0,889	BB
6	23,57	23031	0,096	MC
	1	24089725	100,000	a. e
				2

Peak rejection level: 0

124b

10b



Developed by: Jens

Solvent A:	Wasser	+	0,05%TFA

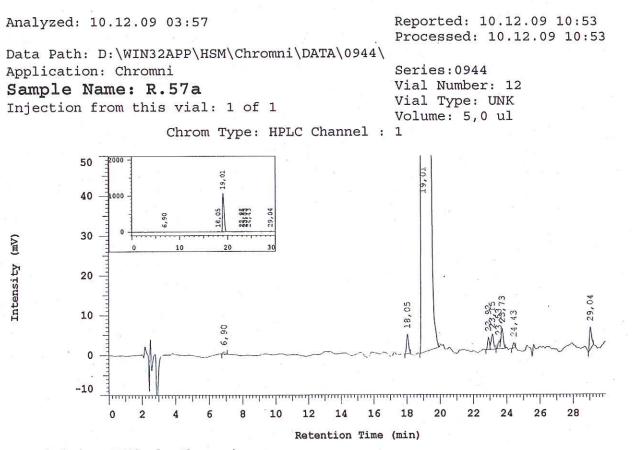
Solvent B: ACN + 0,05%TFA

RT	RT Area Conc 1		BC
17,97	48375	0,189	MC
18,94	24695846	the second se	MC
20,29	406221		MC
20,64	230095	and the second se	MC
21,52	17788		MC
23,31	144273	and and an and a second second	BB
26,79	111300	0,434	MC
	25653898	100,000	
	17,97 18,94 20,29 20,64 21,52 23,31	17,974837518,942469584620,2940622120,6423009521,521778823,3114427326,79111300	17,97483750,18918,942469584696,26520,294062211,58320,642300950,89721,52177880,06923,311442730,56226,791113000,434

Solvent A: Wasser + 0,05%TFA Solvent B: ACN + 0,05%TFA

No.	RT	Area	Conc 1	BC
1	18,99	24533420	98,967	BB
2	20,61	205765	0,830	MC
3	23,29	50368	0,203	BB
		24789553	100,000	

Peak rejection level: 0

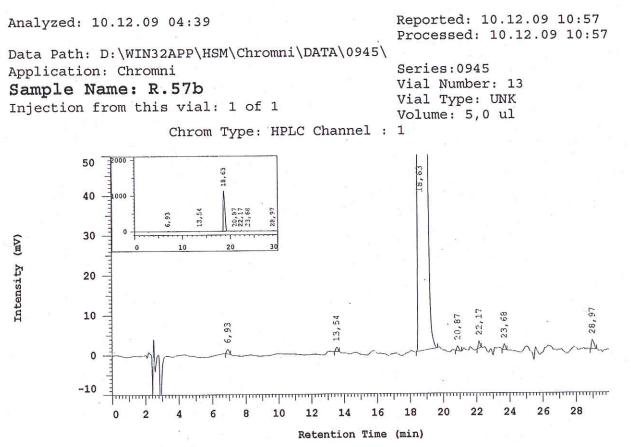

(326)

11b

(SSG)

19a

HPLC



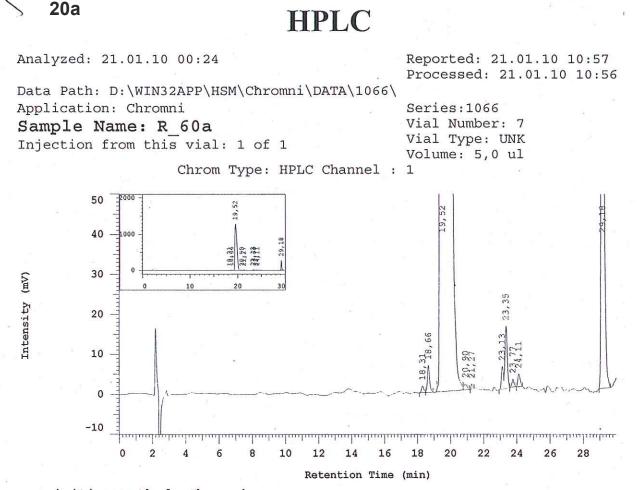
Acquisition Method: Chromni Blank Subtr Sample Name: ACN Column Type: 010 Solvent A: Wasser + 0,05%TFA

