
SocialGQ: Towards Semantically Approximated and
User-aware Querying of Social-Graph Data

Riccardo Martoglia

FIM Department, University of Modena and Reggio Emilia, I-41125 Modena, Italy,
E-mail: riccardo.martoglia@unimore.it

Abstract – The proliferation of social and collaborative sites
makes users increasingly active in the generation of social-
graph data; however, such sea of data often hinders them
from finding the information they need. In this paper, we
present SocialGQ (“Social-Graph Querying”), a novel ap-
proach for the effective and efficient querying of social-
graph data overcoming the limitations of typical search ap-
proaches proposed in the literature. SocialGQ allows users
to compose complex queries in a simple way, and is able to
retrieve useful knowledge (top-k answers) by jointly exploit-
ing: (a) the structure of the graph, semantically approx-
imating the user’s requests with meaningful answers; (b)
the unstructured textual resources of the graph; (c) its so-
cial and user-aware dimension. An experimental evaluation
comparing SocialGQ to leading approaches shows strong
gains on a real social-graph data scenario.

Keywords – social-graph, knowledge management, approx-
imate querying, user-aware techniques, semantic retrieval.

1. Introduction

In recent years, the web has evolved from a static web, where
users consume information, to a “social web” where they are
also able to produce them. The proliferation of social networks
(e.g., Facebook, LinkedIn, ...), social bookmarking and collab-
orative tagging sites (e.g., BibSonomy, CiteULike and Deli-
cious), social question-answering sites (e.g., Stack Overflow),
microblogging sites (e.g., Twitter) and social components on
“traditional” websites makes users increasingly active in the
generation of content. This ever increasing amount of “social-
graph” data is quite peculiar in its composition. First of all, it is
typically characterized by a dual nature, both graph-structured
(users/resources as nodes and relations, such as friendships, as
arcs), and unstructured (the large amount of textual resources,
e.g., documents and comments). Moreover, the social/user-
aware component is obviously quite prominent, where the
available nodes and resources are possibly created/modified by
different users. Consider, for instance, the small excerpt from
the BibSonomy graph data [9] depicted in Fig. 1, showing two
content resources (nodes) with their associated annotations. In

(DOI reference number: 10.18293/SEKE2018-052)

particular, the BibTeX instance “C19837” (node n131) has been
annotated with the “semantics” tag by user “U150” (n4), while
Bookmark instance “C45829” (n14) has been tagged as “se-
mantic web” by user “U881” (n12). The social nature of the
data is highlighted in figure by small symbols (circle, triangle)
depicting the nodes modified by the two users. Note that entity
nodes (including instances) are depicted with rounded corners,
differently from simple value nodes, representing textual con-
tent (e.g., abstracts, descriptions) and other attributes (e.g., pub-
lication years). Finally, consider the strong semantic character-
ization of such data, given by type hierarchies (both BibTeXs
and Bookmarks are defined as Contents) and also user-specified
tag hierarchies (for instance, user “U881” defined the “semantic
web” tag as a specialization of the “semantics” tag).

In this context, a crucial problem is to extract useful knowl-
edge from this wealth of information. Users should be able to
compose complex queries (beyond the classic keyword model)
in a simple way, allowing them to quickly find all the relevant
information with respect to the their needs. Consider for in-
stance the following three examples of information need:

Q1. Find (not already known by me) content having a summary
about “semantic” and “text”;
Q2. Find BibTeX entries semantically related to BibTeX titled
“Versatile...”;
Q3. Find documents that have been tagged as “semantics” (also
considering sub-tags defined by me).

Such requests go well beyond what typical websites and stan-
dard search tools allow: they are very difficult or even impos-
sible to express with simple keywords; they require semantic
approximation in order to be effectively solved on the graph
data, both in terms of labels (e.g., terms like “summary” and
“document” are not defined in the data) and structure (e.g., Q1
asking for “content” should retrieve all its subclasses, i.e., both
BibTeX and Bookmark entries; Q2 asks for BibTeXs generi-
cally related to the named one; Q3 also asks for content tagged
with sub-topics); they also require unstructured content full-text
search capabilities going beyond exact search (e.g., Q1), as well

1For clarity’s sake, nodes are univocally identified by the node ids i shown
on the left upper corner and will be referenced as ni; moreover, some type
relationships (e.g., users, blank nodes) are omitted from the figure.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Modena e Reggio Emilia

https://core.ac.uk/display/196287288?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Tag

