
 

 

 A Time Domain Model for the Study of High Frequency 

3D Wheelset-track Interaction with non-Hertzian contact 

Abstract 

A novel numerical model for train-track interaction is proposed in this paper to deal 

with wheel-rail interface dynamics in high frequency range. The complete model 

consists a 3D rotating flexible wheelset model, a 3D track model considering the 

discrete support of the rail and a non-linear, non-Hertzian model of wheel/rail contact. 

The wheelset and the track models are both defined using an ‘Arbitrary Lagrangian-

Eulerian’ Finite Element approach in combination with modal synthesis. This allows an 

efficient treatment of the problem, compared to a classical Finite Element approach. 

The proposed model is suitable to represent train-track interaction effects in a frequency 

range up to 7 kHz thanks to the detailed description of wheelset and rail deformability. 

Wheel/rail contact forces and rail vibration under excitation produced by different types 

of railhead irregularity are investigated in the paper, assessing the effect of different 

models of wheelset and track flexibility. The results obtained show that the outputs of 

the model mostly relevant to the investigation of rail corrugation and rolling noise, i.e. 

wheel-rail contact forces and rail vibration, are highly sensitive to the wheelset and 

track model adopted.  

1 Introduction 

The demand of higher running speed for long-distance passenger trains led to increasing 

dynamic problems of interaction between vehicle and track, such as high levels of noise 

[1] and vibration [2], wheel-rail forces and axle stress fluctuations [3], growth of out-

of-roundness of wheels [4] as well as corrugation of track [5]. Simulation tools for train-

track interaction system dynamics, including the vehicle model, the track model as well 

as the contact model, have therefore been extensively studied over the last 45 years. 

Train-track interaction dynamics can be solved both in frequency domain and in time 

domain. Rolling noise [1] and vehicle-track coupled vibration response caused by the 

roughness of the wheel and rail running surfaces [2] have often been investigated using 

linear frequency-domain wheel/rail interaction models, the dynamic response 

characteristics at wheel-rail contact being derived by combining the wheelset and track 

frequency response functions with the assumed rail roughness [6]. However, frequency 

domain methods cannot account for nonlinear effects in wheel-rail contact, provide an 

accurate prediction of wheel-rail contact conditions and consider the effect of local 



 

 

wheel/rail defects. To account for these nonlinear effects, train-track interaction models 

in time domain are required.  

Recent research on train-track interaction in time domain has been devoted to 

developing wheelset/track models based on the Finite Element (FE) method and a more 

realistic contact model. While the vehicle has been modelled as multi-body systems 

with the track as Euler-Bernoulli or Timoshenko beams in last decades [7], recent trends 

of vehicles modelling in high frequency considering flexible wheelset and track 

modelling in general FE method. In order to simplify the large dimension FE 

integration, the ‘Arbitrary Lagrangian-Eulerian’ (ALE) approach has been widely used 

for the flexible wheelset and track model although the term ALE may have not been 

adopted. To investigate wheelset dynamics, Baeza et al. [3, 8, 9] and Kaiser and co-

authors [10-13] proposed the use of the ALE approach introducing an intermediate 

reference frame that moves with the rotating wheelset, so that a fixed longitudinal 

position of the contact point can be considered. Baeza et al. [8] evaluated the gradients 

of the shape function by making a linear transformation of Brown and Shabana’s 

formulation [14, 15] of kinematics of flexible rotating structure in a Lagrangian 

coordinate into a Eulerian coordinate. An alternative method developed by Martínez-

Casas et al. [3] was deriving the particle velocity with respect to the Eulerian coordinate 

directly using general dynamic principles. The method for modelling the rotating 

flexible wheelset used in the current work is originally based on the work in [3] by 

directly deriving the equations of motion of the wheelset using a virtual work principle.  

As far as track models are concerned, besides modelling the rail as Euler-Bernoulli 

[16] or Timoshenko beam elements [17,18], a recent trend considers modelling the rail 

as a generic elastically deformable structure. The track model developed by Kaiser in 

[12, 13] consists of a modal synthesis performed on the rails considered as elastically 

deformable prismatic structures and assumes harmonic waveforms in longitudinal 

direction. Since the equations of the rails are written in a non-moving reference, this 

method becomes increasingly computationally expensive when longer lengths travelled 

by the wheelset are considered. Furthermore, depending on the length of track 

modelled, the effect of elastic waves travelling in the rails can be affected by the cyclic 

boundary conditions assumed. For this reason, in this paper a different model is 

developed for the flexible track, considering an ALE approach. Chamorro et al. [19] 

developed a Moving Mode Method to describe deformable tracks with arbitrary 

geometry, an ALE approach is used to define mode shapes of the track. Ripamonti et al. 

[20] proposed an ‘Eulerian’ finite element method of the track model, a reasonable 

number of degrees of freedom can be used due to the flowing finite element mesh along 

the track. Recently, Martínez-Casas et al. [21] defined a 3D moving element rail model 

by extending Koh et al.’s Moving Element Method [22] from 2D on continuum to 3D, 

which is also an extension of the ALE approach. With respect to the approaches 



 

 

presented in references [19-22] to model track flexibility in the high-frequency range, 

this paper additionally addresses the new issue of considering the effect of discrete rail 

support in the time domain.  

Considering wheel/rail contact models in use for the simulation of wheelset-track 

interaction, the present challenge is to consider detailed capable of accurately predict 

wear and damage in wheels and rails. Contact models usually can be categorized into 

Hertzian models [23], non-Hertzian models [24-28] and models based on the finite 

element method [29, 30]. Wheel-rail contact models based on the finite element method 

are however seldom used for train-track interaction studies, due to the very large 

computational effort implied. The Hertzian model, based on the elliptical contact patch 

assumption, has been widely used in vehicle-track interaction models in the last decades. 

