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Fusion systems on a Sylow 3-subgroup of
the McLaughlin group

Elisa Baccanelli, Clara Franchi and Mario Mainardis

Communicated by Christopher Parker

Abstract. We determine all saturated fusion systems F on a Sylow 3-subgroup of the
sporadic McLaughlin group that do not contain any non-trivial normal 3-subgroup and
show that they are all realizable.

1 Introduction

Let p be a prime and S a finite p-group. A fusion system F on S is a category
whose set Ob.F / of objects is the set of all subgroups of S , and, for Q and R
in Ob.F /, the set HomF .Q;R/ of morphisms from Q to R is a set of injec-
tive group homomorphisms Q! R (with composition of morphisms given by
the usual composition of maps) such that, for every P , Q and R in Ob.F /,

(FS1) HomF .S; S/ contains Inn.S/,

(FS2) if Q � P and � 2 HomF .P;R/, then

�jQ 2 HomF .Q;Q
�/ \ HomF .Q;R/;

(FS3) if � 2 HomF .Q;R/ is an isomorphism, then ��1 2 HomF .R;Q/.

The elements of HomF .R;Q/ are called F -morphisms. For x 2 S , denote by cx
the automorphism of S induced by conjugation with x. For P 2 Ob.F /, set

AutF .P /´ HomF .P; P / and AutS .P /´ ¹cx jP j x 2 NS .P /º;

and, for � 2 HomF .Q;R/, set

N�´ ¹g 2 NS .Q/ j there exists h 2 NS .R/ with qcg� D q�ch for every q 2Qº:

A fusion system F is said to be saturated if the following two conditions hold:

(S1) AutS .S/ is a Sylow p-subgroup of AutF .S/;

(S2) if P � S is such that, for every ˛ 2 HomF .P; S/, jNS .P /j � jNS .P ˛/j,
then every � 2 AutF .P / extends to N� .
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2 E. Baccanelli, C. Franchi and M. Mainardis

If S is a Sylow p-subgroup of a finite group G, denote by FS .G/ the category
whose objects are all subgroups of S and whose morphisms are the homomor-
phisms induced by conjugation in G. FS .G/ is a saturated fusion system on S
[7, Theorem 4.12], and a fusion system F is called realizable if F D FS .G/ for
some finite groupG (where, by our definition of FS .G/, S is a Sylow p-subgroup
of G).

Let F be a fusion system on S and H a normal subgroup of S . H is called
normal in F if, for every Q and R in Ob.F / and � 2 HomF .Q;R/, � can
be extended to a map N� 2 HomF .HQ;HR/ such that N�jH is an automorphism
of H (see [3, Definition I.4.1]). Say F is radical free if S contains no non-trivial
subgroup that is normal in F . For P 2 Ob.F /, say P is F -centric if, for every
˛ 2 HomF .P; S/, CS .P ˛/ D Z.P ˛/, and say P is fully F -normalized if, for ev-
ery ˛ 2 HomF .P; S/, jNS .P /j � jNS .P ˛/j. Say P is F -essential if it is proper,
F -centric, fully F -normalized and OutF .P / contains a strongly p-embedded
subgroup (note that this definition differs from the one in [7], where Craven does
not assume an F -essential subgroup to be fully F -normalized). In particular, if
P is F -essential, Op.OutF .P // D 1. Denote by DF the set of F -essential ele-
ments of Ob.F /.

Fusion systems over 2-groups of sectional rank at most 4 have been studied
in [8, 15]. For p odd, Diaz, Ruiz and Viruel [9, 18] classified saturated fusion
systems over p-groups of sectional rank 2, and there is an ongoing project by
Parker and Grazian [11–13] to classify all radical free saturated fusion systems
over p-groups of sectional rank at most 4. In a different direction, another project
[14, 16] aims to obtain a classification of all radical free saturated fusion systems
over p-groups with an extraspecial subgroup of index p. In this context, primes
strictly greater than 3 usually afford a homogeneous treatment, in contrast 2 and
3 require ad hoc arguments. In this sense, this paper contributes to both the above
projects by determining all saturated fusion systems F on the Sylow 3-subgroups
of the McLaughlin sporadic simple group.

By Alperin’s theorem for fusion systems [7, Theorem 4.51], F is completely
determined by the automorphism groups of the F -essential subgroups of S . Thus,
in Section 2, we determine the possible F -essential subgroups of S (in particular,
we get jDF j � 2), and, in Section 4, we determine their automorphism groups
under the assumption that jDF j D 2.

In Section 5, we prove the following result.

Theorem 1. Let S be a Sylow 3-subgroup of the McLaughlin sporadic simple
group, and let F be a saturated fusion system on S with jDF j > 1. Then F is
isomorphic to a fusion system FS .G/ (described in Table 2), whereG is one of the
following.
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Fusion systems on a Sylow 3-subgroup of the McLaughlin group 3

(i) QG � G � Aut. QG/, where QG 2 ¹Mc; U4.3/;Co2º;

(ii) G D L6.q/, where q � 4; 7 mod 9, or G D U6.q/, where q � 2; 5 mod 9;

(iii) G D L6.q/h�i, where q � 4; 7 mod 9, or G D U6.q/h�i, where q � 2;

5 mod 9, and � is a field automorphism of order 2.

Moreover, all groups in (ii) (respectively in (iii)) realize isomorphic fusion systems.

We refer to [3,7] for fusion systems, to [2] for groups and to the ATLAS [6] for
the notation of simple groups and group extensions. In particular, recall that, for
n � 4, Sn has two double covers 2�Sn and 2CSn in which transpositions of Sn lift
to elements of order 4 or involutions respectively (for n D 4, this is elementary;
for n � 5, see [6, p. xxiii]). For n ¤ 6, these two double covers are not isomorphic.
For n D 6, the exceptional outer automorphism of S6 extends to an isomorphism
between 2�S6 and 2CS6, so, up to isomorphism, there is a unique double cover
of S6, which we will simply denote by 2S6.

2 F -essential subgroups

Let p, S and F be as in the previous section. Recall that a characteristic series S

of a group P is a series

1 D P0 � P1 � � � � � Pn D P;

where every Pi is a characteristic subgroup of P . We say that a subgroup H of S
centralizes the series S if ŒPi ;H � � Pi�1 for every i 2 ¹1; : : : ; nº.

Lemma 2. Let P andH be subgroups of S . If P is F -essential andH centralizes
a characteristic series S inP , thenH � P . In particular, ifZ.S/ is characteristic
in P , then Z2.S/ � P .