Developed by: Jens

Solvent B: ACN + 0,05%TFA

No.	RT	Area	Conc 1	BC
1	6,90	5954	0,025	MC
2	18,05	38906	0,165	MC
3	19,01	23295238	99,068	MC
4	22,92	21678	0,092	MC
5	23,15	36456	0,155	MC
6	23,53	14478	0,062	MC
7	23,73	45688	0,194	MC
8	24,43	7713	0,033	BB
9	29,04	48254	0,205	MC
		23514365	100,000	v v

Acquisition Method: Chromni Blank Subtr Sample Name: ACN Column Type: 010 Solvent A: Wasser + 0,05%TFA


(555)

19b

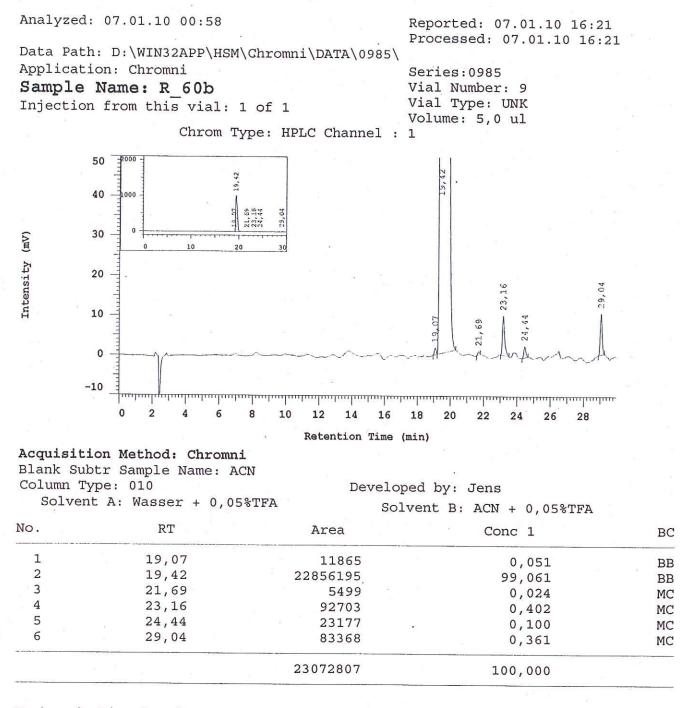
Developed by: Jens

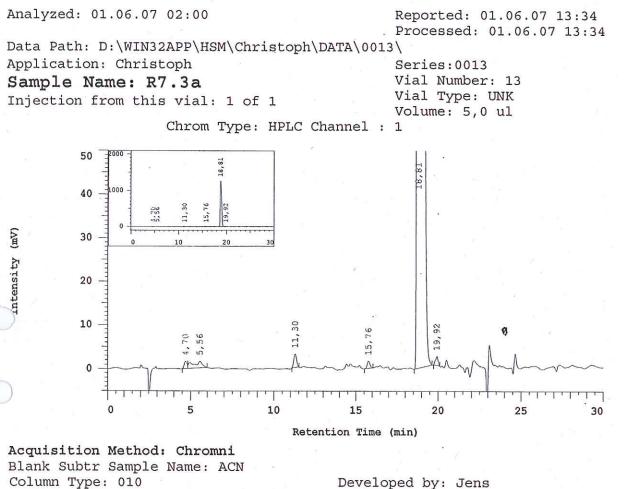
Solvent B: ACN + 0,05%TFA

BC	Conc 1	Area	RT	No.
МС	0,046	11410	6,93	1
BE	0,039	9867	13,54	2
MC	99,682	24936696	18,63	3
BE	0,041	10259	20,87	4
BE	0,047	11646	22,17	5
BE	0,046	11521	23,68	6
BI	0,099	24880	28,97	7
	100,000	25016279	1	