However, for real wheel and rail profiles, the contact patch is always non-elliptical and 

the pressure distribution differs substantially from the one predicted by Hertzian 

solutions. Approximate non-Hertzian models have therefore been developed to provide 

a more realistic description of wheel/rail contact conditions, yet requiring a reduced 

computational effort. Approximate non-Hertzian models include the Kik–Piotrowski 

model based on virtual penetration concept [24-26] and the STRIPES model proposed 

by Ayasse and Chollet [28]. Recently, Liu et al. [31] proposed an extended version of 

the Kik-Piotrowski method which can take into account the effect of yaw and contact 

patch curvature variation and is proved to be more accurate and efficient comparing 

with others. However, the application of this kind of contact model in a vehicle-track 

interaction system is still needed to get a better understanding of dynamic problems 

arising at the interface of wheel and rail. 

The aim of this paper is therefore to present a new train-track interaction model valid in 

a frequency range up to 7 kHz and defined in the time domain, hence suitable for the 

investigation of typical problems related with high-frequency train-track interaction such 

as short pitch rail corrugation and rolling noise. To this aim, an accurate and efficient time-

domain model is established by combining a rotating flexible wheelset model, a complete 

3D discrete-supported track model and a non-linear, non-Hertzian contact model. The 

maximum frequency of validity of the model is set to 7 kHz to ensure the model deals 

satisfactorily with high-frequency wheel-rail interaction problems such as rail corrugation 

and rolling noise yet keeping to a minimum its computational complexity. The main 

innovations of the proposed model lie in the modelling of the 3D discretely-supported track 

and in the use of a non-Hertzian description of wheel/rail contact. The wheelset and the 

rails are modelled using 3D finite element to ensure a realistic and detailed presentation of 

system dynamics in high frequency range. The flexible parts are modelled using an ALE 

approach which describes the model in a moving reference so that on one hand the length 

of the rail model can be reduced and on the other hand the wheelset and rail matrices are 

time-independent. Wheel-rail contact is modelled using the Extended Kik-Piotrowski 



 

 

method [31] to define the shape and size of the contact patch and the distribution of normal 

pressures and the FASTSIM algorithm to compute the distribution of tangential stresses.  

The results presented in the paper focus on the analysis of the effect of wheelset and 

track model on the accurate prediction of high frequency effects in train-track interaction. 

To this aim, results obtained using wheelset and track models having increasing complexity 

are compared and conclusions on the need to incorporate in the analysis detailed modelling 

features such as solid FE modelling of the rail and wheelset or modelling of the discrete 

rail support are drawn depending on the frequency range addressed by the analysis and on 

the outputs of interest (contact forces, rail vibration). 

2 Mathematical model of the wheelset-track interaction 

While multibody vehicle models based on rigid body assumption are suitable for ride 

comfort and stability analyses in a frequency range up to 20-30 Hz, high frequency 

dynamics of train-track interaction is highly influenced by wheelset and track flexibility. 

This paper aims at the high-frequency range and therefore the vehicle model used here 

is simplified into one single wheelset whereas the sprung masses of the vehicle (bogie 

frames, car body) are not considered thanks to the filtering effect provided by vehicle 

suspensions at sufficiently high frequencies [3, 8, 9, 32]. The static forces generated by 

the weight of the sprung masses is however included in the analysis, as these affect 

wheel-rail contact. The wheelset and the rail are modelled as 3D finite element bodies 

with the rail support discretely distributed under the rail foot.  

2.1 Model of the rotating flexible wheelset 

The wheelset model presented here is described as a rotating flexible body, the 

gyroscopic and inertial effects associated with wheelset rotation are introduced in this 

model using an ALE finite element approach [3] based on 3D quadratic solid elements. 

Thanks to the use of the ALE approach, there is no need to consider the changing 

position of the material contact point at each time step in circumferential direction 

(whereas the motion of the contact point in transversal direction is accounted for as 

explained in Section 2.3) and consequently the method is much more efficient during 

the numerical integration. Moreover, the wheelset’s structural matrices are time-

independent so that a modal synthesis of the FE model can be easily performed.  

In this work, the wheelset is assumed to move with constant forward speed along the 

track. Considering an inertial reference XYZ moving with origin in the centre of mass 

of the undeformed body, X axis pointing in the direction of forward movement Y axis 

lateral and Z axis vertical pointing upwards, the position vector s of a material point in 

the wheelset can be expressed as: 



 

 

( , )t= +s u w u                           (1) 

with u the position of the material point in the wheelset’s undeformed configuration 

and w(u,t) the displacement associated with wheelset flexibility, which is assumed to 

be small. Fig. 1 shows the wheelset coordinate system and the displacement vectors of 

a wheelset point.  

The wheelset is modelled according to the Finite Element Method. To reduce the 

computational cost of the model, a modal synthesis is introduced. In this way, the non-

rigid part of the displacement in e-th element in volume ve is: 

( , ) ( ) ( ) ( ) ( ) ( )       e e e e e et t t v= = w u N u x N u Φ u q u ,             (2) 

where Ne(u) is the shape function matrix of the e-th element, xe(t) is the nodal 

displacement of the element, ( )e
Φ u   is a matrix containing the mode shapes for the 

nodes of the e-th element which are computed from the finite element model of the 

wheelset, and q(t) is the modal coordinate vector.  

