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Abstract. This paper proposes a damage diagnosis strategy to
detect and classify different type of damages in a laboratory
offshore-fixed wind turbine model. The proposed method combines
an accelerometer sensor network attached to the structure with a
conceived algorithm based on principal component analysis (PCA)
with quadratic discriminant analysis (QDA).

The paradigm of structural health monitoring can be undertaken
as a pattern recognition problem (comparison between the data
collected from the healthy structure and the current structure to
diagnose given a known excitation). However, in this work, as the
strategy is designed for wind turbines, only the output data from
the sensors is used but the excitation is assumed unknown (as in
reality is provided by the wind).

The proposed methodology is tested in an experimental labo-
ratory tower modeling an offshore-fixed jacked-type wind turbine.
The obtained results show the reliability of the proposed approach.
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1. Introduction

Wind energy is one of the best fuel sources since it is clean,

relatively cheap and inexhaustible. In order to increase the

energy produced by these means, more and more wind

farms have been installed in the sea. Taking into account

the location of wind turbines and the conditions of the

sea, new problems arise, since inspection and maintenance

work becomes more difficult. To reduce the enormous

logistic and maintenance costs as well as to minimize

turbine downtime, wind turbines must be continuously

monitored. Among all the monitoring systems, two systems

can be highlighted: structural health monitoring (SHM)

and condition monitoring (CM). On one hand, a structural

health monitoring system verifies the mechanical state of

the structure to ensure its proper functioning and determines

whether the wind turbine needs some kind of maintenance.

On the other hand, a condition monitoring system is able

to detect faults in the sensors and/or actuators systems.

Traditionally, condition monitoring for WTs has focused

on two widely-used methods: vibration analysis and oil

monitoring [1]. Therefore, the capability to detect wind

turbine damage and faults is crucial to decrease the cost

of wind energy [2], [3]. SHM and damage detection have

been widely studied in recent years. A review of the

state-of-the-art revealed that damage detection is a very

active field, but there is not a universal optimum method

for it.

This work proposes a complete methodology for damage

detection and classification in a laboratory offshore-fixed

wind turbine model. The strategy combines: (i) the use of

an accelerometer sensor network attached to the structure;

(ii) the use of principal component analysis (PCA) as a

pre-processing step to both reduce the dimensionality of the

data and extract features; and (iii) a quadratic discriminant

analysis (QDA). It should be noted that PCA has been

widely used in the field of SHM either as the single strategy

[4] or in combination with univariate [5] and multivariate

[6] hypothesis testing. Furthermore, methods based on

principal component analysis (PCA) have also proven its

capability to build WT fault detection strategies [7], [3],

[8]. However, QDA is most commonly used in medicine

[9], [10] and genomics [11], [12], as a classifier or as a

pattern-recognition method. A recent application of QDA in

WT fault detection is proposed by [13] where an approach

for detecting and diagnosing the delamination in wind

turbine blades is proposed.

As in [14], it is supposed that the only available excitation

of the WTs is the wind turbulence, so the input excitation

is assumed to be unknown. Therefore, the scheme of the

proposed method can be summarized in the following

steps: (i) the wind excitation is simulated as a Gaussian

white noise and the data coming from the WT is collected

using a set of accelerometers. It is worth remarking that

only output data will be used to detect damage; (ii) the

raw data is pre-processed using group-scaling to simplify

the computation of the principal components; (iii) PCA

is selected as a technique to reduce the dimensionality of

the data and the computing time of the next step; finally,

(iv) the quadratic discriminant analysis (QDA) is used as

a classifier. In the end, 10-fold crossvalidation technique
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is employed to estimate the overall accuracy and to avoid

over-fitting. In order to validate the proposed approach

in this work, the damage detection strategy is applied

to different types of predefined damage in a small-scale

structure —an experimental laboratory tower modeling

an offshore-fixed jacked-type wind turbine—. The results

that have been obtained for these predefined damages are

included and discussed to demonstrate the reliability of the

proposed approach.

The structure of the paper is as follows. We first present

the scaled wind turbine model, together with the two types

of damage that are introduced at the jacket support and the

sensors placed in the tower and jacket. We then present

the damage diagnosis strategy that includes how data is

collected, reshaped and auto scaled. Subsequently, both

PCA and QDA are briefly described. Finally, the main

results are summarized and discussed and some conclusions

are drawn.

2. Laboratory Tower Definition

A. Structure

The real structure used in this work is a scaled WT tower

model, see Figure 1. This structure is 2.7 m high and it is

composed, mainly, of three parts:

1) Jacket support, it is a lattice structure composed with

several bars, all of them joined with bolts with a torque

of 12 Nm.

2) Tower, composed of three sections joined with bolts.

3) Nacelle, modeled in this experiment by the top beam of

1 m long and 0.6 m width and a modal shaker located

at one edge of the beam.

