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Abstract

In this paper, we present a novel transformation method for Maude programs
featuring both automatic program diagnosis and correction. The input of our
method is a reference specification A of the program behavior that is given
in the form of assertions together with an overly general program R whose
execution might violate the assertions. Our correction technique translatesR
into a refined program R′ in which every computation is also a computation
in R that satisfies the assertions of A. The technique is first formalized for
topmost rewrite theories, and then we generalize it to larger classes of rewrite
theories that support nested structured configurations. Our technique copes
with infinite space states and does not require the knowledge of any failing
run. We report experiments that assess the effectiveness of assertion-driven
correction.
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1. Introduction

Assertion checking is a practical means of validating programs. Program
assertions often specify “can never happen” conditions that help detect pro-
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gram faults by testing, via runtime-checking, that the implementation be-
haves as intended on specific runs. Techniques to automatically detect dis-
crepancies with the expected behavior given by the assertions are slowly
making their way into industrial practice, yet the automated generation of
valid program fixes is still a challenging problem with practical techniques
having arisen only recently [1].

Maude [2] is a high-level programming language and system that effi-
ciently implements Rewriting Logic [3], which is a logic of change that seam-
lessly unifies a wide variety of models of concurrency. Thanks to its logical
basis, Maude provides a precise mathematical model that allows it to be used
as a programming language and as a formal verification system. The language
integrates: 1) functional, concurrent, logic, and object-oriented computa-
tions; 2) rich type structures with sorts, subsorts, and operator overloading;
3) equational reasoning modulo axioms such as commutativity, associativity-
commutativity, and associativity-commutativity-identity of functions, which
efficiently supports automated reasoning with typed data structures such as
lists, sets, and multisets, and typical hierarchical/structural relations such as
is a and part of. Maude is implemented as a high-performance interpreter
(up to 2.98 million rewrites per second on a standard computer); a com-
piler is under development that brings this number up to dozens of millions
of rewrites per second [4]. Because of its efficient rewriting engine and its
metalanguage capabilities, Maude turns out to be an excellent instrument
to create rich executable environments for various logics, programming lan-
guages, and tools.

Maude’s formal tools are numerous and perform different analysis and
verification tasks, either statically (e.g., Maude’s theorem prover and model
checker [2]) or dynamically (Maude’s assertion checker [5, 6]). However, to
the best of our knowledge, there is no theoretical foundation for integrating
assertions into a general methodology for automated program correction in
Maude. While the research on automated diagnosis of Maude programs
has recently made substantial progress (see [5]), effective fault localization,
debugging, and repair still pose some important challenges. In fact, although
checking assertions at runtime greatly facilitates finding program bugs, it
increases the overall execution time and the induced repairs heavily depend
on specific failing runs. Static, automated program repair does not depend
on concrete execution traces and has the potential to achieve significant cut
downs on the cost of improving software quality, since no special, and time-
consuming runtime infrastructure is needed to deliver program fixes.
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Our correction transformation works with Maude programs, that is, rewrite
theories of the form R = (Σ, E,R), where E is a (confluent and terminating)
set of equations and R is a set of rules that is coherent w.r.t. the equations [7]
(intuitively, this ensures that a rewrite step with R can always be postponed
in favor of deterministically rewriting with E). In our methodology, rewrite
theories are equipped with system assertions, with each assertion consisting
of a pair Π |ϕ, where Π (the state template) is a term and ϕ (the state invari-
ant) is a quantifier-free first-order formula with equality. Intuitively, system
assertions specify those states such that, for every subterm of the state which
fits the algebraic structure of Π with pattern matching substitution σ, the
constraints given by ϕσ are satisfied.

Roughly speaking, a computation in a rewrite theory R is a sequence
of states C, where each state transition in the sequence C is computed by
an application of a rewrite rule of R. Given a set of system assertions A,
the notion of correction we seek is based on a binary relation ≤A on rewrite
theories, such that R′ ≤A R when R′ is a correction of R w.r.t. A, meaning
that R′ is a valid strenghtening of R that enforces A. More precisely, R′ ≤A
R holds when: 1) every computation of R′ is a computation of R (i.e., no
spurious states are produced); and 2) every assertion in A is satisfied by
all states that appear in the computations of R′. Note that points 1 and 2
ensure that R′ is maximal in the sense that only those computations of R
that contain assertion violations are removed from R′.

Our correction transformation essentially works as follows. Starting from
an overly general rewrite theory R = (Σ, E,R) (that is, a rewrite theory that
contains all desired computations but may disprove some of the assertions),
R is coerced by inserting suitable conditions (abetted by the assertions of A)
in the rules of R until a suitable correction is reached which satisfies all the
assertions. The inserted conditions are defined by means of new equations
that are added to E.

An important feature of our technique is that it applies to Full Maude [2],
which is a powerful extension of Maude that is written in Maude itself and
that gives support for object-oriented specification and advanced module op-
erations. Particular care is put in the transformation to ensure both that the
new equations added to E do not break Maude’s executability requirements
(i.e confluence, coherence, and termination) and that the transformed rules
do not introduce spurious computations. The correction itself does not intro-
duce new discrepancies or regressions, that is, repairing an assertion cannot
cause the failure of another assertion downstream.
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The automated correction technique that we propose in this paper is be-
yond the capabilities of current Maude tools. Furthermore, apart from the
handling of concurrency, our technique provides semantic guarantees on the
corrections: they do not remove good runs and reduce the number of failing
assertions to zero. Since all assertions are always satisfied after the correc-
tion transformation for all inputs (rather than just for specific executions),
runtime assertion checking can be completely omitted after the correction.
This eliminates the need for massive assertion testing required by [5, 6] and
improves both the safety and efficiency of programs.

A different, preliminary approach for automated program repair was
sketched in [6] that is dynamic (it relies on concrete failing computations)
and does not apply to undiscovered bugs, in contrast to the static correction
transformation proposed in this work. Also, as a major advantage of this
work, the verified program corrections are computed without resorting to
time-expensive, monitored runtime environments.

Plan of the paper. After some technical preliminaries in Section 2, we intro-
duce a running example that is used along the paper to illustrate the kind
of corrections we aim to produce automatically. Section 3 summarizes our
system assertion language, which allows safety properties Π | ϕ to be de-
fined expressing that any subterm of a reachable state that fits the pattern
given by Π has to invariably satisfy ϕ. Section 4 encodes a checking mecha-
nism for system assertions as an expanded equational theory EA (extending
the original theory E) that catches every possible assertion violation w.r.t.
the assertion set A. Section 5 formalizes our verified correction technique for
topmost rewrite theories. Essentially, from the constraints given by the asser-
tions, we synthesize correcting rule conditions that invoke the new functions
defined in EA. These conditions are used to proactively enable/disable the
rule computations that are responsible for the undesired behaviors without
the need for monitoring the program execution at runtime. Section 6 extends
the correction methodology to more complex rewrite theories, including top-
most theories modulo structural axioms such as associativity, commutativity
and unity, and to Russian doll theories, which are structured in a more
sophisticated, inductively nested way. Section 7 presents an experimental
evaluation of a practical tool, called ÁTAME, that implements our program
correction methodology. Its effectiveness is measured from several points of
view: code size, execution time, as well as program transformation time.
Section 8 discusses some related work and it concludes.
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2. Equational Theories and Rewrite Theoriess

Let us recall some important notions that are relevant to this work. We
assume some basic knowledge of term rewriting [8] and Rewriting Logic [3].
Some familiarity with the Maude language [9, 2] is also required.

Maude is a Rewriting Logic [3] specification and verification system whose
operational engine is mainly based on a very efficient implementation of
rewriting. Maude’s basic programming statements are equations and rewrite
rules. Equations express deterministic computations leading to a unique fi-
nal result, and are used to model system states as terms of an algebraic data
type. Rules express transitions between states and are used to naturally
express concurrent, nondeterministic, and possibly nonterminating system
computations.

We consider an (order-sorted) signature Σ of operators (i.e, function sym-
bols), with a finite poset of sorts (S,<) that models the usual subsort rela-
tion [9]. The connected components of (S,<) are the equivalence classes [s]
corresponding to the least equivalence relation ≡< containing <. We assume
that each equivalence class of sorts contains a top sort that is a supersort of
every other sort in the class. Given a sort s, top(s) denotes the top sort of s.
Additionally, we assume that the signature Σ includes a distinguished sort
> that conceptually represents a universal supersort of all sorts in S; i.e., >
types every possibile term1. The > sort is used to define auxiliary, universal
operators that can be applied to every term independently of its specific sort.

An operator f of Σ in prefix notation is specified by notation f : s1 . . . sn →
s, n ≥ 0, where s1 . . . sn denote the sequence of argument sorts (that is, the
arity of f), and s is the sort of the return value. When the arity of f is the
empty sequence, f is called constant. An operator of Σ in mixfix notation can
be specified by using underscores as place holders for the input arguments
(e.g. ⊗ : s1s2 → s). A finite, possibly empty, sequence of sorts is denoted
by #»s .

We also consider an S-sorted family V = {Vs}s∈S of disjoint variable
sets. T (Σ,V)s and T (Σ)s are the sets of terms and ground terms of sort
s, respectively. We write T (Σ,V) and T (Σ) for the corresponding term
algebras. The set of variables that occur in a term t is denoted by Var(t).
By notation x : s, we denote that variable x has sort s. A simple syntactic

1Actually, in Maude, > is specified by the keyword Universal, which does not denote
a real sort; it is instead a place holder for any known sort.
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condition on Σ and (S,<), called preregularity [9], ensures that each (well-
formed) term t always has a least-sort possible among all sorts in S, which
is denoted by ls(t).

A position w in a term t is represented by a sequence of natural numbers
that addresses a subterm of t (Λ denotes the empty sequence, i.e., the root
position). Given a term t, we let Pos(t) denote the set of positions of t. By
t|w, we denote the subterm of t at position w, and by t[s]w, we denote the
result of replacing the subterm t|w by the term s in t. By root(t), we denote
the operator of t that occurs at position Λ.

A substitution σ ≡ {x1/t1, x2/t2, . . . , xn/tn} is a mapping from the set
of variables V to the set of terms T (Σ,V), which is equal to the identity
everywhere except for a set of variables {x1, . . . , xn}. By ε, we denote the
identity substitution. The application of a substitution σ to a term t, denoted
tσ, is defined by induction on the structure of terms:

tσ =

{
xσ if t = x, x ∈ V
f(t1σ, . . . , tnσ) if t = f(t1, . . . , tn), n ≥ 0

Given two terms s and t, a substitution σ is the matcher of t in s, if
sσ = t. The term t is an instance of the term s, iff there exists a matcher σ
of t in s. Given two substitutions θ and θ′, their composition θθ′ is defined
as t(θθ′) = (tθ)θ′ for every term t. We recall that composition is associative.
Given a binary relation  , we denote the usual transitive (resp., transitive
and reflexive) closure of  by  + (resp.,  ∗).

A labelled conditional equation, or simply (conditional) equation, is an
expression of the form [l] : λ = ρ if C, where l is a label (i.e., a name
that identifies the equation), λ, ρ ∈ T (Σ,V) (with ls(λ) ≡< ls(ρ)), and C
is a (possibly empty) sequence c1 ∧ . . . ∧ cn, where each ci is a Boolean
expression2. When the condition C is empty, we simply write [l] : λ = ρ.

A labelled conditional rewrite rule, or simply (conditional) rule, is an
expression of the form [l] : λ ⇒ ρ if C, where l is a label, λ, ρ ∈ T (Σ,V)
(with ls(λ) ≡< ls(ρ)), and C is a (possibly empty) conjunction of Boolean
expressions c1 ∧ . . . ∧ cn.3 When the condition C is empty, we simply write
[l] : λ⇒ ρ.

2Actually, Maude supports different kinds of conditions in equations such as equational
conditions, membership tests, and matching conditions. Nonetheless, all of them can be
interpreted as Boolean expressions whose canonical form is a truth value.

3Note that we prevent rule conditions from including Maude rewrite expressions, since
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When no confusion can arise, rule and equation labels [l] are often omit-
ted. The term λ (resp., ρ) is called left-hand side (resp. right-hand side) of
the rule λ⇒ ρ if C (resp. equation λ = ρ if C).

Roughly speaking, a conditional rewrite theory [3] seamlessly combines
a set R of conditional rewrite rules (or conditional term rewriting system,
CTRS), with an equational theory E (also possibly conditional) that may
include ordinary equations and axioms, i.e., distinguished equations express-
ing algebraic laws such as associativity (A), commutativity (C), and unity
(U) of function symbols. Within this framework, the system states are typi-
cally represented as elements of an algebraic data type that is specified by the
equational theory, while the system computations are modeled via the rewrite
rules, which describe transitions between states and are applied modulo the
equations and axioms.

More formally, an (order-sorted) equational theory E is a pair (Σ, E),
where Σ is an order-sorted signature, E = ∆ ∪ B with ∆ being a collection
of (oriented) conditional equations and B a collection of equational axioms
such as associativity, commutativity, and unity that can be associated with
any binary operator of Σ. The equational theory E induces a congruence
relation on the term algebra T (Σ,V), which is denoted by =E.

A conditional rewrite theory (or simply, rewrite theory) is a triple R =
(Σ, E,R), where (Σ, E) is an order-sorted equational theory and R is a set
of conditional rewrite rules.

