Fusion systems on a Sylow 3-subgroup of the McLaughlin group

Elisa Baccanelli, Clara Franchi and Mario Mainardis
Communicated by Christopher Parker

Abstract

We determine all saturated fusion systems \mathscr{F} on a Sylow 3-subgroup of the sporadic McLaughlin group that do not contain any non-trivial normal 3-subgroup and show that they are all realizable.

1 Introduction

Let p be a prime and S a finite p-group. A fusion system \mathcal{F} on S is a category whose set $\mathrm{Ob}(\mathscr{F})$ of objects is the set of all subgroups of S, and, for Q and R in $\operatorname{Ob}(\mathcal{F})$, the set $\operatorname{Hom}_{\mathcal{F}}(Q, R)$ of morphisms from Q to R is a set of injective group homomorphisms $Q \rightarrow R$ (with composition of morphisms given by the usual composition of maps) such that, for every P, Q and R in $\mathrm{Ob}(\mathcal{F})$,
$(\mathrm{FS} 1) \operatorname{Hom}_{\mathcal{F}}(S, S)$ contains $\operatorname{Inn}(S)$,
(FS2) if $Q \leq P$ and $\phi \in \operatorname{Hom}_{\mathcal{F}}(P, R)$, then

$$
\phi_{\mid Q} \in \operatorname{Hom}_{\mathcal{F}}\left(Q, Q^{\phi}\right) \cap \operatorname{Hom}_{\mathcal{F}}(Q, R)
$$

(FS3) if $\phi \in \operatorname{Hom}_{\mathcal{F}}(Q, R)$ is an isomorphism, then $\phi^{-1} \in \operatorname{Hom}_{\mathcal{F}}(R, Q)$.
The elements of $\operatorname{Hom}_{\mathcal{F}}(R, Q)$ are called \mathscr{F}-morphisms. For $x \in S$, denote by c_{x} the automorphism of S induced by conjugation with x. For $P \in \operatorname{Ob}(\mathscr{F})$, set

$$
\operatorname{Aut}_{\mathcal{F}}(P):=\operatorname{Hom}_{\mathscr{F}}(P, P) \quad \text { and } \quad \operatorname{Aut}_{S}(P):=\left\{c_{x \mid P} \mid x \in N_{S}(P)\right\}
$$

and, for $\phi \in \operatorname{Hom}_{\mathcal{F}}(Q, R)$, set
$N_{\phi}:=\left\{g \in N_{S}(Q) \mid\right.$ there exists $h \in N_{S}(R)$ with $q^{c_{g} \phi}=q^{\phi c_{h}}$ for every $\left.q \in Q\right\}$.
A fusion system \mathcal{F} is said to be saturated if the following two conditions hold:
(S1) $\operatorname{Aut}_{S}(S)$ is a Sylow p-subgroup of $\operatorname{Aut}_{\mathcal{F}}(S)$;
(S2) if $P \leq S$ is such that, for every $\alpha \in \operatorname{Hom}_{\mathscr{F}}(P, S),\left|N_{S}(P)\right| \geq\left|N_{S}\left(P^{\alpha}\right)\right|$, then every $\phi \in \operatorname{Aut}_{\mathcal{F}}(P)$ extends to N_{ϕ}.

[^0]If S is a Sylow p-subgroup of a finite group G, denote by $\mathscr{F}_{S}(G)$ the category whose objects are all subgroups of S and whose morphisms are the homomorphisms induced by conjugation in $G . \mathcal{F}_{S}(G)$ is a saturated fusion system on S [7, Theorem 4.12], and a fusion system \mathcal{F} is called realizable if $\mathcal{F}=\mathcal{F}_{S}(G)$ for some finite group G (where, by our definition of $\mathscr{F}_{S}(G), S$ is a Sylow p-subgroup of G).

Let \mathcal{F} be a fusion system on S and H a normal subgroup of $S . H$ is called normal in \mathscr{F} if, for every Q and R in $\operatorname{Ob}(\mathscr{F})$ and $\phi \in \operatorname{Hom}_{\mathcal{F}}(Q, R), \phi$ can be extended to a map $\bar{\phi} \in \operatorname{Hom}_{\mathcal{F}}(H Q, H R)$ such that $\bar{\phi}_{\mid H}$ is an automorphism of H (see [3, Definition I.4.1]). Say \mathcal{F} is radical free if S contains no non-trivial subgroup that is normal in \mathcal{F}. For $P \in \operatorname{Ob}(\mathcal{F})$, say P is \mathscr{F}-centric if, for every $\alpha \in \operatorname{Hom}_{\mathscr{F}}(P, S), C_{S}\left(P^{\alpha}\right)=Z\left(P^{\alpha}\right)$, and say P is fully \mathscr{F}-normalized if, for every $\alpha \in \operatorname{Hom}_{\mathscr{F}}(P, S),\left|N_{S}(P)\right| \geq\left|N_{S}\left(P^{\alpha}\right)\right|$. Say P is \mathscr{F}-essential if it is proper, \mathscr{F}-centric, fully \mathscr{F}-normalized and $\operatorname{Out}_{\mathcal{F}}(P)$ contains a strongly p-embedded subgroup (note that this definition differs from the one in [7], where Craven does not assume an \mathcal{F}-essential subgroup to be fully \mathcal{F}-normalized). In particular, if P is \mathscr{F}-essential, $O_{p}\left(\mathrm{Out}_{\mathscr{F}}(P)\right)=1$. Denote by $D_{\mathscr{F}}$ the set of \mathscr{F}-essential elements of $\mathrm{Ob}(\mathcal{F})$.

Fusion systems over 2-groups of sectional rank at most 4 have been studied in [8, 15]. For p odd, Diaz, Ruiz and Viruel [9,18] classified saturated fusion systems over p-groups of sectional rank 2, and there is an ongoing project by Parker and Grazian [11-13] to classify all radical free saturated fusion systems over p-groups of sectional rank at most 4 . In a different direction, another project $[14,16]$ aims to obtain a classification of all radical free saturated fusion systems over p-groups with an extraspecial subgroup of index p. In this context, primes strictly greater than 3 usually afford a homogeneous treatment, in contrast 2 and 3 require ad hoc arguments. In this sense, this paper contributes to both the above projects by determining all saturated fusion systems \mathcal{F} on the Sylow 3-subgroups of the McLaughlin sporadic simple group.

By Alperin's theorem for fusion systems [7, Theorem 4.51], \mathscr{F} is completely determined by the automorphism groups of the \mathcal{F}-essential subgroups of S. Thus, in Section 2, we determine the possible \mathcal{F}-essential subgroups of S (in particular, we get $\left|D_{\mathcal{F}}\right| \leq 2$), and, in Section 4, we determine their automorphism groups under the assumption that $\left|D_{\mathcal{F}}\right|=2$.

In Section 5, we prove the following result.

Theorem 1. Let S be a Sylow 3-subgroup of the McLaughlin sporadic simple group, and let \mathcal{F} be a saturated fusion system on S with $\left|D_{\mathcal{F}}\right|>1$. Then \mathcal{F} is isomorphic to a fusion system $\mathcal{F}_{S}(G)$ (described in Table 2), where G is one of the following.
(i) $\tilde{G} \leq G \leq \operatorname{Aut}(\tilde{G})$, where $\tilde{G} \in\left\{\mathrm{Mc}, U_{4}(3), \mathrm{Co}_{2}\right\}$;
(ii) $G=L_{6}(q)$, where $q \equiv 4,7 \bmod 9$, or $G=U_{6}(q)$, where $q \equiv 2,5 \bmod 9$;
(iii) $G=L_{6}(q)\langle\phi\rangle$, where $q \equiv 4,7 \bmod 9$, or $G=U_{6}(q)\langle\phi\rangle$, where $q \equiv 2$, $5 \bmod 9$, and ϕ is a field automorphism of order 2.

Moreover, all groups in (ii) (respectively in (iii)) realize isomorphic fusion systems.
We refer to [3, 7] for fusion systems, to [2] for groups and to the ATLAS [6] for the notation of simple groups and group extensions. In particular, recall that, for $n \geq 4, S_{n}$ has two double covers $2^{-} S_{n}$ and $2^{+} S_{n}$ in which transpositions of S_{n} lift to elements of order 4 or involutions respectively (for $n=4$, this is elementary; for $n \geq 5$, see [6, p. xxiii]). For $n \neq 6$, these two double covers are not isomorphic. For $n=6$, the exceptional outer automorphism of S_{6} extends to an isomorphism between $2^{-} S_{6}$ and $2^{+} S_{6}$, so, up to isomorphism, there is a unique double cover of S_{6}, which we will simply denote by $2 S_{6}$.

$2 \mathscr{F}$-essential subgroups

Let p, S and \mathcal{F} be as in the previous section. Recall that a characteristic series \wp of a group P is a series

$$
1=P_{0} \leq P_{1} \leq \cdots \leq P_{n}=P
$$

where every P_{i} is a characteristic subgroup of P. We say that a subgroup H of S centralizes the series δ if $\left[P_{i}, H\right] \leq P_{i-1}$ for every $i \in\{1, \ldots, n\}$.

Lemma 2. Let P and H be subgroups of S. If P is \mathscr{F}-essential and H centralizes a characteristic series 8 in P, then $H \leq P$. In particular, if $Z(S)$ is characteristic in P, then $Z_{2}(S) \leq P$.

Proof. By coprime action, $C_{\operatorname{Aut}(P)}(\delta)$ is a p-subgroup of $\operatorname{Aut}(P)$, and, since δ is characteristic, $C_{\operatorname{Aut}(P)}(\delta) \leq O_{p}(\operatorname{Aut}(P))$. In particular,

$$
\begin{aligned}
\operatorname{Aut}_{H}(P) & \leq O_{p}(\operatorname{Aut}(P)) \cap \operatorname{Aut}_{\mathcal{F}}(P) \\
& \leq O_{p}\left(\operatorname{Aut}_{\mathcal{F}}(P)\right)
\end{aligned}
$$

Since P is \mathcal{F}-essential, $O_{p}\left(\operatorname{Aut}_{\mathcal{F}}(P)\right)=\operatorname{Inn}(P)$, so $H \leq P C_{S}(P)$. Since P is \mathcal{F}-centric, we have $C_{S}(P)=Z(P)$, whence $P C_{S}(P)=P$, and the result follows. Clearly, $Z(S) \leq Z(P)$; thus, if $Z(S)$ is characteristic in P, then $Z_{2}(S)$ centralizes the characteristic series $1 \leq Z(S) \leq P$.

Lemma 3. If S is a Sylow 3-subgroup of the McLaughlin group, then S has the presentation

$$
\begin{align*}
S=\langle x, y, z, a, b, t| & x^{3}=y^{3}=z^{3}=a^{3}=b^{3}=t^{3}=1 \\
& {[x, y]=[a, b]=z,[y, t]=x z,[b, t]=a z \text { and } } \\
& {[c, d]=1 \text { for all other }\{c, d\} \subset\{x, y, a, b, t, z\}\rangle } \tag{2.1}
\end{align*}
$$

Proof. By [6], if $S \in \operatorname{Syl}_{3}(\mathrm{Mc}), S$ is contained in a maximal subgroup of Mc isomorphic to the group $3^{4}: M_{10}$. An easy inspection in $3^{4}: M_{10}$ shows that S satisfies the presentation in (2.1) (see [4] for details).

For the remainder of this paper, x, y, a, b, t, z will denote the generators of a 3âĂŇ-group S satisfying the presentation in (2.1).

