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Abstract: Enantiomerically enriched 2-hydroxymethylalkanoic acids were prepared by oxidative
desymmetrisation of achiral 1,3-diols using immobilized cells of Acetobacter aceti in water at 28 ◦C.
The biotransformations were first performed in batch mode with cells immobilized in dry alginate,
furnishing the desired products with high molar conversion and reaction times ranging from 2 to
6 h. The biocatalytic process was intensified using a multiphasic flow reactor, where a segmented
gas–liquid flow regime was applied for achieving an efficient O2-liquid transfer; the continuous flow
systems allowed for high yields and high biocatalyst productivity.

Keywords: oxidation; whole cells; immobilization; biocatalysis; flow reactor; reactor design

1. Introduction

Biocatalytic oxidations are attractive reactions, since they often occur with regio- and
stereoselectivity, under mild conditions, and utilizing environmentally benign oxidants (i.e., O2) [1–3].
Dehydrogenases of acetic acid bacteria are versatile and selective enzymes for alcohol oxidation [4–6].
The production of structurally diverse aldehydes [7], aldoximes [8], lactones [9], and carboxylic
acids [10,11] has been achieved using whole cells of acetic acid bacteria, often with high
enantioselectivity [12,13]. Stereoselective oxidation of achiral 2-alkyl-1,3-diols has been previously
performed in an aqueous solution at room temperature using free whole cells of acetic acid
bacteria to afford the corresponding chiral 2-hydroxymethyl alkanoic acids [14,15]. Oxidation of
one of the two enantiotopic primary alcohols allowed for desymmetrization of the achiral
substrates, furnishing the desired 2-hydroxymethyl alkanoic acids with medium-to-high enantiomeric
excesses [15]. Low productivity and side product formation were the main drawbacks of this
biotransformation; in fact, formation of the corresponding α-methylenic alkanoic acids and α-methyl
alkanoic acids were observed due to concurrent dehydration, in particular when the substituent in
2-position was ethyl or n-propyl [15].

Whole cells can be immobilized for enhancing stability and easy reuse [16]; moreover,
immobilization may change substrate/product diffusion, thus affecting reaction rates and altering
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inhibition effects [17]. Additionally, immobilized cells can be used in packed bed flow micro- and
meso-reactors, which ensure high surface-to-volume ratios, thus providing high heat and mass
transfer rates. Flow packed bed reactors generally ensure that the substrate stream flows at the
same velocity through all the reactor volume with no back-mixing [18,19]. Flow-based biocatalysis
has been successfully applied for improving the performances of different redox biotransformations,
such as alcohol oxidation [20], stereoselective carbonyl reduction [21], interconversion of carbonyls
and amines using transaminases [22–24], hydroxylation [25,26], and amino acid oxidation [27].

The transfer of gas (air or O2-enriched air) to the aqueous liquid phase is often the factor limiting
the efficiency of liquid phase bio-oxidations [28–30]; a way to increase the reaction rate is to facilitate
mass transfer by increasing the interfacial area and applying a segmented gas–liquid flow regime [31].
A segmented gas–liquid flow regime (Taylor flow) is characterized by gas bubbles alternating with
short liquid slugs with recirculation occurring within segments of the two-phase segmented flow,
providing an efficient mass transfer between the gas and liquid phases [18,31,32].

In this work, we have used immobilized cells of Acetobacter aceti MIM 2000/28 for the continuous
flow oxidation of 2-alkyl-1,3-diols to chiral 2-hydroxymethyl alkanoic acids. The aim of the work was to
intensify this heterogeneous aerobic oxidation using a flow reactor, after the previous observation that
oxidation of 2-methyl-1,3-propanediol could be performed [32]. Continuous flow-based oxidation with
immobilized cells was carried out under a segmented air–water flow regime. In particular, the reactor
consisted of a packed bed reactor with immobilized cells fed with an aqueous solution containing
the substrate and a gaseous stream of pressurized air. The three-phase system proved to be highly
applicable to the oxidation of different 2-alkyl-1,3-diols with satisfactory selectivity and productivity.

