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Abstract

The spin state in the Einstein–Podolsky–Rosen–Bohm gedankenexperiment with iden-
tical particles is supplemented by the spatial part. This allows one to extract all the
information needed in a typical EPR argument, without requiring semi-intuitive steps.
Local spin operators are introduced, to describe measurements of spin in given regions of
space.
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1 Introduction

For a long time, the Einstein–Podolsky–Rosen (EPR) argument [1] has been relegated to the
specialised literature on the conceptual foundations of quantum theory. In particular, it is
seldom mentioned in textbooks written until the end of the eighties — a remarkable exception
being the book by David Bohm [2], which contains a detailed, in-depth analysis of the EPR
gedankenexperiment . In the last three decades, however, a resurgence of interest in quantum
foundations,1 and the development of the new field of quantum information technology [16],

∗sebastiano.sonego@uniud.it
1For a review of the literature about conceptual issues in quantum theory up to 1992, see [3]. For a sample

of more recent papers, some written with an eye towards physics education, see [4–15] and references therein.
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have led an increasing number of authors to include a discussion of the EPR argument and of
its logical follow-up, Bell’s theorem [17], in textbooks at various levels.

The EPR experiment is invariably discussed in the version due to Bohm [2], which con-
siders correlations among spins (the so-called EPRB experiment). Since it requires only a
two-dimensional Hilbert space, this is technically simpler than the original presentation in the
EPR paper [1], but the conclusions are the same. Sometimes, instead of spins, one considers
photon polarisations, which have been used in the majority of real experiments, such as those
performed by Aspect’s team [18–20].2

The typical textbook presentation relies upon the singlet state for a pair of spin-1/2 particles
sent in opposite directions to two non-overlapping spatial regions A and B,

1√
2

(

|+〉|−〉 − |−〉|+〉
)

, (1.1)

where |+〉 and |−〉 are eigenstates of the z-component for spin, with eigenvalues 1/2 and −1/2,
respectively (in units of h̄). Since this state is rotationally symmetric and exhibits perfect anti-
correlations, a measurement of the same component of spin on the two particles always results
in opposite values.

This conclusion is usually applied, implicitly, to spin measurements performed in the two

regions . However, this is not what the state (1.1) actually predicts. Indeed, the state (1.1) does
not say anything related to the two regions — the vectors |+〉 and |−〉 belong to the Hilbert
space associated with the particle spin, not to the space related to the particle location (whose
elements are the so-called spatial, or orbital states, described by the Schrödinger wavefunctions,
in the position representation). This point becomes even more obvious making the particle
labels in the state (1.1) explicit:

1√
2

(

|+〉1|−〉2 − |−〉1|+〉2
)

. (1.2)

This implies perfect anti-correlations among spin measurements performed on particle 1 and

on particle 2, not among those performed in region A and in region B — an important point,
because in a real experiment it is the spin of the particle in a region that is measured, not the
spin of particle 1 or particle 2. In order to conclude that the spin measurements in A and B
are also anti-correlated, one needs the essential information that each region contains exactly
one particle, which is crucial to establish the correspondence between measurements performed
on the particles and measurements performed in the regions. The state (1.2) does not contain,
however, such information, that must somehow be added by hand.

All this is not really an issue if one assumes that the two particles can be distinguished and
that each particle ends up into a well-defined region. In this case, whatever one can say about
a given particle translates into a corresponding statement about a spatial region. However,
some presentations of the EPR argument say explicitly that particles 1 and 2 are of the same
type (usually, electrons or protons). Then, the lack of any reference to regions A and B in the

2For a comparison between the EPRB arrangement and experiments performed using photons and kaons,
see [21].
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state (1.2) is indeed a problem, because for indistinguishable particles, a measurement of the
spin of particle 1 or 2 is not even a well-defined operation.

It seems, therefore, that the standard textbook description is incomplete, and does not ad-
dress this specific point adequately. It would be pointless to just blame the presentations which
use identical particles for introducing an unnecessary and problematic assumption, because the
EPR argument can indeed be formulated even if the particles are indistinguishable, as will be
shown. The purpose of this note is thus not to correct some mistake in the literature, but
rather to fill a gap in the logic, that represents a difficulty for several students. As such, it
can be considered an addendum to the expositions found in textbooks, written having in mind
students and instructors as main readership.