Denote, as usual, by $J(S)$ the Thompson subgroup of S.
Lemma 4. The following hold:
(i) $X(S):=\langle x, y, a, b\rangle$ is extraspecial of order 3^{5} and exponent 3 ;
(ii) $J(S)=C_{S}(J(S))=\langle x, a, z, t\rangle$, and $J(S)$ is elementary abelian of order 3^{4}, in particular, $m_{p}(S)=4$;
(iii) $Z(S)=Z(X(S))=X(S)^{(1)}=\langle z\rangle$;
(iv) $S^{(1)}=X(S) \cap J(S)=[S, J(S)]=Z_{2}(S)=\langle x, a, z\rangle$ and $\left|Z_{2}(S)\right|=3^{3}$;
(v) $S^{3}=Z(S)$, and every element of S of order 3 is contained in $X(S) \cup J(S)$;

Proof. This follows from easy commutator computations (see [4]).
Lemma 5. No subgroup of p-rank 2 of $\mathrm{GL}_{2}(p) \times \mathrm{GL}_{2}(p), \mathrm{GL}_{3}(p) \times \mathrm{GL}_{1}(p)$ or $\mathrm{GL}_{3}(p)$ contains a strongly p-embedded subgroup.

Proof. This is immediate for $\mathrm{GL}_{2}(p) \times \mathrm{GL}_{2}(p)$; otherwise, it follows by [5, Tables 8.3 and 8.4].

Lemma 6. Let H be a subgroup of $\mathrm{GL}_{4}(3)$, and let U be the natural module for $\mathrm{GL}_{4}(3)$. Suppose that H contains a Sylow 3-subgroup H_{3} of order 9 such that $\left|C_{U}\left(H_{3}\right)\right|=3$ and a strongly 3-embedded subgroup. Then H lies in the group of similarities of an orthogonal form on U with Witt index 1.

Proof. Since H contains a strongly 3-embedded subgroup, $O_{3}(H)=1$, and this implies that H cannot stabilize a subspace of U with dimension 1 or 3. Condition $\left|C_{U}\left(H_{3}\right)\right|=3$ implies that H cannot stabilize a subspace of U with dimension 2,
nor normalize a decomposition of U into a direct sum of two subspaces, nor a tensor decomposition, nor an extension field \mathbb{F}_{9}. By Aschbacher's classification of maximal subgroups of finite classical groups [1] and [5, Table 8.9], it follows that either H lies in the group of similarities of an orthogonal form with Witt index 1 or H lies in the group $\mathrm{Sp}_{4}(3)$. The latter case cannot occur by [5, Tables 8.12 and 8.13].

Proposition 7. Let \mathcal{F} be a saturated fusion system on S. Then the \mathcal{F}-essential subgroups of S are in $\{X(S), J(S)\}$.

Proof. Let P be an \mathscr{F}-essential subgroup of S.
Claim 1. $|P| \geq 3^{3}$ and P is not properly contained in $J(S)$.
Since P is \mathscr{F}-centric and $J(S)$ is abelian, $|P| \geq 3^{2}$ and $P \nless J(S)$. Since $Z_{2}(S)<J(S)$, it follows that $P \not \leq Z_{2}(S)$. If $|P|=3^{2}$, then $P \cap Z_{2}(S)=Z(S)$ and $\left|\operatorname{Aut}_{Z_{2}(S)}(P)\right| \leq 3$, whence $C_{Z_{2}(S)}(P) \nsubseteq P$, a contradiction.

Claim 2. If $\left|N_{S}(P): P\right| \geq 3^{2}$, then $P=J(S)$.
Suppose $\left|N_{S}(P): P\right| \geq 3^{2}$. Since $|S|=3^{6}$, then $|P| \leq 3^{4}$, and 3^{2} divides $\left|\operatorname{Out}_{\mathcal{F}}(P)\right|$. Since $O_{3}\left(\operatorname{Out}_{\mathcal{F}}(P)\right)=1$, the map

$$
\begin{aligned}
\Phi: \operatorname{Out}_{\mathcal{F}}(P) & \rightarrow \operatorname{Aut}\left(P / Z_{2}(P)\right) \times \operatorname{Aut}\left(Z_{2}(P) / Z(P)\right) \times \operatorname{Aut}(Z(P)), \\
\phi & \mapsto\left(\phi_{\mid P / Z_{2}(P)}, \phi_{\mid Z_{2}(P) / Z(P)}, \phi_{\mid Z(P)}\right)
\end{aligned}
$$

is injective. Since 3^{2} divides $\left|\mathrm{Out}_{\mathcal{F}}(P)\right|, 3^{2}$ divides also $|\operatorname{Im}(\Phi)|$, which forces $P=Z_{2}(P)$. Since $\operatorname{Aut}(P / Z(P)) \times \operatorname{Aut}(Z(P))$ is isomorphic to one of

$$
\mathrm{GL}_{2}(3) \times \mathrm{GL}_{2}(3), \quad \mathrm{GL}_{1}(3) \times \mathrm{GL}_{3}(3), \quad \mathrm{GL}_{3}(3) \quad \text { or } \quad \mathrm{GL}_{4}(3)
$$

and, by Lemma 5, none of the first three groups contains a subgroup of order divisible by 3^{2} with a strongly 3 -embedded subgroup, it follows that

$$
\operatorname{Aut}(P / Z(P)) \times \operatorname{Aut}(Z(P)) \cong \mathrm{GL}_{4}(3)
$$

which can happen only if P is elementary abelian of order 3^{4}, that is, $P=J(S)$.
Claim 3. $|P| \neq 3^{3}$.
Suppose, by means of contradiction, that $|P|=3^{3}$. Since $P \not \leq J(S)$ by Claim 1 and $Z_{2}(S) \leq J(S)$ by Lemma 4 (iv), it follows that $P \not \leq Z_{2}(S)$. So, by Lemma 2
and Lemma 4 (iv), $Z(S)$ is not characteristic in P. Since

$$
|Z(S)|=3, \quad Z(S) \leq Z(P), \quad P^{3} \leq S^{3} \leq Z(S)
$$

and both $Z(P)$ and P^{3} are characteristic in P, it follows that P is elementary abelian. Moreover, since $Z(S)=X(S)^{(1)} \leq P$ and $|X(S)| /|P|=3^{2}$, by Claim 2, P cannot be contained in $X(S)$. Similarly, $P \cap Z_{2}(S)=3^{2}$. Therefore, modulo exchanging (x, y) with (a, b), we may assume that there are an integer α and an element $e \in C_{X(S)}\left(x a^{\alpha}\right)$ such that $P=\left\langle z, x a^{\alpha}, e t\right\rangle$. Since

$$
\left[e t, y b^{\alpha}\right]=\left[e, y b^{\alpha}\right]^{t}\left[t, y b^{\alpha}\right] \in\langle z\rangle x a^{\alpha}
$$

and $y b^{\alpha}$ normalizes $\left\langle z, x a^{\alpha}\right\rangle$, it follows that $\left\langle Z_{2}(S), y b^{\alpha}\right\rangle \leq N_{S}(P)$, whence $\left|N_{S}(P): P\right| \geq 3^{2}$, a contradiction to Claim 2.

Claim 4. If $|P|=3^{4}$, then $P=J(S)$.
Suppose, by means of contradiction, that $|P|=3^{4}$ and $P \neq J(S)$. By Claim 2, P is not normal in S, so $Z_{2}(S) \nsubseteq P$, whence, by Lemma $2, Z(S)$ is not characteristic in P. By Lemma 4(v), P has exponent 3 . Since $P \neq J(S), P$ is not abelian, whence $|Z(P)|=3^{2}$ and $P^{(1)} \leq Z(P)$, in particular, $\left|Z(P): P^{(1)}\right| \leq 3$. Since $S^{(1)}=Z_{2}(S)$ is abelian and contains $P^{(1)}$, and $Z(S) \leq Z(P)$ since P is \mathcal{F}-essential, it follows that $S^{(1)}$ centralizes the characteristic series

$$
1 \leq P^{(1)} \leq Z(P) \leq P,
$$

and so, by Lemma 2, $S^{(1)} \leq P$, a contradiction.
Claim 5. If $|P|=3^{5}$, then $P=X(S)$.
Suppose, by means of contradiction, that P is a maximal subgroup of S and $P \neq X(S)$. Then P is not contained in $X(S) \cup J(S)$, so, by Lemma 4 (v) P has exponent 3^{2}. As in the previous case, we get $P^{3}=S^{3}=Z(S), Z_{2}(S) \leq P$ and $Z_{2}(S)$ is not characteristic in P. In particular, we have $Z_{2}(S)<Z_{2}(P)$, and so $\left|P / Z_{2}(P)\right| \leq 3$, whence $Z_{2}(P)=P$. Thus, by [19, (3.13)], P is a regular 3 -group of exponent 9 with derived subgroup of exponent 3 , whence $\Omega_{1}(P)<P$. Since $X(S)$ is maximal in S and has exponent 3, we get $\Omega_{1}(P)=P \cap X(S)$, and $X(S)$ centralizes the series $1<Z(S)<\Omega_{1}(P)<P$. Lemma 2 now gives the contradiction $X(S) \leq P$.

Corollary 8. Let \mathcal{F} be a saturated and radical free fusion system on S. Then its \mathcal{F}-essential subgroups are $X(S)$ and $J(S)$.

Proof. This follows immediately from Proposition 7 and [7, Exercise 9.3].

3 The group $\operatorname{Aut}(S)$

In this section, we study the group $\operatorname{Aut}(S)$ and, in particular, its relations with $\operatorname{Aut}(J(S))$ and $\operatorname{Aut}(X(S))$. Since $J(S)$ and $X(S)$ are characteristic subgroups of S, the restriction maps from $\operatorname{Aut}(S)$ to $\operatorname{Aut}(J(S))$ and $\operatorname{Aut}(X(S))$ are well defined. For $P \in\{J(S), X(S)\}$, we denote them

$$
\mathrm{r}_{P}: \operatorname{Aut}(S) \rightarrow \operatorname{Aut}(P)
$$

It is straightforward to check that the image of r_{P} lies in $N_{\operatorname{Aut}(P)}\left(\operatorname{Aut}_{S}(P)\right)$.
Lemma 9. Let $\phi \in \operatorname{Aut}(S)$. If $[J(S), \phi]=1$ or $[X(S), \phi]=1$, then $\phi^{3}=\mathrm{id}_{S}$. If $[J(S), \phi]=[X(S), \phi]=1$, then $\phi=\mathrm{id}_{S}$.

Proof. Let $\phi \in \operatorname{Aut}(S)$, and suppose $[X(S), \phi]=1$. Then

$$
t^{\phi}=t^{m} e \quad \text { for some } e \in X(S)
$$

From the relation

$$
\left[y, t^{\phi}\right]=\left[y^{\phi}, t^{\phi}\right]=[y, t]^{\phi}=[y, t]
$$

we get $m \equiv 1 \bmod 3$. Hence $[S, \phi] \leq X(S)$, and, since $X(S)$ has exponent 3 , it follows that $\phi^{3}=\operatorname{id}_{S}$. Suppose now $[J(S), \phi]=1$. Then we can write

$$
y^{\phi}=y^{\alpha} b^{\beta}{ }_{s} \quad \text { with } s \in J(S)
$$

From $\left[y^{\phi}, a\right]=\left[y^{\phi}, a^{\phi}\right]=[y, a]^{\phi}=1$, we deduce $\beta \equiv 0 \bmod 3$, and then, from $\left[y^{\phi}, x\right]=\left[y^{\phi}, x^{\phi}\right]=z^{\phi}=z$, we get $\alpha \equiv 1 \bmod 3$. Similarly, we get $b^{\phi}=b s^{\prime}$ with $s^{\prime} \in J(S)$. Thus $[S, \phi] \leq J(S)$, and, as above, this yields that $\phi^{3}=\mathrm{id}_{S}$. The last claim is clear since S is generated by $J(S)$ and $X(S)$.

Lemma 10. For $P \in\{J(S), X(S)\}$, the restriction map r_{P} is a surjective homomorphism from $\operatorname{Aut}(S)$ onto $N_{\operatorname{Aut}(P)}\left(\operatorname{Aut}_{S}(P)\right)$. Moreover, $\operatorname{ker} \mathrm{r}_{J(S)}$ has order 3^{5}, and $\operatorname{ker}_{X(S)}$ has order 3 .