2.1. Modeling Concurrent Systems in Maude: Our running example

Concurrent systems can be formalized as rewrite theories. In Maude,
rewrite theories are encoded by means of system modules, which are syn-
tactic containers that list the signature (i.e. sorts, subsorts, and operators
along with their axioms), and the variables in play, as well as the equations
and rewrite rules of the rewrite theory to be specified. As for the algebraic
axioms, they are indirectly expressed in Maude as attributes of their corre-
sponding operator (using the assoc, comm and id: keywords) and are only
used for B-matching. The user is unburdened from having to give explicit
equational definitions of some operators (e.g., equality ==, inequality =/=,
arithmetic operations) since Maude provides them in a built-in way. Each

they are not currently supported by our correction technique that only handles determin-
istic, conditional rewrite rules.
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syntactic element in the module is declared by using a rather intuitive key-
word. For instance, sorts and subsorts are specified by keywords sort and
subsort, operators by op, conditional equations and rules by ceq and crl,
while unconditional equations and rules are specified by eq and rl. Keywords
sorts and ops are abbreviations that can be used to declare multiple sorts
and operators in a single line. Finally, the ctor attribute is used to specify
constructor operators that are used to define program data structures.

The following Maude program will be used as a running example through-
out the paper.

Example 2.1
The following Maude system module CONTAINER-TERMINAL encodes a

rewrite theory that formalizes a concurrent system that models cargo manip-
ulation in a container terminal. We simplify the model by disregarding some
details that are irrelevant to our discussion such as the existence of unique
container identifiers or the alignment of ship and cargo destinations.

Maude has very liberal views on identifiers which provides a very flexible
syntax when combined with mixfix notation. However, it has consequences;
the most obvious is its sensitivity to whitespace, which requires writing blank
characters around all of the key tokens and even before the terminal ’.’ that
ends each statement.

1 mod CONTAINER-TERMINAL is pr INT + EXT-BOOL .

2 sorts Container Cargo Ship Fleet State .

3 subsort Container < Cargo .

4 subsort Ship < Fleet .

5 op c : Int -> Container [ctor] .

6 op <_,_|_> : Int Int Cargo -> Ship [ctor] .

7 op _:_ : Fleet Cargo -> State [ctor] .

8 op none : -> Fleet [ctor] .

9 op __ : Fleet Fleet -> Fleet [ctor assoc comm id: none] .

10 op nil : -> Cargo [ctor] .

11 op _,_ : Cargo Cargo -> Cargo [ctor assoc id: nil] .

12 vars W MAXW MAXS : Int .

13 vars CG CG1 CG2 : Cargo .

14 var FL : Fleet .

15 op size : Cargo -> Int .

16 eq size(nil) = 0 .
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17 eq size(c(W),CG) = 1 + size(CG) .

18 op weight : Cargo -> Int .

19 eq weight(nil) = 0 .

20 eq weight(c(W),CG) = W + weight(CG) .

21 op isFull : Cargo -> Bool .

22 eq isFull(nil) = true .

23 eq isFull(c(W),CG) = (W == maxW_Container) and isFull(CG) .

24 op maxW_Container : -> Int .

25 eq maxW_Container = 5 .

26 crl [stow] : < MAXW,MAXS | CG > FL : c(W),CG1 =>

27 < MAXW,MAXS | CG,c(W) > FL : CG1

28 if weight(CG,c(W)) <= MAXW .

29 rl [unstow] : < MAXW,MAXS | c(W),CG > FL : CG1 =>

30 < MAXW,MAXS | CG > FL : CG1,c(W) .

31 crl [load] : < MAXW,MAXS | CG > FL : CG1,c(W),CG2 =>

32 < MAXW,MAXS | CG > FL : CG1,c(W + 1),CG2

33 if not(isFull(c(W))) .

34 rl [unload] : < MAXW,MAXS | CG > FL : CG1,c(W),CG2 =>

35 < MAXW,MAXS | CG > FL : CG1,c(W - 1), CG2 .

36 endm

In our specification, system states are modeled by means of terms of sort
State with the form FL : CG, where FL is a fleet (i.e., a multiset of ships)
and CG is the cargo at the container terminal ready to be loaded (i.e., a list
of containers).

A container of weight W is defined by a term c(W) of sort Container.
A collection of containers is built by means of an AU binary operator _,_

(whose unity or identity element is the constant nil) that basically models
a list data structure. Specifically, a list of containers is a term of sort Cargo,
whose form is either c(W1),c(W2),. . .,c(Wn) or nil.

Containers are stowed on (resp. unstowed from) ships following a first
in, first out strategy. A ship with maximum allowed weight MAXW, maximum
allowed capacity (number of containers on board) MAXS, and loaded cargo CG

is defined by a term < MAXW,MAXS | CG > of sort Ship. A collection (multi-
set) of ships is a term of sort Fleet that is built by means of an ACU binary
operator __ whose identity element is the constant none. The considered
sorts and their associated subsort relations are declared at the top of the
CONTAINER-TERMINAL system module (lines 2–4), while the constructor op-
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erators, which are required to define the system state structure, are specified
by lines 5-11.

The Maude module also includes some equations that specify the auxiliary
functions size (lines 15–17), weight (lines 18–20), and isFull (lines 21–23).
The functions size(CG) and weight(CG) respectively return the number of
containers and the total weight of the cargo list CG, whereas the Boolean
function isFull(CG) checks whether each container in CG is completely filled,
with maxW Container (lines 24–25) being the maximum allowed weight of
each container.

The system behavior is specified by means of four rewrite rules. The
rule stow (lines 26–28) removes a container from the front of the terminal
container list and loads it on an arbitrary ship provided that the total weight
of its current cargo plus the weight of the considered container is lower than
or equal to MAXW. Likewise, unstow (lines 29–30) removes a container from
an arbitrary ship and adds it to the back of the container terminal cargo list.
To simplify the model, the rule load (lines 31–33) increases by one unit the
weight of an arbitrary container c(W) located at the cargo-terminal provided
c(W) is not already full. Dually, the rule unload (lines 34–35) decreases the
weight of c(W) by one unit.

Observe that the considered CONTAINER-TERMINAL system module can
produce some awkward, certainly unwanted, system states. For instance, it is
possible to reach a system configuration where the current number of loaded
containers CG in a ship < MAXW,MAXS | CG > is greater than the allowable
ship capacity MAXS. Moreover, there is no lower limit for the weight of a single
container, which can lead to loading containers with a negative weight.

2.2. Rewriting in Conditional Rewrite Theories

In a rewrite theory (Σ, E,R), with E = ∆ ∪ B, the concurrent system
evolves by rewriting states using equational rewriting, i.e., rewriting with the
rewrite rules in R modulo the equations and axioms in E [3].

The Maude interpreter implements equational rewriting by means of two
simple relations, namely→∆,B and→R,B. These allow rules and equations to
be intermixed in the rewriting process by simply using both an algorithm of
matching modulo B4. Roughly speaking, the relation →∆,B uses the equa-

4Particularly important instances of B-matching occur when B specifies the following
combinations of algebraic axioms for an operator op: associative axioms (A), associative
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tions of ∆ (oriented from left to right) as simplification rules. Thus, for
any term t, by repeatedly applying the equations as simplification rules, we
eventually reach a term t↓∆,B to which no further equations can be applied.
The term t↓∆,B is called a canonical form (or irreducible form) of t w.r.t. ∆
modulo B. On the other hand, the relation→R,B implements rewriting with
the rules of R, which might be non-terminating and non-confluent, whereas
∆ is required to be terminating and Church-Rosser (i.e., confluent and sort-
decreasing) modulo B [7] in order to guarantee the existence and unicity
(modulo B) of a canonical form w.r.t. ∆ for any term [9].

Formally, →R,B and →∆,B are defined as follows. Given a rewrite rule
[r] : (λ ⇒ ρ if C) ∈ R (resp., an equation [e] : (λ = ρ if C) ∈ ∆), a

substitution σ, a term t, and a position w of t, t
r,σ,w→R,B t

′ (resp., t
e,σ,w→∆,B t

′)
iff λσ =B t|w, t′ = t[ρσ]w, and C evaluates to true w.r.t σ. When no confusion

arises, we simply write t→R,B t
′ (resp. t→∆,Bt

′) instead of t
r,σ,w→R,B t

′ (resp.

t
e,σ,w→∆,B t

′).
Roughly speaking, a conditional rewrite step on the term t applies a

rewrite rule/equation to t by replacing a reducible (sub-)expression of t
(namely t|w), called the redex, by its contracted version ρσ, called the con-
tractum, whenever the condition C is fulfilled. Note that the evaluation of
a condition C is typically a recursive process since it may involve further
(conditional) rewrites in order to normalize C to true.

An essential executability condition for equational rewriting is coherence
between rules in R and equations in ∆ modulo the axioms in B, which
basically states that the effect of rewriting modulo ∆ ∪ B can be achieved
by intermingling rewriting with both R and ∆ modulo B5. More precisely,
under coherence conditions, an equational rewrite step on a term s can be
implemented without loss of completeness by applying the following rewrite
strategy:

1. Equational simplification of s in ∆ modulo B, that is, reduce
s using →∆,B until the canonical form w.r.t. ∆ modulo B (s ↓∆,B) is
reached;

and unity axioms (AU), associative and commutative axioms (AC), associative, commu-
tative, and unity axioms (ACU). In the cases when op obeys A or AU (respectively, AC
or ACU), any term rooted with op is implicitly handled as a list (respectively, a multiset).

5A precise characterization of the coherence property and a sufficient condition to
guarantee it for a wide class of conditional rewrite theories can be found in [7].
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2. Rewrite (s ↓∆,B) in R modulo B to t′ using →R,B, where t′ ∈ [t]E.

A computation (trace) C for s0 in the conditional rewrite theory (Σ,∆ ∪
B,R) is then deployed as the (possibly infinite) rewrite sequence

s1 →∗∆,B s1↓∆,B→R,B s2 →∗∆,B s2↓∆,B→R,B . . .

that interleaves →∆,B rewrite steps and →R,B rewrite steps following the
strategy mentioned above. Note that, after each rewrite step using →R,B,
generally the resulting term si, i = 1, . . . , n, is not in canonical normal form
and is thus equationally simplified (or normalized) by using →∆,B before
the subsequent rewrite step using →R,B is performed. Also, in the precise
strategy adopted by Maude, the last term of a finite computation is finally
normalized before the result is delivered. Therefore, any computation in R
can be conveniently interpreted as a sequence of juxtaposed computation
steps s1 →R s2 →R s3 →R, . . . where each si, with i > 0, is a canonical form.
Terms si (and their canonical forms si ↓∆,B) that appear in a computation
are called states, and any sequence si →∗∆,B si↓∆,B →R,B si+i →∗∆,B si+i↓∆,B

from si to the canonical form of si+i is called a computation step for si.

Example 2.2
Let R = (Σ,∆ ∪ B,R) be the rewrite theory encoded in the Maude

CONTAINER-TERMINAL module of Example 2.1. Then,

< 5,3 | nil > : c(1),c(3) →R,B < 5,3 | nil > : c(1 + 1),c(3)

→∗∆,B < 5,3 | nil > : c(2),c(3)

is a computation step in R that first rewrites the initial state by applying
the rule load and then simplifies the resulting state by using the built-in
definition for natural addition.

In the following section, we briefly recall the assertion language of [5] that
allows formal properties of software systems to be specified in rewriting logic.

3. The System Assertion Language

Given the rewrite theory R = (Σ,∆ ∪ B,R), we introduce an order-
sorted assertion language L whose first-order formulas define properties of the
system states ofR. To simplify our formulation, we assume that the formulas
of L are built over a set of user-defined Boolean operators (predicates) of

12



Σ whose semantics is specified by some equations in ∆. The truth values
of L are given by the formulas true and false, and the usual conjunction
(and), disjunction (or), exclusive or (xor), negation (not), and implication
(implies) logic operators are used to express composite properties. Variables
in the formulas are not quantified.

Within this logic framework, we define system assertions (assertions for
short) as constrained terms [10]. Formally, a system assertion is a pair Π | ϕ,
where ϕ is a quantifier-free Boolean formula that is specialized to a (typically
non-ground) term Π in T (Σ,V), with Var(ϕ) ⊆ Var(Π).

Expressiveness and flexibility of our system assertion language rely on
Maude’s powerful capabilities for equational matching and reasoning that
allow complex state templates Π and invariants ϕ to be specified in a con-
cise and flexible way. System assertions can virtually characterize any set
of system states by defining pure declarative representations of state tem-
plates and invariants that can predicate on the whole system structure or
just on fragments of it. When several distinct, top-level state constructors
are declared, we can define several assertions, one for each constructor in
order to capture all of the possible states. Also, for the case when states are
made of lists or sets, our assertion language is expressive enough to relate
(e.g., count the number of) elements in the list/set. For instance, consider a
Maude system module that represents states as lists/sets of elements of the
form <a1, a2, a3, . . . , an>. We can easily define a system assertion that en-
forces a property p(A) (only) on states that contain more than 100 elements,
as follows:

<A> | sz(A)>100 implies p(A)

where A is a variable of the (list/set) state sort, sz is a user-defined function
that counts the elements of a list/set (that can be equationally specified by
means of a simple recursion scheme), and p(A) is a user-defined property
over the list/set A.

Operationally, a system assertion Π | ϕ defines a generic safety property
for a state t which specifies a logic invariant ϕ which must be enforced in
any subterm of t that is an instance (modulo ∆ ∪B) of Π. More formally, a
state t satisfies Π | ϕ (in symbols, t |= Π | ϕ) iff for every w ∈ Pos(t) and
for every substitution σ, if t|w =∆∪B Πσ then ϕσ →∗∆,B true. The notion
of satisfaction can be naturally lifted to sets of assertions: given a set of
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assertions A, t satisfies A (in symbols, t |= A), iff t |= a for each assertion
a ∈ A. A violation of a system assertion a is detected in a term t, whenever
t 6|= a, that is, when there exist a position w ∈ Pos(t) and a substitution σ
such that t|w =∆∪B Πσ and ϕσ →∗∆,B false.