Including the spatial part of the state vector in an EPRB experiment provides the missing
step required to treat the case of identical particles. As shown in section 2, this allows one to
make statements that refer exactly to what is actually measured, without the need to invoke
semi-intuitive arguments. In section 3, operators appropriate to describe the spin in a region,
rather than the spin of a given particle, are presented. Section 4 contains some final comments.

2 Total quantum state

In this section, which represents the core of the paper, we construct a state appropriate for
dealing with the EPRB experimental setup with indistinguishable particles, including explicitly
the spatial part. For greater clarity, the discussion is divided into four parts. In section 2.1 we
establish the basic notation when there is a single particle with spin 1/2, while in section 2.2
we write the state for two identical particles that can occupy different regions. In section 2.3
the state is further specialised to meet the requirements of the EPR argument. Finally, in
section 2.4 we observe that the EPRB state can be factorised into a spatial and a spin part,
which provides a partial explanation (but does not justify) why the former is commonly ignored.

2.1 One particle

The Hilbert space for a particle with spin 1/2 is H = H(spatial) ⊗ H(spin), where H(spatial) and
H(spin) are the spaces or spatial and spin states, respectively. For the present discussion, we
can assume that H(spatial) is spanned by only two states |A〉 and |B〉, corresponding to the two
distinct, non-overlapping spatial regions A and B, so in particular 〈A|B〉 = 0. (For instance,
we can take the wavefunctions associated with |A〉 and |B〉 to be the characteristic functions of
the regions, normalised dividing by the square root of the corresponding volume.) Moreover,
let us denote by |+〉 and |−〉 the normalised vectors in H(spin) corresponding to the positive
and negative eigenvalues of the spin component along z. That is, if Ŝz is the corresponding
operator acting on H(spin),

Ŝz|±〉 = ±1

2
|±〉 . (2.1)

Then, the four states |A,+〉, |A,−〉, |B,+〉, |B,−〉, where |A,+〉 := |A〉 ⊗ |+〉, etc., form an
orthonormal basis for H. Note that calling, with some abuse of notation, Ŝz the operator in H
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that acts on H(spatial) as the identity and on H(spin) as in equation (2.1), we have:

Ŝz|A,±〉 = ±1

2
|A,±〉 ; Ŝz|B,±〉 = ±1

2
|B,±〉 . (2.2)

Similar equations are easily established for the operators Ŝx and Ŝy, corresponding to the x-
and y-components of spin:

Ŝx|A,±〉 = 1

2
|A,∓〉 ; Ŝx|B,±〉 = 1

2
|B,∓〉 ; (2.3)

Ŝy|A,±〉 = ± i

2
|A,∓〉 ; Ŝy|B,±〉 = ± i

2
|B,∓〉 . (2.4)

2.2 Two particles

Consider, now, a system of two particles 1 and 2 with spin 1/2. The total Hilbert space is now
H = H1 ⊗H2, and an orthonormal basis for it can be obtained considering the sixteen vectors
formed by products like, e.g., |A,+〉1 ⊗ |A,−〉2, where |A,+〉1 ∈ H1 and |A,−〉2 ∈ H2. For
notational convenience, we shall henceforth drop the tensor product symbol and the subscripts
“1” and “2”, writing for instance |A,+〉1 ⊗ |A,−〉2 =: |A,+〉|A,−〉. This simplification does
not entail a risk of ambiguity, because the first and the second vectors always belong to the
Hilbert spaces H1 and H2, respectively. Such basis vectors can be organised, for convenience,
as in the following 4× 4 table:

1 2 3 4

1 |A,+〉|A,+〉 |A,+〉|A,−〉 |A,+〉|B,+〉 |A,+〉|B,−〉

2 |A,−〉|A,+〉 |A,−〉|A,−〉 |A,−〉|B,+〉 |A,−〉|B,−〉

3 |B,+〉|A,+〉 |B,+〉|A,−〉 |B,+〉|B,+〉 |B,+〉|B,−〉

4 |B,−〉|A,+〉 |B,−〉|A,−〉 |B,−〉|B,+〉 |B,−〉|B,−〉

(2.5)

