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Abstract: Pol-Mux transmission is a well established technique that enhances spectral efficiency 
by simultaneously transmitting over horizontal and vertical polarizations of the electrical field. 
However, cross-coupling of the two polarizations impairs transmission. Under the assumption 
that the cross-coupling matrix is a Markov process with free-running state, we propose upper 
and lower bounds to the information rate that can be transferred through the channel. Simulation 
results show that the two bounds are tight for values of the cross-coupling power of practical 
interest and modulation formats up to 16-QAM (quadrature amplitude modulation).
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1. Introduction

Simultaneous transmission of modulated signals over the horizontal and vertical polarizations of
the electrical field is a well established technique [1–3] that allows to improve spectral efficiency
by using the same frequency twice. In its essence, this technique relies upon the principle of
MIMO (Multiple Input Multiple Output) systems, that have become popular after the seminal
paper [4]. To cancel interference arising from non-ideal orthogonality between the horizontal
and the vertical polarizations, linear processing can be adopted [5], even if it is well known that
non-linear techniques achieve better performance in presence of interference and additive noise,
see e.g. [6, 7].
Either implicitly or explicitly, most of the receivers studied in the literature assume that the

MIMO channel matrix is static or quasi-static. However, the experimental results of [6] show that
the coherence time of the channel is quite small, say, in the order of 10 to 30 symbol intervals for
112 Gb/s dual-polarization QPSK (Quadrature Phase Shift Keying). Hence tracking the channel
becomes an issue. Tracking techniques can be based on pilot symbols, as proposed, for instance,
in [8], but, independently of the channel tracking method, a low coherence time of the channel
matrix, hence a fast time-varying channel, will make noisy the channel estimate (in practice only
a short time window spanning a few signal samples can be used for channel estimation at a given
time instant) thus impacting the information rate that can be transmitted through the channel. This
observation motivates the study of the information rate transferred through the Pol-Mux channel.
Channel capacity of the fading MIMO channel is a classical topic in the general framework of
information theory, see e.g. [9] and, in that context, also the information rate of channels with
free-running state has been studied [10]. In the context of optical transmission the information
rate is well studied for the phase noise channel, at least for the channel model with free-running
state, see e.g. [11–13], but less has been done for the Pol-Mux channel, which can be seen indeed
as a variant of the phase noise channel where

• the modulus is not constant

• the channel is MIMO.

Therefore, starting from the lower bound for the phase noise channel of [13], we adapt it here to
the Pol-Mux channel and introduce a new upper bound based on the Kalman filter.

2. Channel model

Let the lowercase characters indicate possibly complex scalars and column vectors and let the
uppercase characters indicate matrices. The notation ak+i

k
is used to indicate a column vector

(or matrix, when the elements are vectors) made by the chunk of sequence (ak, ak+1, · · · , ak+i)T ,
while {ak} is used to indicate the semi-infinite sequence (a0, a1, · · · ). The notation Im is used to
indicate the m × m identity matrix and the superscript H denotes Hermitian transposition. The
output of the Pol-Mux channel at time k is

yk = Mk xk + wk, k = 1, 2, · · · , (1)

where xk is the k-th sample of the i.i.d. input modulation complex vector data sequence, with
zero mean vector and covariance matrix

E{xk xH
k } = I2, (2)

Mk is the channel matrix and wk is the k-th element of the i.i.d. complex Gaussian vector noise
sequence with zero mean vector and covariance matrix

E{wkw
H
k } = σ

2I2. (3)
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For small to moderate polarization crosstalk, the matrix Mk can be modelled as [6]

Mk =

(
1 λ1,k
λ2,k 1

)
, (4)

where
λk = (λ1,k, λ2,k)T

is the k-th element of a complex Gaussian random vector sequence which is hereafter modelled
here as a free-running 1-causal ARMA (Autoregressive Moving Average) process, hence

λk =

p∑
i=1

bivk−i +
q∑
i=1

aiλk−i, (5)

where vk is the k-th sample of a white Gaussian random vector sequence with zero mean and
covariance matrix

E{vkvHk } =
(

1 ρ
ρ 1

)
. (6)

In other words, {λk} is the filtered version of {vk}, where the filter is made of two shift registers,
one for {v1,k} and the other one for {v2,k}, each one with m memories, and with 1-causal feedback
taps aq

1 and 1-causal forward taps bp
1 , with

m = max{p, q}.

