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ABSTRACT 

In this study a new bacterial producer isolated from commercial vinegar is identified as Komagataeibacter 

intermedius JF2 based on the examination of general taxonomical characteristics, 16S rDNA sequence 

analysis, and MALDI-TOF mass spectrometry. The membrane of cellulose produced is studied in terms of 

morphology by scanning electron microscope, crystallinity by X-Ray Diffraction, structure by Fourier transform 

infrared spectroscopy, and water absorption capacity. Bacterial cellulose yield and characteristics of the 

membrane produced by the new isolated JF2 are compared with those of the well-known and commonly-

used bacterial cellulose producer Komagataeibacter xylinus. Yield of cellulose production was higher for JF2 

than for K. xylinus grown on several culture media. The nanocellulose fibers produced by JF2 showed a higher 

degree of crystallinity and a more homogeneous size distribution than those of K. xylinus. The results suggest 

that Komagataeibacter intermedius JF2 could contribute to better meet the requirements for new 

biotechnological applications of the bacterial cellulose. 

INTRODUCTION 

Cellulose is an organic polymer composed of β-1,4-linked D-glucose used in the elaboration of 

numerous industrial products such as paper, textiles, food additives and pharmaceutical devices. 

Moreover, materials science has demonstrated increasing interest in cellulose because of its great 

potential as a reinforcement material in composites owing to its mechanical and physical 
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properties.1 Cellulose is very abundant in nature as part of the cell wall of vegetal cells, and plants 

have traditionally been the main source of this material. However, plant-derived cellulose needs to 

be purified of hemicelluloses and lignin by enzymatic, chemical and/or mechanical treatments 

before further used.2,3 These processes have a high economic and environmental cost and, in 

addition, could change the functionality of the cellulose and limit its applicability.3 Some bacteria 

are able to synthesize cellulose, including the genera Agrobacterium,4,5 Rhizobium6 and 

Pseudomonas,7 and specially members of the Acetobacteriaceae family as Komagataeibacter.8,9 

Komagataeibacter xylinus (previously known as Gluconacetobacter xylinus10 or Acetobacter xylinus,8 

is the most studied species and one of the few with substantial cellulose-production yields to be 

commercially exploited.11    

Bacterial cellulose (BC) is a linear extracellular polysaccharide with the same chemical composition 

of plant cellulose, but its conformation and physicochemical properties are different, conferring it 

superior qualities. BC exhibits higher chemical purity, because it is produced free of hemicellulose 

and lignin, higher degree of crystallinity and higher water retention capacity.12,13 Moreover, BC 

presents great elasticity, high tensile strength and good biocompatibility. These unique properties 

make BC a multifunctional biomaterial and enable many successful applications, especially in the 

areas of biomedical, catalysis, conducting materials and electric devices.12 BC has been proposed 

for strength reinforcement of polymeric materials or paper 14,15, as a thickening agent and food 

stabilizer,16 for food packaging,17,18 as a biomaterial for manufacturing cosmetics,19 as artificial 

skin,20,21 for artificial blood vessels or tissue engineering;22–24 as diaphragms for loudspeakers25,26 

and for the preparation of optically transparent films,27 electric conductors28 or magnetic 

materials.29,30 
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BC production can be achieved by culturing the producer bacterium on a glucose-rich liquid medium, 

in static conditions. Glucose is polymerized and extruded outside the cell by the activity of the 

membrane-associated cellulose synthase complex. Individual cellulose chains are tied by hydrogen 

bonds into subelementary fibrils that assemble with adjoining subelementary fibrils giving rise to 

microfibrils that gather into 20 – 70 nm wide ribbons.31 The result is a tri-dimensional network of 

cellulose nanofibrils that builds up at the air-liquid interface in the form of a dense pellicle or 

membrane that, after several days of incubation to allow appropriate thickness, can be collected. 

Physical and mechanical properties of pellicle could be strongly influenced by culture conditions, 

carbon source and, more importantly, by the bacterial strain that synthetize the cellulose.32,33 

Properties such as degree of crystallinity, water content capacity or tensile strength, could determine 

the applicability of bacterial cellulose, especially in those cases in which bacterial cellulose is used 

as a matrix to obtain composites.34,35 On the other hand, an issue that restrains commercial 

production and extended application of BC is the low yield of the described BC-producing strains.36 

The isolation of new strains from the natural habitats of BC-producing bacteria as fruits, beverages 

and vinegar is a strategy often used in order to obtain strains with higher efficiency.37–40 Thus, the 

isolation of strains that produce bacterial cellulose with improved characteristics and with 

substantial production yields is desirable both, to extend the applicability of bacterial cellulose and 

to improve its commercial exploitation. 