BibTeX

T2345
type

subClassOf
U150

150

C19837

type

userID content

A1453annotates

“Versatile Structural
Disambiguation for Semantic-

aware Applications”

19837

2005

contentID

year
title

“semantics”

labeltag

Content

C45829

“Document describing
the web 2.0 (semantic
web) text content…”

http://
www.web20.net

description url

U881

881

userID

annotates

Bookmark

subClassOf

type

A3438

supertag

subtag

T3567

“semantic
web”

label annotates

A3421content

tag

“Semantic text
disambiguation…”

abstract

*
*

̗

̗

̗

̗

○

○

○

○

○

○

2

1

3

4
5 6 7

8

9 10 11
12

13

21

14 15

16

17

18

19 20 22 23

 , user(s)○ ̗

 entity node
entity node (instance)

 full-text value
value node

*

type

Figure 1. An excerpt from the BibSonomy graph data

as user-awareness (e.g., Q1, Q3); finally, they require an effec-
tive ranking in order to provide first the most relevant results.

Generally speaking, currently available search tools do not
support all the above-mentioned requirements, typically mak-
ing such complex requests impossible to be solved automati-
cally, i.e., without requiring a lot of manual effort from the user.
Typical social sites search capabilities are keyword-only, lim-
ited to exact search in specific fields, syntactic-only (absence
of semantics) and typically disregard the social nature of the
data (i.e., who created what). Similarly, looking at the current
research state of the art, there are several (approximate) graph
querying [4, 8, 14], user-aware textual search [12, 15] and so-
cial search [6, 7] proposals; however, no one combines all the
required features in a single solution applicable to the context
of the social-graphs.

In this paper, building on the acquired know-how on graph
data management [11], we focus on defining the foundations of
SocialGQ (“Social-Graph Querying”), a novel approach for the
effective and efficient querying of social-graph data. SocialGQ
is aimed to overcome the limitations of current approaches, by
jointly exploiting: (a) the structure of the graph, by means of
approximation techniques capable of semantically approximat-
ing the user’s request with meaningful answers; (b) the unstruc-
tured textual resources present in the contents of the graph; (c)
the social and user-aware dimension. The capacity for semantic
approximation also responds to the need for simplicity in the
composition of the query itself, intelligently adapting the re-
quest to the graph. The final aim is to retrieve the most useful
(top-k) answers in an efficient and automated way.

Fig. 2 provides an overview of the SocialGQ architecture:
the Data Manager module (described in Sect. 3) organizes the
social-graph data into ad-hoc data structures efficiently support-
ing the semantic approximation, full-text and user-aware re-
quirements. The Query Processing and Ranking modules (Sect.
4) actually provide the top-k answers to the user query in in-
put, avoiding to build useless solutions. The modules are based

on specific data, query and ranking models (briefly sketched in
Sect. 2). An experimental evaluation comparing SocialGQ to
existing approaches shows strong gains on a real social-graph
data scenario (Sect. 5). Finally, Sect. 6 concludes the paper
also by briefly analyzing related works.

2. Social-graph data, queries and answers
The aim of the SocialGQ data model is to have a flexible

social-graph model (a) capturing key social-graphs’ features
and (b) not bound to specific graph standards (e.g., RDF), even
if easily supporting them. Data is generically represented as
a connected multigraph (i.e., a graph with parallel edges) with
node and edge labels. A social-graph essentially represents a
portion of the real world through entities (concepts and their
instances), values, and relationships between them. Consid-
ering our reference example (Fig. 1), scientific publications
and annotations are described by concepts such as BiBTeX,
Bookmark, Tag; n1, n11, n13 and n14 are some instances. In-
stances are characterized by a type and a userlist; the latter is
represented in figure with small symbols in the upper right part
and denotes users that created/modified them.