We can then write, for the arbitrary vector |Ψ〉 ∈ H:

|Ψ〉 = c11 |A,+〉|A,+〉+ c12 |A,+〉|A,−〉+ . . .+ c44 |B,−〉|B,−〉, (2.6)

where cij are complex coefficients such that

4
∑

i,j=1

|cij |2 = 1 . (2.7)
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If the two particles are identical, antisymmetry requires that P̂ |Ψ〉 = −|Ψ〉, where P̂ is the
exchange operator [22]. Since

P̂ |A,+〉|A,+〉 = |A,+〉|A,+〉,

P̂ |A,+〉|A,−〉 = |A,−〉|A,+〉,

P̂ |A,+〉|B,+〉 = |B,+〉|A,+〉,

(2.8)

etc., this implies that the matrix with elements cij must be antisymmetric; that is, cij = −cji.
In particular, c11 = c22 = c33 = c44 = 0. The vectors

|A,+;A,−〉 := 1√
2

(

|A,+〉|A,−〉 − |A,−〉|A,+〉
)

, (2.9)

|A,+;B,+〉 := 1√
2

(

|A,+〉|B,+〉 − |B,+〉|A,+〉
)

, (2.10)

|A,+;B,−〉 := 1√
2

(

|A,+〉|B,−〉 − |B,−〉|A,+〉
)

, (2.11)

|A,−;B,+〉 := 1√
2

(

|A,−〉|B,+〉 − |B,+〉|A,−〉
)

, (2.12)

|A,−;B,−〉 := 1√
2

(

|A,−〉|B,−〉 − |B,−〉|A,−〉
)

, (2.13)

|B,+;B,−〉 := 1√
2

(

|B,+〉|B,−〉 − |B,−〉|B,+〉
)

, (2.14)

form an orthonormal basis in the Hilbert space of antisymmetric states for the system, and the
state can be written as

|Ψ〉 = α12|A,+;A,−〉+ α13|A,+;B,+〉+ α14|A,+;B,−〉
+ α23|A,−;B,+〉+ α24|A,−;B,−〉+ α34|B,+;B,−〉. (2.15)

where αij :=
√
2 cij .

It is worth commenting on the meaning of the states (2.9)–(2.14). All the states of the
basis (2.5) admit an interpretation where particle 1 is in a definite region with a definite z-
component for spin, and particle 2 is also in a definite region with a definite z-component for
spin (for instance, |A,+〉|B,−〉 corresponds to particle 1 in A with positive spin component, and
particle 2 in B with negative spin component). The states (2.9)–(2.14) are entirely different,
because they carry information only about the regions occupied by the particles, and the
correlations between the region and the spin component, but do not refer in any way to the
individual particles — a feature that is only expected, after all, for indistinguishable particles.
For example, in the state |A,+;B,−〉 we just know that there is a particle with positive spin
component in region A, and a particle with negative spin component in region B. Technically,
this happens because all the vectors (2.9)–(2.14) represent entangled states for the two particles.
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2.3 EPRB state

Let us now come to the requirements that are specific of the typical EPR state. We do not want
both particles to be in the same region, so the coefficients in front of basis vectors containing
A or B twice must vanish; that is, α12 = α34 = 0. Moreover, requiring that the total spin along
the z-direction be equal to zero, we must have Ŝz|Ψ〉 = 0, where Ŝz = Ŝ

(1)
z ⊗ 1̂(2) + 1̂(1) ⊗ Ŝ

(2)
z ,

with obvious notation. Acting on the various states on the right-hand side of equation (2.15)

with Ŝ
(1)
z and Ŝ

(2)
z , and using equations (2.2), we find α13 = α24 = 0, so we remain with

|Ψ〉 = a |A,+;B,−〉+ b |A,−;B,+〉 , (2.16)

where a := α14 and b := α23 satisfy the condition |a|2 + |b|2 = 1.
The state (2.16) predicts perfect anti-correlations among measurements of the z-component

of spin performed in A and B. This is satisfactory, because a real measurement of spin takes
place in the region A or B, not on particle 1 or particle 2 (as we already said in section 1,
for indistinguishable particles this would not even make sense). The state (2.16) is, however,
more general than the one appropriate to deal with the EPRB experimental setup. In order
to obtain the EPRB state, let us require that also the spin along another direction (say, x)

vanishes. That is, Ŝx|Ψ〉 = 0, where Ŝx = Ŝ
(1)
x ⊗ 1̂(2) + 1̂(1) ⊗ Ŝ

(2)
x is the x-component of total

spin. Applying equations (2.3), this implies that b = −a, so the state is

|Ψ〉 = 1√
2

(

|A,+;B,−〉 − |A,−;B,+〉
)