The derivation of the wheelset’s equations of motion is presented in [3] and results 

in the following equation of motion in matrix form:  

2 2

, , , , ,2 ( ( ))T T T

FE w FE w FE w FE w FE w cw+  + + − =  +q Φ VΦ q Φ K A C Φ q Φ L Q          (3) 

where 
,FE wΦ  is the matrix obtained from the assembling of the e matrices over 

the entire FE model of the wheelset, Ω is the angular speed of the wheelset related to 

its rolling over the rails, V, A, C and L are the matrices obtained from the assembling 

of matrices Ve, Ae, Ce, Le related to the gyroscopic and inertial effects associated with 

wheelset rotation and defined as follows: 
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Finally, cwQ is the vector of generalized forces due to wheel-rail contact. Note that the 

normalization of the modal shapes is such that a unit mass matrix is obtained. 

In this work, a S1002 wheelset profile is modelled using ABAQUS (Fig. 2). 3D solid 

elements with 20 nodes are used in the mesh, which can describe the bending motion 

better than linear solid element. More details can be found in the authors’ previous work 

[32]. 200 modes of the wheelset are chosen to cover a system frequency up to 7 kHz.  



 

 

 

Figure 1. Wheelset reference system, undeformed position vector u and 

displacement due to flexibility w.  

 

 
Figure 2. Finite element model of the wheelset. 

2.2 Model of the track  

The track model presented here is described as a 3D ALE finite element model with 

discrete support to obtain a detailed representation of rail vibration in the high 

frequency range. Using an ALE approach, the rail mesh travels with the contact point 

so it is possible not only to use a shorter model of the rail, but also the calculation of 

wheel/rail contact forces is simplified and results in a more efficient process from a 

computational point of view. A discrete visco-elastic support is added to the rail in order 

to introduce the nonlinear dynamic effect of the rail support. 



 

 

2.2.1 Model of the rail  

The finite element model of the rail is meshed using ABAQUS (Fig. 3). Eight node 

hexahedral solid elements are used in the discretization. The finite element mesh is 

considered to move across the rail volume, with the same constant speed V as the 

wheelset centre of mass. The position vector r of a material point in the rail in an ALE 

reference system can be expressed as:  

( , )t= +r u w u                           (5) 

where u is the undeformed position of the point which is independent on time, and w(u,t) 

is the displacement associated with rail flexibility of position u at time t. According to 

a traditional finite element formulation the vector w(u,t) of material displacement in the 

i-th finite element is: 

( , ) ( ) ( )     it t=w u N u x                        (6) 

where Ni(u) is the shape function matrix of the element and x(t) is the vector of nodal 

displacements for the entire rail model. Because of the formulation in the moving 

reference, time-dependency is introduced to the shape functions matrix of the rail: 

1 2 3( ) ( - , , )      i i u Vt u u=N u N                       (7) 

The velocity and acceleration of the material point take therefore the following 

expressions: 
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The equation of motion of the track model is deduced using Lagrange’s equation. 

According to [33], Lagrange’s equations written with respect to a non-material volume 

subjected to material flow read: 

"
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E E Ed
dS E dS
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
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  F
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         (10) 

Where the last two terms in the left-hand side of the equation are added with respect 

to the usual Lagrange’s equations for a system with no mass flow. In (10) S is the surface 

across which mass flow takes place (control surface), which consists in this case of the 

leftmost and rightmost rail sections delimiting the control volume, "

kE  is the kinetic 



 

 

energy per unit mass: 

" 1

2

T

kE = r r                                  (11) 

and   is the flow of mass across the surface of the control volume: 

( )
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In Eq. (11) and (12) r  is the material velocity of the particles inside the control 

volume and sv  is the speed of the control surface, which is in our case uniform at all 

surface points: 

 0 0
T

s V=v                              (13) 

We notice that the amplitude of the particle’s material velocity rapidly decays with 

the distance from the point of contact with the wheel, as the region of the rail interested 

by bending and torsional deformation being in the order of few multiples of the sleeper 

bay (0.6m) whilst the model considered here extend over a length of 48 m. Hence, at 

the two extremities of the control volume where mass flow takes place the kinetic 

energy per unit mass "

kE  is negligible so that the third term in the left-hand side of Eq. 

(10) is negligible. Furthermore, in the case considered here the component along the 

longitudinal direction x of the material velocity of particles r  is zero because axial 

movements of the rails are not included in the analysis. It follows that on the entire 

control surface: 

0T =r n                                  (14) 

while the product T

sv n  is either ±V depending on which end of the control volume 

is considered. Therefore, denoting by S1 the surface of the rail section we have: 
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Considering the above results and re-writing the generalized force vector F  as the 

sum of four terms representing respectively the effect of elastic forces (described as the 

partial derivative with respect to vector x   of the potential energy Ep), the viscous 

damping forces (described as the partial derivative with respect to vector x   of the 

dissipation function D), the generalized forces due to wheel-rail contact Fct and the 

generalized forces Fs due to the effect of discrete rail support (see section 2.2.2): 

( ) ( )

T T

p
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E D
t t
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= − − + +   

   
F F F

x x
               (16) 

Neglecting the third term in the left-hand side of Eq. (10) for the reasons stated above, 

and considering Eq.s (15) and (16), Lagrange’s equations for the rail modelled 

according to the ALE approach are finally obtained: 
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For the 3D solid element rail model, the expression of the kinetic energy is: 
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The potential energy of the rail model is: 

r

1

2
pE = T

x K x                            (19) 

with Kr the stiffness matrix of the rail model obtained from a standard finite element 

method. 