2. Results

2.1. Batch Biotransformations with Immobilized Cells

Acetobacter aceti MIM 2000/28 was immobilized in dried alginate beads (DALGE), a form
of immobilization that proved suitable for preparing packed bed reactors with whole cells used
under flow conditions [33] due to the good stability over time and during subsequent cycles of
biotransformations. Dried alginate beads showed variable semi-spherical shapes, with diameters
ranging from 0.8 to 1.8 mm; when re-hydrated in buffer, DALGE swelled up to spheres with an average
diameter of 3.2 mm. 2-Methyl-1,3-propanediol 1a was firstly used as current substrate for optimizing
the biotransformation in batch mode. Substrate concentration, buffer pH, and immobilized cells
concentration were used as control parameters, and optimization was carried out using a multisimplex
approach [34]; conversion and enantiomeric excess of the product were the response variables.
Batch biotransformations were carried out at 28 ◦C in 10 mL screw capped tube using 12 mM substrate
dissolved in acetate buffer (20 mM pH 6.0) with 40 mg/mL of alginate beads containing 10 mgdry weight
of cells in a final volume of 2 mL. Optimized batch conditions gave (R)-3-hydroxy-2-methylpropanoic
acid 3a with >97% molar conversion and ee = 96% after 120 minutes. Minor amounts of the aldehyde
2a (>10 %) were transiently observed during the reaction, before its conversion into 3a (Scheme 1,
Figure 1).Catalysts 2019, 9, x FOR PEER REVIEW 3 of 10 
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[15], since the by-products (e.g., α-methylenic alkanoic and α-methyl alkanoic acids) detected in 
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The stability of the immobilized cells was investigated by re-using the beads in successive 
reactions (Figure 2). The operational stability was quite limited, since more than 50% of the 
original activity was lost after three cycles of reaction. 
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Scheme 1. Oxidation of achiral 2-alkyl-1,3-diols using immobilized Acetobacter aceti. 1a: R = Me; 1b: R
= Et; 1c: R = n-Bu; 1d: R = n-Pent.
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Figure 1. Time-course of the oxidation of achiral 2-substituted 1,3-diols 1a–d with immobilized cells of
Acetobacter aceti 2000/28 in conventional shaken flasks (batch mode). Reaction conditions: 0.60 mmol of
substrate, 2.0 g of alginate beads containing 500 mgdry weight of cells in 50 mL of acetate buffer (20 mM
pH 6.0) at 28 ◦C.

Considering the good results obtained with compound 1a and the general advantages related to
immobilized cells, the biotransformation of achiral 2-alkyl-1,3-diols 1a–d was carried out under the
conditions optimized for 1a (Scheme 1).

All the tested substrates gave the desired chiral 2-hydroxymethyl alkanoic acid as the major
product, and only small amounts of the intermediate aldehydes were observed during the reaction
(Figure 1); enantioselectivity was not affected by immobilization and resulted in the same with
free cells [15]. Reaction rates showed a strong dependence on the steric hindrance at the C2
position. Interestingly, dried immobilized cells were much more selective than free cells [15],
since the by-products (e.g., α-methylenic alkanoic and α-methyl alkanoic acids) detected in the
biotransformation with free whole cells were not observed.

The stability of the immobilized cells was investigated by re-using the beads in successive reactions
(Figure 2). The operational stability was quite limited, since more than 50% of the original activity was
lost after three cycles of reaction.Catalysts 2019, 9, x FOR PEER REVIEW 4 of 10 
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Figure 2. Re-usability of immobilized Acetobacter aceti MIM 2000/28.

2.2. Oxidation in Flow Reactors

A packed bed reactor was prepared by filling a glass column (i.d. 15 mm) with Acetobacter
aceti MIM 2000/28 immobilized in dry alginate beads (400 mg containing 100 mgdry weight of cells)
and flowing acetate buffer solution (20 mM, pH 6.0) through the column for one hour (flow rate:
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400 µL/min). The alginate beads swelled until their volume was triplicated, reaching a final volume
of 5.1 mL [32]. A first set of experiments was carried out by simply feeding the packed bed reactor
with 1a (12 mM in acetate buffer) at different flow rates: no trace of biotransformation was found,
no matter the flow rate employed. This failure was ascribed to lack of available oxygen in the flow
stream, since molecular oxygen takes part in the regeneration of cofactors involved in the microbial
oxidation [5]. In order to guarantee a suitable oxygen supply in the aqueous phase, a segmented
gas–liquid flow was applied [31]: the gas phase (pressurized air controlled by an air-flow meter)
and the liquid phase (buffer solution containing the substrate driven by a HPLC pump) merged in a
T-junction, thus generating air–liquid segments in the flow stream entering the reactor (Figure 3).
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Table 1 shows the specific reaction rates and the conversions obtained by varying substrate
concentration and flow rate of the liquid phase. The specific reaction rate (rf) of the continuous-flow
system was calculated from the concentration of the formed product ([P] expressed as µmol mL−1),
the flow rate of the liquid phase (f expressed as mL/min), and the mass of the biocatalyst expressed as
dry weight of the cells employed (m expressed as gdry weight), according to equation 1 [35]:

rf = [P]·f/m (µmol min−1 g−1) (1)

Table 1. Continuous flow enantioselective oxidation of 1a with immobilized Acetobacter aceti MIM
2000/28.

Entry Substrate [mM] Flow Rate a (µL min−1) rf (µmol min−1gdry cells
−1) c b (%)

1 12 15 1.80 >97
2 12 30 3.60 >97
3 12 60 6.12 85
4 24 15 3.60 >97
5 24 30 7.20 >97
6 24 60 7.78 54
7 36 15 4.86 90
8 36 30 8.21 76
9 36 60 11.88 55

a Flow rate of the liquid phase. b Conversions determined by HPLC.

The highest rate was achieved with a liquid flow rate of 60 µL min−1 with an inflowing solution
containing 36 mM of substrate (entry 9, Table 1), but the most favourable compromise between rate
and complete conversion was achieved at lower liquid flow rate (30 µL min−1; entry 5, Table 1).
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Under these conditions (table 1, entry 5), to evaluate the stability of the bioreactor, the continuous
flow reaction was then performed over 24 h. As depicted in Figure 4, the biocatalyst showed excellent
performance in terms of conversion for the first 12 h; then, a slight decrease of the initial activity was
observed, obtaining 82% of conversion after 24 h (Figure 4). No release of enzymatic activity was
observed in the outlet flow during the continuous operation.

Table 2. Continuous enantioselective oxidation of achiral 2-substituted 1,3-diols 1a–d (24 mM) with
immobilized Acetobacter aceti MIM 2000/28 in continuous flow. Liquid flow stream: 30 µL min−1.

Entry Substrate c (%) ee (%) [a] rf (µmol min−1gdry cells
−1)

1 1a >97 96 (R) 7.20
2 1b >97 59 (R) 7.20
3 1c >97 80 (S) 7.20
4 1d >97 88 (S) 7.20
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Figure 4. Continuous enantioselective oxidation of 1a with immobilized Acetobacter aceti MIM 2000/28
in flow under the conditions reported in Table 2, entry 5. Biocatalyst productivity is defined as the
overall amount of product (mg) formed per dry weight of biocatalyst.

An in-line purification step was applied, consisting of an ion exchange Ambersep 900 OH−

resin, able to quantitatively catch the acid contained in the outflowing stream [33]. Acid 3a was then
recovered as chemically pure product (>99.8% pure by NMR, ee 96%) after elution from the resin
with a 1 N HCl solution. A schematic representation of the main components of the flow reactor
configuration is represented in Scheme 2.Catalysts 2019, 9, x FOR PEER REVIEW 6 of 10 
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Finally, the conditions optimized for the oxidation of 1a were employed for the continuous
oxidation of substrates 1b–d (Table 2). The continuous flow biotransformation of diols 1b–d occurred
with high rates and total conversion of the substrate into the desired chiral hydroxy acid under
the optimized conditions previously used for the oxidation of 1a (24 mM substrate concentration;
liquid flow stream 30 µL min−1), proving that the experimental set-up optimized in this work could
be generally applied.

3. Discussion

Desymmetrisation of achiral 1,3-diols with Acetobacter aceti has been previously shown to be an
effective procedure for the preparation of enantiomerically enriched hydroxymethyl alkanoic acids [15].
Batch reaction with free cells of Acetobacter aceti was not selective, since formation of the corresponding
α-methylenic alkanoic and α-methyl alkanoic acids was observed [15]. Immobilization of the whole
cells using dry alginate beads, beyond the advantages of easier work up and potential catalyst
reusability, was found to be an excellent tool for improving the selectivity of the reactions with respect
to the use of cell free systems. In fact, chiral 2-hydroxymethyl alkanoic acids were obtained as the
only final products. The lack of side reactions can be justified considering that cell entrapment alters
substrate and product diffusion through the solid support, as already observed in literature using
similar systems [7,17].