, (2.17)

up to an irrelevant global phase. It is easy to check, using equations (2.4), that also Ŝy|Ψ〉 = 0,

where Ŝy = Ŝ
(1)
y ⊗ 1̂(2) + 1̂(1) ⊗ Ŝ

(2)
y .

2.4 Factorisation

The EPRB state vector (2.17) is such that a measurement of the spin component along an
arbitrary direction in both regions, always gives opposite results — a fundamental ingredient
of the EPR argument.

This property is most easily seen noticing that the state (2.17) can be factorised into a
spatial part and a spin part,3

|Ψ〉 = |spatial〉|spin〉, (2.18)

where

|spatial〉 = 1√
2

(

|A〉1|B〉2 + |B〉1|A〉2
)

(2.19)

and

|spin〉 = 1√
2

(

|+〉1|−〉2 − |−〉1|+〉2
)

(2.20)

3We are now writing the state as an element of H(spatial)
1 ⊗ H(spatial)

2 ⊗ H(spin)
1 ⊗ H(spin)

2 , rather than of

H1⊗H2 = H(spatial)
1 ⊗H(spin)

1 ⊗H(spatial)
2 ⊗H(spin)

2 . This reshuffling is harmless, because the two representations
are equivalent, as it is obvious if one chooses to represent single-particle spatial states by wavefunctions, and
spin states by two-component columns.
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(particle labels have been reintroduced for greater clarity). The perfect anti-correlation between
spin measurements along an arbitrary direction then follows from the rotational symmetry of
the spin state (2.20).

The state (2.20) coincides with the “textbook state” (1.2), but now it is only a part of the
total state |Ψ〉, and gives the physically relevant information only when it is supplemented by
the spatial state (2.19). For instance, we can write, for the probability P (A,−;B,+) to get
the outcomes −1/2 at A and 1/2 at B:

P (A,−;B,+) = P (1,−; 2,+)P (1, A; 2, B) + P (1,+; 2,−)P (1, B; 2, A) , (2.21)

where P (1,−; 2,+) is the probability that particle 1 has spin −1/2 and particle 2 has spin 1/2,
P (1, A; 2, B) is the probability that particle 1 is in A and particle 2 is in B, and the other
probabilities are defined in a similar way. These probabilities can all be found using either
equation (2.19) or equation (2.20). For instance:

P (1−; 2,+) = |〈spin|−〉1|+〉2|2 =
1

2
; (2.22)

P (1, A; 2, B) = |〈spatial|A〉1|B〉2|2 =
1

2
. (2.23)

Substituting all the factors in equation (2.21), one finds P (A,−;B,+) = 1/2. Of course, this
is most easily computed working with the total state |Ψ〉:

P (A,−;B,+) = |〈Ψ|A,−;B,+〉|2 = 1

2
. (2.24)

The important point is, however, that one cannot obtain this probability from the state (1.2)
alone, which yields only probabilities like the one in equation (2.22).

3 Local spin operators

We have said several times that what is measured in an EPRB setting is the spin at the regions
A and B. Although it is intuitively clear what this means, it is appropriate to provide the
corresponding formal counterpart — Hermitian operators Ŝ

(A)
z and Ŝ

(B)
z for which (2.9)–(2.14)

are eigenvectors with appropriate eigenvalues. These can be called local spin operators ,4 as
opposed to Ŝ

(1)
z ⊗ 1̂(2) and 1̂(1)⊗ Ŝ

(2)
z , which correspond to the z-component of spin for particles

1 and 2, respectively, whose spatial location is ill-defined in a state of the type (2.16).
The local spin operators are

