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Abstract. Because tilting-pad journal bearings are more stable and efficient 

than conventional bearings, they have been commonly applied to many rotating 

machinery applications. Most of the studies about steady state and dynamic 

characteristics of tilting-pad journal bearings are usually evaluated by means of 

thermo hydrodynamic models assuming nominal dimensions for the bearing. 

However machining errors could lead to actual bearing geometry and dimen-

sions different from the nominal ones. In particular for tilting-pad journal bear-

ing the asymmetry of the bearing geometry is the principal cause of unexpected 

behavior. In this paper a theoretical analysis on dynamic characteristics of a 

five-pad tilting-pad journal bearing is investigated with non-nominal geometry, 

that is, different thickness for each pad. The dynamic coefficients of a five-pad 

tilting-pad journal bearing with a nominal diameter of 100mm, length-to-

diameter ratio (L/D) of 0.7 are evaluated versus rotor rotational speed, load di-

rection and static load. Then, the analytical results of the non-nominal bearing 

are compared to those of a bearing having nominal (i.e. ideal) geometry. 

Keywords: Tilting–pad journal bearing, analytical model, non-nominal bear-

ing, dynamic coefficients, five pads. 

1 Introduction 

Because tilting-pad journal bearings (TPJBs) are more stable and efficient than 

conventional bearings, they have been commonly applied to many rotating machinery 

applications. The chief feature of tilting-pads is that they modify their configuration to 

adapt to every operating condition, creating several convergent-divergent gaps around 

the circumference and thus making the system highly stable. Since Lund [1] devel-

oped a numerical method for calculating dynamic coefficients for tilting-pad journal 

bearings, extensive theoretical and experimental studies on dynamic and stability 

analysis have been conducted. In the course of the development of journal bearings, 

many effective methods have been applied, such as Newton-Raphson method, pad 

assembly technique, finite elements method, and Genetic Algorithm to calculate static 

as well as dynamic characteristics of journal bearing [2] - [3]. 

The majority of the papers on TPJB in the literature consider the tilting pad bear-

ings with nominal dimensions [4]-[10]. Jones et al [11] studied theoretical the effects 
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of bearing clearance and pad clearance on the steady-state and dynamic behavior in 

tilting pad journal bearings. They concluded that the pad clearance has little effect on 

the Kyy term at small values of bearing clearance ratio and the bearing clearance has 

more effect than pad clearance. 

Strzelecki [12] has studied the dynamic characteristics of tilting-pad bearings with 

asymmetric pad support using Reynolds equation and an adiabatic model for the oil 

film. It was applied to a five pad bearing, and then the pad relative clearance has in-

fluenced the stiffness and damping coefficients, while the length to the diameter ratio 

has just affected the direct stiffness coefficients. 

However, most papers studied steady-state and dynamic characteristics of tilting-

pad journal bearing by means of thermo hydrodynamic (THD) models assuming nom-

inal dimensions for the bearing. It means that the physical dimensions of all pads are 

identical or the bearing is uniform configuration. In this paper, effects of non-uniform 

clearance on TPJBs’ performances, namely dynamic coefficients and shaft locus are 

evaluated using an analytical model. A five-pad tilting-pad journal bearing with dif-

ferent thickness in one pad is analytically modeled. Its steady state and dynamic be-

haviors are compared with a symmetric tilting-pad journal bearing. 

2 Bearing description 

The sketch of the five-pads TPJB 

considered in this paper is shown in 

Fig. 1. The bearing is installed in its 

housing as a standard LOP configu-

ration, with nominal diameter of 

100 mm and length–to–diameter 

ratio of 0.7. The geometric charac-

teristics of the bearing and the oper-

ating conditions are listed in Ta-

ble 1. Ob and Oj which are located at 

the origin of the X – Y coordinate 

system denote for the center of the 

bearing and journal, respectively. 

 

 

Fig. 1. Sketch of the five-pads TPJB 

The main advantage of TPJB consists in the pads capability to follow the dis-

placements of the rotor. During operation, each pad rotates so that the resultant of the 

fluid-film forces passes through the pivot. Thus, the pivot location influences the pad 

rotation and the magnitude of the hydrodynamic pressure distribution. 

In this paper, a non-ideal TPJB, in which the thicknesses of the five pads are dif-

ferent from each other due to machining errors, is considered. The effect is a different 

assembled clearance or preload factor ( )1 b pm C C= − for each pad (see in Table 2). 
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Table 1. Bearing geometric characteristics and operating conditions. 