5901

Developed by: Jens


Solvent A: Wasser + 0,05%TFA Solvent B: ACN + 0,05%TFA

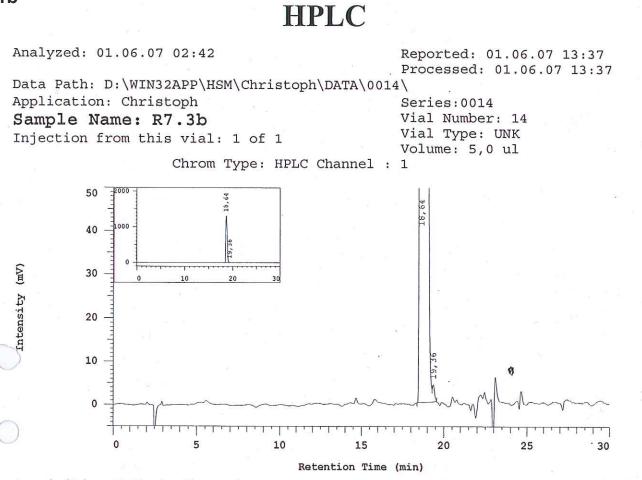

No.	RT	Area	. Conc 1	BC
1	18,31	16520	0,043	MC
2	18,66	60906	0,158	MC
3	19,52	35619420	92,536	MC
4	20,90	19569	0,051	MC
5	21,27	7747	0,020	MC
6	23,13	46700	0,121	MC
7	23,35	145812	0,379	MC
8	23,77	16058	0,042	MC
9	24,11	30382	0,079	MC
10	29,18	2529376	6,571	MC
		38492490	100,000	1

(596)

20b

HPLC

Solvent A: Wasser + 0,05%TFA


Solvent B: ACN + 0,05%TFA

			,	
No.	RT	Area	Conc 1	BC
1	4,70	18471	0,077	MC
2	5,56	58131	0,241	MC
3	11,30	35225	0,146	MC
4	15,76	18362	0,076	MC
) 5	18,81	23987840	99,368	MC
6	19,92	22322	0,092	MC
		24140351	100,000	
· · · · · · · · · · · · · · · · · · ·				

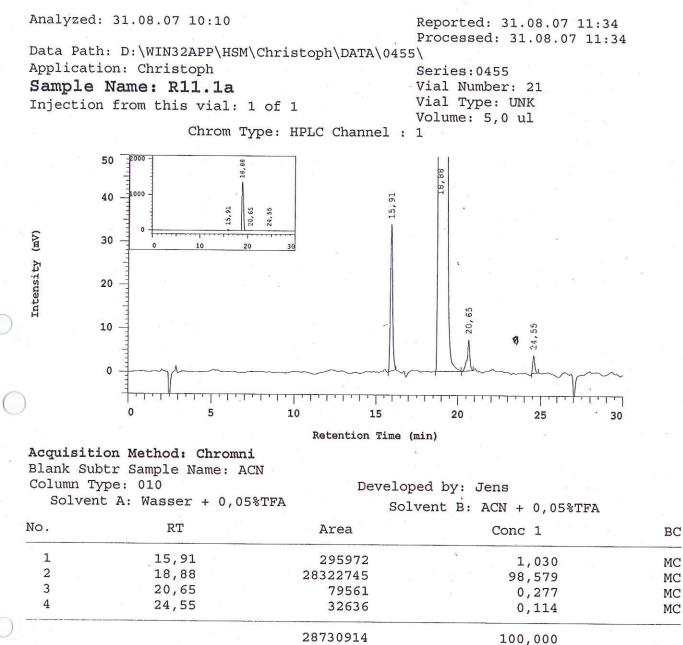
Peak rejection level: 0

21a

(MAa)