Proof. By coprime action, CAut.P /.S/ is a p-subgroup of Aut.P /, and, since S is
characteristic, CAut.P /.S/ � Op.Aut.P //. In particular,

AutH .P / � Op.Aut.P // \ AutF .P /

� Op.AutF .P //:

Since P is F -essential, Op.AutF .P // D Inn.P /, so H � PCS .P /. Since P is
F -centric, we have CS .P / D Z.P /, whence PCS .P / D P , and the result fol-
lows. Clearly, Z.S/ � Z.P /; thus, if Z.S/ is characteristic in P , then Z2.S/
centralizes the characteristic series 1 � Z.S/ � P .
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4 E. Baccanelli, C. Franchi and M. Mainardis

Lemma 3. If S is a Sylow 3-subgroup of the McLaughlin group, then S has the
presentation

S D hx; y; z; a; b; t j x3 D y3 D z3 D a3 D b3 D t3 D 1;

Œx; y� D Œa; b� D z; Œy; t � D xz; Œb; t � D az and

Œc; d � D 1 for all other ¹c; dº � ¹x; y; a; b; t; zºi: (2.1)

Proof. By [6], if S 2 Syl3.Mc/, S is contained in a maximal subgroup of Mc
isomorphic to the group 34 WM10. An easy inspection in 34 WM10 shows that S
satisfies the presentation in (2.1) (see [4] for details).

For the remainder of this paper, x; y; a; b; t; z will denote the generators of
a 3âĂŇ-group S satisfying the presentation in (2.1).

Denote, as usual, by J.S/ the Thompson subgroup of S .

Lemma 4. The following hold:

(i) X.S/´ hx; y; a; bi is extraspecial of order 35 and exponent 3;

(ii) J.S/DCS .J.S//D hx; a; z; ti, and J.S/ is elementary abelian of order 34,
in particular, mp.S/ D 4;

(iii) Z.S/ D Z.X.S// D X.S/.1/ D hzi;

(iv) S .1/ D X.S/ \ J.S/ D ŒS; J.S/� D Z2.S/ D hx; a; zi and jZ2.S/j D 33;

(v) S3 D Z.S/, and every element of S of order 3 is contained inX.S/ [ J.S/;

Proof. This follows from easy commutator computations (see [4]).

Lemma 5. No subgroup of p-rank 2 of GL2.p/ � GL2.p/, GL3.p/ � GL1.p/ or
GL3.p/ contains a strongly p-embedded subgroup.

Proof. This is immediate for GL2.p/ � GL2.p/; otherwise, it follows by [5, Ta-
bles 8.3 and 8.4].

Lemma 6. Let H be a subgroup of GL4.3/, and let U be the natural module for
GL4.3/. Suppose that H contains a Sylow 3-subgroup H3 of order 9 such that
jCU .H3/j D 3 and a strongly 3-embedded subgroup. Then H lies in the group of
similarities of an orthogonal form on U with Witt index 1.

Proof. Since H contains a strongly 3-embedded subgroup, O3.H/ D 1, and this
implies that H cannot stabilize a subspace of U with dimension 1 or 3. Condition
jCU .H3/j D 3 implies that H cannot stabilize a subspace of U with dimension 2,
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Fusion systems on a Sylow 3-subgroup of the McLaughlin group 5

nor normalize a decomposition of U into a direct sum of two subspaces, nor a ten-
sor decomposition, nor an extension field F9. By Aschbacher’s classification of
maximal subgroups of finite classical groups [1] and [5, Table 8.9], it follows that
either H lies in the group of similarities of an orthogonal form with Witt index 1
or H lies in the group Sp4.3/. The latter case cannot occur by [5, Tables 8.12
and 8.13].

Proposition 7. Let F be a saturated fusion system on S . Then the F -essential
subgroups of S are in ¹X.S/; J.S/º.

Proof. Let P be an F -essential subgroup of S .

Claim 1. jP j � 33 and P is not properly contained in J.S/.

Since P is F -centric and J.S/ is abelian, jP j � 32 and P – J.S/. Since
Z2.S/ < J.S/, it follows thatP — Z2.S/. If jP j D 32, thenP \Z2.S/ D Z.S/
and jAutZ2.S/.P /j � 3, whence CZ2.S/.P / — P , a contradiction.

Claim 2. If jNS .P / W P j � 32, then P D J.S/.

Suppose jNS .P / W P j � 32. Since jS j D 36, then jP j � 34, and 32 divides
jOutF .P /j. Since O3.OutF .P // D 1, the map

ˆWOutF .P /! Aut.P=Z2.P // � Aut.Z2.P /=Z.P // � Aut.Z.P //;

� 7! .�jP=Z2.P /; �jZ2.P /=Z.P /; �jZ.P//

is injective. Since 32 divides jOutF .P /j, 32 divides also jIm.ˆ/j, which forces
P D Z2.P /. Since Aut.P=Z.P // � Aut.Z.P // is isomorphic to one of

GL2.3/ � GL2.3/; GL1.3/ � GL3.3/; GL3.3/ or GL4.3/

and, by Lemma 5, none of the first three groups contains a subgroup of order
divisible by 32 with a strongly 3-embedded subgroup, it follows that

Aut.P=Z.P // � Aut.Z.P // Š GL4.3/;

which can happen only if P is elementary abelian of order 34, that is, P D J.S/.

Claim 3. jP j ¤ 33.

Suppose, by means of contradiction, that jP j D 33. SinceP — J.S/ by Claim 1
and Z2.S/ � J.S/ by Lemma 4 (iv), it follows that P — Z2.S/. So, by Lemma 2

Authenticated | clara.franchi@unicatt.it author's copy
Download Date | 4/8/19 8:38 AM



6 E. Baccanelli, C. Franchi and M. Mainardis

and Lemma 4 (iv), Z.S/ is not characteristic in P . Since

jZ.S/j D 3; Z.S/ � Z.P /; P 3 � S3 � Z.S/

and bothZ.P / andP 3 are characteristic inP , it follows thatP is elementary abel-
ian. Moreover, since Z.S/ D X.S/.1/ � P and jX.S/j=jP j D 32, by Claim 2,
P cannot be contained in X.S/. Similarly, P \Z2.S/ D 32. Therefore, modulo
exchanging .x; y/ with .a; b/, we may assume that there are an integer ˛ and an
element e 2 CX.S/.xa˛/ such that P D hz; xa˛; eti. Since

Œet; yb˛� D Œe; yb˛�t Œt; yb˛� 2 hzixa˛

and yb˛ normalizes hz; xa˛i, it follows that hZ2.S/; yb˛i � NS .P /, whence
jNS .P / W P j � 3

2, a contradiction to Claim 2.

Claim 4. If jP j D 34, then P D J.S/.

Suppose, by means of contradiction, that jP j D 34 and P ¤ J.S/. By Claim 2,
P is not normal in S , so Z2.S/ — P , whence, by Lemma 2, Z.S/ is not char-
acteristic in P . By Lemma 4 (v), P has exponent 3. Since P ¤ J.S/, P is not
abelian, whence jZ.P /j D 32 andP .1/ � Z.P /, in particular, jZ.P / W P .1/j � 3.
Since S .1/ D Z2.S/ is abelian and contains P .1/, and Z.S/ � Z.P / since P is
F -essential, it follows that S .1/ centralizes the characteristic series

1 � P .1/ � Z.P / � P;

and so, by Lemma 2, S .1/ � P , a contradiction.

Claim 5. If jP j D 35, then P D X.S/.