Proof. Let $P \in\{J(S), X(S)\}$. Clearly, the map r_{P} is a group homomorphism.
With the notation of Section 2, $\operatorname{Aut}_{S}(J(S))=\left\langle c_{y}, c_{b}\right\rangle$, and a direct inspection in the group $\operatorname{Aut}(J(S)) \cong \mathrm{GL}_{4}(3)$ shows that $N_{\text {Aut }(J(S))}\left(\operatorname{Aut}_{S}(J(S))\right)$ is generated by the three automorphisms $\alpha_{1}, \alpha_{2}, \alpha_{3}$ of $J(S)$ uniquely determined by the conditions

$$
\alpha_{1}:\left\{\begin{array}{l}
z \mapsto z^{-1}, \\
x \mapsto x a, \\
a \mapsto x a^{-1} z^{-1}, \\
t \mapsto t,
\end{array} \quad \alpha_{2}:\left\{\begin{array}{l}
z \mapsto z, \\
x \mapsto x^{-1} z^{-1}, \\
a \mapsto a, \\
t \mapsto t,
\end{array} \quad \alpha_{3}:\left\{\begin{array}{l}
z \mapsto z^{-1}, \\
x \mapsto a^{-1} z^{-1} \\
a \mapsto x^{-1} z \\
t \mapsto x^{-1} a t^{-1}
\end{array}\right.\right.\right.
$$

It is straightforward to check that, for $i \in\{1,2,3\}, \alpha_{i}$ is the restriction to $J(S)$ of the automorphism $\bar{\alpha}_{i}$ of S uniquely determined by the conditions

$$
\bar{\alpha}_{1}:\left\{\begin{array}{l}
z \mapsto z^{-1}, \\
x \mapsto x a, \\
a \mapsto x a^{-1} z^{-1}, \\
t \mapsto t, \\
y \mapsto y b, \\
b \mapsto y b^{-1},
\end{array} \quad \bar{\alpha}_{2}:\left\{\begin{array}{l}
z \mapsto z, \\
x \mapsto x^{-1} z^{-1}, \\
a \mapsto a, \\
t \mapsto t, \\
y \mapsto y^{-1}, \\
b \mapsto b,
\end{array} \quad \bar{\alpha}_{3}:\left\{\begin{array}{l}
z \mapsto z^{-1}, \\
x \mapsto a^{-1} z^{-1}, \\
a \mapsto x^{-1} z, \\
t \mapsto x^{-1} a t^{-1}, \\
y \mapsto b, \\
b \mapsto y .
\end{array}\right.\right.\right.
$$

Hence $\mathrm{r}_{J(S)}$ is surjective. For $i \in\{1,2,3\}$, let $\tilde{\alpha}_{i}$ be the automorphism of $X(S)$ induced by $\bar{\alpha}_{i}$. Recall that, since $X(S)$ is extraspecial of exponent 3 and order 3^{5}, $\operatorname{Out}(X(S))$ is isomorphic to the group of similarities of a symplectic space of dimension 4 over the field \mathbb{F}_{3}, which we denote by $\mathrm{GSp}_{4}(3)$. Then, computing in $\operatorname{GSp}_{4}(3)$, we get that the image of $\left\langle\tilde{\alpha}_{1}, \tilde{\alpha}_{2}, \tilde{\alpha}_{3}\right\rangle$ in $\operatorname{Out}(X(S))$ has order 32. Let $\bar{\beta}_{1}$, $\bar{\beta}_{2}, \bar{\beta}_{3}$ be the automorphisms of S defined by the positions

$$
\bar{\beta}_{1}:\left\{\begin{array}{l}
z \mapsto z, \\
x \mapsto x, \\
a \mapsto a, \\
t \mapsto t, \\
y \mapsto y, \\
b \mapsto a b,
\end{array} \quad \bar{\beta}_{2}: \quad\left\{\begin{array}{l}
z \mapsto z, \\
x \mapsto x, \\
a \mapsto a, \\
t \mapsto t, \\
y \mapsto x y, \\
b \mapsto b,
\end{array} \quad \bar{\beta}_{3}: \quad\left\{\begin{array}{l}
z \mapsto z, \\
x \mapsto x, \\
a \mapsto a, \\
t \mapsto t, \\
y \mapsto a y, \\
b \mapsto x a^{-1} b,
\end{array}\right.\right.\right.
$$

and let $\beta_{1}, \beta_{2}, \beta_{3}$ be their restrictions to $X(S)$, respectively. Then it is clear that $\beta_{1}, \beta_{2}, \beta_{3}$ normalize $\operatorname{Aut}_{S}(X(S))$ and that the image of $\left\langle\beta_{1}, \beta_{2}, \beta_{3}\right\rangle$ in $\operatorname{Out}(X(S))$ is an elementary abelian group of order 27.

Since the group $N_{\mathrm{Out}(X(S))}\left(\mathrm{Out}_{S}(X(S))\right)$) (computed inside $\left.\mathrm{GSp}_{4}(3)\right)$ has order $2^{5} \cdot 3^{3}$ and $N_{\operatorname{Aut}(X(S))}\left(\operatorname{Aut}_{S}(X(S))\right) / \operatorname{Inn}(X(S))=N_{\text {Out }(X(S))}\left(\operatorname{Out}_{S}(X(S))\right)$, we get

$$
N_{\operatorname{Aut}(X(S))}\left(\operatorname{Aut}_{S}(X(S))\right)=\operatorname{Inn}(X(S))\left\langle\beta_{1}, \beta_{2}, \beta_{3}, \tilde{\alpha}_{1}, \tilde{\alpha}_{2}, \tilde{\alpha}_{3}\right\rangle .
$$

Hence $\mathrm{r}_{X(S)}$ is surjective.
To prove the claims about kernels, note, first of all, that, by Lemma $9, \operatorname{kerr}_{J(S)}$ and $\operatorname{ker}_{X(S)}$ are 3 -groups and $\operatorname{ker}_{J(S)} \cap \operatorname{ker}_{X(S)}=1$. Moreover,

$$
\begin{aligned}
\operatorname{ker}_{X(S)} \cap \operatorname{Inn}(S) & =1, \\
\left|\operatorname{ker}_{J(S)} \cap \operatorname{Aut}_{S}(X(S))\right| & =|(J(S) \cap X(S)) / Z(S)|=3^{2}
\end{aligned}
$$

Therefore, $\operatorname{ker}_{X(S)}$ is isomorphic to a subgroup of $N_{\text {Aut }(J(S))}\left(\operatorname{Aut}_{S}(J(S))\right)$ intersecting trivially Aut ${ }_{S}(J(S))$. Then we get $\left|\operatorname{ker}_{X(S)}\right|=3$ since a Sylow 3-subgroup of $N_{\text {Aut }(J(S))}\left(\operatorname{Aut}_{S}(J(S))\right)$ has order 3^{3},

Similarly, $\operatorname{ker}_{J(S)}$ is isomorphic to a subgroup of $N_{\text {Aut }(X(S))}\left(\operatorname{Aut}_{S}(X(S))\right)$. Since $\left\langle\bar{\beta}_{1}, \bar{\beta}_{2}, \bar{\beta}_{3}\right\rangle \leq \operatorname{kerr}_{J(S)}$ and the image of $\left\langle\beta_{1}, \beta_{2}, \beta_{3}\right\rangle$ in $\operatorname{Out}(X(S))$ is elementary abelian of order 27, we get $\left|\operatorname{ker}_{J(S)}\right|=3^{5}$.

Corollary 11. The subgroup of $\operatorname{Aut}(S)$ that is generated by $\operatorname{ker}_{J(S)}, \operatorname{kerr}_{X(S)}$ and $\operatorname{Inn}(S)$ is a normal Sylow 3-subgroup of $\operatorname{Aut}(S)$ with order 3^{8} and index 2^{5}.

Proof. By Lemma 10, $\operatorname{ker} r_{J(S)}$ is a 3-subgroup of order 3^{5}, and $\operatorname{Aut}(S) / \operatorname{ker} r_{J(S)}$ is isomorphic to $N_{\operatorname{Aut}(J(S))}\left(\operatorname{Aut}_{S}(J(S))\right)$, which has a normal Sylow 3-subgroup of order 27 and index 32.

4 Automorphism groups in \mathscr{F}

We keep the notation introduced in the previous sections, and we assume that \mathcal{F} is a saturated radical free fusion system on S. In order to obtain the possible fusion systems \mathcal{F}, we now need to determine the groups Aut $_{\mathscr{F}}(J(S))$, Aut $\mathcal{F}_{\mathcal{F}}(X(S))$ and Aut $_{\mathcal{F}}(S)$. We begin with Aut $\mathcal{F}^{(}(J(S))$.

Proposition 12. Let \mathcal{F} be a saturated fusion system on S, and assume that $J(S)$ is \mathcal{F}-essential. Then the following holds:
(i) $\operatorname{Aut}_{\mathcal{F}}(J(S))$ is contained in a maximal subgroup M of $\operatorname{Aut}(J(S)) \cong \mathrm{GL}_{4}(3)$ isomorphic to $\left(C_{2} \times M_{10}\right): C_{2}$;
(ii) $\operatorname{Aut}_{\mathcal{F}}(J(S))^{(2)}=M^{(2)} \cong A_{6}$;
(iii) $\mathrm{Aut}_{\mathcal{F}}(J(S))$ acts irreducibly on $J(S)$;
(iv) if θ is an element of order 4 in $\operatorname{Aut}_{\mathcal{F}}(J(S))^{(2)}$ normalizing $\operatorname{Aut}_{S}(J(S))$, then, up to conjugation in $\operatorname{Aut}_{\mathcal{F}}(J(S))^{(2)}, \theta=\zeta_{\mid J(S)}$, where $\zeta \in$ Aut $_{\mathcal{F}}(S)$ is such that

$$
\begin{gathered}
x^{\zeta}=a^{-1} z, \quad y^{\zeta}=b, \quad a^{\zeta}=x z^{-1}, \quad b^{\zeta}=y^{-1} \\
t^{\zeta}=x a^{-1} t^{-1} z, \quad z^{\zeta}=z^{-1}
\end{gathered}
$$

in particular, $[J(S), \theta]=J(S)$;
(v) if $N_{\operatorname{Aut}_{\mathcal{F}}(J(S))}\left(\operatorname{Aut}_{S}(J(S))\right)$ is contained in two maximal subgroups M and M^{\prime} of $\operatorname{Aut}(J(S))$ isomorphic to $\left(C_{2} \times M_{10}\right)$: C_{2}, then $M^{\prime}=M^{\xi_{\mid J(S)}}$, where ξ is an element of order 3 in $\operatorname{Aut}(S)$ such that $\xi_{\mid X(S)}=\operatorname{id}_{X(S)}$ and $\xi_{\mid J(S)}$ centralizes $N_{\text {Aut }_{\mathcal{F}}(J(S))}\left(\operatorname{Aut}_{S}(J(S))\right)$.

