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Abstract. Distance-based formulations have successfully been used to obtain closure polynomials
for planar mechanisms without relying, in most cases, on variable eliminations. The methods re-
sulting from previous attempts to generalize these techniques to spatial mechanisms exhibit some
limitations such as the impossibility of incorporating orientation constraints. For the first time, this
paper presents a complete satisfactory generalization. As an example, it is applied to obtain a clo-
sure polynomial for the the general triple-arm parallel robot (that is, the 3-RPS 3-DOF robot). This
polynomial, not linked to any particular reference frame, is obtained without variable eliminations
or tangent-half-angle substitutions.
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1 Introduction

The distance-based formulation introduced in this paper generalizes the ideas devel-
oped in [1] for the position analysis of planar kinematic chains to solve the position
analysis of spatial mechanisms. The methods resulting fromprevious attempts to
attain this generalization were limited in scope [2], or were unable to obtain closure
polynomials of minimum degree for mechanisms with orientation constraints [3].
The proposed formulation permits the incorporation of thiskind of constraints so
that it can be applied to general spatial linkages. Besides being general, it is shown
how it highly simplifies the algebraic manipulations neededto obtain closure poly-
nomials up to the point in which no variable eliminations areneeded in many non-
trivial cases. As an example, it is applied to obtain a closure polynomial for the the
general triple-arm parallel robot (see Fig. 1). This robot consists of a moving plat-
form connected to a fixed base through three revolute-prismatic-spherical kinematic
chains, the prismatic joint of each chain being actuated. The forward kinematics
problem of this robot consists in finding the possible poses of the moving platform,
with respect to the fixed base, for specified values of the actuated prismatic joints.
Several researchers have studied this problem (e.g., [4, 5, 6, 7]), but their solutions
assume that the axes of the revolute joints attached to the fixed base are arranged
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Fig. 1 Triple-arm parallel robot in which the axes supporting the segments P1P2, P3P4, andP5P6
are skew and its corresponding bar-and-joint framework model.

forming a triangle. In this paper, using the aforementioneddistance-based formu-
lation, the forward kinematics of the triple-arm parallel robot with skew revolute
joints is solved. It will be shown how this formulation allows obtaining a closure
univariate polynomial that is not linked to any particular reference frame, and is
straightforwardly obtained without variable eliminations or tangent-half-angle sub-
stitutions.

The rest of this paper is organized as follows. Section 2 introduces the basics
of the distance-based formulation and its corresponding properties and operations.
These ideas are then applied to obtain a closure polynomial for the general triple-
arm robot in Section 3 which is then applied to solve, in Section 4, its forward
kinematics for a particular instance. Finally, we concludein Section 5.

2 Preliminaries

In what follows,Pi will denote a point inE3, pi, j =
−−→
PiPj , pi, j,k = pi, j×pi,k, and

si, j = ‖pi, j‖
2. Vector coordinates will be arranged as column vectors. Vectors pi, j ,

pi,k, andpi, j,k represent, in general, a non-orthonormal reference frame which will

be denoted by the column vector of nine componentsqi, j,k =
(

pT
i, j pT

i,k pT
i, j,k

)T
.

The tetrahedron defined byPi , Pj , Pk, andPk will be denoted by i, j,k,l , and it
will be said that itsorigin is located atPi , its baseis given by then triangle i, j,k, its
base vectorsarepi, j (first) andpi,k (second), and itsoutput vectorsarepi,l , p j,l , and
pk,l .
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2.1 Trilateration in matrix form

Given the tetrahedron i, j,k,l , its output vectorpi,l can be expressed as a function of
the base vectorspi, j andpi,k and its squared edge distances as follows (see [8] for
details):

ai, j,k pi,l = bi, j,k,l pi, j +ci, j,k,l pi,k+σi, j,k,l di, j,k,l pi, j,k, (1)

where
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andσi, j,k,l accounts for the two possible locations ofPl with respect to the plane
supporting j,k,l such thatσi, j,k,l =+1 if | pi, j pi,k pi,l |> 0, andσi, j,k,l =−1 other-
wise.