Since the flow of the mesh through the material coordinates does not change the 

mode shapes in spatial coordinates, the mode shapes of the rail model do not depend 

on time, which makes it possible to use modal synthesis during the simulation: 

,FE r=x Φ q                            (20) 

where q and ,FE rΦ   are the modal coordinates and the modal matrix of the finite 

element rail model, respectively. 

Introducing in Eq. (18) the following notation: 
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and considering Eq. (20), the expression of the kinetic energy becomes: 

2
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whilst the expression of the potential energy becomes: 

, r , r
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2 2
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p FE r FE rE = T T
q Φ K Φ q = q K q                   (23) 

A structural damping term is introduced for the rail in the form: 

r

1

2
D = T

= q C q                          (24) 

with the modal damping matrix 
rC  defined as: 

r , r ,2 T

FE r FE r=C Φ K Φ                        (25) 

the loss factor   being set to  =0.012. 

Considering Eq.s (22) to (24) and assuming a normalization of the mode shapes that 

provides a unit mass matrix, the left hand side of the Lagrange’s equation for the rail in 

the new set of modal coordinates q reads: 
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(26) 

The length considered for the track model is 48m. Both rails are modelled, each one 

coming in contact with one of the two wheels. For each rail, 1000 modes are considered 

to cover a system frequency up to 7 kHz. Fig. 4 compared the vertical receptance of the 

rail obtained from the modal superimposition to the result directly obtained from the 

FE model using ABAQUS. The modal rail modes are nearly the same with the direct 

rail receptance obtained from the FE model, indicating that the modal synthesis can 

successfully describe the rail flexibility up to 7 kHz. By using such modes, 

deformations of the cross-section can be described in addition to the usual deformations 



 

 

such as bending or torsion. Examples of the rail modes are shown in Fig. 5.  

 

Figure 3. Reference system of the rail, undeformed position vector u and displacement due 

to flexibility w. 

 

Figure 4. Direct rail receptance at the contact point from modal superimposition and direct FE 

model. 



 

 

      

(a)                                  (b) 

      

(c)                                (d) 

Figure 5. Rail modes: (a) Rail web bending at 1530 Hz; (b) Rail foot rocking at 2576 Hz; 

(c) Rail foot flapping at 3078 Hz; (d) Rail foot flapping at 3098Hz.    

2.2.2 Model of the rail support 

Considering the discrete nature of rail support is pivotal to reproducing some train-track 

interaction phenomena in the high frequency range, as the discrete support affects the 

natural frequencies of the rail, e.g. the so-called pinned-pined resonance [34, 35] and 

the periodic variation of rail impedance is one of the mechanisms triggering the 

formation of rail corrugation [36]. In this work, the rail supports are represented as 

distributed linear visco-elastic elements set under the rail foot. The elastic energy and 

dissipative function related with all these elements read:  
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where Nsup is the number of finite elements in the rail foot coming in contact with a 

rail pad, si is the portion of the i-th element’s lower face contacting the pad (see below), 

β and η  are square matrices of order 3 defined as: 

   ;n s n s s ndiag diag     = =β η            (29) 

with βn and βs the bulk modulus (stiffness per unit area) of the pad in normal and shear 

direction respectively, and ηn, ηs  the damping coefficient per unit area of the pad in 

normal and shear direction. 

To simplify the notation in Eq. (32), we introduce matrices Ksup, Csup defined as: 
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            (30) 

Introducing the modal approach in Eq.s (31) and (32) and applying Lagrange’s 

derivatives, the following terms are obtained for the generalized forces applied on the 

rail by the discrete supports: 

sup sup
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Due to the discrete nature of the rail support and to the ALE model of the rail, 

matrices Ksup and Csup are time dependent and need to be re-computed at each time step. 

To this aim, at a given time step a search is performed of the finite elements in the rail 

foot being in contact with a rail pad and for each one of these the rectangular portion of 

the bottom face of the element in contact with the pad is found. This consists of the 

entire width of the element in Y direction (see Fig. 3) and of a region of X values ranging 

from a to b, being these values the X coordinates of the leading and trailing edge of the 

rectangular portion as shown in Fig. 6. To speed-up the process of computing matrices 

Ksup and Csup the surface integrals in Eq. (30) are computed in closed form as a function 

of parameters a and b, thanks to the simple analytical expression taken by the shape 

functions on the bottom face of the element.  



 

 

 

Figure 6. Discrete support under the mesh of rail foot (a and b indicate the position of the 

support with respect to one element).  

In order to avoid time-varying structural matrices for the rail model, the stiffness and 

damping terms arising from the discrete rail supports are moved to the right hand side 

of the equations, in the form a system of visco-elastic forces Fs: 

, sup , , sup ,( ) ( )T T

s FE r FE r FE r FE rt t= − −F Φ C Φ q Φ K Φ q                  (32) 

Considering Eq.s (26) and (32), the equations of motion of the track model read as 

follows: 

2

, , , ,( 2 ( )T T

r FE r r FE r FE r r r FE r ct sV V+ − + − = +q C Φ D Φ )q Φ K A Φ q F F         (33) 

With Fct the vector of generalized forces arising from wheel/rail contact (cf. Section 

2.3). 

 

2.3 Wheel-rail contact model 

Prior to the simulation, the analysis of wheel–rail contact geometry for different 

positions of the lateral shift of the wheelset relative to the rails is performed, considering 

theoretical S1002 wheel profiles and UIC60 rail profiles with 1:40 inclination. From 

this analysis, the contact parameters required to compute wheel–rail contact forces are 

stored in a contact table [37]. Contact parameters include the contact angle, the variation 

of the wheel rolling radius with respect to the nominal radius and the curvatures of the 

wheel and rail profiles in the contact point region. 