Suppose, by means of contradiction, that P is a maximal subgroup of S and
P ¤ X.S/. Then P is not contained in X.S/ [ J.S/, so, by Lemma 4 (v) P has
exponent 32. As in the previous case, we get P 3 D S3 D Z.S/, Z2.S/ � P and
Z2.S/ is not characteristic in P . In particular, we have Z2.S/ < Z2.P /, and
so jP=Z2.P /j � 3, whence Z2.P / D P . Thus, by [19, (3.13)], P is a regular
3-group of exponent 9 with derived subgroup of exponent 3, whence�1.P / < P .
Since X.S/ is maximal in S and has exponent 3, we get �1.P / D P \ X.S/,
and X.S/ centralizes the series 1 < Z.S/ < �1.P / < P . Lemma 2 now gives
the contradiction X.S/ � P .

Corollary 8. Let F be a saturated and radical free fusion system on S . Then its
F -essential subgroups are X.S/ and J.S/.

Proof. This follows immediately from Proposition 7 and [7, Exercise 9.3].
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3 The group Aut.S /

In this section, we study the group Aut.S/ and, in particular, its relations with
Aut.J.S// and Aut.X.S//. Since J.S/ and X.S/ are characteristic subgroups
of S , the restriction maps from Aut.S/ to Aut.J.S// and Aut.X.S// are well
defined. For P 2 ¹J.S/;X.S/º, we denote them

rP WAut.S/! Aut.P /:

It is straightforward to check that the image of rP lies in NAut.P /.AutS .P //.

Lemma 9. Let � 2 Aut.S/. If ŒJ.S/; �� D 1 or ŒX.S/; �� D 1, then �3 D idS .
If ŒJ.S/; �� D ŒX.S/; �� D 1, then � D idS .

Proof. Let � 2 Aut.S/, and suppose ŒX.S/; �� D 1. Then

t� D tme for some e 2 X.S/:

From the relation
Œy; t� � D Œy� ; t� � D Œy; t �� D Œy; t �;

we get m � 1 mod 3. Hence ŒS; �� � X.S/, and, since X.S/ has exponent 3, it
follows that �3 D idS . Suppose now ŒJ.S/; �� D 1. Then we can write

y� D y˛bˇ s with s 2 J.S/:

From Œy� ; a� D Œy� ; a� � D Œy; a�� D 1, we deduce ˇ � 0 mod 3, and then, from
Œy� ; x� D Œy� ; x� � D z� D z, we get ˛ � 1 mod 3. Similarly, we get b� D bs0

with s0 2 J.S/. Thus ŒS; �� � J.S/, and, as above, this yields that �3 D idS . The
last claim is clear since S is generated by J.S/ and X.S/.

Lemma 10. For P 2 ¹J.S/;X.S/º, the restriction map rP is a surjective homo-
morphism from Aut.S/ ontoNAut.P /.AutS .P //. Moreover, ker rJ.S/ has order 35,
and ker rX.S/ has order 3.

Proof. Let P 2 ¹J.S/;X.S/º. Clearly, the map rP is a group homomorphism.
With the notation of Section 2, AutS .J.S// D hcy ; cbi, and a direct inspection

in the group Aut.J.S// Š GL4.3/ shows that NAut.J.S//.AutS .J.S/// is gener-
ated by the three automorphisms ˛1; ˛2; ˛3 of J.S/ uniquely determined by the
conditions

˛1W

8̂̂̂̂
<̂̂
ˆ̂̂̂:

z 7! z�1;

x 7! xa;

a 7! xa�1z�1;

t 7! t;

˛2W

8̂̂̂̂
<̂̂
ˆ̂̂̂:

z 7! z;

x 7! x�1z�1;

a 7! a;

t 7! t;

˛3W

8̂̂̂̂
<̂̂
ˆ̂̂̂:

z 7! z�1;

x 7! a�1z�1;

a 7! x�1z;

t 7! x�1at�1:
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It is straightforward to check that, for i 2 ¹1; 2; 3º, ˛i is the restriction to J.S/ of
the automorphism ˛i of S uniquely determined by the conditions

˛1W

8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

z 7! z�1;

x 7! xa;

a 7! xa�1z�1;

t 7! t;

y 7! yb;

b 7! yb�1;

˛2W

8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

z 7! z;

x 7! x�1z�1;

a 7! a;

t 7! t;

y 7! y�1;

b 7! b;

˛3W

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

z 7! z�1;

x 7! a�1z�1;

a 7! x�1z;

t 7! x�1at�1;

y 7! b;

b 7! y:

Hence rJ.S/ is surjective. For i 2 ¹1; 2; 3º, let Q̨ i be the automorphism of X.S/
induced by ˛i . Recall that, since X.S/ is extraspecial of exponent 3 and order 35,
Out.X.S// is isomorphic to the group of similarities of a symplectic space of
dimension 4 over the field F3, which we denote by GSp4.3/. Then, computing in
GSp4.3/, we get that the image of h Q̨1; Q̨2; Q̨3i in Out.X.S// has order 32. Let ˇ1,
ˇ2, ˇ3 be the automorphisms of S defined by the positions

ˇ1W

8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

z 7! z;

x 7! x;

a 7! a;

t 7! t;

y 7! y;

b 7! ab;

ˇ2W

8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

z 7! z;

x 7! x;

a 7! a;

t 7! t;

y 7! xy;

b 7! b;

ˇ3W

8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

z 7! z;

x 7! x;

a 7! a;

t 7! t;

y 7! ay;

b 7! xa�1b;

and let ˇ1; ˇ2; ˇ3 be their restrictions to X.S/, respectively. Then it is clear that
ˇ1; ˇ2; ˇ3 normalize AutS .X.S// and that the image of hˇ1; ˇ2; ˇ3i in Out.X.S//
is an elementary abelian group of order 27.

Since the groupNOut.X.S//.OutS .X.S/// (computed inside GSp4.3/) has order
25 � 33 and NAut.X.S//.AutS .X.S///=Inn.X.S// D NOut.X.S//.OutS .X.S///, we
get

NAut.X.S//.AutS .X.S/// D Inn.X.S//hˇ1; ˇ2; ˇ3; Q̨1; Q̨2; Q̨3i:

Hence rX.S/ is surjective.
To prove the claims about kernels, note, first of all, that, by Lemma 9, ker rJ.S/

and ker rX.S/ are 3-groups and ker rJ.S/ \ ker rX.S/ D 1. Moreover,

ker rX.S/ \ Inn.S/ D 1;

jker rJ.S/ \ AutS .X.S//j D j.J.S/ \X.S//=Z.S/j D 32:
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Fusion systems on a Sylow 3-subgroup of the McLaughlin group 9

Therefore, ker rX.S/ is isomorphic to a subgroup of NAut.J.S//.AutS .J.S/// in-
tersecting trivially AutS .J.S//. Then we get jker rX.S/j D 3 since a Sylow 3-sub-
group of NAut.J.S//.AutS .J.S/// has order 33,

Similarly, ker rJ.S/ is isomorphic to a subgroup of NAut.X.S//.AutS .X.S///.
Since hˇ1; ˇ2; ˇ3i � ker rJ.S/ and the image of hˇ1; ˇ2; ˇ3i in Out.X.S// is ele-
mentary abelian of order 27, we get jker rJ.S/j D 35.