As to queries, in order to support complex requests such as
those discussed in Sect. 1, we go beyond the keyword-based
approach. A SocialGQ query is expressed as a labeled multi-
graph connecting entity nodes and conditions on values. Fig.
3 shows Q1, Q2 and Q3 expressed in our model. Note that
users can annotate any node or edge with the wildcard “any la-
bel”, ‘#’. For instance, n2, n3 and edge n2-n3 in Q2 denote the
user’s absence of knowledge about the specific nodes and edges
connecting them. Conditions c can be defined on query nodes,
specific cases characterizing a social-graph query are:

• the full-text condition (e.g., see n3 in Q1), supporting full
text search in value nodes and returning a normalized TF-
IDF score [13] cs. This allows SocialGQ to exploit the
unstructured part of the social-graph;

Structural labels

B+ metric

Semantic path
lists

triple
idx

Social-graph Base

IR B+ B+ B+

(values) (node ids) (users)

MODULES

DATA STRUCTURES

Query Processing
Module

Ranking
Module

Input
Query

Ranked
Top-k

Answers
Data Manager

Module
Social-graph

Data

lidyear “year” E
lidtype “type” E
lidBibTeX “BibTeX” N
lidBookmark “Bookmark” N

...

(#i, lidtype, lidBibTeX) L1def
(#i, liddescription, #v) L2def
(#i, lidlabel, #v) L3def
(#i, lidrelated, #i) L4def

...

Figure 2. An overview of Social-GQ architecture

• the user-aware condition on query nodes (represented as
+/- in figure), allowing users to restrict data matches to
nodes not modified/known by them (-, as in Q1 for n2), or
the opposite (+, as in Q3 for n6, requesting tags related to
“semantics” and defined by who submitted the query).

SocialGQ answers are portions of the data graph that semanti-
cally approximate the query. Two kinds of approximations are
tackled: node/edge label and structural mismatch. To this re-
gard, note that none of the sample queries finds an exact match
on the reference graph. For instance, in Q1 (Fig. 3) the edge la-
bel summary is used instead of abstract, moreover no data
edges are directly typed as Content (however, there are pos-
sible BibTeX and Bookmark matches, which are subclasses
of Content). In SocialGQ, the degree of mismatch between
labels is quantified by means of a user-definable semantic dis-
tance function dL that, for any pair of labels, returns a value
ranging from exact match (0) to total mismatch (1). As to struc-
tural mismatches, a purely topological approach which relaxes
adjacency constraints by allowing arbitrary node/edge inser-
tions in the data graph would not be able to produce meaningful
answers. Instead, we consider meaningful sequences of con-
secutive edges (i.e., paths), named semantic paths, that match
query edges with an approximation cost ac. For instance, the
path n2-n1 in Q1 (Fig. 3) could be approximated with the se-
mantic path n13-n9-n6 (Fig. 1), which has the same “meaning”.

The goodness of each answer a to a query Q is quantified
through a scoring function S:
S(a) = αn · (1− avg

n∈Q
(dL(n, n)))+

+ αe · (1− avg
e∈Q

(dL(e, e) + ac(e))) + αc · avg
c∈Q

(cs(c)), (1)

where αn, αe and αc, αn+αe+αc=1, are customizable coeffi-
cients (default=1/3) combining the average of: (a) label approx-
imations (dL) occurring with each query node n and edge e (n
and e denote matching data nodes/edges); (b) structural approx-
imation costs (ac) on each edge e; (c) cs scores of each full-text
query condition c (note that user-aware conditions prune out in-
compatible answers and do not affect ranking). The higher the
returned score S(a), in [0, 1], the better the answer a.

#

Document

type
content

#

#

tag
label

“semantics”

Tagtype

+

#

Content

type

+/-: user conditions

summary

about “semantic”
and “text”

#

BibTeX

#

type type

#

“Versatile Structural
Disambiguation for Semantic-

aware Applications”

title

1

2

3

1

1

2

2

3

3

4 5
6

4

-

Q1) Q2)

Q3)

Figure 3. Three sample queries

More details on the data structures supporting SocialGQ
query processing and how query processing itself is managed
are presented in Sects. 3 and 4, respectively.

3 Data Manager
SocialGQ data manager organizes data in a “core” social-

graph base (lower right part of Fig. 2), which is managed via
the graph management system Neo4j [1], and in a series of ad-
ditional ad-hoc auxiliary structures, which are the focus of this
section. These provide advanced indexing and support for the
innovative query features, ultimately helping the query proces-
sor in building the best answers as soon as possible.

First of all, the “Structural labels” table (lower left part of
Fig. 2) stores structural (i.e., edges’ and entity nodes’) labels,
associating the label to a short identifier (lid) and a kind (“E”
for edges and “N” for nodes). Label data are indexed by means
of B+ trees (allowing for exact search) and metric indexes (al-
lowing for approximate search). As we will see, in query pro-

cessing this allows to quickly check if the structure of the given
query is solvable on the social-graph data.