Equation (1) can be expressed in matrix form as

pi,l = Wi, j,k,l qi, j,k, (2)

whereWi, j,k,l =
(

bi, j,k,l
ai, j,k

I
ci, j,k,l
ai, j,k

I
di, j,k,l
ai, j,k

I
)

, I being the 3×3 identity matrix. Thus, the

output vectorp j,l can be expressed as

p j,l = pi,l −pi, j =
(

Wi, j,k,l −KIOO
)

qi, j,k, (3)

whereKIOO =
(

I O O
)

, O being the 3×3 null matrix. Similarly, for the case of
the output vectorpk,l we have that

pk,l = pi,l −pi,k =
(

Wi, j,k,l −KOIO
)

qi, j,k, (4)

with KOIO =
(

O I O
)

.
Sinceqi, j,k represents, in general, a non-orthogonal reference frame,any vectorv

can be expressed asv=ΩΩΩ qi, j,k, whereΩΩΩ =
(

ω1I ω2I ω3I
)

with ωi being a scalar.
Moreover, it can be checked that‖v‖2 = qT

i, j,k ΩΩΩ T ΩΩΩ qi, j,k.
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2.2 Reference frame change

Let us suppose thatv can be expressed in the reference frame defined byql ,m,n as
v=ΩΩΩ 1 ql ,m,n, whereΩΩΩ1 =

(

ω1
1I ω1

2I ω1
3I
)

. Let us also assume that the base vectors
of ql ,m,n, pl ,m and pl ,n, can be expressed in the reference frame defined byqi, j,k

as pl ,m = ΩΩΩ 2 qi, j,k and pl ,n = ΩΩΩ 3 qi, j,k, whereΩΩΩ2 =
(

ω2
1I ω2

2I ω2
3I
)

, andΩΩΩ3 =
(

ω3
1I ω3

2I ω3
3I
)

, respectively. Then, it is possible to expressv in the reference frame
defined byqi, j,k as:

v = ΩΩΩ 1 ql ,m,n = ΩΩΩ 1ΛΛΛ ΩΩΩ 2ΩΩΩ 3
i, j,k qi, j,k, (5)

where

ΛΛΛ ΩΩΩ2ΩΩΩ3
i, j,k =





ω2
1I ω2

2I ω2
3I

ω3
1I ω3

2I ω3
3I

k1I k2I k3I



 ,

with

k1 =
1
2(ω

2
1ω3

3 −ω2
3ω3

1)(si, j +si,k−sj,k)+(ω2
2ω3

3 −ω2
3ω3

2)si,k,

k2 =− ((ω2
1ω3

3 −ω2
3ω3

1)si, j +
1
2(ω

2
2ω3

3 −ω2
3ω3

2)(si, j +si,k−sj,k)),

k3 =ω2
1ω3

2 −ω2
2ω3

1 .

ΛΛΛ ΩΩΩ2ΩΩΩ3
i, j,k is defined as areference frame change matrix. In the particular case in

which ω2
1 = 1,ω2

2 = ω2
3 = 0, this matrix will be explicitly denoted asΛΛΛ KIOOΩΩΩ 3

i, j,k .

Likewise, if ω3
2 = 1,ω3

1 = ω3
3 = 0, this matrix will be denoted asΛΛΛ ΩΩΩ 2KOIO

i, j,k .

3 Deriving a closure polynomial for the general triple-arm robot

A link connecting two skew revolute axes can be modeled by taking two points
on each of these axes and connecting them all with edges to form a tetrahedron.
Similarly, a link connecting a revolute axis and a ball jointcan be modeled by taking
two points on the axis and the center of rotation of the spherical pair and connecting
them all with edges to form a triangle, and a link connecting two ball joints can
be modeled by connecting the centers of rotation of the spherical pairs by an edge.
Thus, a triple arm mechanism with skew revolute joints can bemodeled as the bar-
and-joint framework shown in Fig. 1. The geometry of this robot is then completely
determined by 9 points, namelyP1 . . .P9; 24 squared distances, namelys1,2, s1,3,
s1,4, s1,5, s1,6, s1,7, s2,3, s2,4, s2,5, s2,6, s2,7, s3,4, s3,5, s3,6, s3,8, s4,5, s4,6, s4,8, s5,6, s5,9,
s6,9, s7,8, s7,9, ands8,9; and the orientation of 3 tetrahedra, namely1,2,3,4, 1,2,4,5,
and 1,2,5,6.
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According to the notation of Fig. 1, and applying the operations introduced in
Section 2, next we derive a closure condition for this particular robot. To this end,
we are going to expresss6,9 as a function ofs3,7. In other words,s3,7 is going to
be used as a parameter in terms of which the configuration of the robot can be
expressed.