Corollary 11. The subgroup of Aut.S/ that is generated by ker rJ.S/, ker rX.S/
and Inn.S/ is a normal Sylow 3-subgroup of Aut.S/ with order 38 and index 25.

Proof. By Lemma 10, ker rJ.S/ is a 3-subgroup of order 35, and Aut.S/= ker rJ.S/
is isomorphic to NAut.J.S//.AutS .J.S///, which has a normal Sylow 3-subgroup
of order 27 and index 32.

4 Automorphism groups in F

We keep the notation introduced in the previous sections, and we assume that F is
a saturated radical free fusion system on S . In order to obtain the possible fusion
systems F , we now need to determine the groups AutF .J.S//, AutF .X.S// and
AutF .S/. We begin with AutF .J.S//.

Proposition 12. Let F be a saturated fusion system on S , and assume that J.S/
is F -essential. Then the following holds:

(i) AutF .J.S// is contained in a maximal subgroupM of Aut.J.S// Š GL4.3/
isomorphic to .C2 �M10/ W C2;

(ii) AutF .J.S//.2/ DM .2/ Š A6;

(iii) AutF .J.S// acts irreducibly on J.S/;

(iv) if � is an element of order 4 in AutF .J.S//.2/ normalizing AutS .J.S//,
then, up to conjugation in AutF .J.S//.2/, � D �jJ.S/, where � 2 AutF .S/
is such that

x� D a�1z; y� D b; a� D xz�1; b� D y�1;

t� D xa�1t�1z; z� D z�1I

in particular, ŒJ.S/; �� D J.S/;

(v) if NAutF .J.S//.AutS .J.S/// is contained in two maximal subgroups M and
M 0 of Aut.J.S// isomorphic to .C2�M10/ WC2, then M 0DM �jJ.S/ , where
� is an element of order 3 in Aut.S/ such that �jX.S/ D idX.S/ and �jJ.S/
centralizes NAutF .J.S//.AutS .J.S///.
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10 E. Baccanelli, C. Franchi and M. Mainardis

Proof. Since J.S/ is elementary abelian of rank 4, Aut.J.S// Š GL4.3/. Clearly,
CJ.S/.AutS .J.S// D CJ.S/.S/ D Z.S/ has order 3 by Lemma 4. Since F is
saturated, AutS .J.S// is a Sylow 3-subgroup of AutF .J.S// of order 9, and,
since J.S/ is F -essential and abelian, AutF .J.S// has a strongly 3-embedded
subgroup. Thus, by Lemma 6, AutF .J.S// is contained in the group of sim-
ilarities of an orthogonal form with Witt index 1, that is, a maximal subgroup
M Š .C2 �M10/ W C2. Then we have M .2/ Š A6 and M=M .2/ Š D8. Let T be
a Sylow 3-subgroup of AutF .J.S//. Then T �M .2/ \ AutF .J.S//, and, since
O3.AutF .J.S/// D 1, we get O3.M .2/ \ AutF .J.S/// D 1. Since O3.H/ ¤ 1
for every proper subgroupH ofA6 of order divisible by 32,M .2/ � AutF .J.S//.
Since M .2/ acts irreducibly on J.S/, claim (iii) follows. To prove claim (iv), note
that, since J.S/ is normal in S and � normalizes AutS .J.S//, we have N� D S ,
and axiom (S2) yields that there exists � 2 AutF .S/ such that � D �jJ.S/. Since
there is a unique semidirect product of J.S/ byA6 via a non-trivial action (see also
[17, Lemma 3.4 (iv)]), it follows that, up to conjugation in AutF .J.S//.2/ Š A6,

x� D a�1z; a� D xz�1; t� D xa�1t�1z; z� D z�1:

Set
y� D xrysalbmzk; b� D x˛yˇabız"

for some r; s; l; m; k; ˛; ˇ; ; ı; " 2 F3 (note that y� ; b� 2 X.S/ since X.S/ is
characteristic in S ). From the identity Œa� ; b� � D z� , we get

z�1 D z� D Œa� ; b� � D Œxz�1; x˛yˇabız"� D Œx; yˇ � D zˇ ;

whence ˇ D �1, and similarly, from Œx� ; y� � D z� , we get m D 1. From

Œx� ; b� � D Œa� ; y� � D 1;

we get ı D s D 0. Further, up to replacing � by its product with some element
of Inn.S/ (namely, powers of cx; ca; ct ), we may also assume l D ˛ D 0 and
k D " D 0. Then, the identity Œy� ; b� � D 1 gives

1 D Œy� ; b� � D Œxrb; y�1a � D Œxr ; y�1�Œb; a � D z�r� ;

whence  D �r and y� D xrb, b� D y�1a�r . Finally, by Lemma 10, we may
assume that � has order 4, and this last condition yields r D 0, as claimed.

To prove .v/, suppose that AutF .J.S// is contained in two maximal subgroups
M and M 0 isomorphic to .C2 �M10/ W C2. Then M and M 0 are conjugate in
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Aut.J.S// Š GL4.3/, and clearly they contain AutS .J.S//. Comparing the num-
ber of conjugates of AutS .J.S// inM and in Aut.J.S// and the number of conju-
gates of M in Aut.J.S//, we get that AutS .J.S// is contained in exactly 3 con-
jugates of M . Let � 2 Aut.S/ be defined by

x� D x; y� D y; a� D a; b� D b; t� D tz; z� D z;

and set � ´ �jJ.S/ and N ´ NAut.J.S//.AutS .J.S///. It is clear from the defi-
nition that �jX.S/ D idX.S/ and � has order 3. Moreover, � 2 N , but � …M since
AutS .J.S// is a Sylow 3-subgroup of M . Hence, up to replacing � by ��1, we
have M 0 DM �jJ.S/ . Now set

NM ´ NM .AutS .J.S/// and CM ´ CN .�/ \M:

Then NM has index 3 in N . If ˛1; ˛2; ˛3 are the automorphisms of J.S/ defined
in the proof of Lemma 9, then ˛1 does not centralize �, and h˛21 ; ˛2; ˛3i � CN .�/.
Hence CN .�/ has index 2 in N , and CM has index 2 in NM . Moreover, we have
.NM /

� ¤ NM , and, since N D hNM ; N
�
M i is not contained in M , it follows that

.NM /
� is not contained in M . On the other hand, CM is contained in M \M 0

(since M 0 DM � ), whence CM DM \M 0 \N . Hence

NAutF .J.S//.AutS .J.S/// � CM ;

and the claim is proved.