The shaker simulates the nacelle mass and the environ-

mental effects of the wind over the whole structure. The

vibration needed to excite the structure is created by applying

an electrical signal to the shaker (Gaussian white noise).

B. Damages

Two types of damage are introduced at the jacket support:

(a) a 5 mm crack in one of the bars; and

(b) loosening one of the bolts in the jacket.

Also a healthy replica of the studied bar has been considered.

The proposed strategy should be able to detect and classify

the studied faults, but also be robust to the replacement of

one bar by a new healthy one (avoiding false alarms).

C. Sensors

To analyze the structural response, eight triaxial

accelerometers are placed in the tower and jacket. The

method used to find the optimum location and amount of

these sensors is given in [15]. Thus, data from 24 sensors is

collected. The nomenclature used for each sensor is given

in Table I.

Fig. 1. WT scaled tower model used in the experimental tests (off-shore
fixed jacked-type platform).

3. Damage diagnosis strategy

A. Data collection

The time window for each experimental test is 60 sec-

onds with a sampling frequency of 1651.6129 Hz. Thus,



TABLE I

NOMENCLATURE USED TO REFER TO EACH AVAILABLE SENSOR.

NOTE THAT i = 1, . . . , 8, AS THERE ARE EIGHT ACCELEROMETERS.

Sensor

Ax
i Acceleration in x-direction for accelerometer number i

A
y

i Acceleration in y-direction for accelerometer number i
Az

i Acceleration in z-direction for accelerometer number i

each experiment obtains 1651.6129 × 60 = 99097 data

measurements from each of the 24 sensors. Given the k-

th experimental test, the data is initially stored in a matrix

Y
(k) ∈ M24×99097(R) such that

Y
(k) =
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where the number of rows is given by the number of sensors

and the number of columns is equal to the number of time

stamps in each experimental test. Note that data in the first

row is related to sensor Ax
1 , data in the second row is related

to sensor A
y
1 , third row is related to Az

1, fourth row to Ax
2 ,

and so on and so forth. Finally, the matrix is reshaped, by

concatenating its rows, to form a row-vector with 99097×
24 = 2378328 components. That is, from each experimental

test, a row-vector z(k) ∈ M1×2378328(R) is obtained such

that

z(k) = (z
(k)
1 , . . . , z

(k)
j , . . . , z

(k)
24 ) ∈ M1×(99097·24)(R) (2)

where

z
(k)
j = (y

(k)
j,1 , . . . , y

(k)
j,99097) ∈ M1×99097(R), j = 1, . . . , 24.

(3)

In this work, a total of 25 experimental tests are conducted.

In particular:

(i) 10 tests with the original healthy bar.

(ii) 5 tests with the replica bar.

(iii) 5 tests with the 5 mm crack damaged bar.

(iv) 5 tests with an unlocked bolt in the jacket.

The data from all the experimental tests is stored in a

matrix Z ∈ M25×2378328, where each row, k = 1, . . . , 25,

is given by the row-vector z(k) as defined in Equation (2):

Z =

















z(1)

...

z(k)

...

z(25)

















∈ M25×(99097·24)(R). (4)

B. Data reshape (Sample Size and Power Analysis)

The input dataset, Z, consists of a matrix with a small

number of experimental tests, only 25, and a large number

of data measurements, 99097 × 24. When a small sample

size is used in data analysis, this might be insufficient to

detect wind turbine damages. For this reason, we propose

to reshape the matrix Z in order to increase the statistical

power, by means of increasing the number of experimental

tests. In addition, with this reshaping, the time window for

each sample is reduced from 60 to 1.46 seconds. Therefore,

leading to a fault detection time reduction. Thus, we reshape

the matrix Z as follows: for each row and sensor, we split

the 99097 time stamps to 41 subsets of 2417 time instants.

Therefore, we get a total of 41 experimental tests with 2417
data measurements for each original row and sensor:

x
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(5)

where z
(k)
j,i , j = 1, . . . , 24, i = 1, . . . , 99097 is defined as

the i-th component of the vector z
(k)
j defined in Equation

(3). Equivalently,

z
(k)
j,i = y

(k)
j,i , j = 1, . . . , 24, i = 1, . . . , 99097.

Similarly, matrix x
(k)
j can be defined as

(

x
(k)
j

)

mn
= z

(k)
j,2417·(m−1)+n

,

where m = 1, . . . , 41 and n = 1, . . . , 2417.

Then, the measurements are arranged in a matrix X ∈
M(41·25)×(2417·24)(R) = M1025×58008(R):

X =
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. (6)

It is to be assumed that larger sample sizes will improve data

analysis.

C. Autoscaling

The main reason to autoscale the raw data is to simplify

the computations for the multiway PCA decomposition.