Item Unit Value/Span 

Number of pad - 5 

Configuration w.r.t bearing housing - LOP 

Bearing diameter (D) mm 100 

Machined clearance (Cp) mm 0.125 

Bearing length (L) mm 70 

Angular amplitude of pads  Degree (°) 60 

Lubricant - ISO VG46 

Oil inlet temperature °C 38-40 

Rotational speed rpm 1200 

Static load (on each bearing) kN 5 

 

Table 2. Specifications of the real tilting-pad journal bearing. 

Item 
Measurement Nominal 

dimension Pad #1 Pad #2 Pad #3 Pad #4 Pad #5 

Thickness (mm) 15.9942 16.0146 15.9995 15.9812 16.0179 16.0 

Assembled clearance 

Cb (mm) 
0.0658 0.0454 0.0605 0.0788 0.0421 0.07 

Preload factor m 0.4739 0.6365 0.5157 0.3698 0.6630 0.44 

3 TEHD bearing model 

A thorough description of the TEHD mod-

el to estimate the static and dynamic behaviors 

of a five-pad TPJB is provided in [5]-[8]. 

The hydrodynamic model is based on the 

well-known Reynolds equation: 
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Fig. 2. Sketch of a rocker-backed TPJB 

[5]. 

where p is the pressure in the oil-film, h is the oil-film thickness, µ is the dynamic 

viscosity,  is the density of oil, z is the axial direction, x is the tangential direction. 

The velocity vector component of the shaft and the pads are defined by U1, V1, W1 and 

U2, V2, W2 , respectively.  
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The effect of temperature on the dynamic viscosity ( )40 40( ) expC CT T T   =  −    

and oil density ( )40 40( ) 1C v CT T T   =  + −   is considered using a simple two-

dimensional thermal model, governed, at steady state, by the energy equation: 

 

2 2
2 2

2 2p OIL

T T T T u w
c u w k

x z x z y y
 

            
 + = + + +      
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(2) 

where   is the viscosity index and v  is the thermal expansion coefficient of the oil, 

pc  and Lk  are the heat capacity and the conductivity of the lubricant respectively. 

Equation (2) has been integrated using a finite difference method, where adiabatic 

conditions at the shaft, pad surfaces and constant oil temperature in the oil film thick-

ness direction are considered. 

The dynamic coefficients of the bearing because of the lateral motion of the shaft 

(represented by four impedance coefficients of the impedance matrix  BRGZ  in 

Eq. (3), are obtained in Eq. (4) by reducing the complete set of impedance coefficients 

of the pads (impedance matrix  
k

Z  in Eq. (5), assuming a harmonic motion of the 

system at frequency   [5]: 

 
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(3) 

  )
1

2 i

k k kk

k k kxx xy x x x y

BRG pad pad pad

k yx yy y y x y

Z Z Z Z Z ZZ Z
M C K

Z Z Z Z Z ZZ Z

    

    

 
−       

       = − − − + +                     

Z

 

(4) 

     i

k

xx xy x x

k k k yx yy y y

x y

x y

z z z z

z z z z

z z z z

z z z z

 

 

   

   



 
 
 = + =
 
 
  

Z K C

 

(5) 

where  
k

K  and  
k

C  are the linear stiffness and damping coefficient matrices, respec-

tively, which are calculated for the k-th pad, and: 

0 0
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(6) 

where Jp is the mass moment of inertia of the pad, m is the mass, and bG is the posi-

tion of the barycenter. The pivot stiffness of the pivot along the direction  , which 

depends on the applied static load W, is obtained using the contact Hertz theory. 

4 Results and discussion 

4.1 Dynamic coefficients versus rotor rotational speed 

Fig. 3 shows the stiffness coefficients of two bearings as a function of rotational 

speed in LOP configuration when a static load of 5kN is applied on the bearing in the 

vertical direction. The direct stiffness coefficients kxx and kyy increase more or less 
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linearly with increasing of rotational speed from 1000 rpm to 3000 rpm. The direct 

stiffness coefficient of the non-nominal bearing in unloaded direction (kxx) is always 

larger than (about 50%) that of in the nominal bearing. On the other hand, the stiff-

ness coefficients in the orthogonal loaded direction (kyy) show an opposite trend. 

These results are consistent with the level of orthotropy expected for a LOP configu-

ration, as presented in [13]. 

 

(a) 

 
(b) 

 

Fig. 3. Dynamic coefficients vs. rotor rotational speed 

The non-nominal dimension has strong impact on cross-coupled stiffness coeffi-

cients (kxy and kyx). While the kxy and kyx of the nominal bearing are almost zero with 

rotational speed, these coefficients of the non-nominal bearing strongly depend on 

rotor speed, increase linearly with increasing of rotational speed. It could be explained 

that despite the applied load is vertical; the center locus of the non-nominal bearing is 

not vertical (see Fig. 4). Hence, there is a cross-coupling effect, so it is necessary to 

take into account also the cross-coupling dynamic coefficients kxy and kyx when the 

dynamic characteristics of the non-nominal bearing are evaluated. 