Considering the use of the ALE approach, the position of the geometric contact point 

on the rolling surfaces is not changing in circumferential direction on the wheel and the 

same happens for the longitudinal position of the contact point on the rail. However, 

the transversal movement of the contact point on the wheel and rail surfaces is 



 

 

considered in the calculation of wheel/rail contact forces. To this aim, the relative 

wheel/rail displacement in lateral direction is determined for each time instant, the 

contact table is then used to derive the transversal position of the contact point as a 

function of the relative wheel/rail displacement in lateral direction; note that in doing 

so, the effect of wheelset and rail deformability on the transversal movement of the 

contact point is neglected. This is however an acceptable approximation, as the motion 

of the contact point across the wheel and rail transversal profile is mostly due to the 

rigid relative motion of the wheel over the rail which is allowed by the gap existing 

between the wheel flange and the inner side of the rail. 

Once the transversal position of the contact point is determined, the displacement 

and velocity of the contact point on the wheel and rail surfaces is obtained by means of 

linear interpolation of the nodal displacements. Then, the relative wheel/rail 

displacement and velocity in the contact point obtained from each time step is projected 

along the normal and tangential directions using the local inclination of the tangent 

plane (contact angle) coming from the contact table. The relative displacement in 

normal direction is used as the normal approach   to compute the normal contact 

force, while the components of the relative wheel/rail velocity in the tangent plane are 

used to derive the creepage components used to derive the tangential stresses and forces, 

see below. 

2.3.1 Solutions of the normal and tangential contact problems 

To get a realistic representation of wheel/rail contact in the simulation, the Extended- 

Kik–Piotrowski (EKP) method [31] is used in the wheelset-track interaction model. 

This is a generalization of the Kik–Piotrowski algorithm [26] and is capable of 

representing non-Hertzian contact conditions between the wheel and the rail also 

considering the effect of a relative yaw rotation of the profiles. 

The EKP method is a fast and non-iterative method based on virtual penetration 

hypothesis. When the undeformed surfaces of wheel and rail at the contact point are 

shifted towards each other by a distance , the EKP method assumes they are virtually 

penetrated to a depth 
0 =0.5    and the resulting projection region of the 

interpenetration corrected by a scaling factor k is taken as an approximation of the 

actual contact zone. The scaling factor has been determined on the basis of numerous 

tests carried out using program CONTACT and finally a value of 0.5 showed a good 

agreement with program CONTACT in [31]. The contact patch is then partitioned into 

strips parallel to the direction of wheel rolling, which is chosen as the x-axis of a local 

reference defined in the contact plane. The normal force and maximum pressure over 

the contact patch are expressed as: 
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where xl, xt represents the leading and trailing edges of the contact patch in x direction 

and yl, yr represents the left and right edges of the contact patch in y direction. R is the 

rolling radius of the wheel. In order to estimate the normal pressure distribution over 

the contact patch, the strips in the contact zone are divided into m×n cells. For each cell 

the pressure is assumed to be constant and is determined according to the following 

formula: 

2 201
( , ) (1 ) ( )

(0)
l

l

p
p x y x y x

k x
= − −                          (35) 

The tangential problem is solved using the FASTSIM algorithm [38] by Kalker. The 

flexibility parameter L used by the FASTSIM algorithm to define the tangential stresses 

in the adhesion region is obtained from an equivalent ellipse defined by setting the 

ellipse area equal to the area of the non-elliptic contact patch and the ellipse semi-axes 

ratio equal to length to width ratio of the patch [26]. The tangential stresses are 

calculated from the creepages at the contact patch. Slip occurs in the region where the 

tangential stresses predicted are greater than the traction bound. The formulation for the 

traction bound used in this paper is obtained by applying Coulomb’s friction law locally 

with a constant friction coefficient. The tangential forces are finally obtained from the 

numerical integration of the stresses over the contact patch.  

2.3.2 Optimization of contact patch discretisation 

The EKP method together with the FASTSIM solution to wheel-rail contact is proved 

to be very fast in [31] for a local contact calculation with the contact patch divided into 

53 strips for both the x and the y direction. However, the number of strips to be used for 

discretizing the contact patch needs to be carefully evaluated when tens of thousands 

time steps are considered in an on-line simulation of the wheelset-track interaction. In 

order to satisfy both accuracy and time efficiency, the wear number per unit area 

(Wn=Tγ/A) [39] of each single contact with different numbers of strips on the contact 

patch was investigated, see Fig. 6. In this analysis, the tangential creepages are assumed 

to be 0.1%. [SB1][s2]In Fig. 7, a smoothing spline interpolation of the points is used to 

show the general trend of the wear number with the increase of the number of strips. 

The convergence of the wear number seems to be obtained already using 15 strips. 

However, for a better evaluation of the contact condition, a conservative choice of using 

19 strips in the lateral direction of the contact plane is chosen for the on-line simulation. 



 

 

 

Figure 7. Effect of the number of strips in the lateral direction of the contact plane on wear 

number (0.1% creepage). 

A typical contact condition between S1002 wheel profile and 1:40 inclined UIC60 

rail profile described by EKP method is shown in Fig. 8, where the contact patch is 

clearly non-elliptical and the maximum pressure occurs at the left end of the contact 

patch, which would definitely influence further study of wear calculation and 

corrugation. 