Verification of safety properties amounts to the problem of invariance
checking. Hence, we say that a computation C is safe w.r.t. an assertion set
A, if for each state s in C, s |= A.

Example 3.1
Let us reinforce safety of the container terminal model of Example 2.1 by

specifying some desired properties. Let A be the assertion set that includes:

(a1) c(W) | W >= 0 and W <= 5

(a2) < MAXW,MAXS | CG > | weight(CG) <= MAXW and size(CG) <= MAXS

(a3) CG1,c(W),CG2 | isFull(c(W)) implies isFull(CG1)

The assertion a1 requires that every container has a weight W ranging from
0 tons to 5 tons independently of its location (ship or container terminal),
while the assertion a2 asserts that every ship configuration has a cargo weight
and a total number of containers which must not exceed MAXW and MAXS,
respectively.

Finally, a3 specifies that, for any container list CG1,c(W),CG2, if the
container c(W) is completely filled, then the containers in the list CG1 are
also filled. The goal of this last assertion is to promote container loading
over container stowing. In fact, full containers are stowed into a ship before
nonfull containers through the stowing fifo strategy encoded by the rule stow.

In the rest of the paper, we present a static correction technique for a
rewrite theory R = (Σ, E,R) w.r.t. the assertion set A that is formalized as
a two-phase procedure. First, by using A, the equational theory (Σ, E) in R
is augmented with a new set of equations E ′ that identify all possible system
assertion violations. Then, the rules of R are transformed into conditional
rules by including guarding conditions that invoke the equations of E ′. This
guarantees that the application of the transformed rules always produces
states that satisfy A, and thus computations in the transformed theory are
safe w.r.t. the assertion setA. Clearly, truncating program behaviours of infi-
nite computations could eventually violate liveness and introduce deadlocks.
Nevertheless, satisfaction of liveness properties can be eventually analyzed
after the correction transformation by means of Maude’s model-checker [11].
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4. Equational Encoding of System Assertion Violations

Let E = (Σ,∆∪B) be an equational theory and A be a set of system as-
sertions that are built using a set of predicates P . Without loss of generality,
we assume that the equational definition of P is included in E .

We aim to construct an extension of the equational theory E in which
violations of the assertions in A can be automatically detected. The fol-
lowing definition provides a renaming procedure that is instrumental for the
transformation. Roughly speaking, the goal of such a renaming is to neatly
separate assertion checking from system computations so that they do not
interfere: the overall system execution uses the original operators and equa-
tions in the equational theory, while assertion checking is performed on re-
named terms. This is not only convenient but it is key to guarantee that the
correction transformation does not break executability of the original theory
by ensuring that confluence, termination, and coherence are preserved.

Definition 4.1 (renaming extension of an equational theory) Let
E = (Σ,∆ ∪ B) be an equational theory where (S,<) is the sort poset in-
cluded in Σ. Let M ⊆ S contain the top sorts of S, M = {s ∈ S | @ s′ ∈
S such that s < s′}.

The renaming extension of the equational theory E is the equational theory
E ′ = (Σ ∪ Σ′,∆ ∪∆′ ∪B) such that

1. (S,<) = (S ′, <′) where (S ′, <′) is the sort poset included in Σ′ (that is,
the renaming extension E ′ preserves the sort structure of E).

2. Σ′ ∩ Σ = ∅, and Σ′ contains one renamed operator f ′ : s1 . . . sn → s,
n ≥ 0, for each operator f : s1 . . . sn → s of Σ, and f ′ is given the
same equational attributes as f . Furthermore, Σ′ includes two universal
operators Ren : > → > and Ren−1 : > → >.

3. ∆′ contains the following equations that define the operators Ren and
Ren−1, for every possible term in T (Σ,V) and T (Σ′,V):

(a) Ren(f(x1, . . . , xn)) = f ′(Ren(x1), . . . ,Ren(xn)), with xi : si ∈ V,
i=1,. . . ,n, for every function symbol f : s1 . . . sn → s of Σ with
arity n, n ≥ 0, such that f obeys no unity axiom.

(b) Ren−1(f ′(x1, . . . , xn)) = f(Ren−1(x1), . . . ,Ren−1(xn)), with xi :si ∈ V,
i=1,. . . ,n, for every f ′ : s1 . . . sn → s of Σ′ such that f ′ ∈ Σ′ obeys
no unity axiom.
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(c) For the case of a binary symbol f : s1 s2 → s (and their renamed
version f ′) with unity element id, the following conditional equa-
tions are also contained in ∆′:

Ren(f(x1, x2)) = f ′(Ren(x1),Ren(x2)) if x1 =/= id ∧ x2 =/= id

Ren−1(f ′(x1, x2)) = f(Ren−1(x1),Ren−1(x2)) if x1 =/= id ∧
x2 =/= id

where x1 :s1, x2 :s2 ∈ V .

(d) Ren(x) = x [owise] with x : s ∈ V, for every s ∈M .
(e) Ren−1(x) = x [owise] with x : s ∈ V, for every s ∈M .

Note that the extra constraint x1 =/= id∧x2 =/= id of Case (c) is required to
avoid non-termination of the renaming process. Indeed, since t is equivalent
to f(t, id) modulo the unity axiom for f , if the condition was omitted, the
following non-terminating equational simplification could be delivered for any
t, where Ren(t) is simplified infinitely often (and similarly for Ren−1(t′) for
any t′)

Ren(t) =B Ren(f(t, id))→∆′,B f ′(Ren(t),Ren(id))→∆′,B f ′(f ′(Ren(t),Ren(id)),Ren(id)) . . .

We enforce that terms of the form Ren(t), with t ∈ T (Σ,V), are evaluated
using an eager6 rewrite strategy that first simplifies the input argument t
into the canonical form t ↓∆,B and then applies the equational definition of
Ren to t ↓∆,B. The eager strategy avoids potential interferences between
the renaming and the simplification of a term t. In fact, it guarantees that
renaming occurs only after term simplification within the original equational
theory (Σ,∆ ∪ B). More specifically, given a term t ∈ T (Σ,V), Ren(t) =
t′ ↓∆,B where t′ ↓∆,B is a term in T (Σ′,V) that is computed by replacing each
operator op of the canonical form t↓∆,B with op′.

Dually, we enforce that Ren−1(t′) is evaluated by means of a lazy rewrite
strategy that simplifies Ren−1(t′) by applying the equations for the operator
Ren−1 at its root position, thereby undoing the renaming of t′ and recursively
restoring the (canonical form of the) original term t.

6Eager and lazy rewrite strategies can be straightforwardly defined in Maude by resort-
ing to the strat operator attribute, which allows term evaluation orders to be precisely
defined.
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Example 4.2
Consider the CONTAINER-TERMINAL module of Example 2.1 together with

the following container list

c(X),c(3 + 1),c(Y)

where X and Y are variables. Note that the list is not a canonical form;
indeed, by applying the built-in sum of integers it can be simplified into the
canonical form c(X),c(4),c(Y).

Therefore, the renaming Ren(c(X), c(3 + 1), c(Y)) yields the renamed canon-
ical form

c′(X),′ c′(4′),′ c′(Y).

Further, Ren−1(c′(X),′ c′(4′),′ c′(Y)) returns the term c(X),c(4),c(Y).

Let us now provide an equational representation of the assertion set A, in
which we specify a checking equation ea for each assertion a ∈ A. The goal
of ea is to catch every possible violation of a inside any computation state in
the rewrite theory R.

Definition 4.3 (assertion-checking equations) Let (Σ∪Σ′,∆∪∆′ ∪B)
be the renaming extension of the equational theory E = (Σ,∆∪B). Given the
system assertion a = Π | ϕ, the assertion-checking equation for a, in symbols
ea, is the conditional equation

Π′ = fail if not(Ren−1(ϕ)) .

where Π′ = Ren(Π), and fail is a new, universal constant (not included in
Σ ∪ Σ′) of sort >. Given the assertion set A, we define A = {ea | a ∈ A}.

The idea is now to expand the renaming extension E ′ of the equational
theory E with A, and to use it to detect any assertion violations at runtime.
More specifically, given an assertion a ∈ A and a system state st, a single
application of ea to a renamed version Ren(st) of st would reduce any sub-
term of Ren(st) that matches Π′ to fail, hence signalling that st violates the
assertion a.

The renaming operator Ren and its dual counterpart Ren−1 are key in
producing a corrected theory whose computations are safe w.r.t.A. Indeed, if
we consider an assertion-checking equation ea = (Π′ = fail if not(Ren−1(ϕ))),
we can observe the two following facts.
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• On the one hand, the application of Ren−1 to the logic formula ϕ ensures
that any instance ϕσ of ϕ does not contain renamed terms, and thus
ϕσ can be properly simplified to its truth value by using the predicates
P that are specified in the original equational theory E .

• On the other hand, the renaming Π′ of Π is needed for ea to be termi-
nating as shown in the following example.

Example 4.4
Consider that the CONTAINER-TERMINAL module of Example 2.1 is aug-

mented by defining a new predicate function empty? that returns true if
there is no container in the considered ship, and false otherwise

empty?(< MAXW,MAXS | none >) = true .

empty?(< MAXW,MAXS | CG >) = false [owise] .

Let the assertion set A consist of the single assertion

a = < MAXW,MAXS | CG > | not(empty?(< MAXW,MAXS | CG >))

that enforces all possible ship configurations to contain at least one container,
and whose associated assertion-checking equation ea is7

< MAXW,MAXS | CG >′ = fail

if not(Ren−1(not(empty?(< MAXW,MAXS | CG >))))

Now, consider the following variant of the above equation which omits
renaming of the state template < MAXW,MAXS | CG >:

[e∞] : < MAXW,MAXS | CG > = fail if not(not(empty?(< MAXW,MAXS | CG >)))

Note that any attempt to use e∞ enters an infinite loop when trying to
evaluate the subterm empty?(< MAXW,MAXS | CG >) in its condition, since
this requires using the equation e∞ itself once again.

7Note that, in the case of a single mixfix operator such as the Ship constructor < , | >,
for simplicity, we just rename one operator symbol, < , | >′.
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On the contrary, the renamed state template < MAXW,MAXS | CG >′ in
the left-hand side of ea prevents the equation from being recursively used
to evaluate its condition not(Ren−1(not(empty?(< MAXW,MAXS | CG >))))

where, indeed, there are no renamed terms that can match the left-hand side
of ea.

It is immediate to see that incorporating the set A of assertion-checking
equations into the renaming extension E ′ of the confluent and terminating
theory E yields a terminating equational theory. However, the following
example shows that this näıvely extended theory might be nonconfluent since
more than one irreducible form might exist for a given (renamed) system state
when multiple assertion violations are detected within the state.

Example 4.5
Consider again the CONTAINER-TERMINAL system module of Example 2.1

together with the assertion set A of Example 3.1, whose associated assertion-
checking equations are

[ea1] : c′(W) = fail if not(Ren−1(W >= 0 and W <= 5))

[ea2] : < MAXW,MAXS | CG >′ = fail

if not(Ren−1(weight(CG) <= MAXW and size(CG) <= MAXS))

[ea3] : CG1,′ c′(W),′ CG2 = fail

if not(Ren−1(isFull(c(W)) implies isFull(CG1))

Now, observe that confluence can be broken by applying equations ea1 and
ea3 to the renamed container list

c′(6′),′ c′(5′).

Indeed, both assertions a1 and a3 are violated in the given container list.
The former is not satisfied because c′(6′) exceeds the weight upper limit
of 5 tons, while the latter is refuted since there is a full container c′(5′)
that is preceded in the container list by the overweighted container c′(6′)
(which actually should be full but not overweighted). Finally, note that the
applications of the equations ea1 and ea3 to

c′(6′),′ c′(5′)
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yield two distinct irreducible forms, which are, respectively,

fail,′ c′(5′) and fail.

Nevertheless, we are able to recover confluence by providing the transformed
theory with additional equations that reduce every (renamed) state that
contains a fail subterm to the unique irreducible form fail. Formally,

Definition 4.6 (fail-detecting equations) Let (Σ∪Σ′,∆∪∆′∪B) be the
renaming extension of the equational theory (Σ,∆ ∪ B). For every renamed
operator f ′ : s1 . . . sn → s ∈ Σ′, n ≥ 0, we define the set of fail-detecting
equations Ff ′ such that

Ff ′ =


{f ′(x1, . . . , xi−1, fail, xi+1, . . . , xn) = fail | i = 1, . . . , n}

for every f ′ ∈ Σ′ without unity, n ≥ 0

{f ′(x1, fail) if x1 =/= fail} ∪ {f ′(fail, x2) if x2 =/= fail}
for every binary operator f ′ ∈ Σ′ with unity id

Furthermore, we define F =
⋃
f ′∈Σ′ Ff ′.

Similarly to Definition 4.1, Definition 4.6 deals with binary operators with
unity in a special way to avoid nontermination of the fail-detecting equations.

Now, we are ready to formalize the A-extension of an equational theory
(Σ,∆ ∪B).