Using the z-transform you write

λ(z) = v(z) b(z)
1 − a(z), (7)

where

b(z) =
m∑
i=1

biz−i, a(z) =
m∑
i=1

aiz−i . (8)

To cast the model in the framework of linear dynamic systems we need to define the state of
the system. To this aim, let us define the vector sequence

ωk = (ω1,k, ω2,k)T = vk +

m∑
i=1

aiωk−i, k = 0, 1, · · · ,

hence ωk−1
k−m is the content of the two shift registers at the k-th channel use. Note that λk depends

only on ωk−1
k−m as

λk =

m∑
i=1

biωk−i

and, given ωk−1
k−m, the sequence λ

∞
k
is independent of λk−1

1 . Therefore you can take

sk = (1, (ωk−1
1,k−m)

T , 1, (ωk−1
2,k−m)

T )T (9)

as the state of the linear dynamic system at time k, thus writing the measurement equation and
the state transition equation as

yk = Hk sk + wk, (10)

sk+1 = Fsk + (0, v1,k, (0m−1
1 )T , 0, v2,k, (0m−1

1 )T )T , (11)
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with

Hk =

[
x1,k x2,k(bm1 )

T 0 (0m1 )
T

0 (0m1 )
T x2,k x1,k(bm1 )

T

]
, (12)

where 0m1 is a column vector of m zeros, and the 2(m + 1) × 2(m + 1) state transition matrix is

F =
[

Fm+1 Om+1
Om+1 Fm+1

]
, (13)

where

Fm+1 =


1 (0m−1

1 )T 0
0 (am−1

1 )T am
0m−1

1 Im−1 0m−1
1

 , (14)

and Om is the all-zero square matrix of size m × m. The state transition probability is

p(sk+1 |sk) = gc(Fsk,Q; sk+1), (15)

where gc(µ, Σm; x) indicates a m-dimensional complex Gaussian probability density function
over the complex vector space spanned by x with mean vector µ and covariance matrix Σm and
Q is the covariance matrix of the process noise (0, v1,k, (0m−1

1 )T , 0, v2,k, (0m−1
1 )T )T , that is

Q =
[

Q1 Qρ

Qρ Q1

]
, (16)

with

Q1 =


0 0 (0m−1

1 )T
0 1 (0m−1

1 )T
0m−1

1 0m−1
1 Om−1

 , (17)

Qρ =


0 0 (0m−1

1 )T
0 ρ (0m−1

1 )T
0m−1

1 0m−1
1 Om−1

 . (18)

The joint source and channel output probability, given the hidden state, is

p(yk, xk |sk) = p(xk |sk)p(yk |xk, sk)
= p(xk)p(yk |xk, sk) (19)

where

p(yk |xk, sk) = gc(Hk sk, σ2I2; yk). (20)

The conditional probability of channel output given the hidden state is

p(yk |sk) =
∑

xk ∈Xk
p(xk)p(yk |xk, sk). (21)
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3. Upper and lower bounds to the information rate by the Kalman filter

Let
I(x; y) = H(x) − H(x |y), (22)

where, for conventional M-QAM (Multi-Level Quadrature Amplitude Modulation) and M-PSK
(Multi-Level Phase Shift Keying)

H(x) = log2 M. (23)

For the conditional entropy, by chain rule one writes

H(x |y) = lim
N→∞

1
N

N∑
k=1

H(xk |xk−1
1 , yN1 ), (24)

which, by the Shannon-McMillan-Breiman theorem, can be evaluated as

H(x |y) = − lim
N→∞

1
N

N∑
k=1

log2 p(xk |xk−1
1 , yN1 ). (25)