Proof. Since $J(S)$ is elementary abelian of $\operatorname{rank} 4$, $\operatorname{Aut}(J(S)) \cong \mathrm{GL}_{4}$ (3). Clearly, $C_{J(S)}\left(\operatorname{Aut}_{S}(J(S))=C_{J(S)}(S)=Z(S)\right.$ has order 3 by Lemma 4. Since \mathcal{F} is saturated, Aut $S_{S}(J(S))$ is a Sylow 3-subgroup of $\operatorname{Aut}_{\mathcal{F}}(J(S))$ of order 9, and, since $J(S)$ is \mathcal{F}-essential and abelian, Aut $\mathcal{F}(J(S))$ has a strongly 3-embedded subgroup. Thus, by Lemma 6, Aut $\mathcal{F}(J(S))$ is contained in the group of similarities of an orthogonal form with Witt index 1, that is, a maximal subgroup $M \cong\left(C_{2} \times M_{10}\right): C_{2}$. Then we have $M^{(2)} \cong A_{6}$ and $M / M^{(2)} \cong D_{8}$. Let T be a Sylow 3-subgroup of $\operatorname{Aut}_{\mathcal{F}}(J(S))$. Then $T \leq M^{(2)} \cap \operatorname{Aut}_{\mathcal{F}}(J(S))$, and, since $O_{3}\left(\operatorname{Aut}_{\mathcal{F}}(J(S))\right)=1$, we get $O_{3}\left(M^{(2)} \cap \operatorname{Aut}_{\mathcal{F}}(J(S))\right)=1$. Since $O_{3}(H) \neq 1$ for every proper subgroup H of A_{6} of order divisible by $3^{2}, M^{(2)} \leq \operatorname{Aut}_{\mathcal{F}}(J(S))$. Since $M^{(2)}$ acts irreducibly on $J(S)$, claim (iii) follows. To prove claim (iv), note that, since $J(S)$ is normal in S and θ normalizes Aut ${ }_{S}\left(J(S)\right.$), we have $N_{\theta}=S$, and axiom (S2) yields that there exists $\zeta \in \operatorname{Aut}_{\mathcal{F}}(S)$ such that $\theta=\zeta_{\mid J(S)}$. Since there is a unique semidirect product of $J(S)$ by A_{6} via a non-trivial action (see also [17, Lemma 3.4 (iv)]), it follows that, up to conjugation in $\operatorname{Aut}_{\mathcal{F}}(J(S))^{(2)} \cong A_{6}$,

$$
x^{\zeta}=a^{-1} z, \quad a^{\zeta}=x z^{-1}, \quad t^{\zeta}=x a^{-1} t^{-1} z, \quad z^{\zeta}=z^{-1} .
$$

Set

$$
y^{\zeta}=x^{r} y^{s} a^{l} b^{m} z^{k}, \quad b^{\zeta}=x^{\alpha} y^{\beta} a^{\gamma} b^{\delta} z^{\varepsilon}
$$

for some $r, s, l, m, k, \alpha, \beta, \gamma, \delta, \varepsilon \in \mathbb{F}_{3}$ (note that $y^{\zeta}, b^{\zeta} \in X(S)$ since $X(S)$ is characteristic in S). From the identity $\left[a^{\zeta}, b^{\zeta}\right]=z^{\zeta}$, we get

$$
z^{-1}=z^{\zeta}=\left[a^{\zeta}, b^{\zeta}\right]=\left[x z^{-1}, x^{\alpha} y^{\beta} a^{\gamma} b^{\delta} z^{\varepsilon}\right]=\left[x, y^{\beta}\right]=z^{\beta}
$$

whence $\beta=-1$, and similarly, from $\left[x^{\zeta}, y^{\zeta}\right]=z^{\zeta}$, we get $m=1$. From

$$
\left[x^{\zeta}, b^{\zeta}\right]=\left[a^{\zeta}, y^{\zeta}\right]=1
$$

we get $\delta=s=0$. Further, up to replacing ζ by its product with some element of $\operatorname{Inn}(S)$ (namely, powers of c_{x}, c_{a}, c_{t}), we may also assume $l=\alpha=0$ and $k=\varepsilon=0$. Then, the identity $\left[y^{\zeta}, b^{\zeta}\right]=1$ gives

$$
1=\left[y^{\zeta}, b^{\zeta}\right]=\left[x^{r} b, y^{-1} a^{\gamma}\right]=\left[x^{r}, y^{-1}\right]\left[b, a^{\gamma}\right]=z^{-r-\gamma}
$$

whence $\gamma=-r$ and $y^{\zeta}=x^{r} b, b^{\zeta}=y^{-1} a^{-r}$. Finally, by Lemma 10, we may assume that ζ has order 4, and this last condition yields $r=0$, as claimed.

To prove (v), suppose that $\operatorname{Aut}_{\mathcal{F}}(J(S))$ is contained in two maximal subgroups M and M^{\prime} isomorphic to $\left(C_{2} \times M_{10}\right): C_{2}$. Then M and M^{\prime} are conjugate in
$\operatorname{Aut}(J(S)) \cong \mathrm{GL}_{4}(3)$, and clearly they contain $\operatorname{Aut}_{S}(J(S))$. Comparing the number of conjugates of $\operatorname{Aut}_{S}(J(S))$ in M and in $\operatorname{Aut}(J(S))$ and the number of conjugates of M in $\operatorname{Aut}\left(J(S)\right.$), we get that $\operatorname{Aut}_{S}(J(S))$ is contained in exactly 3 conjugates of M. Let $\xi \in \operatorname{Aut}(S)$ be defined by

$$
x^{\xi}=x, \quad y^{\xi}=y, \quad a^{\xi}=a, \quad b^{\xi}=b, \quad t^{\xi}=t z, \quad z^{\xi}=z
$$

and set $\bar{\xi}:=\xi_{\mid J(S)}$ and $N:=N_{\operatorname{Aut}(J(S))}\left(\operatorname{Aut}_{S}(J(S))\right)$. It is clear from the definition that $\xi_{\mid X(S)}=\operatorname{id}_{X(S)}$ and ξ has order 3. Moreover, $\bar{\xi} \in N$, but $\bar{\xi} \notin M$ since $\operatorname{Aut}_{S}\left(J(S)\right.$) is a Sylow 3-subgroup of M. Hence, up to replacing ξ by ξ^{-1}, we have $M^{\prime}=M^{\xi_{\mid J(S)}}$. Now set

$$
N_{M}:=N_{M}\left(\operatorname{Aut}_{S}(J(S))\right) \quad \text { and } \quad C_{M}:=C_{N}(\bar{\xi}) \cap M
$$

Then N_{M} has index 3 in N. If $\alpha_{1}, \alpha_{2}, \alpha_{3}$ are the automorphisms of $J(S)$ defined in the proof of Lemma 9, then α_{1} does not centralize $\bar{\xi}$, and $\left\langle\alpha_{1}^{2}, \alpha_{2}, \alpha_{3}\right\rangle \leq C_{N}(\bar{\xi})$. Hence $C_{N}(\bar{\xi})$ has index 2 in N, and $C_{M_{\bar{\xi}}}$ has index 2 in N_{M}. Moreover, we have $\left(N_{M}\right)^{\bar{\xi}} \neq N_{M}$, and, since $N=\left\langle N_{M}, N_{M}^{\bar{\xi}}\right\rangle$ is not contained in M, it follows that $\left(N_{M}\right)^{\bar{\xi}}$ is not contained in M. On the other hand, C_{M} is contained in $M \cap M^{\prime}$ (since $M^{\prime}=M^{\bar{\xi}}$), whence $C_{M}=M \cap M^{\prime} \cap N$. Hence

$$
N_{\text {Aut }_{\mathcal{F}}(J(S))}\left(\operatorname{Aut}_{S}(J(S))\right) \leq C_{M},
$$

and the claim is proved.
We turn now to Aut $_{\mathcal{F}}(X(S))$. Note that Aut $_{\mathcal{F}}(X(S))$ is completely determined once we determine $\mathrm{Out}_{\mathcal{F}}(X(S))$ up to conjugacy in $\operatorname{Out}(X(S))$ since Aut $\mathcal{F}^{(}(X(S))$ contains the group $\operatorname{Inn}(X(S))$. Now we have $\operatorname{Aut}_{S}(X(S))=\left\langle c_{t}\right\rangle$, so, by Proposition 12 (iv), $\zeta_{\mid X(S)} \in N_{\text {Aut }_{\mathcal{F}}(X(S))}\left(\left\langle c_{t}\right\rangle\right)$. Since $X(S)$ is extraspecial of exponent 3, $X(S) / Z(X(S))$ has, as usual, a natural structure of a symplectic space over \mathbb{F}_{3}, the form being defined by the commutator and identifying $Z(X(S))$ with the defining field. Denote by V this space, and let
$v_{1}:=x Z(X(S)), \quad v_{2}:=a Z(X(S)), \quad u_{1}:=b Z(X(S)), \quad u_{2}:=y Z(X(S))$
so that $\operatorname{Out}(X(S)) \cong \operatorname{GSp}(V)$ and $\mathscr{B}:=\left(v_{1}, v_{2}, u_{1}, u_{2}\right)$ is a hyperbolic basis of V with mutually orthogonal hyperbolic subspaces $\left\langle v_{1}, u_{2}\right\rangle$ and $\left\langle u_{1}, v_{2}\right\rangle$. Further, denote by I the image in $\operatorname{Out}(X(S))$ of $C_{\operatorname{Aut}(X(S))}(Z(X(S)))$ so that $I \cong \mathrm{Sp}(\mathrm{V})$. Set $\tilde{\zeta}:=\operatorname{Inn}(X(S)) \zeta_{X(S)}$ and $\tilde{t}:=\operatorname{Inn}(\underset{\sim}{X}(S)) c_{t}$ so that, with respect to the basis \mathscr{B} of V, the matrices associated to \tilde{t} and $\tilde{\zeta}$ are

$$
\tilde{t}:\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right) \text { and } \tilde{\zeta}:\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right) .
$$

Let $G:=\operatorname{Out}(X(S)), H:=\operatorname{Out}_{\mathcal{F}}(X(S))$ and $T:=\langle\tilde{t}\rangle=\operatorname{Out}_{S}(X(S))$. The following lemma summarizes the properties of H that are needed in the sequel.

Lemma 13. H contains \tilde{t} and $\tilde{\zeta}$. Further, $T \in \operatorname{Syl}_{3}(H)$, and T is not normal in H. Proof. H contains \tilde{t} by (FS1) and (FS2) and contains $\tilde{\zeta}$ by Proposition 12 (iv). Since \mathscr{F} is saturated, $T \in \operatorname{Syl}_{3}(H)$. Since $X(S)$ is \mathscr{F}-essential, H has a strongly 3-embedded subgroup, so T is not normal in H.

Lemma 14. With the above notation,
(i) $C_{V}(\tilde{t})=\left\langle v_{1}, v_{2}\right\rangle$;
(ii) for every non-zero vector $\bar{v}_{1} \in C_{V}(\tilde{t})$, there exist $\bar{v}_{2} \in C_{V}(\tilde{t}), \bar{u}_{1}, \bar{u}_{2} \in V$ such that

$$
\begin{gathered}
f\left(\bar{v}_{i}, \bar{u}_{j}\right)=\delta_{i j} \quad \text { for } i, j \in\{1,2\}, \quad f\left(\bar{u}_{1}, \bar{u}_{2}\right)=0, \\
\bar{v}_{i}^{\tilde{t}}=\bar{v}_{i}, \quad \bar{u}_{i}^{\tilde{t}}=\bar{v}_{3-i}+\bar{u}_{i}
\end{gathered}
$$

and either $\tilde{\zeta}$ or $\tilde{\zeta}^{-1}$ maps \bar{v}_{i} to $(-1)^{i} \bar{v}_{3-i}$ and \bar{u}_{i} to $(-1)^{i} \bar{u}_{3-i}$ for $i \in\{1,2\}$;
(iii) $C_{V}(\tilde{t})$ is the unique maximal isotropic subspace of V normalized by \tilde{t}.

Proof. We have

$$
C_{V}(\tilde{t})=[V, \tilde{t}]^{\perp}=\left\langle v_{1}, v_{2}\right\rangle^{\perp}=\left\langle v_{1}, v_{2}\right\rangle,
$$

and (i) follows. Claim (ii) follows by Witt's lemma (see, e.g., [2, p. 81]) and elementary computations. In order to prove (iii), suppose that \tilde{f} normalizes a maximal isotropic subspace U of V. Since \tilde{t} is an isometry of V of order 3, it has a fixed point u on U, and hence $u \in U \cap C_{V}(\tilde{t})$. It follows that $U \leq\langle u\rangle^{\perp}$. By (ii), we may assume $u=v_{1}$, and a direct check shows that $U=C_{V}(\tilde{t})$.