We turn now to AutF .X.S//. Note that AutF .X.S// is completely determined
once we determine OutF .X.S// up to conjugacy in Out.X.S// since AutF .X.S//
contains the group Inn.X.S//. Now we have AutS .X.S// D hct i, so, by Proposi-
tion 12 (iv), �jX.S/ 2 NAutF .X.S//.hct i/. SinceX.S/ is extraspecial of exponent 3,
X.S/=Z.X.S// has, as usual, a natural structure of a symplectic space over F3, the
form being defined by the commutator and identifying Z.X.S// with the defining
field. Denote by V this space, and let

v1´ xZ.X.S//; v2´ aZ.X.S//; u1´ bZ.X.S//; u2´ yZ.X.S//

so that Out.X.S// Š GSp.V / and B ´ .v1; v2; u1; u2/ is a hyperbolic basis of V
with mutually orthogonal hyperbolic subspaces hv1; u2i and hu1; v2i. Further, de-
note by I the image in Out.X.S// of CAut.X.S//.Z.X.S/// so that I Š Sp.V/.
Set Q� ´ Inn.X.S//�jX.S/ and Qt ´ Inn.X.S//ct so that, with respect to the basis
B of V , the matrices associated to Qt and Q� are

Qt W

0BBBB@
1 0 0 0

0 1 0 0

0 1 1 0

1 0 0 1

1CCCCA and Q�W

0BBBB@
0 �1 0 0

1 0 0 0

0 0 0 �1

0 0 1 0

1CCCCA :
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12 E. Baccanelli, C. Franchi and M. Mainardis

Let G ´ Out.X.S//, H ´ OutF .X.S// and T ´ hQti D OutS .X.S//. The
following lemma summarizes the properties of H that are needed in the sequel.

Lemma 13. H contains Qt and Q�. Further, T 2 Syl3.H/, and T is not normal inH .

Proof. H contains Qt by (FS1) and (FS2) and contains Q� by Proposition 12 (iv).
Since F is saturated, T 2 Syl3.H/. Since X.S/ is F -essential, H has a strongly
3-embedded subgroup, so T is not normal in H .

Lemma 14. With the above notation,

(i) CV .Qt / D hv1; v2i;

(ii) for every non-zero vector Nv1 2 CV .Qt /, there exist Nv2 2 CV .Qt /, Nu1; Nu2 2 V
such that

f . Nvi ; Nuj / D ıij for i; j 2 ¹1; 2º; f . Nu1; Nu2/ D 0;

Nv
Qt
i D Nvi ; Nu

Qt
i D Nv3�i C Nui

and either Q� or Q��1 maps Nvi to .�1/i Nv3�i and Nui to .�1/i Nu3�i for i 2 ¹1; 2º;

(iii) CV .Qt / is the unique maximal isotropic subspace of V normalized by Qt .

Proof. We have

CV .Qt / D ŒV; Qt �
?
D hv1; v2i

?
D hv1; v2i;

and (i) follows. Claim (ii) follows by Witt’s lemma (see, e.g., [2, p. 81]) and ele-
mentary computations. In order to prove (iii), suppose that Qt normalizes a maximal
isotropic subspace U of V . Since Qt is an isometry of V of order 3, it has a fixed
point u on U , and hence u 2 U \ CV .Qt /. It follows that U � hui?. By (ii), we
may assume u D v1, and a direct check shows that U D CV .Qt /.

Lemma 15. H \ I normalizes no non-trivial isotropic subspace of V .

Proof. Let W be a non-trivial isotropic subspace of maximal dimension among
those normalized by H \ I . By Lemma 14 (iii), W � CV .Qt / D hv1; v2i. Since Q�
normalizes H \ I , H \ I normalizes W Q� too, and, again by Lemma 14 (iii), we
have W Q� � CV .Qt / D hv1; v2i. Since h Q�i is irreducible on hv1; v2i, it follows that
W D hv1; v2i. Since Qt centralizes the series

¹0º < hv1; v2i D hv1; v2i
? < V;

we get T D O3.NI .W // \H , a contradiction, since T is not normal in H .
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Corollary 16. One of the following holds:

(a) H stabilizes a decomposition of V into the direct orthogonal sum of two hy-
perbolic lines;

(b) H normalizes a cyclic subgroup of order 4 of G not contained in I ;

(c) H is contained in the normalizer in G of a group Q Š 21C4� .

Proof. This follows from Lemma 15 and Aschbacher’s classification of maximal
subgroups of classical groups (see [1] and also [5, Table 8.12]).

We investigate now cases (a), (b) and (c) of Corollary 16. We start with case (a).

Lemma 17. CG.hQt ; Q�i/ acts transitively on the set of decompositions of V into an
orthogonal sum of two hyperbolic lines U1 ? U2 stabilized by Qt .

Proof. Suppose that Qt stabilizes a decomposition of V into an orthogonal sum of
two hyperbolic lines U1 ? U2. We show that there exists  2 CG.hQt ; Q�i/ such that
U1D hv1; u2i

 and U2D hv2; u1i . We may of course assume that U1¤ hv1; u2i.
Since Qt has a fixed point in U1, by Lemma 14 (ii), we may assume v1 2 U1. Since Qt
centralizes both hv1; u2i=hv1i and U1=hv1i, it follows that Qt centralizes the quo-
tient space .hv1; u2i C U1/=hv1i. On the other hand,

CV=hv1i
.Qt / D hv1; v2; u2i=hv1i;

so hv1; u2i C U1 D hv1; v2; u2i and U1 D hv1; v2 C ˇu2i for some ˇ 2 ¹˙1º.
Then

U2 D U
?
1 D ¹�v1 C �v2 C �u1 j �;�; � 2 F3 and � D �ˇº D hv2; v1 C ˇu1i;

and the linear map  WV ! V , defined by vi ´ ˇvi and ui ´ vi C ˇui for
i 2 ¹1; 2º, has the required properties.

Fix the basis B1´ .v1; u2; v2; u1/ of V , and identify every element ofG with
its associated matrix with respect to B1 so that

Qt D

 
� 0

0 �

!
; where � ´

 
1 0

1 1

!
;

Q� D

 
0 �

�� 0

!
; where �´

 
�1 0

0 1

!
:

Let

D D

´ 
˛ 0

0 ˛

! ˇ̌̌̌
˛ 2 Sp2.3/

µ
:
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14 E. Baccanelli, C. Franchi and M. Mainardis

Lemma 18. Assume H is contained in the stabilizer M in G of a decomposition
of V into an orthogonal sum of two hyperbolic lines U1 ? U2. Then one of the
following holds:

(i) H is conjugate inG toDh Q�i,H Š 2�S4, and there is an element of order 4
in G n I that centralizes H ;

(ii) H is conjugate in G to Dh Q�; Q�i, H Š .2 � SL2.3// W 2, and H normalizes
a cyclic subgroup of order 4 in G n I , where Q� is the linear map that swaps
v1 with v2 and u1 with u2;

(iii) H is conjugate inG toZ.K/Dh Q�; Q�i, whereK D NM .U1/ \NM .U2/, and
H Š .2 � GL2.3// W 2;

(iv) H D O2.M/hQt ; Q�i;

(v) H is conjugate in G to O2.M/hQt ; Q�; Q�i.