Since conditioning does not increase entropy, we have the following upper and lower bounds
to the conditional entropy

H(x |y) = lim
N→∞

1
N

N∑
k=1

H(xk |xk−1
1 , yN1 )

≤ lim
N→∞

1
N

N∑
k=1

H(xk |xk−1
1 , yk1 )

= − lim
N→∞

1
N

N∑
k=1

log2 p(xk |xk−1
1 , yk1 ), (26)

H(x |y) = lim
N→∞

1
N

N∑
k=1

H(xk |xk−1
1 , yN1 )

≥ lim
N→∞

1
N

N∑
k=1

H(xk |xk−1
1 , xN

k+1, y
N
1 )

= − lim
N→∞

1
N

N∑
k=1

log2 p(xk |xk−1
1 , xN

k+1, y
N
1 ), (27)

that one can use in a straightforward way in the right side of (22) together with (23) to get lower
and upper bounds to the information rate.

Let us consider the upper bound (26). The probabilities inside the logarithm can be evaluated
by the Kalman filter as follows. The knowledge of past transmitted symbols that appear in the
conditioning is imported in the Kalman filter by including all the conditions in the measurement,
hence by updating the Kalman filter in data-aided mode. Let us write the channel output as

yk = Hk sk + wk = hk(sk) + wk . (28)

The predicted measurement at time k is

ŷk = Hk ŝk, (29)
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where ŝk denotes the state predicted by the Kalman filter at time k, that is the expectation of the
hidden state given past measurements

ŝk = E{sk |yk−1
1 , xk−1

1 }. (30)

As innovations process we take

uk = yk − ŷk = Hk(sk − ŝk) + wk . (31)

Starting from an initial pair (Σ̂1, ŝ1), where

Σ̂k = E{(sk − ŝk)(sk − ŝk)H }, (32)

for k = 1, 2, · · · , the state prediction vector and the prediction error covariance matrix evolve as

ŝk+1 = F(ŝk + Kkuk), (33)

Σ̂k+1 = FΣkFT +Q, (34)

where

Σk = ((Σ̂k)−1 + σ−2HH
k Hk)−1, (35)

Kk = σ
−2
ΣkHH

k . (36)

The desired probability is evaluated as

p(xk |xk−1
1 , yk1 ) = p(xk |yk, xk−1

1 , yk−1
1 )

=
p(xk |xk−1

1 , yk−1
1 )p(yk |xk, xk−1

1 , yk−1
1 )∑

xk ∈Xk p(xk |xk−1
1 , yk−1

1 )p(yk |xk, xk−1
1 , yk−1

1 )

=
p(xk)p(yk |xk1 , y

k−1
1 )∑

xk ∈Xk p(xk)p(yk |xk1 , y
k−1
1 )

, (37)

where, using the predicted state and the prediction error covariance matrix computed by the
Kalman filter, one has

p(yk |xk1 , y
k−1
1 ) =

∫
S

p(sk, yk |xk1 , y
k−1
1 )dsk

=

∫
S

p(sk |xk1 , y
k−1
1 )p(yk |sk, xk1 , y

k−1
1 )dsk

=

∫
S

p(sk |xk−1
1 , yk−1

1 )p(yk |sk, xk)dsk

=

∫
S
gc(ŝk, Σ̂k ; sk)gc(Hk sk, σ2I2; yk)dsk

= gc(Hk ŝk,HH
k Σ̂kHk + σ

2I2; yk). (38)

Similarly, for the lower bound to the conditional entropy, one has

p(xk |xk−1
1 , xN

k+1, y
N
1 ) =

p(xk)p(yk |xN
1 , y

k−1
1 , yN

k+1)∑
xk ∈Xk p(xk)p(yk |xN

1 , y
k−1
1 , yN

k+1)
, (39)
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with

p(yk |xN
1 , y

k−1
1 , yNk+1) =

∫
S

p(sk, yk |xN
1 , y

k−1
1 , yNk+1)dsk

=

∫
S

p(sk |xN
1 , y

k−1
1 , yNk+1)p(yk |sk, xN

1 , y
k−1
1 , yNk+1)dsk

=

∫
S

p(sk |xk−1
1 , yk−1

1 , xN
k+1, y

N
k+1)p(yk |sk, xk)dsk

=

∫
S
gc(ŝ f b,k, Σ̂ f b,k ; sk)gc(Hk sk, σ2I2; yk)dsk

= gc(Hk ŝ f b,k,HH
k Σ̂ f b,kHk + σ

2I2; yk), (40)

where ŝ f b,k and Σ̂ f b,k are the estimates produced by combining a forward and a backward Kalman
filter as