For the fixed base, which involves pointsP1 . . .P6 and tetrahedra 1,2,3,4, 1,2,4,5,
and 1,2,5,6, we have

p1,4 =W1,2,3,4 q1,2,3, (6)

p1,5 =W1,2,4,5 q1,2,4 = W1,2,4,5ΛΛΛ KIOOW1,2,3,4
1,2,3 q1,2,3, (7)

p1,6 =W1,2,5,6 q1,2,5 = W1,2,5,6ΛΛΛ KIOOW1,2,4,5
1,2,4 ΛΛΛ KIOOW1,2,3,4

1,2,3 q1,2,3. (8)

Equations (6), (7), and (8) correspond to a representation of the vectorsp1,4, p1,5,
andp1,6 in the non-orthonomal reference frame defined byq1,2,3. Now, we derive a
representation ofp1,7 andp7,9 in the same reference frame to compute the closure
vector equationp6,9 = −p1,6+p1,7+p7,9. For the case of vectorp1,7, we straight-
forwardly have

p1,7 = W1,2,3,7 q1,2,3. (9)

For the case of vectorp7,9, we first compute

p7,3 =−p3,7 =−(W1,2,3,7−KOIO)q1,2,3 = ΩΩΩ73q1,2,3. (10)

Similarly, from equations (6) and (9), we get

p7,4 =−p1,7+p1,4 = (W1,2,3,4−W1,2,3,7) q1,2,3 = ΩΩΩ74q1,2,3. (11)

Then,

p7,8 = W7,3,4,8 q7,3,4 = W7,3,4,8ΛΛΛ ΩΩΩ73ΩΩΩ74
1,2,3 q1,2,3 = ΩΩΩ 78q1,2,3. (12)

Moreover, from equations (7) and (9), we obtain

p7,5 =−p1,7+p1,5 =
(

W1,2,4,5ΛΛΛ KIOOW1,2,3,4
1,2,3 −W1,2,3,7

)

q1,2,3 = ΩΩΩ 75q1,2,3, (13)

and from equations (7), (9), and (12),

p5,8 =−p1,5+p1,7+p7,8

=
(

−W1,2,4,5ΛΛΛ KIOOW1,2,3,4
1,2,3 +ΩΩΩ78+W1,2,3,7

)

q1,2,3 = ΩΩΩ58q1,2,3. (14)

Then, using equations (12) and (13), we have

p7,9 = W7,8,5,9 q7,8,5 = W7,8,5,9ΛΛΛ ΩΩΩ 78ΩΩΩ75
1,2,3 q1,2,3. (15)
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Using equations (8), (9), and (15), we can now writep6,9 in the reference frame
defined byq1,2,3 as:

p6,9 =−p1,6+p1,7+p7,9 = ΩΩΩ69q1,2,3, (16)

with

ΩΩΩ69 =−W1,2,5,6ΛΛΛ KIOOW1,2,4,5
1,2,4 ΛΛΛ KIOOW1,2,3,4

1,2,3 +W7,8,5,9ΛΛΛ ΩΩΩ 78ΩΩΩ 75
1,2,3 +W1,2,3,7.