Definition 4.7 (A-extension of E) Let E = (Σ,∆ ∪ B) be an equational
theory and A be an assertion set. Let E ′ = (Σ ∪ Σ′,∆ ∪ ∆′ ∪ B) be the
renaming extension of E. Then, the A-extension of E is the equational theory
EA = (ΣA,∆A ∪B) such that

• ΣA = Σ ∪ Σ′ ∪ {fail :→ >}

• ∆A = ∆ ∪∆′ ∪ A ∪ F

Note that no confluence is lost by joining A with F because all of the
equations in A ∪ F have the same right-hand side, fail.
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Example 4.8
Let E = (Σ,∆ ∪ B) denote the equational theory that is encoded in the

CONTAINER-TERMINAL module of Example 2.1 and consider again the asser-
tion set A of Example 3.1. The A-extension (ΣA,∆A ∪B) of the equational
theory E is obtained by expanding the renaming extension E ′ = (Σ′,∆′ ∪B)
of E with the assertion-checking equations ea1, ea2, and ea3 of Example 4.5,
and the set of the fail-detecting equations, which specifically includes

F ,′ = {(X,′ fail = fail if X =/= nil), (fail,′ X = fail if X =/= nil)}
F< , | >′ = {(< fail,X | Y >′ = fail), (< X,fail | Y >′ = fail), (< X,Y | fail >′ = fail)}

Consider now a term ship = < 20,3 | c(8),c(9) > which raises two vio-
lations of the assertion a1 ∈ A, since both c(8) and c(9) are overweighted.
These violations are captured by the following equational simplifications that
reduce Ren(ship) to the unique irreducible form fail by using the assertion-
checking equation ea1 as well as the fail-detecting equations in F ,′ and
F< , | >′ .

Ren(ship)→∆A,B < 20′,3′ | fail,′c′(9′) >′ →∆A,B < 20′,3′ | fail >′

→∆A,B fail

Ren(ship)→∆A,B < 20′,3′ | c′(8′),′ fail >′ →∆A,B < 20′,3′ | fail >′

→∆A,B fail

Given an equational theory E and an assertion set A, the next result formally
states that any violation of A within the canonical form of a term t can be
captured by evaluating Ren(t) in the A-extension of E .

Proposition 4.9 (completeness) Let E be an equational theory, A be an
assertion set, and EA = (ΣA,∆A ∪ B) be the A-extension of E. Let a ∈ A
and st ∈ T (Σ,V). If st↓∆,B 6|= a, then Ren(st)→∗∆A,B fail.

5. Assertion-driven Correction of Topmost Rewrite Theories

In this section, we formalize an assertion-driven correction methodology
for the class of topmost rewrite theories, that is, theories in which terms can
only be rewritten at the root position. This class is of primary importance in
the Rewriting Logic framework since a sound and complete procedure exists
for goal reachability in topmost theories that has many practical applications
(e.g., the analysis of security protocols [12]).

A topmost rewrite theory can be defined as follows [13].
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Definition 5.1 Let R = (Σ, E,R) be a rewrite theory. Let S be the set of
sorts of Σ. Then, R is topmost if, for some top sort State ∈ S,

1. for each rule (λ⇒ ρ if C) in R, λ and ρ are terms of sort State;

2. there is no operator in Σ whose arity includes a sort s such that
top(s) = State.

The rewrite rules in R are also said to be topmost.

Example 5.2
The CONTAINER-TERMINAL module of Example 2.1 encodes a topmost

rewrite theory.

Essentially, our correction technique transforms the rewrite rules of a
given topmost rewrite theory R into guarded, conditional rewrite rules that
can only be fired if no system assertion is violated. The transformation builds
on the notion of A-extension of R that we defined in Section 4.

Before formalizing the theory correction methodology, let us also precisely
characterize the notion of correction of a rewrite theory R w.r.t. an assertion
set A.

Definition 5.3 Let R be a rewrite theory and A be an assertion set. The
rewrite theory R′ is a correction of R w.r.t. A (in symbols R′ ≤A R) if the
following requirements hold:

1. for every rewrite computation (s0 →R′ . . .→R′ sn) in R′ s.t. s0 |= A, a
rewrite computation (s0 →R . . . →R sn) exists in R and si |= A, i =
0, . . . , n

2. for every rewrite computation (s0 →R . . .→R sn) in R s.t. si |= A, i =
0, . . . , n, a rewrite computation (s0 →R′ . . .→R′ sn) exists in R′.

Roughly speaking, Definition 5.3 states that (1) every computation in
R′ whose initial state satisfies A is a safe computation w.r.t. A in R, and
(2) any safe computation w.r.t. A in R is also reproducible in the corrected
theory R′.

In topmost rewrite theories, all rewrite steps on system states happen at
the top of the term. This implies that each rewrite step s1

r,σ,w→R,B s2, with
rule r = (λ ⇒ ρ if C), yields a state s2 that is an instance of the right-hand
side ρ of the applied rule r. Therefore, assertion violations in s2 can only
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occur in those terms that have been introduced by the instantiated right-
hand side ρσ. This suggests to us the idea that a correction refinement R′ of
the topmost rewrite theory R w.r.t. A can be synthesized by simply adding
an extra constraint Ren(ρ) =/= fail to the condition C of every rewrite rule
r = (λ ⇒ ρ if C) ∈ R. Roughly speaking, the extra constraint guarantees
that no assertion violation can occur in (any instance of) the right-hand
side ρ of r by checking that (the corresponding renamed instances of) ρ
cannot be equationally simplified to the constant fail in the A-extension of
the equational theory E . This ensures that any state that can be obtained
by applying the transformed rules of R′ satisfies all of the assertions in A.

Now, we are ready to formalize our correction transformation for topmost
rewrite theories w.r.t. an assertional specification A.

Definition 5.4 (A-extension of R) Let R = (Σ,∆ ∪ B,R) be a topmost
rewrite theory, A be an assertion set, and (ΣA,∆A ∪ B) be the A-extension
of the equational theory (Σ,∆ ∪ B). The A-extension of R is defined as the
rewrite theory (ΣA,∆A ∪B,RA), where

RA = {λ⇒ ρ if C ∧ Ren(ρ) =/= fail | (λ⇒ ρ if C) ∈ R}.

The following result states that, even if corrections can change the con-
trol flow of the program, they do not introduce new states because of their
equational definition. Hence the traces (s0 →R . . . →R sn) in R and
(s0 →R′ . . .→R′ sn) in R′ specify the same state sequence.

Proposition 5.5 Let R = (Σ,∆ ∪ B,R) be a topmost rewrite theory, A be
an assertion set, and R′ be the A-extension of R formalized in Definition
5.4. Then R′ ≤A R.

Example 5.6
Consider the topmost rewrite theory R = (Σ,∆ ∪ B,R) encoded by the

CARGO system module of Example 2.1, and the assertion set A of Example
3.1. Then the A-extension ofR w.r.t. A is the rewrite theoryR′ = (ΣA,∆A∪
B,RA) where

• (ΣA,∆A∪B) is the A-extension of (Σ,∆∪B) that has been computed
in Example 4.8;

• RA is the set that contains the following rewrite rules

23



crl [stow’] : < MAXW,MAXS | CG > FL : c(W),CG1 =>

< MAXW,MAXS | CG,c(W) > FL : CG1

if weight(CG,c(W)) <= MAXW /\

Ren(< MAXW,MAXS | CG,c(W) > FL : CG1) =/= fail.

crl [unstow’] : < MAXW,MAXS | c(W),CG > FL : CG1 =>

< MAXW,MAXS | CG > FL : CG1,c(W)

if Ren(< MAXW,MAXS | CG > FL : CG1,c(W)) =/= fail.

crl [load’] : < MAXW,MAXS | CG > FL : CG1,c(W),CG2 =>

< MAXW,MAXS | CG > FL : CG1,c(W + 1),CG2

if not(isFull(c(W))/\

Ren(< MAXW,MAXS | CG > FL : CG1,c(W + 1),CG2) =/= fail.

crl [unload’] : < MAXW,MAXS | CG > FL : CG1,c(W),CG2 =>

< MAXW,MAXS | CG > FL : CG1,c(W - 1),CG2

if Ren(< MAXW,MAXS | CG > FL : CG1,c(W - 1),CG2 ) =/= fail.

By Proposition 5.5, R′ ≤A R, which implies that R′ reproduces all and
only the computations ofR that are safe w.r.t. A. For instance, the following
computation step

< 10,3 | c(5) > : c(0)→R < 10,3 | c(5) > : c(-1)

can be given in R by applying the unload rule, thereby yielding a resulting
state serr = < 10,3 | c(5) > : c(-1) that violates the assertion a1.

Now, observe that there is no way to reach the state serr from the ini-
tial system state si = < 10,3 | c(5) > : c(0) > in R′ because the trans-
formed rule unload’ cannot be applied to si. In fact, the instantiated guard

ren(< 10,3 | c(5) > : c(0 − 1)) =/= fail

in the conditional part of unload’ evaluates to false and thus prevents the
rule unload’ from being fired.

Finally, we would like to point out that, in addition to preserve termina-
tion, confluence and sort-decreasingnes of E, our correction transformation
preserves the coherence of R w.r.t. E when applied to topmost rewrite theo-
ries that do not contain (conditional) critical pairs, and additionally, meet the
sufficient conditions of [7] for enforcing coherence in a conditional rewriting
setting. Roughly speaking, the rewrite theory R = (Σ,∆ ∪ B,R) is coher-
ent if, for each term t to which both an equation of ∆ and a rule of R can
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be independently applied modulo B, the two independent derivations finally
meet two terms, w and w′, such that w =B w′; formally, if t →∆,B u and
t→R,B v, then there exist u′, u′′, w and w′ such that the diagram of Figure 1
commutes8.

t v

u w

w′

u′ u′′

∆,B

R,B

∆,B

∗

∆,B

∗

B

∆,B

∗

R,B

Figure 1: Commutative diagram for the coherence property.

Following [7], there are two scenarios in which coherence might be lost
on a given term t because the two independent derivations stemming from t
cannot be finally joined: the overlap scenario in which there exists at least a
nonjoinable critical pair between R and ∆ and the nonoverlap scenario that
happens when a rewrite rule of R is applicable to a position of t that is under
the position of a redex of t w.r.t. ∆. The class of rewrite theories that we
consider excludes both scenarios.

Firstly, the renaming mechanism, encoded in the correction transforma-
tion, ensures that the new equations added to the fixed program R′ cannot
generate critical pairs —indeed, the left-hand sides of the rules in R′ are
built using the original symbols of R, while the left-hand sides of the new,
added equations are built using the primed version of the original symbols,
hence no overlap is possible.

Secondly, the nonoverlap scenario is not a concern, since it cannot occur
due to the topmost nature of the considered rewrite theories.

8We follow the usual diagrammatic convention, where dashed lines indicate existential
quantification.
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6. Assertion-driven Correction for more Complex Rewrite Theo-
ries

In this section, we enlarge the class of rewrite theories that can be auto-
matically corrected so that no assertion in A is contravened. This is done
by considering two classes of rewrite theories that can be transformed into
(semantically equivalent) topmost rewrite theories, and then automatically
corrected w.r.t. A by exploiting Proposition 5.5.

The first class we consider generalizes the topmost modulo ACU rewrite
theories of [12] to topmost modulo Ax rewrite theories, where Ax consists of
any of the combinations of axioms ACU, AC, AU, or A for a given binary
symbol ⊗ : Config Config → Config of the signature. The operator ⊗ is
used to build system configurations that obey the structural axioms of ⊗
given by Ax. The second class we consider formalizes the so-called Russian
doll rewrite theories, which allow one to deal with complex, recursively nested
state configurations (e.g., multisets of multisets of elements) in which rewrites
can happen at any nesting depth of a state.

Topmost modulo Ax rewrite theories have many practical applications as
they support system configurations that can consist of multisets (defined by
the symbol ⊗ being a binary ACU/AC operator), or lists (defined by ⊗ being
AU/A). This class of theories is particularly useful in the specification of
object-oriented systems involving flat configurations in which the distributed
state is a (multi-)set or a list of objects and messages [12]. Furthermore,
different styles of Petri nets can also be modeled via topmost modulo Ax
rewrite theories [14].

Note that our formalization of topmost modulo Ax rewrite theories ex-
cludes the cases when Ax contains the combination CU, or simply C. The
reason is twofold. On the one hand, an operator ⊗ that obeys CU/C would
model states as recursively, nested commutative pairs of terms. This state
structure is tricky and generally of little use since it can be replaced by sim-
pler state structures that exploit the more powerful ACU/AC/AU operators
in most practical scenarios. On the other hand, if we just need to model states
as flat commutative pairs t1⊗ t2 (that is, pairs in which the operator ⊗ can-
not occur either in t1 or t2), this can be done by defining a topmost rewrite
theory in which ⊗ is a binary CU (or C) operator with sort s s → State.
This way, there is no need to apply any program transformation, since all
states of the form t1 ⊗ t2 are rewritten at the top level and the correction
technique of Section 5 can be directly applied.
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6.1. Topmost modulo Ax Rewrite Theories

Topmost modulo Ax rewrite theories can be formalized as follows. We
denote by α(f) the set α(f) = {ACU , AC, AU , A} of combinations of
associativity, commutativity, and/or unity axioms for the binary operator
f ∈ Σ.

Definition 6.1 (Topmost modulo Ax rewrite theory) LetR = (Σ,∆∪
B,R) be a rewrite theory with a finite poset of sorts (S,<). Let Config be a
top sort in S, and ⊗ : Config Config → Config ∈ Σ be a binary operator that
obeys a combination of associativity, commutativity, and/or identity axioms
Ax ∈ α(⊗) ⊆ B.

The theory R is said to be topmost modulo Ax if

1. for each rule (λ⇒ ρ if C) in R, λ and ρ are terms of sort Config;

2. ⊗ is the only operator in Σ whose arity includes a sort s such that
top(s) = Config.

The rewrite rules in R are also said to be topmost modulo Ax.

Unlike topmost theories that globally rewrite a state at each rewrite step;
topmost modulo Ax theories allow rewrite rules to be applied to system con-
figuration fragments —thereby implementing local state changes and provid-
ing more flexibility and conciseness in theory specification.