As further improvement, the oxidation of diols 1a–d was tested under continuous-flow conditions,
exploiting the application of alginate beads in a packed bed reactor. A segmented air–water flow
regime (which ensured high mass transfer between the gaseous and the liquid phase) was successfully
applied to all the tested substrates. A comparison between the operational stability between batch
and flow reactors showed that re-utilization under batch conditions was very limited, whereas the
continuous reaction could be performed for 24 h under flow conditions, with increased overall
productivity. However, the oxidative activity showed by immobilized cells decreased in any case
during semi-continuous or continuous operations; this could be due to partial damage of the
immobilized system or to impairment of the redox system involved in the stereoselective oxidation.
In fact, membrane-bound dehydrogenases of acetic acid bacteria involved in the oxidation of alcohols
utilize different types of cofactors (NAD+, NADP+, PQQ), which may be lost if cells are damaged
by mechanical stress (mostly occurring in agitated flasks) or shear stress (mostly occurring in flow
reactors), although, in our case, no apparent leaking of enzymatic activity was observed during the
continuous flow operation. One important issue of the described flow-based biocatalytic process
concerns the overall intensification with reduction of the reactor size, while improving yields and
biocatalyst productivity with respect to the batch process. Finally, the flow system could be easily used
for the oxidation of different substrates with remarkable acceleration compared to the batch mode.

4. Materials and Methods

4.1. General

All reagents and solvents were purchased from Sigma-Aldrich (Milano, Italy). The synthesis
of 2-alkyl-1,3-diols 1b–d was carried out according to the procedure already described in ref. 15.
The full characterization data of diols 1b–d and of the corresponding products of A. aceti-mediated
oxidation have been already reported [15]. The conversion values of the bio-oxidation of diols
1b–d were determined by 1H NMR analysis of the crude mixtures. The continuous flow reactions
were performed using a commercial R2C/R4 flow reactor (Vapourtec, Bury St. Edmunds, Suffolk,
UK) equipped with Omnifit glass columns (15 mm i.d.) and Sierra mass flow controller (Smeri,
Milano, Italy). The 1H NMR and 13C NMR spectra were recorded with a Varian Mercury 300
(300 MHz) spectrometer. The molar conversion of the biotransformation was determined by HPLC
analysis using a Luna NH2 100 Å column (250 mm × 4.6 mm, particle size 5 µm, Phenomenex,
Aschaffenburg, Germany) and a Biorad refractor index detector (Segrate, Milano, Italy) with an acidic
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aqueous KH2PO4 buffer (20 mM, pH 2.7) as the mobile phase (flow rate 0.2 mL min−1). The samples
were injected as soon as collected and without further treatment. The enantiomeric excess values
were evaluated in the following way: enantiomeric composition of 3a and 3c was determined by
chiral gas chromatographic analysis of the corresponding methyl ester obtained after treatment with
CH2N2. Analysis of methyl-3-hydroxy-2-methylpropionate (column and conditions: diameter 0.25 mm,
length 25 m, DMePeBeta-CDX-PS086, MEGA, Legnano, Italy; isothermal at 80 ◦C): tr R-enantiomer
= 6.5 min; tr S-enantiomer = 7.2 min. Analysis of methyl-2-(hydroxymethyl)hexanoate (column and
conditions: diameter 0.25 mm, length 25 m, DAcTBSil-BetaCDX, MEGA, Legnano, Italy; T gradient:
60 ◦C/0.8 ◦C min−1/90 ◦C/30 ◦C min−1/220 ◦C): tr R-enantiomer = 29.9 min; tr S-enantiomer =
30.6 min. Enantiomeric composition of 3b and 3d was determined by chiral HPLC analysis after
derivatization first with CH2N2, then with 3,5-dinitrobenzoyl chloride (column and conditions:
Chiralcel OD, n-hexane/i-PrOH 9:1, 0.6 mL/min, 25 ◦C). Derivative of 3b: tr R-enantiomer = 51.30 min;
tr S-enantiomer = 61.32 min. Derivative of 3d: tr R-enantiomer = 45.1 min, tr S-enantiomer = 57.0 min.