 

Figure 8. Normal and tangential solution with the contact patch divided in 19 strips (60 kN 

normal load, 0.1% longitudinal and lateral creepage).  

3 Results and discussion 

In this section, some numerical results of train-track interaction numerical simulation 

are presented and analyzed for one case considering sinusoidal rail corrugation and for 

one case considering random rail corrugation. The simulation considers the vehicle 

running at 300 km/h along a tangent track with a wheel load of 60 kN. Simulation 



 

 

parameters related to the wheelset and the track can be found in Table 1. Simulation 

results are compared in terms of wheel/rail contact forces and vibration spectra 

evaluated at different points on the rail section. Firstly, the wheel/rail contact forces 

under sinusoidal rail corrugation for different model options are investigated. Secondly, 

the wheel/rail contact forces and vibration spectra under a random rail corrugation are 

investigated to study the effect of rail flexibility with a focus on the high frequency 

range, i.e. for frequencies above 1 kHz. 

Table 1 Simulation parameters 

Description Value 

Wheelset type S1002 

Wheelset mass 1375 kg 

Axle load 120 kN 

Rail type UIC 60 

Sleeper spacing  0.6 m 

Track length 48 m 

Rail support vertical stiffness 3×108 N/m 

Rail support vertical damping 3×104 Ns/m 

Rail support lateral stiffness 2×107 N/m 

Rail support lateral damping 8×103 Ns/m 

Rail support longitudinal stiffness 2×107 N/m 

Rail support longitudinal damping 8×103 Ns/m 

Ballast vertical stiffness 8×107 N/m 

Ballast vertical damping 1×105 Ns/m 

Ballast lateral stiffness  8×106 N/m 

Ballast lateral damping  8×103 Ns/m 

Ballast longitudinal stiffness 8×106 N/m 

Ballast longitudinal damping 8×103 Ns/m 

 

3.1 Responses to sinusoidal rail corrugation  

In this section, two harmonic profiles of rail corrugation with different wavelengths are 

selected to see the influence of wheelset, track and contact options on the contact forces. 

The amplitude of the corrugation is set to be 48.6 µm, which is the same as one case 

reported in [3].  

3.1.1 Wheel-rail contact force for different track options 

In order to study the effect of rail flexibility on wheel-rail contact forces, a sinusoidal 

rail corrugation with 0.06 m wavelength is selected, which is one tenth of the sleeper 

bay. With the vehicle velocity being 300 km/h, the excitation frequency in this case is 

1389 Hz. Three different options for track modelling are considered, in combination 



 

 

with a rotating flexible wheelset and a non-Hertzian/FASTSIM contact model. The 

three track models considered are: a Timoshenko beam element discrete-supported 

track model, a 3D ALE continuous-supported track model and a 3D ALE discrete-

supported track model are considered in this study. The Timoshenko beam track model 

comes from the authors’ previous work [32]. This track model considers both the 

vertical and the lateral movement of Timoshenko beam element and is proved to be 

valid in the frequency range up to 1.5 kHz in vertical direction and 1 kHz in lateral 

direction. The result from the Timoshenko model is firstly compared with the output 

from an established model developed in literature [3], which contains a flexible 

wheelset, a modal-based Timoshenko-beam track and a Hertzian/FASTSIM contact 

model. Moreover, the responses with 3D discrete-supported track model and 3D 

continuous-supported track model are compared with a Timoshenko beam track model 

from the authors’ previous work [32]. 

Fig. 9 compares the time histories of the vertical contact forces with different model 

configurations. In Fig. 9(a) this quantity is compared for two simulations performed 

using the Timoshenko beam track model in combination with the non-Hertzian EKP 

contact model and a Hertzian contact model, respectively. The two results show nearly 

the same amplitude and trend, indicating that the effect of using a non-Hertzian contact 

model is quite weak as far as the calculation of the normal contact force is considered. 

Fig. 9(b) shows the vertical contact force using the three different track models: 

Timoshenko beam on discrete supports, 3D solid FE on continuous support and 3D 

solid FE on discrete supports. Both models considering the discrete support of the rail 

give rise to two harmonic components of the normal contact force, one corresponding 

to the exciting corrugation wavelength and the other caused by the sleeper passing 

effect whose wavelength is determined by the sleeper bay (0.6 m). In the case of the 

continuously-supported rail model, the sleeper passing effect is not accounted for by 

the model and, as a consequence, the dynamic fluctuation of the contact force is 

significantly reduced compared to the other two cases. The model based on Timoshenko 

beams on discrete supports shows a slightly higher force fluctuation compared to the 

solid FE model with discrete track support. This is due to the fact that the beam model 

of the track has a slightly higher mechanical impedance in the high frequency range, as 

it inherently introduce a fictitious constraint by assuming a rigid motion of the rail 

sections.  



 

 

 

(a) 

 

(b) 

Figure 9. Wheel–rail vertical contact force when the wheelset travels on a corrugated track 

with different model configurations (the dotted vertical line indicates position of the rail 

support). 

Fig. 10 shows the lateral contact forces for different track models. Similar to the 

analysis of vertical force in Fig. 9, Fig. 10(a) compares the lateral contact force for the 

Timoshenko beam track model with the non-Hertzian EKP contact model and with the 

Hertzian contact model respectively. In this case, the results obtained using the two 

different contact models shows some non-negligible difference, the dynamic 

fluctuations calculated using the non-Hertzian model being generally larger than for the 

Hertzian model. Fig. 10(b) shows the lateral contact force using the three different track 

models. For this contact force component the 3D solid FE model with continuous rail 



 

 

support predicts a lower fluctuation of the force as it does not consider the excitation 

caused by the sleeper passing effect. Furthermore, the 3D solid FE model with 

discretely supported rail shows a larger fluctuation of the lateral force compared to the 

Timoshenko beam model, since the Timoshenko beam element fails to describe lateral 

cross section flexibility of the rail which becomes important at frequencies higher than 

1 kHz. 