Lemma 15. $H \cap I$ normalizes no non-trivial isotropic subspace of V.
Proof. Let W be a non-trivial isotropic subspace of maximal dimension among those normalized by $H \cap I$. By Lemma 14 (iii), $W \leq C_{V}(\tilde{t})=\left\langle v_{1}, v_{2}\right\rangle$. Since $\tilde{\zeta}$ normalizes $H \cap I, H \cap I$ normalizes $W \tilde{\zeta}$ too, and, again by Lemma 14 (iii), we have $W^{\tilde{\zeta}} \leq C_{V}(\tilde{t})=\left\langle v_{1}, v_{2}\right\rangle$. Since $\langle\tilde{\zeta}\rangle$ is irreducible on $\left\langle v_{1}, v_{2}\right\rangle$, it follows that $W=\left\langle v_{1}, v_{2}\right\rangle$. Since \tilde{t} centralizes the series

$$
\{0\}<\left\langle v_{1}, v_{2}\right\rangle=\left\langle v_{1}, v_{2}\right\rangle^{\perp}<V,
$$

we get $T=O_{3}\left(N_{I}(W)\right) \cap H$, a contradiction, since T is not normal in H.

Corollary 16. One of the following holds:
(a) H stabilizes a decomposition of V into the direct orthogonal sum of two hyperbolic lines;
(b) H normalizes a cyclic subgroup of order 4 of G not contained in I;
(c) H is contained in the normalizer in G of a group $Q \cong 2_{-}^{1+4}$.

Proof. This follows from Lemma 15 and Aschbacher's classification of maximal subgroups of classical groups (see [1] and also [5, Table 8.12]).

We investigate now cases (a), (b) and (c) of Corollary 16. We start with case (a).
Lemma 17. $C_{G}(\langle\tilde{t}, \tilde{\zeta}\rangle)$ acts transitively on the set of decompositions of V into an orthogonal sum of two hyperbolic lines $U_{1} \perp U_{2}$ stabilized by \tilde{t}.

Proof. Suppose that \tilde{t} stabilizes a decomposition of V into an orthogonal sum of two hyperbolic lines $U_{1} \perp U_{2}$. We show that there exists $\gamma \in C_{G}(\langle\tilde{t}, \tilde{\zeta}\rangle)$ such that $U_{1}=\left\langle v_{1}, u_{2}\right\rangle^{\gamma}$ and $U_{2}=\left\langle v_{2}, u_{1}\right\rangle^{\gamma}$. We may of course assume that $U_{1} \neq\left\langle v_{1}, u_{2}\right\rangle$. Since \tilde{t} has a fixed point in U_{1}, by Lemma 14 (ii), we may assume $v_{1} \in U_{1}$. Since \tilde{t} centralizes both $\left\langle v_{1}, u_{2}\right\rangle /\left\langle v_{1}\right\rangle$ and $U_{1} /\left\langle v_{1}\right\rangle$, it follows that \tilde{t} centralizes the quotient space $\left(\left\langle v_{1}, u_{2}\right\rangle+U_{1}\right) /\left\langle v_{1}\right\rangle$. On the other hand,

$$
C_{V /\left\langle v_{1}\right\rangle}(\tilde{t})=\left\langle v_{1}, v_{2}, u_{2}\right\rangle /\left\langle v_{1}\right\rangle,
$$

so $\left\langle v_{1}, u_{2}\right\rangle+U_{1}=\left\langle v_{1}, v_{2}, u_{2}\right\rangle$ and $U_{1}=\left\langle v_{1}, v_{2}+\beta u_{2}\right\rangle$ for some $\beta \in\{ \pm 1\}$. Then
$U_{2}=U_{1}^{\perp}=\left\{\lambda v_{1}+\mu v_{2}+v u_{1} \mid \lambda, \mu, v \in \mathbb{F}_{3}\right.$ and $\left.v=\lambda \beta\right\}=\left\langle v_{2}, v_{1}+\beta u_{1}\right\rangle$, and the linear map $\gamma: V \rightarrow V$, defined by $v_{i}^{\gamma}:=\beta v_{i}$ and $u_{i}^{\gamma}:=v_{i}+\beta u_{i}$ for $i \in\{1,2\}$, has the required properties.

Fix the basis $\mathscr{B}_{1}:=\left(v_{1}, u_{2}, v_{2}, u_{1}\right)$ of V, and identify every element of G with its associated matrix with respect to \mathscr{B}_{1} so that

$$
\begin{array}{ll}
\tilde{t}=\left(\begin{array}{cc}
\tau & 0 \\
0 & \tau
\end{array}\right), \quad \text { where } \tau:=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right), \\
\tilde{\zeta}=\left(\begin{array}{cc}
0 & \mu \\
-\mu & 0
\end{array}\right), \quad \text { where } \mu:=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) .
\end{array}
$$

Let

$$
D=\left\{\left.\left(\begin{array}{cc}
\alpha & 0 \\
0 & \alpha
\end{array}\right) \right\rvert\, \alpha \in \mathrm{Sp}_{2}(3)\right\}
$$

Lemma 18. Assume H is contained in the stabilizer M in G of a decomposition of V into an orthogonal sum of two hyperbolic lines $U_{1} \perp U_{2}$. Then one of the following holds:
(i) H is conjugate in G to $D\langle\tilde{\zeta}\rangle, H \cong 2^{-} S_{4}$, and there is an element of order 4 in $G \backslash I$ that centralizes H;
(ii) H is conjugate in G to $D\langle\tilde{\zeta}, \tilde{\eta}\rangle, H \cong\left(2 \times \mathrm{SL}_{2}(3)\right): 2$, and H normalizes a cyclic subgroup of order 4 in $G \backslash I$, where $\tilde{\eta}$ is the linear map that swaps v_{1} with v_{2} and u_{1} with u_{2};
(iii) H is conjugate in G to $Z(K) D\langle\tilde{\zeta}$, $\tilde{\eta}\rangle$, where $K=N_{M}\left(U_{1}\right) \cap N_{M}\left(U_{2}\right)$, and $H \cong\left(2 \times \mathrm{GL}_{2}(3)\right): 2$;
(iv) $H=O_{2}(M)\langle\tilde{t}, \tilde{\zeta}\rangle$;
(v) H is conjugate in G to $O_{2}(M)\langle\tilde{t}, \tilde{\zeta}, \tilde{\eta}\rangle$.

Proof. By Lemma 17, we may assume $U_{1}=\left\langle v_{1}, u_{2}\right\rangle$ and $U_{2}=\left\langle v_{2}, u_{1}\right\rangle$. For $i \in\{1,2\}$, denote by S_{i} the subgroup of M normalizing U_{i} and acting trivially on U_{3-i}. Set $K:=S_{1} S_{2}$, and let R be the unique Sylow 3-subgroup of K containing T. Then

$$
\begin{gather*}
S_{i} \cong \mathrm{SL}_{2}(3) \quad \text { for } i \in\{1,2\}, \quad S_{1}^{\tilde{\zeta}}=S_{2} \quad \text { and } \quad\left[S_{1}, S_{2}\right]=1 \tag{4.1}\\
M=K\langle\tilde{\zeta}, \tilde{\eta}\rangle, \quad\langle\tilde{\zeta}, \tilde{\eta}\rangle \cong D_{8} \\
N_{M}(T)=R Z(K)\langle\tilde{\zeta}, \tilde{\eta}\rangle, \quad \text { so } \quad T\langle\tilde{\zeta}\rangle \leq N_{H}(T) \leq Z(K) T\left\langle\tilde{\zeta}, \tilde{\eta}^{\rho}\right\rangle \tag{4.2}
\end{gather*}
$$

for a suitable $\rho \in R$.
Since $T \leq H \cap K \unlhd H$, by the Frattini argument, $H=(H \cap K) N_{H}(T)$, so, by Lemma 13, T is not normal in $H \cap K$, and 12 divides $|H \cap K|$. Moreover, by (4.2), either $H=(H \cap K)\langle\tilde{\zeta}\rangle$ or $H=(H \cap K)\left\langle\tilde{\zeta}, \tilde{\eta}^{\rho}\right\rangle$. If $|H \cap K|=12$, then $H \cap K \cong A_{4}$ (the unique group of order 12 with no normal Sylow 3-subgroups) and $(H \cap K) \cap Z(K)=1$. It follows that $m_{2}(K) \geq 4$, a contradiction as $m_{2}\left(\mathrm{GSp}_{4}(3)\right)=3$ (see [10, Theorem 4.10.5]). Hence we get $|H \cap K| \geq 24$. Let $\{i, j\}=\{1,2\}$, and assume $H \cap S_{i}=1$ for some $i \in\{1,2\}$. Since $\tilde{\zeta} \in H$, by (4.1), $H \cap S_{3-i}=1$. Since $|H \cap K| \geq 24$, it follows that there is $\gamma \in \mathrm{GL}_{2}$ (3) such that

$$
H \cap K=\left\{\left(\begin{array}{cc}
\alpha & 0 \\
0 & \alpha^{\gamma}
\end{array}\right) \text { with } \alpha \in \mathrm{SL}_{2}(3)\right\}
$$

Since $\tilde{t} \in H \cap K, \gamma$ has to centralize τ, so $\gamma \in\left\langle\tau, Z\left(\mathrm{GL}_{2}(3)\right)\right\rangle$. Let

$$
\epsilon:=\left(\begin{array}{cc}
0 & I \\
-I & 0
\end{array}\right) \quad \text { and } \quad \sigma(\gamma):=\left(\begin{array}{ll}
I & 0 \\
0 & \gamma
\end{array}\right) .
$$

Then, for every $\alpha \in \mathrm{SL}_{2}(3)$,

$$
\left(\begin{array}{cc}
\alpha & 0 \\
0 & \alpha
\end{array}\right)^{\sigma(\gamma)}=\left(\begin{array}{cc}
\alpha & 0 \\
0 & \alpha^{\gamma}
\end{array}\right), \quad \epsilon^{\sigma(\gamma)}=\left(\begin{array}{cc}
0 & \gamma \\
-\gamma^{-1} & 0
\end{array}\right), \quad \eta^{\sigma(\gamma)}=\left(\begin{array}{cc}
0 & \gamma \\
\gamma^{-1} & 0
\end{array}\right)
$$

and

$$
\left(\begin{array}{cc}
0 & \mu \\
-\mu & 0
\end{array}\right)^{\sigma(\gamma)}\left(\begin{array}{ll}
\gamma & 0 \\
0 & \gamma
\end{array}\right)^{\sigma(\gamma)}=\left(\begin{array}{cc}
0 & \mu \\
-\mu & 0
\end{array}\right)
$$

Thus, if $H=(H \cap K)\langle\tilde{\zeta}\rangle$, then H is conjugate via $(\sigma(\gamma))^{-1}$ to $D\langle\tilde{\zeta}\rangle$, which is isomorphic to $2^{-} S_{4}$, and centralizes the element ϵ (of order 4). If

$$
H=(H \cap K)\left\langle\tilde{\zeta}, \tilde{\eta}^{\rho}\right\rangle \quad \text { for some } \rho \in R
$$

then $\tilde{\eta}^{\rho}$ normalizes $H \cap K$, whence

$$
\tilde{\eta}^{\rho}=\left(\begin{array}{cc}
0 & \gamma \\
\gamma^{-1} & 0
\end{array}\right)
$$

It follows that H is conjugate via $(\sigma(\gamma))^{-1}$ to $D\langle\tilde{\zeta}, \tilde{\eta}\rangle$, which normalizes $\langle\epsilon\rangle$ and is isomorphic to $\left(2 \times \mathrm{SL}_{2}(3)\right): 2$.