Besides dealing with labels, one of the most expensive oper-
ations for solving a query is to find the paths in the social-graph
data which match the given query edges. To this end, the idea
behind SocialGQ “semantic path lists” (lower central part of
Fig. 2) is to organize repetitive data paths by means of identi-
fying triples summarizing their structural role, ignoring specific
instance and value information. Let us start the discussion by
considering single edges. A single edge e connecting two nodes
n and n′ is straightforwardly identified by the involved label
ids (i.e., (lidn,lide,lidn′)). Value and instance nodes labels are
generically represented with “#v” and “#i”, respectively. For
instance, the label edges n1-n7 and n11-n15 (Fig. 1), con-
necting tag instances to their label value, are both associated
to the triple (#i,lidlabel,#v). Triples are indexed and used in
query processing to match with query edges (as we will see in
next section). Associated to each triple, is a definition Ldef
of a list pointing to the actual involved portions of the graph
base (for instance, in our example, list L3def points to the two
above mentioned edges, among others). One interesting feature
of SocialGQ is that such lists, which can be potentially quite
large, do not need to be pre-computed or materialized. Being
the core graph base managed in Neo4j, list definitions are (sets
of) Cypher [1] scripts that can be easily customized by the data
administrator. This flexibility is indeed particularly useful since
such lists are not limited to identify relevant data edges, but also
semantic paths. In this way, custom semantic rules capturing
the specific meaning of the social-graph can be easily coded
into the definitions so to allow meaningful structural approxi-
mations to be easily identified in the query processing phase.

Let us consider for instance the above discussed case of
(#i,lidlabel,#v) paths: L3def can be defined to match single
edges by means of the following Cypher MATCH clause:

(t:Tag)-[l:label]->(v:Value)
but can also include a first level of approximation matching
paths involving subtags (i.e., specializations of a tag label):
(t:Tag)<-[s:subtag]-n -[s:supertag]->

(t2:Tag)-[l:label]->(v:Value)
In this way, for instance, Q3 edge n3-n6 (Fig. 3) will match
with data edge n1-n7 (“semantics” label) but also with path
n11-n3-n1-n7 (“semantic web” label, a specialization).

Approximation levels (i.e., scripts) in list definitions are
stored in order of increasing approximation cost ac; the cost
is automatically defined on the basis of the path length (in case,
that can be freely customized). Other useful rules that could
be easily incorporated in our social-graph example are for man-
aging type paths (i.e., subclasses) or even for enriching the
graph with useful relations not explicitly present in the data:
for instance, a related relation between contents can be de-
fined for contents sharing a common tag. This will match, for
instance, with Q2 edge n2-n3 (Fig. 3).

A number of indices on the graph base (lower right of Fig.
2) complete SocialGQ graph structures. These allow for ef-
ficient filtering of the semantic path lists on: (a) node values

(both B+trees for exact search and inverted indices for full-text
search); (b) node ids (useful for joining edges in query process-
ing); (c) users (for user-aware filtering). Such indices are di-
rectly managed in Neo4j, while inverted indices are externally
coded in order to provide full TF-IDF score support.

4 Query processing and ranking
The goal of the query processor and ranking modules is to

exploit the data structures made available by the data manager
to generate the top-k answers approximating the query. Since
social-graph are typically large and repetitive in their structure,
a large number of approximate answers are typically available
in the graph. Instead of generating the whole answer space and
then applying the ranking formula (Eq.1), SocialGQ generates
the top-k answers in an order that is already correlated with
the ranking measure, avoiding to generate many useless results.
The algorithm builds on the foundations of the Threshold Algo-
rithm (TA) [3] and follows the steps summarized below:

1. search for (approximate) structural query node label
matches in the “structural labels” tables, possibly pruning
out unanswerable queries;

2. for each query edge, search associated triple in “seman-
tic path lists” and associate the relevant list definition(s)
Ldef ;

3. perform sorted access in parallel to each of the lists. For
each access: (i) build answers involving the extracted data
path, computing the score S(a) of each answer a, and re-
membering it if one of the k highest; (ii) update uBound,
the score of the set of the next data items under sorted ac-
cess to the lists;

4. stop whenever at least k answers have been built whose
grade is higher than uBound.

Please note that, as described in Sect. 3, each list Ldef returns
data paths which are already sorted by approximation cost; this
allows the algorithm to: (a) be aware of the goodness of upcom-
ing answers by means of uBound; (b) avoid unnecessary relax-
ations to the query (and, therefore, optimize data accesses).