Example 6.2
Let us consider the following Maude code fragment that specifies the

FlatCargo data structure as a (flat) multiset of containers c(W1), c(W2), . . . , c(Wn).

sorts Container FlatCargo .

subsort Container < FlatCargo .

op c : Int -> Container .

op nil : -> FlatCargo .

op _,_ : FlatCargo FlatCargo -> FlatCargo [ctor assoc comm id: nil] .

var W : Int .

rl [load] : c(W) => c(W + 1) .

rl [unload] : c(W) => c(W - 1) .

It is immediate to see that this code fragment encodes a topmost modulo
ACU rewrite theory. It suffices to interpret the sort FlatCargo as the sort
Config of Definition 6.1, and the ACU operator
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op _,_ : FlatCargo FlatCargo -> FlatCargo [ctor assoc comm id: nil]

as the operator ⊗ : Config Config → Config . Note that the rule load (re-
spectively, unload) allows the weight of an arbitrary container to be locally in-
creased (respectively, decreased) within a cargo configuration c(W1), . . . , c(Wn).

Unfortunately, our correction technique cannot be directly applied to this
class of rewrite theories because the assertion checking mechanism, which
is encoded in the corrected rewrite rules, could fail to catch some assertion
violations when local state changes are performed. This is because such rules
only check assertions within the rule contractum while ignoring the rest of
the configuration (that is, the context at which the replacement takes place).
Let us see an example.

Example 6.3
Consider again the Maude code fragment of Example 6.2 and an assertion

set A that consists of a single assertion that enforces the containers in every
system configuration to be pairwise distinct:

c(W1),c(W2) | W1 =/= W2 (1)

Now, if we apply the correction technique of Section 5, the following assertion-
checking equation is synthesized

c′(W1),′ c′(W2) = fail if not(Ren−1(W1 =/= W2)) (2)

and the load rewrite rule of Example 6.2 is refined into the conditional rule

crl [load’] : c(W) => c(W + 1) if Ren(c(W + 1)) =/= fail. (3)

that only increments the container weight provided the condition

Ren(c(W + 1)) =/= fail (4)

is satisfied.
Unfortunately, including Condition (4) into the definition of load’ is not

enough for the transformed theory to be correct w.r.t. A. In fact, in such a
näıvely transformed theory, the following undesired rewrite step can be given
by applying load’

c(0),c(1),c(2)
load’→ c(0 + 1),c(1),c(2)
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that is further simplified into the canonical form c(1),c(1),c(2) which
violates Assertion (1). This happens because Assertion (1) is only locally
checked over (a renamed version of) the contractum c(0 + 1) and not against
the whole system configuration c(0 + 1),c(1),c(2).

The applicability problem revealed by Example 6.2 can be overcome by
transforming a rewrite theory R that is topmost modulo Ax into an equiv-
alent topmost theory R̂ to which our correction technique applies. Such a
transformation was formerly studied in [12] for the case when only ACU op-
erators are considered. Here we extend it with the combinations AC, AU
and A.

Definition 6.4 (topmost extension of R) Let R = (Σ, E,R) be a top-
most modulo Ax rewrite theory, where E = ∆ ∪B and Ax ∈ B. Let X, X1,
and X2 be variables of sort Config not occurring in either R or E. We define
the topmost rewrite theory R̂ = (Σ̂, E, R̂) where Σ̂ extends Σ by adding a new
top sort State, and a new operator { } : Config → State; and R̂ is obtained
by transforming R according to Ax as follows.
For each (λ⇒ ρ if C) ∈ R

Case Ax = ACU . ({X ⊗ λ} ⇒ {X ⊗ ρ} if C) ∈ R̂;

Case Ax = AC. ({X ⊗ λ} ⇒ {X ⊗ ρ} if C) ∈ R̂,

({λ} ⇒ {ρ} if C) ∈ R̂;

Case Ax = AU . ({X1 ⊗ λ⊗X2} ⇒ {X1 ⊗ ρ⊗X2} if C) ∈ R̂;

Case Ax = A. ({X1 ⊗ λ⊗X2} ⇒ {X1 ⊗ ρ⊗X2} if C) ∈ R̂,

({X1 ⊗ λ} ⇒ {X1 ⊗ ρ} if C) ∈ R̂,

({λ⊗X1} ⇒ {ρ⊗X1} if C) ∈ R̂,

({λ} ⇒ {ρ} if C) ∈ R̂.

We call R̂ the topmost extension of R.

Proposition 6.5 Let R be a topmost modulo Ax theory and R̂ be the top-
most extension of R. For any term ti and tf of sort Config, ti →∗R tf iff
{ti} →∗R̂ {tf}.

Example 6.6
Consider the topmost modulo ACU rewrite theory R that is specified

by the Maude code fragment of Example 6.2. By computing its topmost
extension R̂, the rewrite rules load and unload are transformed into the
rules
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rl [load-ACU] : { X,c(W) } => { X,c(W + 1) } .

rl [unload-ACU] : { X,c(W) } => { X,c(W - 1) } .

Now, the undesired computation of Example 6.2 is mimicked in R̂ by the
following computation

{c(0),c(1),c(2)}→∗R̂ {c(1),c(1),c(2)}

in which the load-ACU rule is applied to the initial state {c(0),c(1),c(2)}

to erroneously increase the weight of container c(0).

By exploiting the program transformation for topmost rewrite theories of
Section 5, the assertion-driven correction technique can also be applied to
the class of topmost modulo Ax rewrite theories, and its correction follows
from the correction result for the topmost theories (see Proposition 5.5).

Corollary 6.7 Let R = (Σ,∆∪B,R) be a topmost modulo Ax rewrite the-
ory, with Ax ∈ B. Let A be an assertion set, R̂ = (Σ̂,∆ ∪ B, R̂) be the
topmost extension of R, and (Σ̂A,∆A∪B) be the A-extension of (Σ̂,∆∪B).

Let R̂′ = (Σ̂A,∆A ∪B, R̂A) be a rewrite theory such that

R̂A = {λ⇒ ρ if C ∧ Ren(ρ) =/= fail | (λ⇒ ρ if C) ∈ R̂}.

Then R̂′ ≤A R̂.

Example 6.8
Consider the assertion set A = {c(W1),c(W2) | W1 =/= W2} of Example

6.3 and the rewrite theory R of Example 6.2, together with the topmost
extension R̂ of R given in Example 6.6. Then, R̂′ = (Σ̂A,∆A ∪ B, R̂A)
includes the conditional rule

crl [loadC-ACU’] : { X,c(W) } => { X,c(W + 1) }
if Ren({X,c(W + 1)}) =/= fail .

Note that the application of [loadC-ACU’] completely replaces a multiset M
of containers (that matches { X,c(W) }) with a new one M ′ (that matches
{ X,c(W + 1) }). The rule is fired only if the resulting multiset M ′ satisfies
the condition Ren( X,c(W + 1) ) =/= fail, which is true if no violation of
the assertion in A is detected (that is, the containers in M ′ are pairwise
disjoint).

Now, as expected, the erroneous computation of Example 6.6, which vi-
olates A, cannot be reproduced in R̂′.
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It is worth noting that the program transformation above can be easily
extended to those rewrite theories that include local as well as global state
changes, which are respectively modeled by topmost and topmost modulo
Ax rewrite rules. In this scenario, given a rewrite theory R = (Σ,∆∪B,R),
we are always able to partition the set of rewrite rules R into two disjoint
sets RΛ and R>Λ such that RΛ = {λ ⇒ ρ if C | λ, ρ are of sort State} and
R>Λ = {λ ⇒ ρ if C | λ, ρ are of sort Config}. The set RΛ contains the
topmost rewrite rules in R that globally rewrite a state at its root position,
while R>Λ includes the topmost modulo Ax rules that locally rewrite an inner
state fragment (that is, a configuration within the state).

Now, R can be turned into a topmost rewrite theory by reusing the sort
State included in R and simply applying the program transformation of
Definition 6.4 to R>Λ, while leaving RΛ unchanged.

Example 6.9
Let R = (Σ,∆ ∪ B,RΛ ∪ R>Λ) be a rewrite theory such that Σ includes

the operators { } : Config → State, a :→ Config, c :→ Config, as well as
the ACU operator ⊗ : Config Config→ Config, and

RΛ = {[r1] : {a⊗ X} ⇒ {X}}
R>Λ = {[r2] : a⇒ c}

where X is a variable of sort Config.
Note that the rule r1 ∈ RΛ globally rewrites terms of the form {t1⊗ . . .⊗

tn} of sort State, while r2 ∈ RΛ performs a local state change, that is, it
allows a state fragment, namely, the configuration a, to be rewritten into the
configuration c.

Now, by applying the transformation of Definition 6.4 to r2, we get the
topmost rule [r3] : {X⊗ a} ⇒ {X⊗ c}, where X is a variable of sort Config,
and the rewrite theory (Σ,∆ ∪ B, {r1, r3}) is thus a topmost rewrite theory
(equivalent to R) to which the correction methodology can be applied.

6.2. Russian Doll Rewrite Theories

Many systems (e.g., distributed object-based systems) can have a complex
state structure in which system configuration components (e.g. objects and
messages) can themselves contain nested configurations of components (e.g.,
subobjects and submessages). Typically, these configurations are specified in
Maude by means of a nested and recursive multiset structure.
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Unfortunately, topmost modulo Ax rewrite theories of Section 6.1 can
only deal with flat configurations, and thus cannot be used to model rewrite
theories whose states have an inherently nested structure.

The class of Russian doll rewrite theories, originally introduced in [15],
generalizes the class of topmost modulo ACU rewrite theories, and precisely
captures the nature of recursively nested state structures. Roughly speaking,
in a Russian doll rewrite theory, the nested state structuring is specified by
a boundary operator9 of the form b : s1 . . . sn Config → Config , n ≥ 0, which
allows a configuration of sort Config to be encapsulated in a well-delimited
structure. This structure may also include additional parameters of sorts
s1, . . . , sn that may be convenient to better describe system configurations.
Then, a state st can contain several nested configurations, each of which is
wrapped by means of the boundary operator b.

The assertion-driven program correction technique of previous sections
cannot be directly applied to Russian doll rewrite theories since rewrites in a
state can happen at any level of nesting. Nonetheless, analogously to the case
of topmost modulo Ax theories, we can transform Russian doll theories into
equivalent, topmost theories for which corrections w.r.t. A can be computed.
This is essentially done by adapting the program transformation of [12], which
is correct under the reasonable assumptions that equations do not change the
depth of nesting of configurations and rewrite rules do not increase it.

Following [12], the formalization of the class of the Russian doll theories
requires the following auxiliary definitions.

Definition 6.10 Let Σ be a signature, whose set of sorts is S. We say that
Σ is a Russian doll signature if

• S includes the sorts Config and FlatConfig, with FlatConfig < Config,
and Config is a top sort in S/≡<. Furthermore, for each sort s ∈ S,
s < Config implies s < FlatConfig.

• The only operators in Σ whose arity includes a sort s such that top(s) =
Config are:

⊗ : FlatConfig FlatConfig → FlatConfig

9To keep the exposition simple, here we consider a single boundary operator b. However,
as described in [15], multiple boundary operators of the form bj : #»sj Config → Config , j =
1, . . . ,m could be specified, each of which has distinct argument sorts #»sj .
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⊗ : Config Config → Config

b : #»s Config → Config

where ⊗ obeys the algebraic axioms ACU . Furthermore, for each op-
erator f : #»w → Config ∈ Σ, f is either ⊗ or b.

Definition 6.11 Given a Russian doll signature Σ, a term t ∈ T (Σ,V) is
of bounded nesting if, for all x ∈ Var(t), x is of sort Config implies x is of
sort FlatConfig.

Given a term t of bounded nesting, we define the nesting depth of t as
follows:

depth(t) =


0 t 6∈ T (Σ,V)Config or t ∈ T (Σ,V)FlatConfig

max(depth(t1), depth(t2)) t = t1 ⊗ t2
depth(t) + 1 t = b( #»p , t1)

Now, a Russian doll rewrite theory is formally defined as follows.

Definition 6.12 (Russian doll rewrite theory) Let R = (Σ,∆ ∪ B,R)
be a rewrite theory. Then, R is a Russian doll rewrite theory if

1. Σ is a Russian doll signature;

2. for each equation (λ = ρ if C) ∈ ∆ and substitution σ, σ(λ) is of
bounded nesting iff σ(ρ) is of bounded nesting, and if σ(λ) and σ(ρ)
are of bounded nesting, then depth(σ(λ)) = depth(σ(ρ));

3. for each rewrite rule (λ⇒ ρ if C) ∈ R, λ and ρ are of sort Config, and
for each substitution σ such that σ(λ) and σ(ρ) are of bounded nesting,
depth(σ(λ)) ≥ depth(σ(ρ)).

Roughly speaking, Condition 2 in Definition 6.12 ensures that equations
do not change the nesting depth of terms, while Condition 3 enforces that
rewrites do not increase the nesting depth of terms. Moreover, for Russian
doll theories, we have that if t1 is a term of bounded nesting, t1 →R t2 implies
that t2 is of bounded nesting and depth(t1) ≥ depth(t2).

Example 6.13
The following fragment of Maude code extends the Cargo data structure

of Example 2.1 that models flat lists of containers c(W1), c(W2), . . . , c(Wn) by
considering multisets of elements that can be either simple containers c(W) or
compound containers. Compound containers are in turn multisets of simple
or compound containers.
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sorts Container Cargo FlatCargo .

subsort Container < FlatCargo < Cargo .

op c : Int -> Container [ctor] .

op nil : -> FlatCargo .

op _,_ : FlatCargo FlatCargo -> FlatCargo [ctor assoc id: nil] .

op _,_ : Cargo Cargo -> Cargo [ctor assoc id: nil]

op [_] : Cargo -> Cargo .

vars X1 X2 : Cargo .

var w : Int .

rl [insert] : X1,[ X2 ] => [ X1,X2 ] .

rl [load-simple] : c(w) => c(w + 1) .