Assume now that $H \cap S_{i} \neq 1$. As above, $H \cap S_{3-i} \neq 1$. Since T is not conjugate in G to a Sylow 3-subgroup of S_{i} (their generators having different Jordan normal forms), $H \cap S_{i}$ is a 2-group. Since $T \leq K \leq N_{K}\left(S_{i}\right), H \cap S_{i}$ is normalized by T, so either $H \cap S_{i}=Z\left(S_{i}\right)$ or $H \cap S_{i}=O_{2}\left(S_{i}\right) \cong Q_{8}$. In all cases, $Z(K) \leq H$. Moreover, by (4.1), $\left|H \cap S_{1}\right|=\left|H \cap S_{2}\right|$.

If $\left|H \cap S_{i}\right|=2$, then $|(H \cap K) / Z(K)| \leq 12$ and, as T is not normal in H, $(H \cap K) / Z(K) \cong A_{4}$. As above, it follows that there is $\gamma \in \mathrm{GL}_{2}(3)$ such that $H \cap K$ is the product of the groups

$$
\left\{\left.\left(\begin{array}{cc}
\alpha & 0 \\
0 & \alpha^{\gamma}
\end{array}\right) \right\rvert\, \alpha \in \operatorname{Sp}_{2}(3)\right\} \text { and } Z(K)
$$

whence $H \cap K=(D Z(K))^{\sigma(\gamma)}$, which is isomorphic to $2 \times \mathrm{SL}_{2}(3)$.
Thus, if $H=(H \cap K)\langle\tilde{\zeta}\rangle$, then H is conjugate in G to $D Z(K)\langle\tilde{\zeta}\rangle$, which is, in turn, conjugate to $D\langle\tilde{\zeta}, \tilde{\eta}\rangle$, and (ii) follows. If $H=(H \cap K)\left\langle\tilde{\zeta}, \tilde{\eta}^{\rho}\right\rangle$, then H is conjugate in G to $Z(K) D\langle\tilde{\zeta}, \tilde{\eta}\rangle$, and (iii) follows.

Finally, if $H \cap S_{i}=O_{2}\left(S_{i}\right)$ for $i=1,2$, then $H \cap K=O_{2}(M) T$, and we get (iv) and (v).

Note that groups described in Lemma 18 satisfy both case (a) and (b) of Corollary 16. In order to deal with case (b), we need the following elementary result.

Lemma 19. Let L be a group, E and F subgroups of L with $|F|=2$ and such that L is the direct product of E and F. Let L_{1} and L_{2} be subgroups of L. Then L_{1} and L_{2} are conjugate in L if and only if there is an element $e \in E$ such that $\left(L_{1} F\right)^{e}=L_{2} F$ and $\left(L_{1} \cap E\right)^{e}=\left(L_{2} \cap E\right)$.

Proof. Assume there is an element $e \in E$ such that

$$
\left(L_{1} F\right)^{e}=L_{2} F \quad \text { and } \quad\left(L_{1} \cap E\right)^{e}=\left(L_{2} \cap E\right)
$$

Let $i \in\{1,2\}$. If either $F \leq L_{i}$ or $L_{i} \leq E$, the result follows immediately. Otherwise, $L_{2} F /\left(L_{2} \cap E\right)$ is elementary abelian of order 4 . So, if f is the generator of F, there is an element $d \in E$ such that the three maximal subgroups of $L_{2} F$ containing $L_{2} \cap E$ are $\left(L_{2} \cap E\right) F,\left(L_{2} \cap E\right)\langle d f\rangle$ and $\left(L_{2} \cap E\right)\langle d\rangle$. So the only possibility is $L_{1}^{e}=L_{2}=\left(L_{2} \cap E\right)\langle d f\rangle$. The converse is obvious.

Assume now that H normalizes a cyclic subgroup of order 4 in $G \backslash I$ (case (b) of Corollary 16). In this case, H is contained in a maximal subgroup M of G such that $M=\langle\gamma\rangle A$ with γ of order $4, \gamma^{2} \in Z(A),\left[A^{(1)}, \gamma\right]=1$ and $[A,\langle\gamma\rangle]=Z(A)$, and there is an isomorphism $\varphi: A \rightarrow 2 S_{6}$ such that $\tilde{t} Z(A)$ is mapped to the product of two 3-cycles in S_{6} (see [6, p. 26]). Since $\tilde{\zeta}$ has order 4, inverts \tilde{t} and supplements $A^{(1)}\langle\gamma\rangle$ in M, it follows that $\tilde{\zeta}=\alpha \gamma^{m}$ for suitable $\alpha \in A \backslash A^{(1)}$ of order 4 and $m \in \mathbb{N}$. By the choice of $\varphi, \alpha Z(A)$ must map to the product of three disjoint transpositions.

Lemma 20. With the above notation, H is one of the groups listed in the fifth column of Table 1 and H is uniquely determined, up to conjugation in M, by its isomorphism type.

Proof. Set $K:=A^{(1)}\langle\gamma\rangle$. Then $H=(H \cap K)\langle\tilde{\zeta}\rangle$. Note that $Z(M)=\left\langle\tilde{\zeta}^{2}\right\rangle \leq H$, and hence H is completely determined by its image $H / Z(M)$ in the quotient group $M / Z(M)$. For an element ψ, or a subgroup L, of M, denote by $\bar{\psi}$, respectively \bar{L}, its image in $M / Z(M)$. Thus, in particular,

$$
\bar{M}=\bar{A} \times\langle\bar{\gamma}\rangle .
$$

Since T has order 3 and $T \leq A^{(1)} \unlhd M$, we have $T^{H} \leq A^{(1)}$, and, since T is a non-normal Sylow 3-subgroup of H, T^{H} is isomorphic either to $2 A_{4}$ or to $2 A_{5}$. Moreover,

$$
\bar{T}^{\bar{H}} \leq \overline{(H \cap K)} \leq N_{\bar{K}}\left(\bar{T}^{\bar{H}}\right)=N_{\bar{A}^{(1)}}\left(\bar{T}^{\bar{H}}\right) \times\langle\bar{\gamma}\rangle .
$$

If $T^{H} \cong 2 A_{5}$, then $\bar{T} \bar{H}$ is a maximal subgroup of $\bar{A}^{(1)}$, so $\bar{T} \bar{H}=N_{\bar{A}^{(1)}}\left(\bar{T}^{\bar{H}}\right)$; if $T^{H} \cong 2 A_{4}$, then $N_{\bar{A}^{(1)}}\left(\bar{T}^{\bar{H}}\right) \cong S_{4}$. In both cases, we get one of the configurations listed in Table 1. Finally, let L be a subgroup of M isomorphic to H and

T^{H}	$\overline{H \cap K}$	\bar{H}	$\bar{H}\langle\bar{\gamma}\rangle$	H	Structure
$2 A_{5}$	$\bar{T}^{\bar{H}}$	S_{5}	$S_{5} \times 2$	$T^{H}\langle\tilde{\zeta}\rangle$	$2^{-} S_{5}$
	$\bar{T}^{\bar{H}} \times\langle\bar{\gamma}\rangle$	$S_{5} \times 2$	\bar{H}	$\left(T^{H} \circ\langle\gamma\rangle\right)\langle\tilde{\zeta}\rangle$	$2^{-} S_{5} \circ 4$
$2 A_{4}$	$\bar{T}^{\bar{H}}$	S_{4}	$S_{4} \times 2$	$T^{H}\langle\tilde{\zeta}\rangle$	$2^{-} S_{4}$
	$\bar{T}^{\bar{H}} \times\langle\bar{\gamma}\rangle$	$S_{4} \times 2$	\bar{H}	$\left(T^{H} \circ\langle\gamma\rangle\right)\langle\tilde{\zeta}\rangle$	$\left(\mathrm{SL}_{2}(3) \times 2\right): 2$
	$\begin{aligned} & \overline{T^{\bar{H}}}\langle\overline{\gamma \sigma}\rangle \\ & \text { (with } \sigma \in N_{A^{(1)}}(T \end{aligned}$	$\left.\stackrel{{ }_{H}^{H}}{S_{4}} \backslash \backslash T^{H}\right)$	$S_{4} \times 2$	$T^{H}\langle\gamma \sigma, \tilde{\zeta}\rangle$	$\mathrm{GL}_{2}(3): 2$
	$N_{\bar{A}^{(1)}}\left(\bar{T}^{\bar{H}}\right)$	$S_{4} \times 2$	$S_{4} \times 2 \times 2$	$N_{A^{(1)}}\left(T^{H}\right)\langle\tilde{\zeta}\rangle$	$2^{-} S_{4}: 2$
	$N_{\bar{A}^{(1)}}\left(\bar{T}^{\bar{H}}\right) \times\langle\bar{\gamma}\rangle$	$S_{4} \times 2 \times 2$	\bar{H}	$\left(N_{A^{(1)}}\left(T^{H}\right) \circ\langle\gamma\rangle\right)\langle\tilde{\zeta}\rangle$	$\left(2^{-} S_{4}: 2\right): 2$

Table 1. Possibilities for H in case (b) of Corollary 16.
containing $T, Z(M)$ and $\tilde{\zeta}$. A direct check inside A_{6} shows that there is an element $g \in A$ such that

$$
(\bar{H}\langle\bar{\gamma}\rangle)^{\bar{g}}=\bar{L}\langle\bar{\gamma}\rangle \quad \text { and } \quad(\overline{H \cap A})^{\bar{g}}=\overline{L \cap A}
$$

Thus, by Lemma $19, H^{g}=L$.
We turn finally to case (c) of Corollary 16. Here we use the isomorphism $P S p_{4}(3) \cong G O_{6}^{-}(2)$ (see [6, p. 26]) and identify $G / Z(G)$ with the latter group so that the natural action of $\mathrm{GO}_{6}^{-}(2)$ on an orthogonal space Y of dimension 6 over the field of order 2 with Witt defect 1 extends to a representation v of G on Y. Then, by [6, p. 26], H is contained in the stabilizer M of a singular vector v_{0} in Y, and v induces a representation \bar{v} of M onto the full permutation group on the set of the five singular non-zero vectors of $v_{0}^{\perp} /\left\langle v_{0}\right\rangle$ such that $\operatorname{ker}(\bar{v})$ is the unipotent radical U of M, which is isomorphic to 2_{-}^{1+4}.

Lemma 21. With the above notation, one of the following holds:
(i) the order of H is divisible by 5, in which case either $H \cong 2^{-} S_{5}$ or $H=M$;
(ii) H stabilizes a totally singular line in Y;
(iii) H centralizes a non-singular vector of Y;
(iv) $H \cap U$ is equal either to U or to $[U, T] Q$, where Q is the cyclic subgroup of order 4 of $C_{U}(T)$ and $\left.H /(H \cap U)\right) \cong S_{3} \times 2$.

Proof. Since Y has Witt defect -1 , there is a basis $\left(e_{1}, e_{2}, e, f, f_{2}, f_{1}\right)$ of Y such that

- $e_{1}=v_{0}\left(\right.$ so H fixes $\left.e_{1}\right)$,
- for $i \in\{1,2\},\left(e_{i}, f_{i}\right)$ is a hyperbolic pair,
- the subspace $\langle e, f\rangle$ does not contain any singular non-zero vector,
- f is not orthogonal to e.