To get a very simplified intuition of its working, consider Q1
in Fig. 3 submitted by user “U881”. Since the specified struc-
tural labels (i.e., Content, type, summary) are available
in the graph base (summary is approximated by abstract
and description), list definitions are retrieved for the two
edges’ triples, (#i,lidtype,lidContent) and (#i,lidsummary,#v).
Lists access is restricted to values matching the full-text condi-
tion (e.g., node n20) and instances not modified by user “U881”
(e.g., node n14). The semantic paths extracted from the two
lists are then accessed and joined to build such final answers as
(n13-n20)-(n13-n9-n6).

5. Experimental Evaluation
We will now present the preliminary results we obtained

from an exploratory evaluation on a real social-graph data sce-
nario by means of a first prototype of SocialGQ. This paper is

Query #n #e #any Description
Struct
relax

(#
edge)

(mult
types)

Label
appr

Full
text

User
aware

#exp
ans

Q1 6 5 3 Users who tagged a BibTeX entry having author "Klaus Reuter" 1
Q2 7 7 4 Tags of BibTeX entries (-) having same year as BibTeX titled "Features of Similarity" ✓ 48
Q3 6 5 3 Users who tagged a Content (-) having description about "Writing techniques" ✓ ✓ ✓ ✓ 2
Q4 5 4 3 Bookmarks (-) tagged "apple" (+) ✓ ✓ 18
Q5 4 4 3 Users (-) connected (# edge) to bookmark with URL "http://moodle.org/" ✓ ✓ ✓ 1
Q6 5 4 3 BibTeX (-) connected (# edge) to BibTeX titled "Conceptual Knowledge Processing" ✓ ✓ ✓ 17
Q7 6 5 3 Documents (-) tagged by profile with id 12 ✓ ✓ ✓ ✓ 147
Q8 3 2 1 Content (-) having summary about "programming" and "database" ✓ ✓ ✓ ✓ ✓ 23

Table 1. Features of the reference queries

focused on evaluating effectiveness, also in comparison to lead-
ing literature approaches. This requires a graph not particularly
big in size but with a sufficiently complex structure, including
different annotations and relation types. To this end, we con-
sider as our reference collection a portion of the Bibsonomy
graph dump [9], containing information about 139551 tag an-
notations, 28611 bookmarks, 11378 BibTeX entries, 8127 tags,
9566 tag specializations and 347 users. Moreover, a small hint
regarding efficiency will be presented at the end of the section;
in this case, we will also consider a larger graph involving over
1 million documents and 4 million annotations. The prototype
incorporates the described advanced data indexes (including
full-text ones) and query processing techniques, written ad-hoc
in Python. It also exploits Neo4j graph management system,
benefiting from node type management optimizations allowed
by its built-in type management. User information is stored in
Neo4j using node array properties. The chosen label distance
dL is a WordNet-based one we already used for disambiguation
purposes [10]. All parameters are kept at their default values.

We consider a set of significant queries, named Q1-Q8, rep-
resentative of a full-range of possible user information needs.
Tab. 1 shows their features, including number of nodes, edges,
“any label” wildcards, textual description, required features and
number of expected answers. Q1 and Q2 are examples of
exact queries which, even if not requiring special approxima-
tions, would be quite difficult to express using simple keywords.
Queries Q3-Q8, instead, require several kinds of approxima-
tions; all queries except Q1 also require user-aware process-
ing. For instance, Q4 asks for bookmarks not already modi-
fied/known by the user tagged as “apple”: this should include,
if available, documents tagged with subtags by the same user
(e.g., “mac”). Structural relaxation is required to manage node
subclasses (as for “content” in Q3 including types “BibTeX”
and “bookmark”). Q5 and Q6 contain generic connection edges
(‘#’). Q7 and Q8 require label approximations (e.g., “docu-
ment”, “profile”, “summary” used instead of “content”, “user”,
“description”/“abstract”, respectively). Finally, Q3 and Q8 also
contain full-text conditions.