Ŝ(A)
z := |A〉〈A| ⊗ Ŝ(1)

z ⊗ 1̂(2) + 1̂(1) ⊗ |A〉〈A| ⊗ Ŝ(2)
z (3.1)

and
Ŝ(B)
z := |B〉〈B| ⊗ Ŝ(1)

z ⊗ 1̂(2) + 1̂(1) ⊗ |B〉〈B| ⊗ Ŝ(2)
z . (3.2)

4The concept of local spin is useful when dealing with the spatial distribution of the electrons in a
molecule [23].
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Indeed, the states (2.9)–(2.14) are all eigenvectors of these operators corresponding, respectively,
to the eigenvalues: 0, 0; 1/2, 1/2; 1/2, −1/2; −1/2, 1/2; −1/2, −1/2; 0, 0. Note that

[

Ŝ(A)
z , Ŝ(B)

z

]

= 0̂ , (3.3)

as expected, given that these operators have common eigenvectors that form a basis.
Of course, one could also construct operators Ŝ

(A)
i and Ŝ

(B)
i for the generic i-th component

of spin in the two regions. Remarkably,
[

Ŝ
(A)
i , Ŝ

(B)
j

]

= 0̂ , ∀ i, j , (3.4)

and one can find common eigenstates for every pair of operators Ŝ
(A)
i and Ŝ

(B)
j associated with

different regions. Within each single region, spin behaves in the usual way: For arbitrary
components i and j,

[

Ŝ
(A)
i , Ŝ

(A)
j

]

= i εijk Ŝ
(A)
k ,

[

Ŝ
(B)
i , Ŝ

(B)
j

]

= i εijk Ŝ
(B)
k , (3.5)

where εijk is the Levi-Civita alternating symbol, and a sum over the repeated index k is under-
stood.

4 Final comments

We have seen that including the spatial part of the state vector is mandatory if one wants to
give a precise formulation of the EPR argument, which involves measurements performed in
different regions, that holds for indistinguishable particles. Specifying only the spin part of the
state as in equation (1.2), is not enough from a formal point of view, because such a state is
compatible with other total states describing a system of two identical particles with spin 1/2.
For instance,

|B,+;B,−〉 = |B〉1|B〉2
1√
2

(

|+〉1|−〉2 − |−〉1|+〉2
)

(4.1)

shares the same spin state as (2.17), but of course cannot be used for the EPR argument, or
to find a contradiction with locality from the violation of Bell’s inequality, because it describes
two particles that are both in the same region. The information about the spatial location
must be added by hand if one uses the state vector (1.2), whereas the state (2.17) allows one
to extract all the relevant predictions applying automatically the quantum-mechanical rules.

Perhaps, the reasons why the spatial part is usually omitted in the textbook presentations,
are that (2.17) is the only state (up to a global phase) that satisfies all the requirements needed
to run the EPR argument, and that such a state can in fact be factorised as in equation (2.18).
Indeed, it is only for a = ±b that a state like (2.16) can be factorised into the product of a
spatial and a spin state. It is because the EPRB state vector (2.17) is of this very peculiar
type, that one tends to ignore the spatial part and represent the state simply as (1.1). The
state corresponding to the choice b = a is

1√
2

(

|A,+;B,−〉+ |A,−;B,+〉
)

, (4.2)
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for which

|spatial〉 = 1√
2

(

|A〉1|B〉2 − |B〉1|A〉2
)

(4.3)

and

|spin〉 = 1√
2

(

|+〉1|−〉2 + |−〉1|+〉2
)

. (4.4)

Although the state (4.2) is also entangled, it is not an eigenstate of Ŝx and Ŝy, so one cannot
use it for the purposes of the EPR argument. Other states, like

|A,+;B,+〉 = 1√
2

(

|A〉1|B〉2 − |B〉1|A〉2
)

|+〉1|+〉2 , (4.5)

are entangled only in their spatial part. Again, this is not enough to formulate the EPR
argument and to apply Bell’s theorem.

Summarising, the authors of textbooks and papers that use identical particles when dis-
cussing the EPR argument do not draw incorrect conclusions, because they consider measure-
ments at a region rather than measurements on a given particle. This is possible, however,
only because of the reasons discussed in this article, which are normally not included in the
presentation. Remarkably, a similar analysis is required even for distinguishable particles, if
their spatial state happens to be entangled.
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