Since all elements of order 3 of M are conjugate in M, we may choose v in such a way that $v(\tilde{t})$ acts trivially on $\left\langle e_{1}, e_{2}, f_{2}, f_{1}\right\rangle$ and maps e to f and f to $e+f$. Since $\tilde{\zeta}$ acts trivially on $\left\langle e_{1}, e_{2}, f_{2}, f_{1}\right\rangle$, it maps e to f and f to e, and $\tilde{\zeta} \notin U$. Since $\bar{v}(\tilde{\zeta}) \in \bar{v}(H) \backslash A_{5}$ and $\{1\} \neq \bar{v}(T) \leq \bar{\nu}(H), \bar{v}(H)$ is a subgroup of S_{5} not contained in A_{5} and divisible by 6 . If 5 divides $|H|$, then $\bar{v}(H)=S_{5}$, and (i) follows since $\left\langle\tilde{\zeta}^{2}\right\rangle=Z(U)$ and M is irreducible on $U / Z(U)$. Assume 5 does not divide $|H|$. Then $\bar{v}(H)$ is contained in a subgroup of S_{5} isomorphic either to S_{4} or to $2 \times S_{3}$. In the former case, $\bar{v}(H)$ fixes a singular non-zero vector in $\left\langle e_{1}\right\rangle^{\perp} /\left\langle e_{1}\right\rangle$, and hence H stabilizes a totally singular line in Y as in (ii). In the latter case, $\bar{v}(H)$ fixes a non-singular vector in $\left\langle e_{1}\right\rangle^{\perp} /\left\langle e_{1}\right\rangle$ (see [6, p. 2]), which has to be $e_{2}+f_{2}+\left\langle{\underset{\sim}{e}}_{1}\right\rangle$ since this is the unique non-singular vector in $e_{1}^{\perp} /\left\langle e_{1}\right\rangle$ which is fixed by $\langle\tilde{t}, \tilde{\zeta}\rangle$. Thus H acts on the subspace $\left\langle e_{1}, e_{2}+f_{2}\right\rangle$ of Y. If this action is trivial, then (iii) holds. Otherwise, H contains an element α that swaps the two non-singular vectors $e_{2}+f_{2}$ and $e_{2}+f_{2}+e_{1}$ of $\left\langle e_{1}, e_{2}+f_{2}\right\rangle$. Since $\bar{v}(T)$ is normal in $\bar{v}(H)$, possibly substituting α with $\alpha \tilde{\zeta}$, we may assume $[\tilde{t}, \alpha] \in H \cap U$. Thus α maps the basis $\left(e_{1}, e_{2}, e, f, f_{2}\right)$ of $\left\langle e_{1}\right\rangle^{\perp}$ to

$$
\left(e_{1}, f_{2}+h e_{1}, e+l e_{1}, f+m e_{1}, e_{2}+n e_{1}\right) \quad \text { for some } h, l, m, n \in \mathbb{F}_{2}
$$

Since α swaps $e_{2}+f_{2}$ and $e_{2}+f_{2}+e_{1}$, we have $n=h+1$. It follows that

$$
1 \neq \alpha^{2} \in H \cap C_{U}(\tilde{t})
$$

Since $e_{1}^{\perp} /\left\langle e_{1}\right\rangle$ is canonically isometric to the factor $U / Z(U)$ of the extraspecial 2 -group endowed with the usual quadratic form induced by the squaring [2, (23.10)] and $Z(U) \alpha^{2}$ is non-singular, $Q:=\left\langle\alpha^{2}\right\rangle$ is a subgroup of order 4 in $C_{U}(\tilde{t})$. Assume, by means of contradiction, that $[H \cap U, T]=1$. Since

$$
H /(H \cap U) \cong S_{3} \times 2
$$

it follows that $T \unlhd T(H \cap U) \unlhd H$. Since T is a Sylow 3-subgroup of H, this implies that T is normal in H, against the hypothesis. So $[H \cap U, T] \neq 1$. Since T acts irreducibly on $[U, T] / Z(U)$, it follows that $[U, T] \leq H$, and (iv) holds.

5 Fusion systems

Lemma 22. For $P \in\{J(S), X(S)\}$, the restriction map

$$
\mathrm{r}_{P}^{\mathcal{F}}: \operatorname{Aut}_{\mathcal{F}}(S) \rightarrow N_{\operatorname{Aut}_{\mathcal{F}}(P)}\left(\operatorname{Aut}_{S}(P)\right)
$$

is a surjective homomorphism such that $\operatorname{ker} \mathrm{r}_{P}^{\mathscr{F}} \leq \operatorname{Inn}(S)$.

Proof. Let $P \in\{J(S), X(S)\}$. By the surjectivity property [7, p. 190], the restriction to P induces a surjective homomorphism

$$
\mathrm{r}_{P}^{\mathcal{F}}: \operatorname{Aut}_{\mathcal{F}}(S) \rightarrow N_{\operatorname{Aut}_{\mathcal{F}}(P)}\left(\operatorname{Aut}_{S}(P)\right)
$$

Since P is \mathscr{F}-essential, $C_{S}(P) \leq P$. By Thompson's $A \times B$ lemma [19, (1.15)'], this implies that $\operatorname{ker}_{P}^{\mathcal{F}}$ is a 3-group, whence, since \mathcal{F} is saturated, $\operatorname{ker}_{P}^{\mathcal{F}}$ is contained in $\operatorname{Inn}(S)$.

Theorem 23. Let \mathcal{F} and \mathcal{E} be saturated fusion systems on a Sylow 3-subgroup S of the McLaughlin group Mc with $\left|D_{\mathcal{F}}\right|=2$. If $\mathrm{Aut}_{\mathcal{F}}(X(S))$ is conjugate to Aut $\mathcal{E}(X(S))$ in $\operatorname{Aut}(X(S))$, then \mathcal{F} and \mathcal{E} are isomorphic fusion systems.

Proof. Suppose Aut $_{\mathcal{F}}(X(S))$ is conjugate to $\operatorname{Aut}_{\mathcal{E}}(X(S))$ in $\operatorname{Aut}(X(S))$. Since $\operatorname{Aut}_{\mathcal{F}}(X(S))$ and $\operatorname{Aut}_{\mathcal{E}}(X(S))$ contain (by definition of saturated) Aut $S_{S}(X(S))$ as a Sylow 3-subgroup, there exists $\bar{\delta} \in N_{\text {Aut }(X(S))}\left(\right.$ Aut $\left._{S}(X(S))\right)$ such that

$$
\operatorname{Aut}_{\mathscr{F}}(X(S))^{\bar{\delta}}=\operatorname{Aut}_{\mathscr{E}}(X(S))
$$

By Lemma 10, there exists $\delta \in \operatorname{Aut}(S)$ such that $\delta_{\mid X(S)}=\bar{\delta}$. Since the fusion system

$$
\mathcal{F}^{\delta}=\left\langle\operatorname{Aut}_{\mathscr{F}}(S)^{\delta}, \operatorname{Aut}_{\mathscr{F}}(J(S))^{\delta}, \operatorname{Aut}_{\mathcal{F}}(X(S))^{\delta}\right\rangle
$$

is isomorphic to \mathcal{F}, it is enough to show that \mathcal{F}^{δ} is isomorphic to \mathcal{E}. Hence
(a) we may assume $\operatorname{Aut}_{\mathcal{F}}(X(S))=\operatorname{Aut}_{\mathcal{E}}(X(S))$ and, in particular,

$$
N_{\operatorname{Aut}_{\mathcal{F}}(X(S))}\left(\operatorname{Aut}_{S}(X(S))\right)=N_{\operatorname{Aut}_{\mathscr{E}}(X(S))}\left(\operatorname{Aut}_{S}(X(S))\right)
$$

Let Q be the preimage of $N_{\operatorname{Aut}_{\mathcal{F}}(X(S))}\left(\operatorname{Aut}_{S}(X(S))\right)$ via the map $r_{X(S)}$ defined in Section 3. Then, by Lemma 10 and Corollary 11, $\operatorname{Aut}_{\mathcal{F}}(S) / \operatorname{Inn}(S)$ and $\operatorname{Aut}_{\mathcal{E}}(S) / \operatorname{Inn}(S)$ are Sylow 2-subgroups of

$$
Q / \operatorname{Inn}(S)=\operatorname{Aut}_{\mathcal{F}}(S) \operatorname{kerr}_{X(S)} / \operatorname{Inn}(S),
$$

and so there exists $\mu \in \operatorname{ker}_{X(S)}$ such that $\operatorname{Aut}_{\mathcal{F}}(X(S))^{\mu}=\operatorname{Aut}_{\mathcal{F}}(X(S))$. Up to replacing $\mathcal{F}^{\text {by }} \mathcal{F}^{\mu}$,
(b) we may assume

$$
\operatorname{Aut}_{\mathcal{F}}(X(S))=\operatorname{Aut}_{\mathcal{E}}(X(S)) \quad \text { and } \quad \operatorname{Aut}_{\mathcal{F}}(S)=\operatorname{Aut}_{\mathscr{E}}(S)
$$

Then, by Lemma 22,

$$
N_{\mathrm{Aut}_{\mathcal{F}}(J(S))}\left(\operatorname{Aut}_{S}(J(S))\right)=N_{\operatorname{Aut}_{\mathscr{E}}(J(S))}\left(\operatorname{Aut}_{S}(J(S))\right) .
$$

By Proposition $12(\mathrm{v})$, there exists an automorphism $\xi \in \operatorname{ker} \mathrm{r}_{X(S)}$ such that $\xi_{\mid J(S)}$ centralizes $N_{\text {Aut }_{\mathcal{F}}(J(S))}\left(\operatorname{Aut}_{S}(J(S))\right)$ and Aut $\mathcal{F}(J(S))^{\xi}$ and Aut $\mathcal{E}(J(S))$ are contained in the same maximal subgroup $M \cong\left(C_{2} \times M_{10}\right): C_{2}$ of Aut $(J(S))$. Since,
by Lemma 22,

$$
\left[\operatorname{Aut}_{\mathscr{F}}(S), \xi\right]^{r_{J(S)}}=\left[N_{\operatorname{Aut}_{\mathscr{F}}(J(S))}\left(\operatorname{Aut}_{S}(J(S))\right), \xi_{\mid J(S)}\right]=1,
$$

by Lemma 9, we have

$$
\left[\operatorname{Aut}_{\mathcal{F}}(S), \xi\right] \leq \operatorname{ker} r_{J(S)} \cap \operatorname{ker} r_{X(S)}=1
$$

Thus $\operatorname{Aut}_{\mathcal{F}}(S)^{\xi}=\operatorname{Aut}_{\mathcal{F}}(S)$. By Proposition 12 and the Frattini argument, since $\operatorname{Aut}_{S}(J(S))$ is a Sylow 3-subgroup of $\operatorname{Aut}_{\mathcal{E}}(J(S))$, Aut $\mathcal{F}(J(S))^{\xi}$ and of $M^{(2)}$, we have

$$
\begin{aligned}
\operatorname{Aut}_{\mathcal{F}}(J(S))^{\xi} & =M^{(2)} N_{\operatorname{Aut}_{\mathcal{F}}(J(S))}\left(\operatorname{Aut}_{S}(J(S))\right) \\
& =M^{(2)} N_{\operatorname{Aut}_{\mathcal{E}}(J(S))}\left(\operatorname{Aut}_{S}(J(S))\right)=\operatorname{Aut}_{\mathcal{E}}(J(S))
\end{aligned}
$$

Thus $\mathcal{F}^{\xi}=\mathcal{E}$, and we have the claim.
Theorem 24. Let \mathcal{F} be a fusion system on a Sylow 3-subgroup S of the McLaughlin group Mc with $\left|D_{\mathscr{F}}\right|=2$. Then \mathcal{F} is isomorphic to one of the fusion systems listed in Table 2. ${ }^{1}$ In particular, Theorem 1 holds.

Proof. By Alperin's theorem for fusion systems [7, Theorem 4.51] and Proposition 7, we have $\mathcal{F}=\left\langle\operatorname{Aut}_{\mathcal{F}}(S)\right.$, $\operatorname{Aut}_{\mathcal{F}}(J(S))$, $\left.\operatorname{Aut}_{\mathcal{F}}(X(S))\right\rangle$. By Theorem 23, it is enough to find the triples $\left(\operatorname{Aut}_{\mathscr{F}}(J(S)), \operatorname{Aut}_{\mathscr{F}}(S), \operatorname{Aut}_{\mathscr{F}}(X(S))\right)$ up to conjugation of $\operatorname{Aut}_{\mathscr{F}}(X(S))$ in $\operatorname{Aut}(X(S))$.