In this study, some bacterial cellulose producer strains were isolated from wine vinegar. The strain 

JF2 showed the highest production yield and was identified according to molecular and biochemical 

characteristics as a member of Komagataeibacter intermedius. Its capability of producing cellulose 

in different culturing conditions was investigated and compared with that of the reference strain 

Komagataeibacter xylinus. The properties of the cellulose pellicles of both, new isolate and 
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reference strain, were analyzed in terms of their chemical structure, crystallinity, water absorption 

capacity, and SEM morphology. The results indicated that Komagataeibacter intermedius JF2 

produces cellulose with higher efficiency and higher crystallinity. 

 

EXPERIMENTAL 

Microorganism isolation and culture conditions 

The isolation of cellulose producing bacteria was carried out from commercial wine vinegar, using the Hestrin-

Schramm (HS) medium (20 gL-1 glucose, 5 gL-1 peptone, 5 gL-1 yeast extract, 2.7 gL-1 Na2HPO4 and 1.15 gL-1 

citric acid, pH 6).41 Two mL of sample wine vinegar were inoculated in 20 mL of liquid HS culture medium. 

After 5 days of incubation at 28 °C in static condition, tubs that presented BC pellicles on the surface of the 

culture were selected. From those, 0.1 mL samples were spread in HS-agar plates and incubated at 28 °C to 

obtain single colonies. Pure cultures of each grown colony were obtained by streaking repeatedly onto HS-

agar plates. Isolates were individually tested for BC production by inoculation in test tubes containing 10 mL 

of HS liquid medium and incubating at 28 °C for 8 days. Cellulose production was detected by the appearance 

of a pellicle on the air/liquid interface of culture broth. The bacterial cellulose producer isolated strains were 

preserved under freezing at -80°C in a Revco deep freezer, using 20% glycerol cell cryoprotectant. 

To assess BC productivity on different carbon sources, HS medium was modified as follows: HS-glucose-

mannitol containing HS based medium (5 gL-1 peptone, 5 gL-1 yeast extract, 2.7 gL-1  Na2HPO4 and 1.15 gL-1  

citric acid), 10 gL-1 glucose and 20 gL-1 mannitol; HS-mannitol containing HS based medium and 20 gL-1 

mannitol; HS-ethanol containing HS based medium and 5 % (v/v) ethanol.  

Komagataeibacter xylinus 7351 T from the Spanish Type Culture Collection (CECT) was used as the reference 

strain.  
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Bacterial cellulose production  

Culture inoculum to produce bacterial cellulose was prepared by transferring bacterial cells grown on HS–

agar to HS liquid medium. After shaking vigorously the resulting cell suspension of an OD600 nm of 0.6 was used 

to inoculate (1:40) 10 cm–Petri dishes containing 40 mL of HS or modified HS media. All the BC production 

experiments were conducted at least three times. The cultures were statically incubated at 28 °C for 7 days. 

For time course BC production, incubation was interrupted at 24 h periods. After incubation, bacterial 

cellulose pellicles generated in the air/liquid interface of the culture medium were harvested, rinsed with 

water and incubated in 1% NaOH at 70 °C overnight to eliminate bacterial cells. Finally, the BC pellicles were 

thoroughly washed in deionized water until the pH reached neutrality. Purified cellulose was dried at 40 °C 

until constant weight was reached. To evaluate the production yield, the amount in grams of dried BC per 

litre of the original culture medium was determined (gL-1). Dry membranes were used to determinate 

morphological properties and to perform XDR and FT-IR analysis.  

 

Identification of bacterial cellulose producing strain 

Molecular identification 

The isolated strains were identified by 16s rDNA sequencing. Genomic DNA was extracted from pure culture 

pellet with GeneJET Genomic DNA Purification Kit (Thermo Fischer) kit. Universal primers for Bacteria domain, 

27F (5´-AGAGTTTGATCMTGGCTCAG-3’) and 1525R (5’-AAGGAGGTGWTCCARCC-3’), were used for the 

amplification of a partial 16s rDNA gene region by the polymerase chain reaction (PCR) using PCR machine 

(GeneAmp PCR System 2400). The PCR mixture volume was 50 µL containing 25 µL mix (buffer, MgCl2, dNTPs, 

ddNTPs and polymerase), 1 µL each primer, and 1 µL DNA template. The partial 16s rDNA region was 

sequenced by Sanger (Centres Científics i Tecnològics, UB). Sequences were compared with those from the 