Thus, we finally conclude that

s6,9 = qT
1,2,3 ΩΩΩ T

69ΩΩΩ69q1,2,3. (17)

The right hand side of the above equation is a function of the unknown squared
distancess3,7, s4,7, s5,7 ands5,8. However, from equations (11), (13), and (14), we
have that

s4,7 = qT
1,2,3 ΩΩΩ T

74ΩΩΩ74q1,2,3, (18)

s5,7 = qT
1,2,3 ΩΩΩ T

75ΩΩΩ75q1,2,3, (19)

s5,8 = qT
1,2,3 ΩΩΩ T

58ΩΩΩ58q1,2,3. (20)

Then, the substitution of these expressions in (17) yields ascalar radical equation in
a single variable:s3,7. The real roots of this closure condition determine the assem-
bly modes of the analyzed robot. These roots can be computed,for instance, from
the univariate polynomial resulting from clearing the radicals in this expression,
as explained in [9]. For each real root, we can determine the location of the three
points of the moving platform by computing, for example, thefollowing sequence
of trilaterations: obtainingp1,7 from p1,2 andp1,3, thenp3,8 from p3,7 andp3,4, and
finally p5,9 from p5,7 andp5,8. This leads to up to eight locations forP9. At least
one of them necessarily satisfies the distance constraint imposed bys6,9 and hence
corresponds to a valid assembly mode.

4 Numerical example

According to the notation of Fig. 1, let us consider the triple arm mechanism with the
following known squared lengths:s1,2 = 1, s1,3 = 17,s1,4 = 10,s1,5 = 26,s1,6 = 20,
s1,7 = 101,s2,3 = 16,s2,4 = 11,s2,5 = 19,s2,6 = 13,s2,7 = 102,s3,4 = 3, s3,5 = 11,
s3,6 = 13,s3,8 = 126,s4,5 = 20,s4,6 = 18,s4,8 = 101,s5,6 = 2,s5,9 = 145,s6,9 = 123,
s7,8 = 10,s7,9 = 26, ands8,9 = 10; with σ1,2,3,4 = +1, σ1,2,4,5 =−1, andσ1,2,5,6 =
+1. Substituting these values in (17), using the expressionsfor s4,7, s5,7 ands5,8 in
terms ofs3,7, and clearing radicals, we obtain the following polynomial:



General Triple-Arm Parallel Robot 7

s3,7 = 126.00 s3,7 = 140.93 s3,7 = 186.75

s3,7 = 190.26 s3,7 = 193.73 s3,7 = 198.13

Fig. 2 The six real solutions to the forward kinematics of the analyzed triple-arm robot.

4.3635·1012s16
3,7−1.1184·1016s15

3,7+1.3683·1019s14
3,7−1.0517·1022s13

3,7

+5.6413·1024s12
3,7−2.2259·1027s11

3,7+6.6546·1029s10
3,7−1.5332·1032·s9

3,7

+2.7456·1034·s8
3,7−3.8296·1036·s7

3,7+4.1433·1038·s6
3,7−3.4390·1040s5

3,7

+2.1463·1042s4
3,7−9.7358·1043s3

3,7+3.0275·1045s2
3,7−5.7676·1046s3,7

+5.0725·1047
. (21)

This polynomial has six real roots: 126.00, 140.93, 186.75, 190.26, 193.73, and
198.13. The corresponding robot configurations for the case in which P1 is lo-
cated at the origin, andp1,2 = (1,0,0)T , p1,3 = (1,4,0)T , p1,4 = (0,3,1)T , p1,5 =
(4,3,−1)T , andp1,6 = (4,2,0)T , appear in Fig. 2.

5 Conclusion

Solving the position analysis of kinematic chains based on the idea of obtaining clo-
sure conditions using n-laterations and constructive geometry arguments has been
quite successful for the planar case. However, the extension of this approach to three
dimensions, to solve the position analysis of spatial mechanisms, remained elusive
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despite the efforts to generalize the planar techniques. The main drawbacks of these
previous attempts include the impossibility of dealing with orientation constraints,
the limited range of mechanisms that can be analyzed using them, and the complex-
ity of the algebraic manipulation needed to solve even relatively simple problems.
This paper has introduced the basic concepts and propertiesof a distance-based ma-
trix formulation that clears all these disadvantages. The technique has been applied
to solve the forward kinematics of the triple arm mechanism with skew revolute
joints.
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