By Proposition 12, up to conjugation in $\operatorname{Aut}(J(S))$, $\operatorname{Aut}_{\mathcal{F}}(J(S))$ is isomorphic to a subgroup of $\left(2 \times M_{10}\right): 2$ containing a copy A of A_{6}. Since $\left(2 \times M_{10}\right): 2 / A$ is isomorphic to D_{8}, up to conjugation in $\left(2 \times M_{10}\right): 2$, there are exactly 8 such subgroups, and these are listed in the first column of Table 2. This and Lemma 22 give the isomorphism classes for $\mathrm{Out}_{\mathcal{F}}(S)$ listed in the third column of Table 2.

We turn now to $\operatorname{Aut}_{\mathcal{F}}(X(S))$. Note that $\mathrm{Aut}_{\mathcal{F}}(X(S))$ is completely determined up to conjugation in $\operatorname{Aut}(X(S))$ once we determine $\mathrm{Out}_{\mathcal{F}}(X(S))$ up to conjugation in Out $(X(S))$ since Aut $_{\mathcal{F}}(X(S))$ contains the group $\operatorname{Inn}(X(S))$. As remarked after Proposition 12 and with the same notation, we may identify $\operatorname{Out}(X(S))$ with the group $\mathrm{GSp}_{4}(3)$, and $\mathrm{Out}_{\mathcal{F}}(X(S))$ is then a subgroup H of $\mathrm{GSp}_{4}(3)$ containing \tilde{t} and $\tilde{\zeta}$ such that $T:=\langle\tilde{t}\rangle$ is a Sylow 3-subgroup of H. Moreover, T is not normal in H since, by definition of \mathscr{F}-essential subgroups, H has a strongly 3-embedded subgroup. Then T is not normal in $H \cap I$, and H falls into one of the three cases of Corollary 16.

If H is as in case (a), (i)-(v) of Lemma 18 imply that H is isomorphic to one of the groups listed in rows $1,3,7,4$ and 8 of the second column of Table 2,

[^1]| Aut $_{\mathcal{F}}(J(S))$ | Out $_{\mathcal{F}}(X(S))$ | Out $_{\mathcal{F}}(S)$ | Groups |
| :--- | :--- | :--- | :--- |
| A_{6} | $2^{-} S_{4}$ | 4 | $U_{4}(3)$ |
| $2 \times A_{6}$ | $\mathrm{GL}_{3}(2): 2$ | 4×2 | $U_{4}(3) \cdot 2_{1}$ |
| S_{6} | $\left(2 \times \mathrm{SL}_{2}(3)\right): 2$ | D_{8} | $U_{4}(3) \cdot 2_{2}$ |
| | $\left(Q_{8} \times Q_{8}\right) \cdot S_{3}$ | D_{8} | $L_{6}(q), q \equiv 4,7 \bmod 9$ |
| | | | $U_{6}(q), q \equiv 2,5 \bmod 9$ |
| M_{10} | $\left(2^{-} S_{4}\right): 2$ | Q_{8} | $U_{4}(3) \cdot 2_{3}$ |
| | $2^{-} S_{5}$ | Q_{8} | Mc |
| $2 \times S_{6}$ | $\left(2 \times \mathrm{GL}_{2}(3)\right): 2$ | $2 \times D_{8}$ | $U_{4}(3) \cdot 2_{122}^{2}$ |
| | $\left(Q_{8} \times Q_{8}\right) \cdot\left(3: D_{8}\right)$ | $2 \times D_{8}$ | $L_{6}(q)\langle\phi\rangle, q \equiv 4,7 \bmod 9$ |
| | | | $U_{6}(q)\langle\phi\rangle, q \equiv 2,5 \mathrm{mod} 9$ |
| | | | ϕ field automorphism of order 2 |
| $2 \times M_{10}$ | $\left(2^{-} S_{4}: 2\right): 2$ | $2 \times Q_{8}$ | $U_{4}(3) \cdot 2_{133}^{2}$ |
| | $2^{-} S_{5}: 2$ | $2 \times Q_{8}$ | Aut (Mc) |
| $A_{6}: 4$ | $\left(Q_{8} \circ 4\right) \cdot\left(S_{3} \times 2\right)$ | 2×8 | $U_{4}(3) \cdot 4$ |
| $\left(2 \times M_{10}\right): 2$ | $2_{-}^{1+4} \cdot\left(S_{3} \times 2\right)$ | $2 \times Q D_{16}$ | Aut $\left(U_{4}(3)\right)$ |
| | $2_{-}^{1+4} \cdot S_{5}$ | $2 \times Q D_{16}$ | Co 2 |

Table 2. Radical free fusion systems on S.
respectively. If H is as in case (b), then rows $1-7$ of the fifth column of Table 1 imply that H is isomorphic to one of the groups listed in rows $6,10,1,3,2,5$ and 9 , respectively. Note that, by Lemma 18, the groups obtained in cases (a) and (b) are isomorphic if and only if they are conjugate.

Assume now that H satisfies case (c) and does not satisfy cases (a) and (b). Then H falls into cases (i) or (iv) of Lemma 21. In case (i), either H is a maximal subgroup of G isomorphic to the normalizer in G of a group of type 2_{-}^{1+4}, which gives the last row of Table 2 , or $H \cong 2^{-} S_{5}$. The latter case cannot occur, for H would satisfy case (b) since the normalizer of a cyclic subgroup of order 4 of G, not contained in I, contains subgroups isomorphic to $2^{-} S_{5}$, and these are contained in a single G-conjugacy class. In case (iv), we get rows 11 and 12 of the second column of Table 2.

Finally, a direct check in [6] shows that the fusion systems corresponding to the rows of Table 2, except, possibly, for those in rows 4 and 8, are realized by the related groups listed in the last column. Routine computation shows that the
same holds for fusion systems in rows 4 and 8 . For example, consider the group $L_{6}(q)$ with $q \equiv 4,7 \bmod 9$. Then $q-1$ is divisible by 3 but not by 9 . Let P be a Sylow 3-subgroup of $L_{6}(q)$, and let \mathbb{F}_{q} be the field of order q. By [10, Theorem 4.10.2], P is contained in the normalizer of a frame \mathscr{D} of \mathbb{F}_{q}^{6} in $L_{6}(q)$ and $P=A P_{W}$, where A is the Sylow 3-subgroup of $C_{L_{6}(q)}(D)$ and P_{W} faithfully permutes the elements of \mathscr{D} as a Sylow 3-subgroup of the alternating group over \mathscr{D}. Since $|\mathscr{D}|=6$ and A_{6} has a unique, up to equivalence, irreducible representation of degree 4 on the field of order 3, it follows that P is isomorphic to S. By [10, Remark 4.10.4], $N_{L_{6}(q)}(A) / C_{L_{6}(q)}(A)$ is isomorphic to a section of S_{6}. Since A is characteristic in D, we get $N_{L_{6}(q)}(A) / C_{L_{6}(q)}(A) \cong S_{6}$. This means that $\mathcal{F}_{S}\left(L_{6}(q)\right)$ corresponds either to line 3 or to line 4 of Table 2. Moreover, $L_{6}(q)$ has a subgroup isomorphic to $\mathrm{SL}_{3}(q) \circ \mathrm{SL}_{3}(q)$, and $\mathrm{SL}_{3}(q)$ contains a maximal subgroup isomorphic to $3_{+}^{1+3}: Q_{8}$. It follows that, in $L_{6}(q)$, there is a subgroup isomorphic to 3_{+}^{1+4}, whose normalizer contains a copy of $Q_{8} \times Q_{8}$, which implies that $\mathscr{F}_{S}\left(L_{6}(q)\right)$ is the fusion system corresponding to line 4.

Acknowledgments. We are indebted to Chris Parker, who suggested the problem, and Raul Moragues Moncho for their most helpful remarks. We thank the referee for his detailed reading of the manuscript.

Bibliography

[1] M. Aschbacher, On the maximal subgroups of the finite classical groups, Invent. Math. 76 (1984), no. 3, 469-514.
[2] M. Aschbacher, Finite Group Theory, 2nd ed., Cambridge Stud. Adv. Math. 10, Cambridge University Press, Cambridge, 2000.
[3] M. Aschbacher, R. Kessar and B. Oliver, Fusion Systems in Algebra and Topology, London Math. Soc. Lecture Note Ser. 391, Cambridge University Press, Cambridge, 2011.
[4] E. Baccanelli, Reduced fusion systems on Sylow 3-subgroups of the Mclaughlin group, PhD Thesis, Università di Milano Bicocca, 2017.
[5] J. N. Bray, D. F. Holt and C. M. Roney-Dougal, The Maximal Subgroups of the LowDimensional Finite Classical Groups, London Math. Soc. Lecture Note Ser. 407, Cambridge University Press, Cambridge, 2013.
[6] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups. Maximal Subgroups and Ordinary Characters for Simple Groups, Oxford University Press, Oxford, 1985.
[7] D. A. Craven, The Theory of Fusion Systems. An Algebraic Approach, Cambridge Stud. Adv. Math. 131, Cambridge University Press, Cambridge, 2011.
[8] D. A. Craven and A. Glesser, Fusion systems on small p-groups, Trans. Amer. Math. Soc. 364 (2012), no. 11, 5945-5967.
[9] A. Diaz, A. Ruiz and A. Viruel, All p-local finite groups of rank 2 for odd prime p, Trans. Amer. Math. Soc. 359 (2007), no. 4, 1725-1764.
[10] D. Gorenstein, R. Lyons and R. Solomon, The Classification of the Finite Simple Groups. Number 3. Part I. Chapter A. Almost Simple K-groups, Math. Surveys Monogr. 40.3, American Mathematical Society, Providence, 1998.
[11] V. Grazian, Fusion systems on p-groups of sectional rank 3, PhD Thesis, University of Birmingham, 2017.
[12] V. Grazian, Fusion systems containing pearls, J. Algebra 510 (2018), 98-140.
[13] V. Grazian, Fusion systems on p-groups of sectional rank 3, preprint (2018), https : //arxiv.org/abs/1804.00883v1.
[14] R. Moragues Moncho, Fusion systems on p-groups with an extraspecial subgroup of index p, PhD Thesis, University of Birmingham, 2018, expected.
[15] B. Oliver, Reduced fusion systems over 2-groups of sectional rank at most 4, Mem. Amer. Math. Soc. 1131 (2016), 1-100.
[16] C. Parker and J. Semeraro, Fusion systems over a Sylow p-subgroup of $G_{2}(p)$, Z. Math. 289 (2018), 629-662.
[17] C. Parker and G. Stroth, An improved 3-local characterization of McL and its automorphism group, J. Algebra 406 (2014), 69-90.
[18] A. Ruiz and A. Viruel, The classification of p-local finite groups over the extraspecial group of order p^{3} and exponent p, Math. Z. 248 (2004), 45-65.
[19] M. Suzuki, Group Theory II, Springer, New York, 1986.

Received March 17, 2018; revised January 5, 2019.

Author information

Elisa Baccanelli, Dipartimento di Matematica e Fisica,
Università Cattolica del Sacro Cuore, Via Musei 41, 25121 Brescia, Italy.
E-mail: elisab.89@libero.it
Clara Franchi, Dipartimento di Matematica e Fisica,
Università Cattolica del Sacro Cuore, Via Musei 41, 25121 Brescia, Italy.
E-mail: clara.franchi@unicatt.it
Mario Mainardis, Dipartimento di Scienze Matematiche, Informatiche e Fisiche X, Università di Udine, Via delle Scienze 206, 33100 Udine, Italy.
E-mail: mario.mainardis@uniud.it

[^0]: The third author was funded by PRID MARFAP 2018-2019, Università di Udine.

[^1]: ${ }^{1}$ Note that, by Lemma 18, Lemma 20, and Lemma 21, the structure of the groups in the first three columns of Table 2 determines their isomorphism class.