Note that the considered code fragment represents a Russian doll rewrite the-
ory. It suffices to interpret sorts FlatCargo and Cargo as the sorts FlatConfig
and Config of Definition 6.12, and the operators

_,_ : FlatCargo FlatCargo -> FlatCargo [ctor assoc id: nil] .

_,_ : Cargo Cargo -> Cargo [ctor assoc id: nil] .

[_] : Cargo -> Cargo .

as the operators⊗ : FlatConfig FlatConfig → FlatConfig , ⊗ : Config Config →
Config , and b : #»s Config → Config , where the sort list #»s is empty. The new
Cargo data structure allows multisets of simple and compound containers at
distinct nesting levels to be specified. For instance,

c(4),[c(3),c(1)],[[c(4),c(5)],c(3)]

is a depth-2 term of sort Cargo.
The rewrite rules load-simple and insert specify actions for simple

and compound containers, respectively. The former increases the weight
of a simple container, while the latter allows simple as well as compound
containers to be inserted into another compound container.

The next definition is a natural extension of the program transformation of
[12] that turns a Russian doll rewrite theory R into a topmost rewrite theory
Rn, which is able to deal with configurations whose rule structure has a fixed
nesting depth.
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Definition 6.14 Let R = (Σ,∆ ∪ B,R) be a Russian doll rewrite theory,
and n be a natural number. We define the topmost n-extension of R as the
topmost rewrite theory Rn = (Σn,∆ ∪B,Rn) where

• Σn extends Σ by adding a new top sort State, and a new operator
{ } : Config → State;

• for each rewrite rule (λ⇒ ρ if C) ∈ R and 0 ≤ k ≤ n

{C0 ⊗ b( #»x 1, C1 ⊗ b( #»x 1, . . . b(
#»x k, Ck ⊗ λ) . . .))} ⇒

{C0 ⊗ b( #»x 1, C1 ⊗ b( #»x 2, . . . b(
#»x k, Ck ⊗ ρ) . . .))} if C ∈ Rn

where C0,C1,. . . , Ck are variables of sort Config, and #»x 1,
#»x 2 . . . ,

#»x k
are sequences of variables of the sorts required by the boundary operator
b.

Example 6.15
Consider the Russian doll rewrite theory encoded by the Maude fragment

of Example 6.13. Then, its topmost 1-extension is a topmost rewrite theory
that contains the following rewrite rules:

rl [insert-0] : { C0,X1,[ X2 ] } => { C0,[ X1,X2 ] } .

rl [insert-1] : { C0,[ C1,X1,[ X2 ] ] } => { C0,[ C1,[ X1,X2 ] ] } .

rl [load-simple-0] : { C0,c(w) } => {C0,c(w + 1) } .

rl [load-simple-1] : { C0,[ C1,c(w) ] } => {C0,[ C1,c(w + 1) ] } .

It is worth noting that the rewrite rules in the computed 1-extension
manage insert and load operations at a nesting depth smaller than or equal
to 1. Specifically, the two variants of the original load-simple rule allow to
loading simple containers located at depth 0 or 1 within a Cargo structure.
Likewise, the rules insert-0 and insert-1 transfer a multiset of containers
X1 located at depth 0 and 1, respectively, to a deeper compound container.

Equivalence between a Russian doll rewrite theory and its n-extension Rn is
given w.r.t. configurations of bounded nesting with a depth equal to n, for
any natural number n. This means that if ti is a configuration of bounded
nesting with depth(ti) = n in R, then ti can be rewritten in tf in R if and
only if {ti} can be rewritten in {tf} in Rn. More formally,
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Proposition 6.16 ([12]) Let R be a Russian doll rewrite theory. Let ti be
a term of bounded nesting of sort Config such that depth(ti) = n. Let Rn be
the topmost n-extension of R. Then, ti →∗R tf iff {ti} →∗Rn {tf}.

Now, since Rn is a topmost rewrite theory, we can directly apply our
correction technique and generate sound theory corrections (in the sense of
Proposition 5.5) w.r.t. A. Indeed, the following corollary holds.

Corollary 6.17 Let R = (Σ,∆∪B,R) be a Russian doll rewrite theory. Let
A be an assertion set, Rn = (Σn,∆ ∪ B,Rn) be the topmost n-extension of
R, and (ΣAn ,∆

A ∪B) be the A-extension of (Σn,∆ ∪B).
Let R′n = (ΣAn ,∆

A ∪B,RAn ) be a rewrite theory such that

RAn = {λ⇒ ρ if C ∧ Ren(ρ) =/= fail | (λ⇒ ρ if C) ∈ Rn}.

Then R′n ≤A Rn.

In Russian doll theories, configurations are specified by means of the ACU
operator ⊗ that allows (nested) multisets of elements to be composed to-
gether. Actually, it would be possible to consider variants of ⊗ that obey
distinct combinations of algebraic axioms such as AC, AU, or A, similarly
to the case of topmost modulo Ax theories of Section 6.1. Nonetheless, this
is typically not practical for correction purposes since the number of rewrite
rules in the computed topmost n-extensionRn could become intractable even
for small values of n. Indeed, a linear increment of the nesting depth n yields
an exponential growth of the number of rewrite rules in Rn. Let us see an
example.

Example 6.18
Let R be a Russian doll rewrite theory that includes the rewrite rule

[r] : a⇒ c. Further, for the sake of readability, we consider a simple bound-
ary operator [ ] : Config → Config that encapsulates configurations without
additional parameters.

Now, by Definition 6.14, the topmost 1-extension R1 of R contains the
following two rules that mimick r within R1:

[r1] :{C0 ⊗ a} ⇒ {C0 ⊗ c}
[r2] :{C0 ⊗ [C1 ⊗ a]} ⇒ {C0 ⊗ [C1 ⊗ c]}
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Now, suppose that ⊗ is AC instead of being ACU. In this case, the algebraic
axiom U must be explicitly modeled in the 1-extensionR1 by defining distinct
rule patterns that consider the presence of both context variables C0 and C1,
as well as the absence of one or both context variables. Thus, R1 must
contain the following rules:

[r1] :{C0 ⊗ a} ⇒ {C0 ⊗ c}
[r2] :{C0 ⊗ [C1 ⊗ a]} ⇒ {C0 ⊗ [C1 ⊗ c]}
[r3] :{a} ⇒ {c}
[r4] :{[a]} ⇒ {[c]}
[r5] :{C0 ⊗ [a]} ⇒ {C0 ⊗ [c]}
[r6] :{[C1 ⊗ a]} ⇒ {[C1 ⊗ c]}

Therefore, we need 6 rules in R1 to mimick the behavior of r in the case
when ⊗ is AC.

7. Empirical evaluation

The program correction methodology defined in this paper has been effi-
ciently implemented in a Maude tool called ÁTAME (Assertion-based Theory
Amendment in MaudE). The tool has been implemented in Maude itself by
using Maude’s meta-level capabilities. ÁTAME integrates a RESTful Web
service that is written in Java, and an intuitive Web user interface that is
based on AJAX technology and is written in HTML5 canvas and Javascript.
The implementation contains about 600 lines of Maude source code, 600
lines of C++ code, 750 lines of Java code, and 700 lines of HTML5 and
JavaScript code. The correction tool ÁTAME is publicly available together
with a number of examples at http://safe-tools.dsic.upv.es/atame.

In this section, we first illustrate the correction for the container terminal
model of Section 2 that can be automatically synthesized by using ÁTAME.
Then, we summarize the experimental results that we obtain on a set of
representative benchmarks.

7.1. ÁTAME to the Rescue: a Typical Repair Session

Let us show how ÁTAME works in practice by showing a repair session
for our container terminal specification of Example 2.1.
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Maude programs can be either uploaded in ÁTAME as simple .maude

module files or written from scratch inside a dedicated edit box. A collec-
tion of Maude programs, which includes the CONTAINER-TERMINAL module
of Example 2.1, is provided with the tool for demonstration purposes.

To start the repair session, we can just select the CONTAINER-TERMINAL

module under examination from the preloaded programs (see Figure 2) and
proceed through the next steps.

P������ ��� M���� ����� �������

Container Terminal Upload

 

mod CONTAINER-TERMINAL is 
   pr INT + EXT-BOOL .

   sorts Container Cargo Ship Fleet State .
   subsort Container < Cargo .
   subsort Ship < Fleet .

   op c : Int -> Container [ctor] .
   op <_,_|_> : Int Int Cargo -> Ship [ctor] .
   op _:_ : Fleet Cargo -> State .
   ops weight size : Cargo -> Int .
   op isFull : Cargo -> Bool .
   op maxW : -> Int .

   op none : -> Fleet .
   op __ : Fleet Fleet -> Fleet [ctor assoc comm id: none] .

   op nil : -> Cargo .
   op _,_ : Cargo Cargo -> Cargo [ctor assoc id: nil] .

   vars W MAXW MAXS : Int .
   vars CG CG1 CG2 : Cargo .
   var FL : Fleet .

   eq weight(nil) = 0 .
   eq weight(c(W),CG) = W + weight(CG) .

   eq size(nil) = 0 .
   eq size(c(W),CG) = 1 + size(CG) .
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Figure 2: CONTAINER-TERMINAL module loaded in ÁTAME.

The next phase allows the user to specify safety properties to be enforced
on the input program. These properties are modeled as system assertions
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which may use logic predicates that are already defined in the program or
new ones that are specified at this stage. Figure 3 illustrates the input phase
of the system assertions of Example 3.1 in ÁTAME. Finally, by pressing

Fix Program

P������ ��� ����� ���������� ��� ��� �� ����������

Add the extra predicates used in your assertions: 

mod CONTAINER-TERMINAL-PRED is 
   pr CONTAINER-TERMINAL . 
   sort Assertion . 
   op _|_ : Universal Bool -> Assertion [ ctor prec 125 gather (e e) poly (1) ] . 

endm

Based on your program and predicates, specify your assertions (one per line):



You may extend this module with additional declarations in order to fully support the 
reduction of your boolean assertion formulas.

c(W:Int) | W:Int >= 0 and  W:Int <= 5
< MAXW:Int , MAXS:Int | CG:Cargo > | weight(CG:Cargo) <= MAXW:Int and size(CG:Cargo) <= MAXS:Int
CG1:Cargo,c(W:Int),CG2:Cargo | isFull(c(W:Int)) implies isFull(CG1:Cargo)

Figure 3: Input of the system assertions of Example 3.1 for the CONTAINER-TERMINAL

module.

the Fix Program button, we run our static program repair procedure that
automatically yields a corrected version of the input program in which all
computations are safe w.r.t. the considered assertions. Figure 4 shows (a
fragment of) the correction generated for the CONTAINER-TERMINAL module
(i.e., the CONTAINER-TERMINAL-FIX module).

As an additional feature, ÁTAME provides the interconnection with the
ANIMA Maude stepper [16], which integrates program animation capabilities
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Animate

F���� ������� ������ (�������� ������� �������)



  eq size(nil) = 0 .
  eq size(c(W:Int),CG:Cargo) = 1 + size(CG:Cargo) .
  eq size-ren(fail) = (fail).Int .
  eq weight(nil) = 0 .
  eq weight(c(W:Int),CG:Cargo) = W:Int + weight(CG:Cargo) .
  eq weight-ren(fail) = (fail).Int .
  ceq < MAXW:Int,MAXS:Int | CG:Cargo >-ren = (fail).Fleet if not ori(weight-ren(CG:Carg
  ceq AUX0:Fleet fail -ren = (fail).Fleet if AUX0:Fleet =/= none-ren .
  ceq fail AUX1:Fleet -ren = (fail).Fleet if AUX1:Fleet =/= none-ren .
  ceq AUX0:Cargo,fail -ren = (fail).Cargo if AUX0:Cargo =/= nil-ren .
  ceq CG1:Cargo,c-ren(W:Int),CG2:Cargo -ren -ren = (fail).Cargo if not ori(isFull-ren(c
  ceq fail,AUX1:Cargo -ren = (fail).Cargo if AUX1:Cargo =/= nil-ren .
  ceq c-ren(W:Int) = (fail).Cargo if not ori(W:Int <= 5 and W:Int >= 0) .
  ceq ori(AUX0:Fleet AUX1:Fleet -ren) = ori(AUX0:Fleet) ori(AUX1:Fleet) if AUX0:Fleet =
  ceq ori(AUX0:Cargo,AUX1:Cargo -ren) = ori(AUX0:Cargo),ori(AUX1:Cargo) if AUX0:Cargo =
  ceq ren(AUX0:Fleet AUX1:Fleet) = ren(AUX0:Fleet) ren(AUX1:Fleet) -ren if AUX0:Fleet =
  ceq ren(AUX0:Cargo,AUX1:Cargo) = ren(AUX0:Cargo),ren(AUX1:Cargo) -ren if AUX0:Cargo =
  crl (FL:Fleet < MAXW:Int,MAXS:Int | CG:Cargo >) : c(W:Int),CG1:Cargo => (FL:Fleet < MA
  crl (FL:Fleet < MAXW:Int,MAXS:Int | CG:Cargo >) : CG1:Cargo,c(W:Int),CG2:Cargo => (FL
  crl (FL:Fleet < MAXW:Int,MAXS:Int | CG:Cargo >) : CG1:Cargo,c(W:Int),CG2:Cargo => (FL
  crl (FL:Fleet < MAXW:Int,MAXS:Int | c(W:Int),CG:Cargo >) : CG1:Cargo => (FL:Fleet < MA
endm

212
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215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233

Figure 4: Correction for the CONTAINER-TERMINAL module.

[17] into ÁTAME. Specifically, by means of the Animate button, the user is
allowed to interactively inspect an incrementally generated fragment of the
computation tree10 of the corrected program for a given initial state.