Tab. 2 shows the results of the effectiveness evaluation per-
formed on Q1-Q8 in terms of: precision P (i.e. percentage of
relevant retrieved answers w.r.t. the retrieved ones) and recall
(i.e. percentage of relevant retrieved answers w.r.t. existing
relevant ones). The results achieved by SocialGQ are also com-

Web
Query P recall P recall #q P recall P recall P recall
Q1 1 1 1 1 5 0.0001 1 1 1 1 1
Q2 1 1 1 1 57 0.0000 1 1 1 1 1
Q3 1 1 n/a n/a n/a 0.0000 1 n/a n/a n/a n/a
Q4 1 1 n/a n/a 1 0.0000 1 1 1 0.07 1
Q5 1 1 n/a n/a n/a 0.0000 1 0 1 1 1
Q6 1 1 n/a n/a n/a 0.0000 1 0 1 0 1
Q7 1 1 n/a n/a n/a 0.0000 1 n/a n/a 1 1
Q8 1 1 n/a n/a n/a 0.0000 1 n/a n/a n/a n/a

SocialGQ Exact Non-semantic NAGA TALE

Table 2. Effectiveness results and comparison

pared with the ones achievable through alternative approaches.
Let us start with SocialGQ (left part of table): our approach is
able to retrieve all results (recall is 1) for all queries, and all
the retrieved results are relevant. This is achieved thanks to
its combined semantic approximation, full-text and user-aware
features. In particular, the high repetitiveness of the structure
of a social-graph makes the employed structural and label ap-
proximations very effective and precise; label matches are also
favored by, most notably, the relatively low number of differ-
ent structural labels w.r.t. other scenarios and kinds of graph
data (e.g., knowledge graphs). Moreover, the semantic path
approach makes it easy to answer queries such as Q5 and Q6
without producing a large number of non-relevant results.

Other approaches, instead, typically struggle in supporting
all the required features. For instance, an exact approach (“Ex-
act” column) is only able to solve the first two queries. On
the other hand, standard website search pages require a typi-
cally very high number of submitted queries (“Web” column)
to solve a complex request. In our case, queries Q1, Q2 and
Q4 can be partially answered through the Bibsonomy built-
in search but: (a) this requires sending up to 57 simpler re-
quests (Q2) and combining the results; (b) ranking and user-
aware filtering are not supported anyway. We also see that the
large number of nodes with same structural labels present in
a social-graph makes it particularly infeasible to use syntactic-
only approaches. A naı̈ve approach (“Non-semantic” column)
that computes node matches and connects them in all possible
ways (e.g. a title to all available BibTeX nodes, disregarding
semantic path information), achieves a near-null precision. Fi-
nally, we consider two flexible and well-known graph matching
approaches presented in the literature. NAGA [8] is able to cor-
rectly deal with subclass approximations (e.g., Q4), however: it

manages ‘#’ edges in a syntactic way (very low precision n Q5
and Q6); it does not manage label approximation (Q7 and Q8
are not supported). TALE [14], instead, manages all structural
approximations by defining a syntactic length threshold in the
matching paths which proves not always effective: while Q5 is
ok, in Q4 it retrieves results involving generalizations of “ap-
ple”, e.g., non-relevant “technology” documents. Please also
note that neither NAGA or TALE natively support full-text and
user-aware conditions.

As a final note regarding efficiency, for all the above queries
the initial SocialGQ prototype was able to retrieve the top-5
results in under 0.04 secs (0.12 secs in the large collection) on
a standard single-node configuration.

6. Concluding remarks
Successfully querying social-graphs requires to jointly ex-

ploit the complex nature of such kind of data: graph structure,
semantic meaning, unstructured textual resources, user-aware
dimension. As we have seen, this typically goes beyond the ca-
pabilities offered by the social sites’ search functions. In the
literature, several works provide interesting, even if separate,
results in each of the involved fields. In the area of (approx-
imate) graph matching, many proposals [4, 8, 14] recognize
the need to overcome the keyword-based paradigm and support
early forms of approximation that, however, do not take into
account semantics. [11] proposes a framework to support the
semantic approximation of a complex query on a graph. None
of these works, however, considers the specifics of social data
and/or the contained unstructured contents. On the other hand,
in the field of social data, a recent survey [2] analyses several
search tool proposals, including [6, 7], all however limited to
keyword-based search. Furthermore, it underlines the current
sharp distinction between social search approaches (working
only on the graph) and social web search ones (working only on
unstructured content), noting the lack of approaches exploiting
both components. Finally, a number of works [12, 15] high-
light the effectiveness of identifying user-aware techniques that
allow to customize the search results based on the user profile,
but always in the context of unstructured data.