Autoscaling uses column-wise mean-centering followed by

division of each column by the standard deviation of that

column of matrix X. The result is that each column of the

new autoscaled matrix, X̃, has a mean of zero and a standard

deviation of one. The fact that X̃ is a mean-centered matrix

simplifies the empirical covariance matrix computation,

needed for the PCA decomposition.



D. Principal component analysis and quadratic discriminant

analysis

Recall that, before using a classifier, the data must be

processed to obtain the most suitable features. In this work,

after the autoscaling step, multiway PCA is selected as the

main objective is to reduce computing time for the quadratic

discriminant analysis classifier. In this work, only the first

30 components of the PCA decomposition are used as they

account for 75% of the variance. Thus, the transformed

coordinates of the X̃ data in the new basis given by the first

30 principal components are used as features by the QDA

strategy.

It is beyond the purpose of this work to give a detailed

explanation of the QDA approach. An excellent tutorial about

the basic background needed to understand the discriminant

analysis classifier is given in [16]. However, it is important

to recall that it is assumed that the measurements from each

class are normally distributed. Unlike linear discriminant

analysis (DA) however, in QDA there is no assumption that

the covariance of each of the classes is identical. When the

normality assumption is true, the best possible test for the

hypothesis that a given measurement is from a given class

is the likelihood ratio test. Thus, in a nutshell, the QDA

classifier models the likelihood of each class as a Gaussian

distribution, and then uses the posterior distributions to

estimate the class for a given test point [17]. The Gaussian

parameters for each class can be estimated from training

points with maximum likelihood estimation. In this work,

the one-sample Kolmogorov-Smirnov test, see [18], is used

to test the normality of the data. The null hypothesis is that

the data comes from a standard normal distribution, against

the alternative that it does not come from such a distribution.

The test fails to reject the null hypothesis at a 5% significance

level. Furthermore, we confirm the test decision by visually

comparing the empirical cumulative distribution function to

the standard normal (Gaussian) one, see Figure 2.
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Fig. 2. Empirical cumulative distribution function.

Finally, in this work, the 10-fold crossvalidation technique

has been employed to estimate the overall accuracy and to

avoid over-fitting.

4. Results and discussion

Table II summarizes the results obtained from the

proposed strategy. It presents not only the overall accuracy,

but also the training time and prediction speed, as both

parameters are critical in real application. Notice that the

obtained prediction speed allows this methodology to be

deployed for online (real-time) condition monitoring in

WTs.

TABLE II

SUMMARY OF THE OBTAINED RESULTS.

Accuracy (%) 95.2
Training time (s) 9.5
Prediction speed (obs/s) 7300

Besides, a comprehensive decomposition of the error

between the true classes and the predicted classes is shown

by means of the so called confusion matrix, see Figure 3.

In these matrices, each row represents the instances in a

true class while each column represents the instances in a

predicted class (by the classifier). In particular, first row

(and first column) is labeled as 0 and corresponds to the

healthy case. Next labels (for rows and columns) correspond

to the replica bar (label 1), the 5 mm crack (label 2), and

the unlocked bolt (label 3). From the confusion matrix the

following issues can be highlighted. The healthy class has

a true positive rate (TPR), that is percentage of correctly

classified instances, of 90% and a false negative rate (FNR),

that is percentage of incorrectly classified instances, of 10%.

It is noteworthy that the 5 mm crack damage has a TPR of

99% and the unlocked bolt damage has a TPR of 100%.
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Fig. 3. Confusion matrix.



5. Conclusions and future work

This work has proposed a damage detection and

classification strategy and tested it in a laboratory WT

model. The results show a 95.2% overall accuracy. The

immediate future work is to develop further the proposed

strategy for different environmental and operational

conditions which could be modeled by using different

amplitudes for the white noise excitation.
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damage detection indicator based on principal component analysis and
statistical hypothesis testing,” Smart materials and structures, vol. 23,
no. 2, p. 025014, 2013.

[6] F. Pozo, I. Arruga, L. E. Mujica, M. Ruiz, and E. Podivilova,
“Detection of structural changes through principal component analysis
and multivariate statistical inference,” Structural Health Monitoring,
vol. 15, no. 2, pp. 127–142, 2016.

[7] Y. Wang, X. Ma, and P. Qian, “Wind turbine fault detection and
identification through pca-based optimal variable selection,” IEEE

Transactions on Sustainable Energy, 2018.

[8] P. F. Odgaard and J. Stoustrup, “Gear-box fault detection using time-
frequency based methods,” Annual Reviews in Control, vol. 40, pp. 50–
58, 2015.

[9] R. S. Ryback, M. J. Eckardt, R. R. Rawlings, and L. S. Rosenthal,
“Quadratic discriminant analysis as an aid to interpretive reporting of
clinical laboratory tests,” Jama, vol. 248, no. 18, pp. 2342–2345, 1982.

[10] G. Zonta, G. Anania, B. Fabbri, A. Gaiardo, S. Gherardi, A. Giberti,
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