Figure 5 respectively shows a fragment of the computation tree of the
CONTAINER-TERMINAL module (figure above) and its counterpart in the re-
paired module CONTAINER-TERMINAL-FIX (figure below). Note that state s39

in the computation tree of the original program does not belong to the com-
putation tree of the repaired module. This is correct because s39 violates the
specified assertion

CG1,c(W),CG2 | isFull(c(W)) implies isFull(CG1)

and thus it cannot appear in any computation of CONTAINER-TERMINAL-FIX.

10The computation tree of a Maude program M for a given initial state s subsumes all
of the possible computations of M stemming from s.
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< 5,3 | nil > : c(1),c(3)

s0

+ crl: stow

< 5,3 | c(1) > : c(3)

s3
+ crl: load

< 5,3 | nil > : c(2),c(3)

s9
+ crl: load

< 5,3 | nil > : c(1),c(4)

s15
+ rl: unload

< 5,3 | nil > : c(0),c(3)

s18
< 5,3 | nil > : c(1),c(2)

s24

+ crl: stow

< 5,3 | c(1) > : c(4)

s27
+ crl: load

< 5,3 | nil > : c(2),c(4)

s33
+ crl: load

< 5,3 | nil > : c(1),c(5)

s39
+ rl: unload

< 5,3 | nil > : c(0),c(4)

s42
+ rl: unload

< 5,3 | nil > : c(1),c(3)

s48

+ rl: unload

< 5,53 | nil > : c(1),c(3)

s0

+ crl: stow

< 5,53 | c(1) > : c(3)

s3
+ crl: load

< 5,53 | nil > : c(2),c(3)

s9
+ crl: load

< 5,53 | nil > : c(1),c(4)

s15
+ crl: unload

< 5,53 | nil > : c(0),c(3)

s18
+ crl: unload

< 5,53 | nil > : c(1),c(2)

s24

+ crl: stow

< 5,53 | c(1) > : c(4)

s27
+ crl: load

< 5,53 | nil > : c(2),c(4)

s33
+ crl: unload

< 5,53 | nil > : c(0),c(4)

s36
+ crl: unload

< 5,53 | nil > : c(1),c(3)

s42

Figure 5: (Above) Fragment of the computation tree of the CONTAINER-TERMINAL module.
(Below) Fragment of the computation tree of the CONTAINER-TERMINAL-FIX module.

7.2. Experimental Results

In order to evaluate the performance of the ÁTAME system, we endowed
several Maude programs with system assertions, and we used the system
to correct the programs w.r.t. the assertions. In all cases, the system as-
sertions and program faults chosen are representative of typical deviations
found in Maude programs. We benchmarked ÁTAME on the following collec-
tion of Maude programs, which are all available and fully described within
the ÁTAME Web platform: Bank model, a conditional Maude specification
that models a distributed banking system; Blocks World, a Maude encod-
ing of the classical AI planning problem that consists of setting one or more
vertical stacks of blocks on a table using a robotic arm; BRP, a Maude imple-
mentation of the Bounded Retransmission Protocol; Container, the Maude
specification that models the cargo manipulation in a container terminal of
the running Example 2.1; Crossing River, a Maude program that solves the
well-known crossing river puzzle; Dekker, a Maude specification of Dekker’s
mutual exclusion algorithm; Maude NPA, an analysis tool for cryptographic
protocols that takes into account the algebraic properties of cryptosystems;
Philosophers, a Maude specification of the classical Dijkstra concurrency ex-
ample; Semaphore, a classical mutual exclusion protocol with semaphores
written in Maude; Stock Exchange, a simplified stock exchange concurrent
system in which traders operate on stocks via limit orders; Webmail app, a
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Maude specification of a rich webmail application that provides typical email
management, system administration capabilities, login/logout functionality,
etc; Wolfram’s Rule 30, a one-dimensional binary cellular automaton rule
introduced by Stephen Wolfram.

#Ops #Eqs
R Rfix R Rfix TT TR TChk

R TRfix
S OChk Ofix

Bank Model 112 120 38 246 5 17 101 26 0.74 4.94 0.53
Blocks World 89 104 12 194 3 19 37 31 0.16 0.95 0.63

BRP 23 26 12 27 2 5 23 7 0.70 3.6 0.4
Container 90 104 20 208 5 14 80 19 0.76 4.71 0.36

Crossing River 20 33 14 58 1 6 20 7 0.65 2.33 0.17
Dekker 126 161 25 307 7 40 98 51 0.48 1.45 0.28

Maude NPA 46 75 11 128 3 33 71 36 0.50 1.15 0.09
Philosophers 51 64 12 122 3 12 36 15 0.59 2 0.25

Semaphore Problem 49 60 10 109 2 7 16 9 0.44 1.29 0.29
Stock Exchange 179 192 106 473 13 36 103 46 0.55 1.86 0.28

Webmail app 317 409 191 1044 51 138 271 178 0.34 0.96 0.29
Wolfram’s Rule 30 49 60 13 117 3 8 20 10 0.5 1.5 0.25

Table 1: Experimental results of the correction technique.

All of the experiments were conducted on an Intel Xeon E5-1660 3.3GHz
CPU with 64GB RAM. Table 1 summarizes our results. We have considered
five assertions per benchmark (except for the case of the Container program
which includes the three assertions of Example 3.1). The #Ops column
(resp. the #Eqs column) records the number of operator declarations (resp.
the number of equations) in both the original program R and the statically
repaired program Rfix . Column TT measures the transformation time (in
ms) that is required to compute the program corrections for the programs
in the considered benchmark set. We also measure the average execution
time (in ms) of 10 computations in the original program R with and without
assertion checking (columns TR and TChk

R , respectively) and in the repaired
program Rfix (column TRfix

). More specifically, execution times in TChk
R have

been computed in the extended Maude runtime environment of [6] that adds
assertion-checking capabilities to the standard Maude rewrite engine. This
way, any state transition (i.e. rewrite rule application) s → s′ is enabled
in the extended runtime environment if an only if the state s′ and all of
its subterms meet the system assertions under examination. Note that the
advantage of our correction transformation w.r.t. [6] is precisely in statically
encoding the necessary checks to prevent violations into Maude programs,
instead of doing unnecessary checks at runtime.
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All of the executions consist of about 500 Maude computation steps,
which amounts to 5,000 rewrite steps on average including equational sim-
plification steps. In column S, we report the total speedups (1−TRfix

/TChk
R )

that we achieve w.r.t. the highly optimized executions with runtime assertion
checking of [6]. Finally, we record the overheads of the execution times for
the original program R with respect to: 1) the monitorized execution times
for R, i.e., the ratio (TChk

R −TR)/TR (in column OChk , taken from [6]); and 2)
the execution times of the repaired program, i.e., the ratio (TRfix

− TR)/TR
(in column Ofix ). These overheads indicate the relative slowdown due to
runtime assertion checking (column OChk) and to the evaluation of the extra
conditions inserted by the correction transformation (column Ofix ).

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Bank Model
Blocks World

BRP
Container

Crossing River
Dekker

Maude-NPA
Philosophers

Semaphore Problem
Stock Ex.

Webmail app
Wolfram’s Rule 30

Ofix OChk

Figure 6: Overhead comparison Ofix vs. OChk .

Our figures show that, on average, the increasing in the number of equa-
tions grows linearly to the number of newly declared operators and the size
of the corrected code is 2.8 times the size of the original code. To fairly
calculate this ratio, we compared the actual size of the original code —which
is the size of the user-defined specification plus the size of the extra defini-
tions that are implicitly included in each imported module (e.g. INT, RAT,
BOOL)— with the size of its corrected version in which extra definitions of the
imported modules are explicit. In exchange for that, the correction transfor-
mation has a positive impact on the execution times w.r.t. the monitorized
execution times. As expected, the corrected program Rfix is typically slower
than the original program R; nevertheless, it exhibits a better performance
than R when run with the assertion-checking enabled. Indeed, in all cases
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TR ≤ TRfix
≤ TChk

R . Moreover, the average value of the speedups in column
S is 0.53, which means that running the corrected program Rfix is 53% faster
than the monitorized execution of R.

The overheads Ofix and OChk are graphically compared in Figure 6. The
results obtained are quite satisfactory with an average value of the overheads
in column Ofix of 0.38, which is 14.23% of the average value (2.67) of the
overheads in column OChk for the same benchmark programs.

As for the time necessary for computing the program corrections, it is
almost negligible (a few milliseconds) as witnessed by the data in column
TT . Indeed, the worst case is 51ms for the Webmail specification. The time
for inferring the repairs is in any case a small portion of the total execution
time.

If assertions are complex (e.g., they involve recursive conditional compu-
tations), as in the Bank Model, our transformation can improve the execu-
tion time significantly w.r.t. the execution with dynamic assertion checking.
And even when the improvement is small or not measurable (e.g., Blocks
World), the correction transformation is useful since the transformed pro-
gram is demonstrably safe and corrections are generated fast enough that
they could be computed during active development, thus reducing the de-
bugging burden.

8. Related Work and Conclusion

Automated program correction and related problems are not new, with
proposed techniques ranging from semantic analysis to stochastic search [18].
Research in this area holds promise for reducing software maintenance costs
due to buggy code. A number of techniques have been developed for the
code repair problem, i.e., the general problem of computing modifications
to a buggy program in order to obtain a new program that satisfies a suit-
able specification of the expected program behavior, or user intent. Such a
specification can either be expressed as sets of passing and failing test cases,
functional specifications, reference implementations, program models, sets of
logic properties, examples, traces, assertions, summaries or code contracts.
For instance, Gopinath et al. [19] use behavioral specifications to fix buggy
Java programs, and they use the SAT-based Alloy tool-set to prune any non-
determinism that could be introduced by the repair actions. Autofix [20]
bridges the gap between specification-based and test-based repairs by using
Eiffel contracts to correct violations of simple assertions that are formulated
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using boolean methods that are already present in the program. As for the
repair synthesis itself, it can be based on different search techniques, such
as enumerative and heuristic search, deduction, constraint-solving, symbolic
methods, or some combination of these [18]. Other approaches for fixing
code are based on statistical fault localization, evolutionary computation, or
game theory. Dynamic patch generation can also be achieved by runtime
monitoring and instrumentation. For a detailed discussion, see [18, 21, 22]
and references therein.

More closely related to our work is the concept of automated program re-
pair of [23], a change to a program source that removes bad execution traces
while increasing the number of good traces by applying abstract interpre-
tation. A bad run is one that violates a given specification either provided
by the programmer (e.g., as contracts), or provided by language semantics
(e.g., division by zero, null pointer, etc). A good run is one that meets all
specifications of the original program. Beyond the technical differences with
our work, a more basic difference is in the intention. While [23] aims to
automatically produce a collection of fixes for faulty programs that are not
necessarily applied in an automatic way11, we are looking to reinforce soft-
ware quality by automatically generating program corrections from a set of
safety assertions so that runtime checking can be safely omitted because no
crashes can occur at runtime due to assertion violation. For a recent survey
on automatic software repair, see [24].

In [25] a generic strategy is defined to ensure that a Maude program
satisfies a set of state invariants that can be expressed in different logics.
This is achieved by imposing (on top of Maude) a programmed strategy
that dynamically drives the system’s execution in such a way that some
state transitions are avoided so that every system state complies with the
constraints. In contrast, our methodology is static and enforces the assertions
by transforming the program code so that the system constraints are verified
by construction.

The correction methodology that we propose can be very useful for a
programmer who wants to correct a program w.r.t. a preliminary version
which was written with no safety concerns. Our approach can also be applied
to automatically finding fixes for programs with incomplete specifications

11In [23], repairs cannot be applied automatically since, in general, there is more than
one repair possible for a given bug or warning.
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given by system assertions while keeping the transformed programs as close
as possible to the original ones.

Also, it is worth noting that the core idea of our correction transforma-
tion can be applied to virtually any rewriting-based, programming language:
from simple term rewriting systems to the most widespread functional lan-
guages such as Haskell and Erlang. Indeed, the proposed correction method
transforms program rules into guarded program rules whose conditions su-
persede the system assertion checks and are simply evaluated by using the
language rewriting infrastructure. Therefore, this checking mechanism can
be embedded into any setting that supports rewriting with an effort that
depends on the complexity of the chosen formal framework.

As future work, we plan to improve the expressiveness of our assertion lan-
guage that currently supports only safety constraints (e.g. state invariants).
More concretely, the idea is to extend the language with new constructs that
allow one to predicate not only over single states but also over sequences of
states. This way we could, i.e., specify and enforce liveness and other more
convoluted, temporal properties.
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[10] C. Rocha, J. Meseguer, C. Muñoz, Rewriting Modulo SMT and Open
System Analysis, in: Proceedings of the 10th International Workshop
on Rewriting Logic and its Applications (WRLA 2014), Vol. 8663 of
Lecture Notes in Computer Science, Springer, 2014, pp. 247–262.

[11] K. Bae, J. Meseguer, A Rewriting-Based Model Checker for the Linear
Temporal Logic of Rewriting, Electr. Notes Theor. Comput. Sci. 290
(2012) 19–36.

[12] J. Meseguer, P. Thati, Symbolic Reachability Analysis Using Narrowing
and its Application to Verification of Cryptographic Protocols, Elec-
tronic Notes in Theoretical Computer Science 117 (2005) 153–182.