 
(a) 

 

(b) 

Figure 10. Wheel–rail lateral contact force when the wheelset travels on a corrugated track 

with different model configurations (the dotted vertical line indicates position of the rail 

support). 



 

 

3.1.2 Wheel-rail contact force for different wheelset options 

In order to study the effect of wheelset flexibility on wheel-rail contact forces, a 

sinusoidal rail corrugation with 0.053 m wavelength is selected. With a vehicle speed 

of 300 km/h, the corresponding frequencies of the corrugation is 1570 Hz, which is 

related to the 4th backward wheelset bending mode of the rotating wheelset. 

Together with a non-Hertzian/FASTSIM contact model and a 3D ALE discrete-

supported track model, a rigid wheelset model and a 3D ALE flexible wheelset model 

are considered in this study. Fig. 11 compares the vertical and lateral contact forces for 

the different wheelset models. Considering first the vertical forces shown in Fig. 11(a), 

the results obtained considering the rigid wheelset and flexible wheelset models are 

similar, leading to the conclusion that the influence of wheelset flexibility is negligible 

in the vertical direction. For the lateral direction in Fig. 11(b), more clear difference can 

be found between the rigid wheelset and the rotating flexible wheelset. The maximum 

amplitude obtained considering the flexible wheelset model is nearly 2.5 times higher 

than the same result when a rigid wheelset model is used, indicating a remarkable 

influence of wheelset flexibility.  

 

(a) 



 

 

 

(b) 

Figure 11. Contact forces with a harmonic exciting frequency of 1570 Hz: (a) vertical 

contact force; (b) lateral contact force. 

3.2 Responses to random rail corrugation 

In this section, the wheelset-track interaction dynamic responses in the high frequency 

range are examined considering excitation coming from a random rail corrugation. The 

corrugation profile considered is a space realization of a 1/3 octave band spectrum 

defined by ISO 3095:2005 standard [40], covering a range of wavelengths from 0.01 m 

to 0.63 m. The vehicle velocity is 300km/h, leading to a frequency range from 132 Hz 

to 8 kHz for the excitation. 

3.2.1 Analysis of wheel-rail contact force  

Fig. 12(a) shows the dynamic contact force in vertical direction for a 0.2 second 

simulation, and in Fig. 12(b) a detail of the same time history, to better appreciate the 

differences between the three track models considered. The dynamic fluctuation of the 

force is much larger than for the case of harmonic excitation considered in Fig. 8. 

Therefore, the influence of the sleeper passing frequency is in this case not clearly 

visible, as the effect of rail roughness is prevailing. The Timoshenko beam model shows 

a similar fluctuation trend compared to the 3D solid FE model with discretely supported 

rail, while the 3D solid FE model with continuously supported rail shows larger 

difference compared to the other two cases. 

For the lateral force, see Fig. 13, larger differences are observed in the results 

obtained using the three models of the track. The results of the two models considering 

the discrete support of the track show for this component of the contact force the typical 

wavelength corresponding to the sleeper bay which is due to the sleeper-passing 



 

 

excitation.  

 

 

Figure 12. Vertical contact forces of the 3D wheelset-track interaction model for different 

contact models and excitation caused by random track irregularities. a) entire time history 

(0.2s) b) detail (0.02 s). 

 



 

 

 

Figure 13. Lateral contact forces of the 3D wheelset-track interaction model for different 

track options and excitation caused by random track irregularities. a) entire time history (0.2s) 

b) detail (0.02 s). 

For further analysis, the 1/3 octave band spectra of the vertical and lateral contact 

forces for different track option are investigated, see Fig. 14. In both diagrams, a peak 

is observed at about 140 Hz, corresponding to the sleeper passing frequency, for the 

two models with discrete rail support. However, the sleeper passing influence is much 

more clearly visible for the lateral component of the contact force, which is consistent 

with the analysis of the signals in the time domain. The spectra of the vertical force for 

the two models with discrete rail support also show another peak at the pinned-pinned 

frequency, close to 1 kHz. The spectrum of the vertical contact force obtained using the 

Timoshenko beam model is quite similar to the one obtained using the 3D solid FE 

model with discretely supported rail up to 2 kHz approximately, but fails to describe 

the harmonic components of rail vibration for higher frequencies due to the fact that the 

Timoshenko beam element cannot reproduce the dynamics of the rail associated with 

non-rigid motion of the rail section. In the lateral direction, the Timoshenko beam 

model shows a significantly lower force component at frequencies higher than 1 kHz, 

compared to both continuously and discretely supported 3D solid FE models. On the 

other hand, the 3D solid FE model with continuously supported rail fails to describe 

several resonances caused by the discrete support up to a mid-high frequency. However, 

in a frequency range higher than 2 kHz this model shows a good agreement with the 

3D solid FE model with discretely supported rail. 



 

 

  

Figure 14. 1/3 Octave spectrum of contact forces of the 3D wheelset-track interaction 

model for different track options and excitation caused by random track irregularities. Left: 

vertical force. Right: lateral force. 