In this paper we laid the foundations of SocialGQ, a new
proposal aimed to overcome the above mentioned limitations.
Taking into account our past experiences in different scenar-
ios (e.g., generic structured graph [11] and full-text enterprise
search [12]), we sketched a framework combining for the first
time all the features that are deemed essential for effective
and efficient social-graph querying. The underlying techniques
leverage on the strengths of approximate graph matching, se-
mantic approximation, textual and user-aware retrieval to re-
trieve the most relevant answers first. Preliminary effective-
ness results on a real data scenario are encouraging. Moreover,
strong efficiency foundations have also been laid, being the pro-
posed architecture based on extensions to widespread and reli-
able big data graph management technologies (i.e., Neo4j).

Making full use of the huge potential given by the ever-

increasing amount of social-graph data is indeed a very ambi-
tious goal for the research community. Powerful social-graph
search techniques can have a large impact and become the ba-
sis of a wide range of services integrated into leisure and busi-
ness social networks: complex and personalized search tools
to find products and information; intelligent help desk services
to answer customer questions; tools to acquire a deep real-time
knowledge on what is happening within the organization [5].
This work represents only one of the first steps toward this vi-
sion. In the future, we plan to: (a) work more deeply on effi-
ciency evaluation; (b) perform detailed tests on additional and
larger social-graph scenarios; (c) consider new techniques for
automatic semantic path rules identification and refining.

This work is partially supported by UniMoRe within the
FAR 2016 Department Project “SocialGQ”.

References

[1] Neo4j Graph Platform and Cypher language. http://neo4j.com.
[2] M. R. Bouadjenek, H. Hacid, and M. Bouzeghoub. Social Net-

works and Information Retrieval, How Are They Converging? A
Survey, a Taxonomy and an Analysis of Social Information Re-
trieval Approaches and Platforms. Inf. Syst., 56(C):1–18, 2016.

[3] R. Fagin, A. Lotem, and M. Naor. Optimal Aggregation Algo-
rithms for Middleware. In PODS, pages 102–113, 2001.

[4] W. Fan, J. Li, S. Ma, N. Tang, and Y. Wu. Adding Regular
Expressions to Graph Reachability and Pattern Queries. In Proc.
of ICDE, pages 39–50, 2011.

[5] J. Hagel and S. K. Ellis. Four Ways Social Data Can Gen-
erate Business Value. http://sloanreview.mit.edu/article/four-
ways-social-data-can-generate- business-value/.

[6] X. He, M. Gao, M.-Y. Kan, Y. Liu, and K. Sugiyama. Predicting
the popularity of web 2.0 items based on user comments. In
Proc. of SIGIR, SIGIR ’14, pages 233–242, 2014.

[7] D. Horowitz and S. D. Kamvar. The anatomy of a large-scale
social search engine. In Proc. of WWW, pages 431–440, 2010.

[8] G. Kasneci, F. Suchanek, G. Ifrim, M. Ramanath, and
G. Weikum. NAGA: Searching and Ranking Knowledge. In
Proc. of ICDE, pages 953–962, 2007.

[9] KDE Group, University of Kassel. Benchmark Folk-
sonomy Data from BibSonomy, 2017-07-01 dump.
https://www.kde.cs.uni-kassel.de/bibsonomy/dumps/.

[10] F. Mandreoli and R. Martoglia. Knowledge-based sense disam-
biguation (almost) for all structures. Information Systems (Infor-
mation), 36(2):406–430, 2011.

[11] F. Mandreoli, R. Martoglia, and W. Penzo. Approximating ex-
pressive queries on graph-modeled data: The GeX approach.
Journal of Systems and Software, 109:106–123, 2015.

[12] R. Martoglia. AMBIT: semantic engine foundations for knowl-
edge management in context-dependent applications. In Proc. of
SEKE, pages 146–151, 2015.

[13] G. Salton and C. Buckley. Term-Weighting Approaches in Au-
tomatic Text Retrieval. Inf. Process. Manage., 24(5):513–523,
1988.

[14] Y. Tian and J. Patel. TALE: A Tool for Approximate Large Graph
Matching. In Proc. of ICDE, pages 962–973, 2008.

[15] T. Vu, A. Willis, U. Kruschwitz, and D. Song. Personalised
query suggestion for intranet search with temporal user profil-
ing. In Proceedings of CHIIR ’17, pages 265–268. ACM, 2017.