[13] C. Rocha, J. Meseguer, C. A. Muñoz, Rewriting Modulo SMT and Open
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Appendix A. Proofs of Technical Results

Proof of Proposition 4.9. Let E = (Σ,∆ ∪ B) be an equational theory.
Let a ∈ A be a system assertion of the form Π | ϕ and st ∈ T (Σ,V)
be a system state such that (st)↓∆,B 6|= Π | ϕ. Hence, there exist a position
w ∈ Pos(st) and a substitution σ such that ((st)↓∆,B)|w =B Πσ and ϕσ →∗∆,B
false. By Definition 4.7, there exists the assertion checking equation

eΠ|ϕ = (Π′ = fail if not(Ren−1(ϕ))) ∈ ∆A

Now, it is immediate to see that

(Ren(st))|w
eΠ|ϕ,σ

′,w
→∆A∪B fail (A.1)

with the substitution σ′ = {x/t′ | x/t ∈ σ}. Indeed,

• Ren(st)|w =B (Ren(st)|w) ↓∆,B =B Π′σ′, since st|w =B (st|w) ↓∆,B=B

Πσ, and Ren(st|w) and Π′ are respectively the corresponding renamed
versions of the canonical form (st|w)↓∆,B of st|w and Π in (ΣA,∆A∪B);

• not(Ren−1(ϕ))σ′ = not(Ren−1(ϕσ′)) = not(ϕσ) →∗∆A∪B true because
ϕσ →∗∆,B false and σ′ only introduces in ϕ renamed bindings of σ (in
fact, σ′ = {x/t′ | x/t ∈ σ}).

Now, let us prove that if (st)↓∆,B 6|= Π|ϕ, then Ren(st)→∗∆A,B fail. The proof
is done by induction on the position w ∈ Pos(Ren(st)) used in step (A.1)

above, i.e., Ren(st)|w
eΠ|ϕ,σ

′,w
→∆A∪B fail.

(w = Λ) Immediate, since Ren(st) = Ren(st)|Λ and Ren(st)|Λ
eΠ|ϕ,σ

′,w
→∆A∪B fail

by Equation A.1.

(w = i.p) In this case, w = i.p ∈ Pos(Ren(st)) for some natural number i
that ranges from 1 to the arity of root(Ren(st)) and some position p
denoting the rest of the accessing path to Ren(st)|w. This implies that
Ren(st) is a renamed version of the canonical form (st|w)↓∆,B of st of the
form f ′(t′1, . . . , t

′
n) with Ren(st)|w = t′i|p (and, hence(st|w) ↓∆,B= ti|p).

Because (st|w)↓∆,B= ti|p and st 6|= Π | ϕ, we also have that ti 6|= Π | ϕ.
By applying the induction hypothesis, we get t′i→∗∆A∪Bfail.

Furthermore, by Definition 4.7, there exists the equation

f ′(x1, . . . , xi−1, fail, xi+1, . . . , xn) = fail ∈ ∆A
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Therefore, we can finally build the following rewrite sequence

Ren(st) = f ′(t′1, . . . , t
′
i−1, t

′
i, t
′
i+1, . . . , t

′
n)→∗∆A∪B f

′(t′1, . . . , t
′
i−1, fail, t

′
i+1, . . . , t

′
n)

→∗ ∆A∪B fail.

Proof of Proposition 5.5. Let R = (Σ,∆ ∪ B,R) be a topmost rewrite
theory, A be an assertion set, and R′ = (ΣA,∆A∪B,RA) be the A-extension
ofR. By Definition 5.3, in order to show thatR′ ≤A R (i.e.,R′ is a correction
of R w.r.t. A), we have to prove that

i. for all s0 →R′ . . . →R′ sn s.t. s0 |= A, there is s0 →R . . . →R
sn, s.t. si |= A, i = 0, . . . , n

ii. for all s0 →R . . . →R sn, s.t. si |= A, i = 0, . . . , n, there is s0 →R′

. . .→R′ sn.

Let us first prove Claim i.

[Claim i ] Let us consider an arbitrary computation CA = (s0 →R′ . . . →R′

sn) in R′ = (ΣA,∆A ∪ B,RA) such that s0 |= A. We proceed by induction
on the length n of the computation CA.

n = 0. Immediate, since CA does not contain any rewrite step and s0 |= A.

n > 0. The computation CA can be decomposed as follows:

CA = (s0 →R′ . . .→R′ sn−1 →R′ sn).

Now, by applying the induction hypothesis to s0 →R′ . . .→R′ sn−1, we
know that there exists

CAn−1 = (s0 →R . . .→R sn−1), s.t. si |= A, i = 0, . . . , (n− 1)

Therefore, to prove Claim i, we just need to show that

(a) sn−1 →R sn
(b) sn |= A.
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The proof of (a) is as follows: since R is topmost, we can expand
sn−1 →R′ sn as follows

sn−1
rA,σ,w→ RA,B ρσ →∗∆A,B (ρσ↓∆A,B) = sn

where rA = (λ⇒ ρ if C ∧Ren(ρ) =/= fail) ∈ RA is just a more restric-

tive variant of r = (λ⇒ ρ if C) ∈ R, thus we also have sn−1
r,σ,w→R,B ρσ.

Furthermore, ρσ does not contain any renamed operator. This im-
plies that all the equations of ∆A, which are used to simplify ρσ into
its canonical form (ρσ ↓∆A,B), are also included in ∆; hence ρσ →∗∆,B
(ρσ↓∆,B) as well. Therefore,

sn−1
r,σ,w→R,B ρσ →∗∆,B (ρσ↓∆,B) = sn.

To prove (b), observe that in order to enable the rewrite step

sn−1
rA,σ,w→ RA,B ρσ

included in sn−1 →R′ sn, the instantiated condition Ren(ρσ) =/= fail of
rA must hold. Thus,

Ren(ρσ) 6→∗∆A,B fail

which implies that (ρσ) ↓∆,B|= A by Proposition 4.9.

[Claim ii ] We consider an arbitrary computation C = (s0 →R . . . →R
sn) s.t. si |= A, i = 0, . . . , n. Similarly to the proof of Claim i, we just
proceed by induction on the length n of the computation C to show that
there exists s0 →R′ . . . →R′ sn. Again, the base case is trivial, while the
inductive case is similar to the inductive case of [Claim i ] by making use of
Proposition 4.9.

Proof of Proposition 6.5. The case when Ax=ACU has been stated in
Lemma 5.3 of [12]. Here, we prove the case when Ax=AC, which involves
two extension rewrite rules, namely, ({X ⊗ λ} ⇒ {X ⊗ ρ} if C) and ({λ} ⇒
{ρ} if C). The remaining cases are straightforward adaptations of the fol-
lowing proof scheme.
We have to prove the following two implications for the case when Ax=AC:

(→) for any term ti and tf of sort Config , ti →∗R tf implies {ti} →∗R̂ {tf};
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(←) for any term ti and tf of sort Config , {ti} →∗R̂ {tf} implies ti →∗R tf .

(→) Assume that ti →∗R tf , where ti and tf are arbitrary terms of sort
Config . Then, ti →∗R tf has the form

ti = t0 →R . . .→R tn−1 →R tn = tf , for some natural number n ≥ 0.

We proceed by induction on the length n of the rewriting sequence
ti →∗R tf .

n = 0. Immediate, since there are no rewrite steps.

n > 0. By induction hypothesis, we have

ti = t0 →∗R tn−1 implies {ti} = {t0} →∗R̂ {tn−1}. (A.2)

Thus, in order to prove (→), we just need to show

{tn−1} →R̂ {tn}, (A.3)

whenever tn−1 →R tn. The computation step tn−1 →R tn in the rewrite
theory R can be expanded into the following rewrite sequence

tn−1
r,σ,w→R,B t̃n−1 →∗∆,B t̃n−1 ↓∆,B= tn

where r = (λ ⇒ ρ if C) ∈ R. Here, we distinguish two cases according
to the value of the position w ∈ Pos(tn−1): w = Λ and w 6= Λ.

(w = Λ) In this case, tn−1 =B λσ and t̃n−1 =B ρσ by the definition of
→R,B. Furthermore, since R is topmost modulo Ax, λσ and ρσ have
sort Config . From these facts, it immediately follows that

{tn−1} =B {λσ}
r̂,σ,Λ→R̂,B {ρσ} =B {t̃n−1} →∗∆,B {t̃n−1}↓∆,B= {tn}

with r̂ = {λ} ⇒ {ρ} if C ∈ R̂. Hence, {tn−1} →R̂ {tn} when w = Λ.

(w 6= Λ) Since R is topmost modulo Ax and w 6= Λ, there exist
si ∈ T (Σ,V)Config , i = 1, . . . , k, with k > 1 such that

tn−1 = s1 ⊗ . . .⊗ sk
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and tn−1 ∈ T (Σ,V)Config . Now, since tn−1
r,σ,w→R,B t̃n−1 →∗∆,B tn, with

Ax = AC and r = (λ⇒ ρ if C),

tn−1 = s1 ⊗ . . .⊗ sk =AC sπ(1) ⊗ . . .⊗ sπ(m) ⊗ λσ
r,σ,w→R,B sπ(1) ⊗ . . .⊗ sπ(m) ⊗ ρσ →∗∆,B tn

where 1 ≤ m ≤ k − 1, and π : {1, ...,m} → {1, . . . , k} is an injective
function that selects a permutation of m si’s within s1⊗. . .⊗sk. Hence,
we can build the following rewrite sequence

{tn−1} = {s1 ⊗ . . .⊗ sk} =AC {sπ(1) ⊗ . . .⊗ sπ(m) ⊗ λσ}
r̂,σ̂,Λ→ R̂,B {sπ(1) ⊗ . . .⊗ sπ(m) ⊗ ρσ} →∗∆,B {tn}

with σ̂ = σ∪{X/sπ(1)⊗. . .⊗sπ(m)}, and r̂ = ({X⊗λ} ⇒ {X⊗ρ} if C) ∈
R̂. This proves that {tn−1} →R̂ {tn} also in the case when w 6= Λ.

Finally, by using the induction hypothesis A.2 and the rewrite step A.3,
we easily derive the implication (→).

(←) Assume that {ti} →∗R̂ {tf}, where ti and tf are arbitrary terms of sort
Config . Then, {ti} →∗R̂ {tf} is of the form

{ti} = {t0} →R̂ . . .→R̂ {tn−1} →R̂ {tn} = {tf}

for some natural number n ≥ 0. We proceed by induction on the length
n of the computation {ti} →∗R̂ {tf}.

n = 0. Immediate, since there are no rewrite steps.

n > 0. This case is analogous to the proof of the inductive step of
Case (→). By induction hypothesis, we have

{ti} = {t0} →∗R̂ {tn−1} implies ti = t0 →∗R tn−1. (A.4)

Therefore, it suffices to show that tn−1 →∗R tn and combine this result
with the induction hypothesis to finally prove Case (←).

By hypothesis, {tn−1} →R̂ {tn}, which can be expanded into the fol-
lowing rewrite sequence

{tn−1}
r̂,σ̂,Λ→ R̂,B {t̃n−1} →∗∆,B {t̃n−1}↓∆,B= {tn} (A.5)
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where r̂ ∈ R̂, and {tn−1}, {t̃n−1}, {tn} ∈ T (Σ̂,V)State . Observe that the
first rewrite step of the rewrite sequence (A.5) must occur at position
Λ, since the rewrite theory R̂ is topmost.

Here, we distinguish two cases according to the form of the rewrite rule

r̂ ∈ R̂ applied in {tn−1}
r̂,σ̂,Λ→ R̂,B {t̃n−1}.

By Definition 6.4, r̂ is either {λ} ⇒ {ρ} if C or {X⊗λ} ⇒ {X⊗ρ} if C,
as Ax = AC and {tn−1}, {t̃n−1} ∈ T (Σ̂,V)State .

Case (r̂ = ({λ} ⇒ {ρ} if C)). In this case, {tn−1}
r̂,σ̂,Λ→ R̂,B {t̃n−1}

assumes the following form:

{tn−1} =AC {λσ}
r̂,σ,Λ→R̂,B {ρσ} =AC {t̃n−1}.

Now, by Definition 6.4, λσ and ρσ are terms of sort Config ; thus, we
can also apply r = (λ ⇒ ρ if C) ∈ R to λσ, thereby obtaining the
following computation

tn−1 =AC λσ
r,σ,Λ→R,B ρσ →∗∆,B (ρσ ↓∆,B) = tn

which corresponds to tn−1 →R tn when r̂ = ({λ} ⇒ {ρ} if C).

Case (r̂ = ({X ⊗ λ} ⇒ {X ⊗ ρ} if C)). In this case, {tn−1}
r̂,σ̂,Λ→ R̂,B

{t̃n−1} must have the following form:

{tn−1} =AC {c⊗ λσ̂}
r̂,σ̂,Λ→ R̂,B {c⊗ ρσ̂} =AC {t̃n−1}

where c, λσ̂, ρσ̂ ∈ T (Σ,V)Config , and σ̂ = {X/c} ∪ σ, for some substitu-
tion σ.

Now, by Definition 6.4, variable X does not occur in either λ or ρ; this
implies that λσ̂ = λσ and ρσ̂ = ρσ. Therefore, we can construct the
following computation:

tn−1 =AC c⊗ λσ̂ = c⊗ λσ r,σ,w→R,B c⊗ ρσ = c⊗ ρσ̂ =AC t̃n−1 →∗∆,B tn

where r = (λ ⇒ ρ if C) ∈ R and w ∈ Pos(c ⊗ λσ) is the position of
the term λσ inside c ⊗ λσ. Hence, tn−1 →R tn even in the case when
r̂ = ({X ⊗ λ} ⇒ {X ⊗ ρ} if C).
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Proof of Corollary 6.7. Immediate by applying Proposition 5.5 to the top-
most rewrite theory R̂′ = (Σ̂A,∆A ∪B, R̂A).

Proof of Corollary 6.17. The rewrite theory R′n = (ΣAn ,∆
A ∪ B,RAn ) is

topmost, so the result is immediate by Proposition 5.5.
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