ŝ f b = Σ̂b(Σ̂ f + Σ̂b)−1 ŝ f + Σ̂ f (Σ̂ f + Σ̂b)−1 ŝb, (41)

Σ̂ f b = (Σ̂−1
f + Σ̂

−1
b )
−1. (42)

4. Simulation results

The consideration of realistic spectra of the cross-pol coefficients is out of the scope of the
present paper and we left it to future studies. For practical methods, to estimate the strength of
cross-pol interference the reader is referred to [6], where the strength of interference is given
by the autocorrelation of interference at time zero. In the following we express the strength
of interference by using the SIR (Signal-to-Interference Ratio), which is the inverse of the
interference autocorrelation at time zero. To derive simulation results, we set ρ = 0 and for
each one of the two random coefficients appearing in the Pol-Mux matrix we take the first-order
ARMA model

λ(z) = v(z)
(1 − zp)z−1

1 − zpz−1 , (43)

where −1 < zp < 1 is the pole of the first-order ARMA model. The filtered sequence has zero
mean, unit power spectral density at frequency zero and power

E{λ2
k} =

1 − zp
1 + zp

,

hence the SIR is
SIR =

1 + zp
1 − zp

. (44)

In the common case where zp is close to 1, the filtered sequence is a first-order low-pass
random sequence with −3 dB normalized bandwidth

B−3 ≈
1 − zp

2π
.

Figure 1 gives the upper and lower bounds to the information rate of 4-QAM, 16-QAM
and 64-QAM obtained with zp = 0.977, corresponding to SIR=19.3 dB. With such moderate
interference the two bounds are close to each other, also for 64-QAM. Moreover, at high values
of SNR (Signal-to-Noise Ratio) information rates reach the maximum value allowed by the
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Fig. 1. Upper and lower bounds to the information rate for various modulation formats and
zp = 0.977. The Signal-to-Noise Ratio (SNR) is SNR= 1

σ2 .
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Fig. 2. Upper and lower bounds to the information rate for various modulation formats and
zp = 0.887. The Signal-to-Noise Ratio (SNR) is SNR= 1

σ2 .

constellation sizes, achievable with the pure AWGN (Additive White Gaussian Noise) channel: 4
bits for 2 × 4-QAM, 8 bits for 2 × 16-QAM and 12 bits for 2 × 64-QAM.
Figure 2 gives the same upper and lower bounds obtained with zp = 0.887, that is SIR=12.2

dB. In the practice it seems to be a strong interference condition, since the minimum SIR reported
in the experimental results of [6] is around 14 dB. In this case, the information rate with 64-QAM
and at high SNR remains well below the information rate achieved with the AWGN channel, thus
confirming that the Pol-Mux interference becomes the limiting factor of the information rate
transferred through the channel. We also note that the spread between upper and lower bounds
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becomes large with 64-QAM and at high SNR, where the capability of tracking the MIMO
channel becomes crucial. Actually, the lower bound renounces to the blind part of tracking thus
renouncing to some tracking capability, while the upper bound upgrades the blind tracking to a
data-aided tracking, thus enhancing tracking capabilities over what can actually be done.

5. Conclusions

We have proposed upper and lower bounds to the information rate of the Pol-Mux channel and
shown simulation results for a specific channel model. The results show that with moderate
interference our bounds are so close that virtually compute the exact information rate. For strong
interference and modulation formats with high spectral efficiency there is still some spread
between the two, leaving space to future investigations.
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