GenBank database using BLAST.  MALDI-TOF MS-Protein mass fingerprints (MALDI Biotyper Systems) was 

used to identify JF2 strain. Partial 16S rDNA sequence from JF2 strain was deposited in the GenBank database 
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under the accession number SUB4239423 seq1 MH553300. Amplification of the bcsA gen was performed 

with primers CELS3_Fw and CELS3a_Rv as described previously.42  

Physiological characteristics 

Initial phenotypic characterization was carried out according to Bergey’s Manual of Systematic Bacteriology.43 

Colonies grown on HS medium at 28 °C for five days were used to observe cell morphology, Gram-staining 

reaction and to perform physiological and biochemical analyses. Presence of catalase, oxidase reaction, 

production of acetic acid, growth on sole carbon sources as D-glucose, D-mannitol, sucrose, D-arabinose, D-

rafinose and ethanol; requirement of acetic acid for growth was evaluated.  Capability of cellulose production 

on D-glucose, D-mannitol, D-glucose + D-mannitol, ethanol and D-glucose + ethanol at different 

concentrations and pH was tested.  

 

Characterization of bacterial cellulose pellicles 

Water holding capacity (WHC) 

Dried BC pellicles were weighted and immersed in deionized water for 24 h. After 24 h excess of water was 

removed and the weight was measured. The WHC was expressed as: 

WHC =
Wwet−Wdry

Wdry
                           (1) 

where Wwet is the weight of wet pellicle and Wdry is the initial weight of the dried pellicle.  

Scanning electron microscope (SEM) 

Dried BC pellicles were analyzed by SEM (JSM 7100 F) using a LED filter. Average diameter of BC microfibrils 

was obtained using ImageJ software.  
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X-Ray Diffractometry (XRD) 

Dried BC pellicles were subjected to X-ray diffractometry analysis (PANalytical X’Pert PRO MPD Alpha1 powder 

diffractometer). The samples were analyzed at the radiation wavelength of 1.5406 Å. Samples were scanned 

from 2 to 50°, 2Ɵ range. Samples were fixed over a zero background Silicon single crystal sample holder 

(pw1817/32), and the ensembles were mounted in a PW1813/32 sample holder. All the replicates of each 

sample were measured with the same Silicon holder. The crystallinity index (CI) of produced bacterial 

cellulose was calculated based on equation (2):44 

CrI(%) =
Ic−Iam

Ic
× 100                                                                            (2) 

where Ic is the maximum intensity of the lattice diffraction and Iam is the intensity of the peak at 2Ɵ = 18°, 

which corresponds to the amorphous part of cellulose. The intensity of the peaks was measured as the 

maximum value obtained for the peak taking into account a baseline.  

Fourier transform infrared spectroscopy (FT-IR) 

FTIR spectra of BC pellicles were recorded in duplicate at room temperature using an ATR-FTIR 

spectrophotometer (Spectrum 100, Perkin Elmer, USA). FTIR spectral analyses were conducted within the 

wavenumber range of 600-400 cm-1. A total of 64 scans were run to collect each spectrum at a 1 cm-1 

resolution.  

 

RESULTS AND DISCUSSION 

Isolation and identification of BC-producing bacteria 

Six different brands of commercially available wine vinegar were screened for cellulose producing bacteria. 

Prior the isolation, 2 mL of vinegar samples were enriched with 20 mL of HS medium. This step was found 

necessary to obtain isolates from vinegar, an extreme medium with limited culture recovery of 
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microorganisms.45 After several days of incubation at 28 °C, culture tubs that presented bacterial cellulose 

pellicles were used to obtain single colonies by spreading 0.1 mL samples in HS-agar plates. After 5 days of 

incubation, several distinct colonies growing randomly on the surface of the agar were observed. Twenty 

single isolates were selected according to distinctive colony morphology. The isolates were obtained in pure 

culture after streaking on HS-agar. Subsequently, strains were inoculated in HS liquid medium to evaluate 

their capacity to produce cellulose. After 8 days of incubation, four strains were able to synthesize cellulose 

as a membrane at the air/liquid interface of culture test tubes. Interestingly, all four BC-producing strains 

were isolated from the same brand of vinegar, distinguished by making wine vinegar by the traditional 

method, which could preserved the natural population of bacteria. 