3.2.2 Analysis of rail vibration  

In this section, the normal component of the rail vibration velocity is considered for 

three different positions in the rail section, namely at the railhead, rail web and rail foot, 

points 1, 2 and 3 respectively in Fig. 15. These quantities are directly related to noise 

emission from different portions of the rail surface. 

For the two solid FE models, the normal velocity at each point is evaluated as the 

projection along the normal direction of the vertical and lateral components of the 

velocity vector at one single node of the FE model, whereas for the Timoshenko beam 

model the normal velocity at the three considered locations is evaluated assuming a 

rigid motion of the rail section. 



 

 

 

Figure 15. Finite element mesh of the rail section and position of points 1, 2, 3 at which the 

normal velocity of the rail is evaluated. 

Fig. 16 to 18 show the 1/3 octave band spectrum of the normal velocity for the three 

track models considered. In a frequency range up to 1 kHz, the spectra obtained using 

the Timoshenko beam model and the solid FE model with discrete rail support are very 

similar, confirming that the Timoshenko beam model reproduces correctly the vibration 

of the rail in this frequency range. However, at higher frequencies, the results of the 

two models show remarkable differences at all positions, with the solid FE model 

predicting larger vibration velocity by +2.5 to 4.5 dB on average. On the other hand, 

the 3D solid FE model with continuously supported rail shows significant deviations 

from the same model but with discretely supported rail in a frequency range up to 1.5 

kHz. These difference are mostly due to the fact that the model with continuous rail 

support does not consider the excitation deriving from the sleeper passing at 140 Hz 

and some track resonances e.g. the P2 resonance at about 400 Hz, the pinned-pinned 

resonance in vertical and lateral direction at about 1 kHz. However, at higher 

frequencies, the vibration response of the two solid FE models shows a good 

consistency with each other.  



 

 

 

Figure 16. 1/3 Octave spectrum of normal velocity at location 1 in Fig. 12 for different 

track options. 

 

Figure 17. 1/3 Octave spectrum of normal velocity at location 2 in Fig. 12 for different track 

options. 

 

Figure 18. 1/3 Octave spectrum of normal velocity at location 3 in Fig. 12 for different track 

options. 



 

 

Table 2 reports an estimate of the computational effort required by the calculation for 

different wheelset models and track models in presence of random rail corrugation. The 

table shows that the flexible wheelset model combined with the 3D ALE model of the 

rails on discrete supports requires the largest computational effort. discrete supported 

track. Considering the same wheelset model and the continuously supported 3D ALE 

model of the rails results in approximately reducing to 50% the CPU time, since the 

calculation of the time-varying forces generated by the discrete supports is no longer 

required. Using the Timoshenko beam model of the track results in a CPU time required 

which is similar to the case of the continuously supported 3D rail model. Finally, using 

a rigid model of the wheelset results in further reduction of the CPU time compared to 

considering wheelset flexibility, due to the lower number of modal coordinates 

involved in the simulation. Therefore, the choice of the most appropriate model for 

wheelset and track flexibility should be the result of a best deal between accuracy and 

computational effort, which normally depends on the problem under study. 

Table 2 CPU time (considering an Intel(R) Core(TM) i7-6700HQ CPU 2.60GHZ processor) 

required for performing a 0.2s numerical simulation in presence of random rail corrugation 

Model options CPU time (min) 

Rigid wheelset + Timoshenko beam track 11 

Flexible wheelset + Timoshenko beam track 23 

Rigid wheelset + 3D continuous supported track 10 

Flexible wheelset + 3D continuous supported track 21 

Rigid wheelset + 3D discrete supported track 31 

Flexible wheelset + 3D discrete supported track 43 

4 Conclusion 

This paper proposed a novel time domain rotating flexible wheelset-3D track 

interaction model in an ALE approach together with a non-Hertzian EKP contact, which 

is valid for dynamic simulation up to 7 kHz. This work helps to extend the valid 

frequency range of current train-track interaction models with limited time effort by 

introducing an ALE coordinate to the FE wheelset and track model. Moreover, by 

introducing the non-Hertzian non-linear EKP wheel/rail contact, the interaction model 

can be used to investigate the formation of short pitch corrugation on the rail head and 

on the wheel tread. The effect of different track options on wheel/rail contact forces and 

rail section vibrations was also investigated. 

Based on the comparison of contact forces and rail vibrations using three different 

track options, the performance of different wheelset-track interaction models was 



 

 

discussed. On the one hand, neglecting discrete support of the rail may lead to an 

underestimation of the dynamic contact forces generated by rail support resonances 

below 1.5 kHz, on the other hand, using a simplified Timoshenko beam track model for 

track dynamics may have a serious impact on contact forces and rail vibration for 

frequencies higher than 1-1.5 kHz. Moreover, the Timoshenko beam element fails to 

describe the deformation of the rail section, which has a remarkable influence on rail 

web and rail foot vibration. Overall, the results show that simulation results are highly 

sensitive to the track model adopted. Considering the computational cost, the Timoshenko 

beam track model can be used for interaction problems below 1 kHz, such as studying the 

effect of wheel flats and wheel out-of-roundness, while the 3D solid FE model with 

continuously supported rail may be applied in wheel-rail interaction problems 

concentrating on the high frequency range, such as high frequency rail-wheel noise 

generation.   

The 3D ALE wheelset-discrete-supported track interaction model in this paper can 

be used for investigating specific interaction problems in the entire frequency range 

from tens of Hz to some kHz, at the expense of a higher computational effort required, 

compared to the other two models. Future developments of this work will be addressed 

to using the train-track interaction models developed in the study of railhead 

corrugation and rolling noise. 
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