Proof. By Lemma 17, we may assume U1 D hv1; u2i and U2 D hv2; u1i. For
i 2 ¹1; 2º, denote by Si the subgroup of M normalizing Ui and acting trivially
on U3�i . Set K ´ S1S2, and let R be the unique Sylow 3-subgroup of K con-
taining T . Then

Si Š SL2.3/ for i 2 ¹1; 2º; S
Q�
1 D S2 and ŒS1; S2� D 1I (4.1)

M D Kh Q�; Q�i; h Q�; Q�i Š D8I

NM .T / D RZ.K/h Q�; Q�i; so T h Q�i � NH .T / � Z.K/T h Q�; Q�
�
i (4.2)

for a suitable � 2 R.
Since T � H \K E H , by the Frattini argument, H D .H \K/NH .T /, so,

by Lemma 13, T is not normal in H \K, and 12 divides jH \Kj. Moreover,
by (4.2), either H D .H \K/h Q�i or H D .H \K/h Q�; Q��i. If jH \Kj D 12,
then H \K Š A4 (the unique group of order 12 with no normal Sylow 3-sub-
groups) and .H \K/ \Z.K/ D 1. It follows that m2.K/ � 4, a contradiction
as m2.GSp4.3// D 3 (see [10, Theorem 4.10.5]). Hence we get jH \Kj � 24.
Let ¹i; j º D ¹1; 2º, and assume H \ Si D 1 for some i 2 ¹1; 2º. Since Q� 2 H ,
by (4.1),H \ S3�i D 1. Since jH \Kj � 24, it follows that there is  2 GL2.3/
such that

H \K D

´ 
˛ 0

0 ˛

!
with ˛ 2 SL2.3/

µ
:

Since Qt 2 H \K,  has to centralize � , so  2 h�;Z.GL2.3//i. Let

�´

 
0 I

�I 0

!
and �./´

 
I 0

0 

!
:
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Then, for every ˛ 2 SL2.3/, 
˛ 0

0 ˛

!�./
D

 
˛ 0

0 ˛

!
; ��./ D

 
0 

��1 0

!
; ��./ D

 
0 

�1 0

!
and  

0 �

�� 0

!�./  
 0

0 

!�./
D

 
0 �

�� 0

!
:

Thus, if H D .H \K/h Q�i, then H is conjugate via .�.//�1 to Dh Q�i, which is
isomorphic to 2�S4, and centralizes the element � (of order 4). If

H D .H \K/h Q�; Q��i for some � 2 R;

then Q�� normalizes H \K, whence

Q�� D

 
0 

�1 0

!
:

It follows that H is conjugate via .�.//�1 to Dh Q�; Q�i, which normalizes h�i and
is isomorphic to .2 � SL2.3// W 2.

Assume now that H \ Si ¤ 1. As above, H \ S3�i ¤ 1. Since T is not con-
jugate in G to a Sylow 3-subgroup of Si (their generators having different Jordan
normal forms), H \ Si is a 2-group. Since T � K � NK.Si /, H \ Si is normal-
ized by T , so either H \ Si D Z.Si / or H \ Si D O2.Si / Š Q8. In all cases,
Z.K/ � H . Moreover, by (4.1), jH \ S1j D jH \ S2j.

If jH \ Si j D 2, then j.H \K/=Z.K/j � 12 and, as T is not normal in H ,
.H \K/=Z.K/ Š A4. As above, it follows that there is  2 GL2.3/ such that
H \K is the product of the groups´ 

˛ 0

0 ˛

! ˇ̌̌̌
˛ 2 Sp2.3/

µ
and Z.K/;

whence H \K D .DZ.K//�./, which is isomorphic to 2 � SL2.3/.
Thus, if H D .H \K/h Q�i, then H is conjugate in G to DZ.K/h Q�i, which is,

in turn, conjugate to Dh Q�; Q�i, and (ii) follows. If H D .H \K/h Q�; Q��i, then H is
conjugate in G to Z.K/Dh Q�; Q�i, and (iii) follows.

Finally, if H \ Si D O2.Si / for i D 1; 2, then H \K D O2.M/T , and we
get (iv) and (v).

Note that groups described in Lemma 18 satisfy both case (a) and (b) of Corol-
lary 16. In order to deal with case (b), we need the following elementary result.
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Lemma 19. Let L be a group, E and F subgroups of L with jF j D 2 and such
that L is the direct product of E and F . Let L1 and L2 be subgroups of L. Then
L1 and L2 are conjugate in L if and only if there is an element e 2 E such that
.L1F /

e D L2F and .L1 \E/e D .L2 \E/.

Proof. Assume there is an element e 2 E such that

.L1F /
e
D L2F and .L1 \E/

e
D .L2 \E/:

Let i 2 ¹1; 2º. If either F � Li or Li � E, the result follows immediately. Other-
wise, L2F=.L2 \E/ is elementary abelian of order 4. So, if f is the generator
of F , there is an element d 2 E such that the three maximal subgroups of L2F
containing L2 \E are .L2 \E/F , .L2 \E/hdf i and .L2 \E/hd i. So the only
possibility is Le1 D L2 D .L2 \E/hdf i. The converse is obvious.

Assume now that H normalizes a cyclic subgroup of order 4 in G n I (case (b)
of Corollary 16). In this case,H is contained in a maximal subgroupM ofG such
thatM D hiAwith  of order 4, 2 2 Z.A/, ŒA.1/; � D 1 and ŒA; hi� D Z.A/,
and there is an isomorphism 'WA! 2S6 such that QtZ.A/ is mapped to the product
of two 3-cycles in S6 (see [6, p. 26]). Since Q� has order 4, inverts Qt and supplements
A.1/hi in M , it follows that Q� D ˛m for suitable ˛ 2 A n A.1/ of order 4 and
m 2 N. By the choice of ', ˛Z.A/ must map to the product of three disjoint
transpositions.

Lemma 20. With the above notation, H is one of the groups listed in the fifth
column of Table 1 and H is uniquely determined, up to conjugation in M , by its
isomorphism type.

Proof. Set K´A.1/hi. Then H D .H \K/h Q�i. Note that Z.M/D hQ�2i �H ,
and hence H is completely determined by its image H=Z.M/ in the quotient
group M=Z.M/. For an element  , or a subgroup L, of M , denote by  , respec-
tively L, its image in M=Z.M/. Thus, in particular,

M D A � hi:

Since T has order 3 and T � A.1/ E M , we have TH � A.1/, and, since T is
a non-normal Sylow 3-subgroup of H , TH is isomorphic either to 2A4 or to 2A5.
Moreover,

TH � .H \K/ � NK.T
H / D NA.1/.TH / � hi:

If TH Š 2A5, then TH is a maximal subgroup of A.1/, so TH D NA.1/.TH /;
if TH Š 2A4, then NA.1/.TH / Š S4. In both cases, we get one of the configu-
rations listed in Table 1. Finally, let L be a subgroup of M isomorphic to H and
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TH H \K H H hi H Structure

2A5 TH S5 S5�2 TH h Q�i 2�S5

TH �hi S5�2 H .TH ıhi/h Q�i 2�S5 ı4

2A4 TH S4 S4�2 TH h Q�i 2�S4

TH �hi S4�2 H .TH ıhi/h Q�i .SL2.3/�2/ W 2
TH h�i

(with � 2NA.1/.TH /nTH )
S4 S4�2 TH h�; Q�i GL2.3/ W 2

NA.1/.TH / S4�2 S4�2�2 NA.1/.TH /h Q�i 2�S4 W 2

NA.1/.TH /�hi S4�2�2 H .NA.1/.TH /ıhi/h Q�i .2�S4 W 2/ W 2

Table 1. Possibilities for H in case (b) of Corollary 16.

containing T ,Z.M/ and Q�. A direct check insideA6 shows that there is an element
g 2 A such that

.H hi/g D Lhi and .H \ A/g D L \ A:

Thus, by Lemma 19, Hg D L.