Solvent A: Wasser + 0,05%TFA

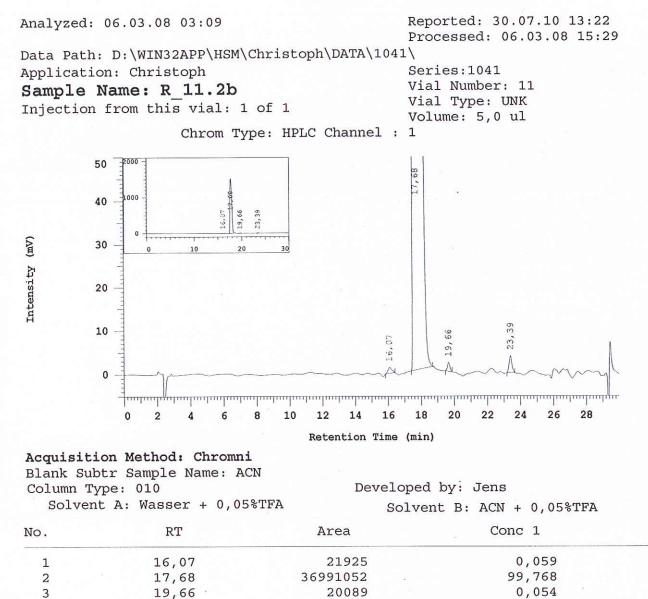
Developed by: Jens


Solvent B: ACN + 0,05%TFA

RT	Area	Conc 1	BC
18,64	25859494	99,854	MC
19,36	37937	0,146	MC
	25897431	100,000	
	18,64	RTArea18,642585949419,3637937	RTAreaConc 118,642585949499,85419,36379370,146

Peak rejection level: 0

21b


(115)

Peak rejection level: 0

(25a)

22a

37076928

43862

Peak rejection level: 0

4

23,39

BC

MC

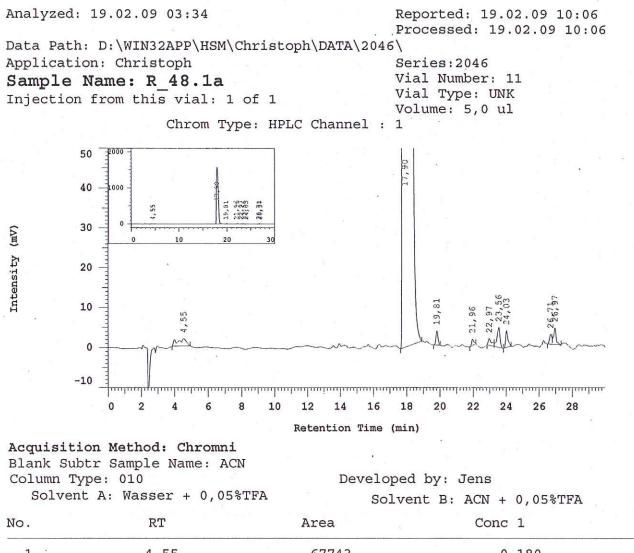
MC

MC

MC

0,118

100,000

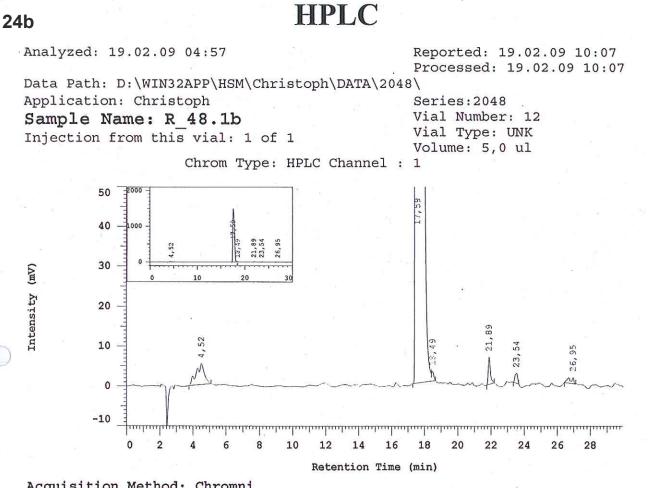

22b

(256)

24a

15da)

HPLC



		37549792	100,000	
9	26,97	42551	0,113	VB
8	26,71	23495	0,063	BV
7	24,03	40042	• 0,107	BB
6	23,56	62800	0,167	BB
5	22,97	24523	0,065	BB
4	21,96	13811	0,037	BB
3	19,81	29714	0,079	BB
2	17,90	37245113	99,189	BB
1 '	4,55	67743	0,180	BB

Peak rejection level: 0

80

BC

(516)

Developed by: Jens Solvent A: Wasser + 0,05%TFA

Solvent B: ACN + 0,05%TFA

RT	Area	Conc 1	BC
4,52	175238	0,536	MC
17,59	32393225	99,039	BV
18,49	21450		MC
	60516		MC
	27298		MC
26,95	29949	0,092	BB
	32707676	100,000	
	4,52 17,59 18,49 21,89 23,54	4,5217523817,593239322518,492145021,896051623,542729826,9529949	4,521752380,53617,593239322599,03918,49214500,06621,89605160,18523,54272980,08326,95299490,092