4.2. Strain Preparation

Acetobacter aceti MIM 2000/28 was maintained on solid medium [glucose (50 g L−1), yeast extract
(10 g L−1), CaCO3 (30 g L−1), agar (15 g L−1), pH 6.3] at 28 ◦C. Liquid cultures were inoculated
into 100 mL Erlenmeyer baffled flask containing 20 mL of GLY medium [yeast extract (10 g L−1)
and glycerol (25 g L−1), pH 5] and incubated under orbital shaking (150 rpm) at 28 ◦C, grown for
24 h; this liquid culture was used as inoculum for liquid cultures of 200 mL (GLY medium in a 1 L
Erlenmeyer baffled flask) incubated under orbital shaking (150 rpm) at 28 ◦C grown for 24 h. Cells were
harvested by centrifugation and suspended in sodium acetate buffer (20 mm, pH 6.0).

4.3. Preparation of Dry Alginate Beads

Gel beads were obtained by mixing a solution of sodium alginate (4% w/v) in distilled water;
200 mL of this solution was then gently mixed with 200 mL of a suspension of A. aceti cells (40 OD60 nm)
in sodium acetate buffer (20 mm, pH 6.0). The resulting suspension was pumped using a peristaltic
pump (MasterFlex, Cole Parmer, USA) with a constant flow rate of 3.0 mL min−1 into 200 mL of a
CaCl2 solution (0.2 M) kept under gentle magnetic stirring. At the end of the addition, calcium alginate
beads were kept under magnetic stirring for 20 min, then filtered, washed with deionized water,
and dried at 25 ◦C for 16 h. Dried alginate beads showed very variable sizes (with diameters ranging
from 0.8 to 1.8 mm) with semi-spherical shapes, whereas re-hydrated alginate beads showed spherical
structures with diameters of 3.2 ± 0.3 mm. The size of the beads was measured by placing the beads
on a graph paper and amplifying the image captured with a digital camera.

4.4. General Batch Procedure for the Preparation of Mono-Carboxylic Acids (3a–d)

A 12 mM solution of compounds 1a–d was prepared in acetate buffer pH 6.0. A concentration of
40 mg/mL of alginates was used (containing 10 mg of whole cells). The reaction was maintained at
28 ◦C. The reaction was followed by HPLC. After 120 minutes, the mixture was acidified until pH 2
and it was extracted with ethyl acetate (10–12 times). The organic phase was dried on Na2SO4 and the
solvent was evaporated under reduced pressure. Enantiomeric excesses were detected by chiral GC
after derivatization with diazomethane or by chiral HPLC.

A. aceti MIM 2000/28 entrapped in alginate beads was re-used in successive oxidation of 1a for
evaluating the operational stability. After 2 h, the reaction mixture was filtered, and the beads were
washed twice with buffer and re-suspended in the reaction mixture (acetate buffer at pH 6.0 containing
12 mM of 1a).

4.5. General Flow Procedure for the Preparation of Mono-Carboxylic Acids (3a–d)

Dry alginate beads (400 mg, containing 100 mgdry weight of cells of A. aceti) were packed into a
glass column (i.d. 15 mm), and acetate buffer (20 mm, pH 6.0) was flowed through the column at a
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constant flow rate of 400 µL min−1 for 60 min, reaching a final volume of 5.1 mL. Air was delivered
at 17 psi, and its flow was measured and controlled thanks to a mass flow controller device (6 mL
min−1). A buffer solution of 1a–d (24 mM in acetate buffer 20 mM pH 6.0) was pumped at 30 µL
min−1, joining the airflow at the T-junction, before entering the column in which the oxidation took
place, with a residence time of about 10 min. A BPR (5 psi) was applied. The exiting flow stream was
directed into a column filled with Ambersep 900 OH resin (2 g), and, after washing the column with
water (20 mL, 0.5 mL min−1), the trapped acid was released by flowing aqueous HCl (1 N, 5 mL).
Reactions were followed by HPLC, and ee were calculated with chiral GC after derivatization with
diazomethane or with chiral HPLC.
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