We turn finally to case (c) of Corollary 16. Here we use the isomorphism
PSp4.3/ Š GO

�
6 .2/ (see [6, p. 26]) and identify G=Z.G/ with the latter group

so that the natural action of GO�6 .2/ on an orthogonal space Y of dimension 6
over the field of order 2 with Witt defect 1 extends to a representation � of G
on Y . Then, by [6, p. 26], H is contained in the stabilizer M of a singular vec-
tor v0 in Y , and � induces a representation � ofM onto the full permutation group
on the set of the five singular non-zero vectors of v?0 =hv0i such that ker.�/ is the
unipotent radical U of M , which is isomorphic to 21C4� .

Lemma 21. With the above notation, one of the following holds:

(i) the order ofH is divisible by 5, in which case eitherH Š 2�S5 orH DM ;

(ii) H stabilizes a totally singular line in Y ;

(iii) H centralizes a non-singular vector of Y ;

(iv) H \ U is equal either to U or to ŒU; T �Q, where Q is the cyclic subgroup
of order 4 of CU .T / and H=.H \ U// Š S3 � 2.

Proof. Since Y has Witt defect �1, there is a basis .e1; e2; e; f; f2; f1/ of Y such
that
� e1 D v0 (so H fixes e1),
� for i 2 ¹1; 2º, .ei ; fi / is a hyperbolic pair,
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18 E. Baccanelli, C. Franchi and M. Mainardis

� the subspace he; f i does not contain any singular non-zero vector,
� f is not orthogonal to e.

Since all elements of order 3 of M are conjugate in M , we may choose � in such
a way that �.Qt / acts trivially on he1; e2; f2; f1i and maps e to f and f to e C f .
Since Q� acts trivially on he1; e2; f2; f1i, it maps e to f and f to e, and Q� … U .
Since �. Q�/ 2 �.H/ n A5 and ¹1º ¤ �.T / � �.H/, �.H/ is a subgroup of S5 not
contained in A5 and divisible by 6. If 5 divides jH j, then �.H/ D S5, and (i) fol-
lows since h Q�2i D Z.U / andM is irreducible on U=Z.U /. Assume 5 does not di-
vide jH j. Then �.H/ is contained in a subgroup of S5 isomorphic either to S4 or to
2 � S3. In the former case, �.H/ fixes a singular non-zero vector in he1i?=he1i,
and hence H stabilizes a totally singular line in Y as in (ii). In the latter case,
�.H/ fixes a non-singular vector in he1i?=he1i (see [6, p. 2]), which has to be
e2 C f2 C he1i since this is the unique non-singular vector in e?1 =he1i which is
fixed by hQt ; Q�i. Thus H acts on the subspace he1; e2 C f2i of Y . If this action is
trivial, then (iii) holds. Otherwise, H contains an element ˛ that swaps the two
non-singular vectors e2 C f2 and e2 C f2 C e1 of he1; e2 C f2i. Since �.T / is
normal in �.H/, possibly substituting ˛ with ˛ Q�, we may assume ŒQt ; ˛� 2 H \ U .
Thus ˛ maps the basis .e1; e2; e; f; f2/ of he1i? to

.e1; f2 C he1; e C le1; f Cme1; e2 C ne1/ for some h; l;m; n 2 F2:

Since ˛ swaps e2 C f2 and e2 C f2 C e1, we have n D hC 1. It follows that

1 ¤ ˛2 2 H \ CU .Qt /:

Since e?1 =he1i is canonically isometric to the factor U=Z.U / of the extraspe-
cial 2-group endowed with the usual quadratic form induced by the squaring [2,
(23.10)] and Z.U /˛2 is non-singular, Q´ h˛2i is a subgroup of order 4 in
CU .Qt /. Assume, by means of contradiction, that ŒH \ U; T � D 1. Since

H=.H \ U/ Š S3 � 2;

it follows that T E T .H \ U/ E H . Since T is a Sylow 3-subgroup of H , this
implies that T is normal in H , against the hypothesis. So ŒH \ U; T � ¤ 1. Since
T acts irreducibly on ŒU; T �=Z.U /, it follows that ŒU; T � � H , and (iv) holds.

5 Fusion systems

Lemma 22. For P 2 ¹J.S/;X.S/º, the restriction map

rF
P WAutF .S/! NAutF .P /.AutS .P //

is a surjective homomorphism such that ker rF
P � Inn.S/.
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Proof. Let P 2 ¹J.S/;X.S/º. By the surjectivity property [7, p. 190], the restric-
tion to P induces a surjective homomorphism

rF
P WAutF .S/! NAutF .P /.AutS .P //:

Since P is F -essential, CS .P / � P . By Thompson’s A � B lemma [19, (1.15)0],
this implies that ker rF

P is a 3-group, whence, since F is saturated, ker rF
P is con-

tained in Inn.S/.

Theorem 23. Let F and E be saturated fusion systems on a Sylow 3-subgroup S
of the McLaughlin group Mc with jDF j D 2. If AutF .X.S// is conjugate to
AutE.X.S// in Aut.X.S//, then F and E are isomorphic fusion systems.

Proof. Suppose AutF .X.S// is conjugate to AutE.X.S// in Aut.X.S//. Since
AutF .X.S// and AutE.X.S// contain (by definition of saturated) AutS .X.S// as
a Sylow 3-subgroup, there exists ı 2 NAut.X.S//.AutS .X.S/// such that

AutF .X.S//ı D AutE.X.S//:

By Lemma 10, there exists ı 2 Aut.S/ such that ıjX.S/ D ı. Since the fusion sys-
tem

F ı
D hAutF .S/ı ;AutF .J.S//ı ;AutF .X.S//ıi

is isomorphic to F , it is enough to show that F ı is isomorphic to E . Hence

(a) we may assume AutF .X.S// D AutE.X.S// and, in particular,

NAutF .X.S//.AutS .X.S/// D NAutE.X.S//.AutS .X.S///:

Let Q be the preimage of NAutF .X.S//.AutS .X.S/// via the map rX.S/ de-
fined in Section 3. Then, by Lemma 10 and Corollary 11, AutF .S/=Inn.S/ and
AutE.S/=Inn.S/ are Sylow 2-subgroups of

Q=Inn.S/ D AutF .S/ ker rX.S/=Inn.S/;

and so there exists � 2 ker rX.S/ such that AutF .X.S//� D AutF .X.S//. Up to
replacing F by F �,