Contrary results are shown for the direct dynamic damping coefficients. They de-

crease with increasing of rotational speed. For the bearing with non-nominal dimen-

sion, the direct damping in loaded direction cyy is less than in case of the nominal 

bearing, nearly about 10%. 
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Fig. 4. Predicted shaft loci vs. rotor rotational speed 

4.2 Dynamic coefficients versus static load 

Fig. 5 shows the effect of increasing static load on the dynamic stiffness and damp-

ing coefficients for rotor speed of 1200 rpm (20 Hz) with LOP configuration.  

(a) 

 
(b) 

 

Fig. 5. Dynamic coefficients vs. static load 
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While it should be noted that the direct coefficients in the unloaded direction (kxx) 

of the nominal bearing is quite stable with static load, this coefficient in the non-

nominal bearing increases linearly with increasing of static load, from 4.6×108
 N/m at 

5kN to 8.35×108
 N/m at 20kN. 

On the other hand, the dynamic direct stiffness coefficients in the loaded direction 

(kyy) on both kinds of bearing strongly depend on the static load and the stiffness coef-

ficient of the nominal bearing is always greater (about 10%) than that of the non-

nominal one. This coefficient increases significantly, more than 600%, from 3.57×108
 

N/m to 2.28×109 N/m for the nominal bearing and from 2.48×108
 N/m to 1.86×109 

N/m for the non-nominal bearing corresponding static load from 5kN to 20kN. It can 

be seen that the cross-coupled stiffness coefficients of non-nominal bearing (kxy and 

kyx) are much larger than those of the nominal one. However these coefficients are 

very small in comparison with the direct coefficients on both bearings. 

The similar results are shown for the dynamic damping coefficients as shown in 

Fig. 5 except for the cross-coupled damping coefficients (cxy and cyx) in which the 

cross coefficients of the nominal bearing are always higher than those of the non-

nominal one. 

4.3 Dynamic coefficients versus load direction 

Generally, a TPJB is loaded symmetrically, i.e. load-on-pad or load-between-pad 

configuration, the former being the more common situation. However in practical the 

bearing may be loaded in any direction, not just in these two special directions. For 

instance, high bearing loads out of the vertical direction may occur in industrial rotat-

ing machines, like in turbo-generators, owing to bad alignment conditions of the 

shaft-line or in gearboxes. For the operating conditions that load direction change 

rapidly, it needs to perform the analysis of the bearing in its special load forms to 

enhance the precision and efficiency of bearing design.  

Two reference systems are introduced in this section to evaluate dynamic coeffi-

cients, namely the absolute reference and the load reference systems. For the first one, 

a varying load direction is considered, as shown in Fig. 6. In this case, the static load 

is rotated in a full revolution (360°), with steps of 18°. It means that, all the five pads 

will be loaded under LOP and LBP configuration.  

Fig. 7 shows the influence of the load direction on the calculated stiffness and 

damping coefficients of the nominal and non-nominal bearing. Obviously, the load 

direction has a strong effect on both of bearings’ dynamic coefficients.  

 

Fig. 6. Varying load configuration 

The dynamic stiffness coefficients of the nominal bearing show a general good 
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term in horizontal direction (kxx). The kxx of the non-nominal bearing is always larger 

than that of the nominal one, especially when the static load is applied in the vertical 

(load direction is -90°) and pad 1 is loaded. At -90°, the direct stiffness coefficient in 

the horizontal direction kxx of the non-nominal bearing is about 4.3×108 N/m while 

this value for the nominal one is nearly 1.5×108 N/m. The effects of load directions on 

the damping coefficients (Fig. 7b) are very similar to those on the stiffness terms. 

(a) 

 
(b) 

 

Fig. 7. Dynamic coefficients vs. load directions in absolute reference system 

In the case of load reference system, the load direction is kept fixed in the vertical 

direction and the bearing is rotated, from −90° to 270°, with steps of 18° with respect 

to the load direction, as shown in Fig. 8.  
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(a) 

 
(b) 

 

Fig. 9. Dynamic coefficients vs. load directions in load reference system 
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varying load configuration, also in this case, direct term of dynamic stiffness and 
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3. The reference system can be considered in absolute reference or in load reference 

when evaluating effect of load directions.  

4. The load direction has a strong effect on the characteristics of TPJBs. This 

influence can be increased or decreased by a non-nominal geometry of the 

bearing, for which big differences can be identified between the experimental 

performance of a real bearing and the predicted behavior obtained using a model 

of a nominal bearing. 
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