(b) we may assume

AutF .X.S// D AutE.X.S// and AutF .S/ D AutE.S/:

Then, by Lemma 22,

NAutF .J.S//.AutS .J.S/// D NAutE.J.S//.AutS .J.S///:

By Proposition 12 (v), there exists an automorphism � 2 ker rX.S/ such that �jJ.S/
centralizesNAutF .J.S//.AutS .J.S/// and AutF .J.S//� and AutE.J.S// are con-
tained in the same maximal subgroupM Š .C2 �M10/ W C2 of Aut.J.S//. Since,
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by Lemma 22,

ŒAutF .S/; ��rJ.S/ D ŒNAutF .J.S//.AutS .J.S///; �jJ.S/� D 1;

by Lemma 9, we have

ŒAutF .S/; �� � ker rJ.S/ \ ker rX.S/ D 1:

Thus AutF .S/� D AutF .S/. By Proposition 12 and the Frattini argument, since
AutS .J.S// is a Sylow 3-subgroup of AutE.J.S//, AutF .J.S//� and of M .2/,
we have

AutF .J.S//� DM .2/NAutF .J.S//.AutS .J.S///

DM .2/NAutE.J.S//.AutS .J.S/// D AutE.J.S//:

Thus F � D E , and we have the claim.

Theorem 24. Let F be a fusion system on a Sylow 3-subgroup S of the McLaugh-
lin group Mc with jDF j D 2. Then F is isomorphic to one of the fusion systems
listed in Table 2.1 In particular, Theorem 1 holds.

Proof. By Alperin’s theorem for fusion systems [7, Theorem 4.51] and Proposi-
tion 7, we have F D hAutF .S/;AutF .J.S//;AutF .X.S//i. By Theorem 23, it
is enough to find the triples .AutF .J.S//;AutF .S/;AutF .X.S/// up to conju-
gation of AutF .X.S// in Aut.X.S//.

By Proposition 12, up to conjugation in Aut.J.S//, AutF .J.S// is isomorphic
to a subgroup of .2 �M10/ W 2 containing a copy A of A6. Since .2 �M10/ W 2=A

is isomorphic to D8, up to conjugation in .2 �M10/ W 2, there are exactly 8 such
subgroups, and these are listed in the first column of Table 2. This and Lemma 22
give the isomorphism classes for OutF .S/ listed in the third column of Table 2.

We turn now to AutF .X.S//. Note that AutF .X.S// is completely determined
up to conjugation in Aut.X.S// once we determine OutF .X.S// up to conjugation
in Out.X.S// since AutF .X.S// contains the group Inn.X.S//. As remarked after
Proposition 12 and with the same notation, we may identify Out.X.S// with the
group GSp4.3/, and OutF .X.S// is then a subgroup H of GSp4.3/ containing Qt
and Q� such that T ´ hQti is a Sylow 3-subgroup of H . Moreover, T is not normal
in H since, by definition of F -essential subgroups, H has a strongly 3-embedded
subgroup. Then T is not normal in H \ I , and H falls into one of the three cases
of Corollary 16.

If H is as in case (a), (i)–(v) of Lemma 18 imply that H is isomorphic to one
of the groups listed in rows 1, 3, 7, 4 and 8 of the second column of Table 2,

1 Note that, by Lemma 18, Lemma 20, and Lemma 21, the structure of the groups in the first
three columns of Table 2 determines their isomorphism class.
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AutF .J.S// OutF .X.S// OutF .S/ Groups

A6 2�S4 4 U4.3/

2�A6 GL3.2/ W 2 4� 2 U4.3/:21

S6 .2�SL2.3// W 2 D8 U4.3/:22

.Q8 �Q8/:S3 D8 L6.q/, q� 4; 7 mod 9
U6.q/, q� 2; 5 mod 9

M10 .2�S4/ W 2 Q8 U4.3/:23

2�S5 Q8 Mc

2�S6 .2�GL2.3// W 2 2�D8 U4.3/:2
2
122

.Q8 �Q8/:.3 WD8/ 2�D8 L6.q/h�i, q� 4; 7 mod 9
U6.q/h�i, q� 2; 5 mod 9
� field automorphism of order 2

2�M10 .2�S4 W 2/ W 2 2�Q8 U4.3/:2
2
133

2�S5 W 2 2�Q8 Aut.Mc/

A6 W 4 .Q8 ı 4/:.S3 � 2/ 2� 8 U4.3/:4

.2�M10/ W 2 21C4� :.S3 � 2/ 2�QD16 Aut.U4.3//
21C4� :S5 2�QD16 Co2

Table 2. Radical free fusion systems on S .

respectively. If H is as in case (b), then rows 1–7 of the fifth column of Table 1
imply thatH is isomorphic to one of the groups listed in rows 6, 10, 1, 3, 2, 5 and 9,
respectively. Note that, by Lemma 18, the groups obtained in cases (a) and (b) are
isomorphic if and only if they are conjugate.

Assume now that H satisfies case (c) and does not satisfy cases (a) and (b).
Then H falls into cases (i) or (iv) of Lemma 21. In case (i), either H is a maximal
subgroup of G isomorphic to the normalizer in G of a group of type 21C4� , which
gives the last row of Table 2, or H Š 2�S5. The latter case cannot occur, for H
would satisfy case (b) since the normalizer of a cyclic subgroup of order 4 ofG, not
contained in I , contains subgroups isomorphic to 2�S5, and these are contained
in a single G-conjugacy class. In case (iv), we get rows 11 and 12 of the second
column of Table 2.

Finally, a direct check in [6] shows that the fusion systems corresponding to
the rows of Table 2, except, possibly, for those in rows 4 and 8, are realized by
the related groups listed in the last column. Routine computation shows that the
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same holds for fusion systems in rows 4 and 8. For example, consider the group
L6.q/ with q � 4; 7 mod 9. Then q � 1 is divisible by 3 but not by 9. Let P be
a Sylow 3-subgroup of L6.q/, and let Fq be the field of order q. By [10, The-
orem 4.10.2], P is contained in the normalizer of a frame D of F6q in L6.q/
and P D APW , where A is the Sylow 3-subgroup of CL6.q/.D/ and PW faith-
fully permutes the elements of D as a Sylow 3-subgroup of the alternating group
over D . Since jD j D 6 and A6 has a unique, up to equivalence, irreducible rep-
resentation of degree 4 on the field of order 3, it follows that P is isomorphic
to S . By [10, Remark 4.10.4], NL6.q/.A/=CL6.q/.A/ is isomorphic to a section
of S6. Since A is characteristic in D, we get NL6.q/.A/=CL6.q/.A/ Š S6. This
means that FS .L6.q// corresponds either to line 3 or to line 4 of Table 2. More-
over, L6.q/ has a subgroup isomorphic to SL3.q/ ı SL3.q/, and SL3.q/ contains
a maximal subgroup isomorphic to 31C3

C
W Q8. It follows that, in L6.q/, there is

a subgroup isomorphic to 31C4
C

, whose normalizer contains a copy of Q8 �Q8,
which implies that FS .L6.q// is the fusion system corresponding to line 4.
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