BC production efficiency of the isolated strains was determined and compared with that of the reference 

strain K. xylinus. Production capabilities were in the range of 0.4 – 1.2 gL-1. As shown in Figure 1, the strains 

JF1, JF2 and JF4 presented higher BC yield than the reference strain K. xylinus. These results are comparable 

with those obtained with common cellulose producing isolates growing in glucose-rich media.46,47 The strain 

JF2 presented the highest BC production yield (1.2 gL-1), 48 % higher than K. xylinus. Thus, JF2 was selected 

for identification and further characterization.   
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Figure 1.  Bacterial cellulose production of the isolated strains and K. xylinus grown on HS medium.  

Isolated BC-producer JF2 was presumably identified by submitting the corresponding 16S rDNA sequence to 

BLAST analysis. Results showed that JF2 belonged to the genera Komagataeibacter (Table 1). 

Komagataeibacter is a member of the acetic acid bacteria group frequently found in fruits and vinegar, and 

includes numerous cellulose producing species.48 However, bacteria from this group share high degree of 

homology, and molecular identification based on 16S rDNA sequences fails to discriminate between species 

closely related. Siever and Swings (2005) reported that Gluconacetobacter europaeus, G. xylinus, G. 

intermedius and G. oboediens present more than 99% 16S rDNA gene sequence similarity.49 MALDI-TOF MS 

fingerprinting technique has been shown to be useful to discriminate among species of genera 

Komagataeibacter.50 Analysis by MALDI-TOF MS fingerprinting confirmed that JF2 strain belonged to K. 

intermedius (Figure 2). The new isolated was named K. intermedius JF2. Additionally, the presence of the bcsA 

gene in the genome of strain JF2, encoding the cellulose synthase, was demonstrated by its amplification with 

consensus primers. Results indicated that bcsA gene of JF2 shared 100 % identity with bcsA gene of type strain 

Komagataeibacter intermedius TF2 (Table 2). 

Table 1.  Molecular identification of the isolated strains from 16S rDNA analysis.  

 Description Ident e-value 

JF1 G. europaeus 99 % 0.0 
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 K. xylinus E25 99 % 0.0 

JF2 K. oboediens JCM 16937 98 % 0.0 

 K. intermedius JCM 16936 98 % 0.0 

JF3 G. europaeus strain 3Pe4 99 % 0.0 

 K. xylinus E25 99 % 0.0 

JF4 K. xylinus 99 % 0.0 

 G. europaeus KGMA0119 99 % 0.0 

 

 

Figure 2. MALDI-TOF MS spectra from JF2 strain.  

 

 

 

Table 2.  Alignment results from BcsA protein sequence using BLAST.  

 Description Ident e-value 

JF2 Cellulose synthase catalytic subunit AB 

[Komagataeibacter intermedius TF2] 

100 % 4e-36 
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Morphological and biochemical characterization of K. intermedius JF2 was carried out. JF2 cells were gram-

negative rods, approximately 1.7 µm long and 0.45 µm wide. Biochemical and physiological traits for 

reference and isolated strain are shown in Table 3. The two microorganisms presented similar biochemical 

characteristics. Both were oxidase negative and catalase positive, and were able to grow on glucose, mannitol, 

sucrose and arabinose. However, JF2 was not able to grow on rafinose in contrast with K. xylinus. On the 

contrary, JF2 was able to grow with ethanol as sole carbon source, suggesting its capability to oxidize ethanol 

to acetic acid, as has been described for K. intermedius strains.51 Regarding the sugars devote to cellulose 

production, JF2 was able to synthetize cellulose from glucose, mannitol and, at a less extend, from ethanol 

(Table 3).   

Table 3.  Physiological characteristics of strain JF2.  

 

K. xylinus 7351 T K. intermedius JF2 

K. intermedius 

description in 

Bergey’s Manual 

Growth on carbon sources    

D-glucose + + + 

D-Mannitol + + ND 

Sucrose + + +/- 

D-Arabinose + + ND 

D-Rafinose + - ND 

Ethanol - + + 

    

Cellulose production on    

D-glucose + + + 

D-Mannitol - + ND 

D-Glucose + D-Mannitol weak + ND 

Ethanol 5 % - weak weak 

D-Glucose + Ethanol 5 % - + ND 

    

Acetic acid production + weak ND 

Requirement of acetic acid for growth - - - 

ND: no data 

 

 

 

 

Bacterial cellulose production 

As stated above, K. intermedius JF2 presented higher BC yield growing on HS medium than reference strain 

K. xylinus, showing an increment of 32.8 %. JF2 was able to grow on mannitol, as described for strains of 
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Komagataeibacter.49 However the capability of K. intermedius to produce cellulose growing on mannitol has 

not been described so far. In this work, the effect of mannitol on the production of bacterial cellulose was 

investigated and compared with K. xylinus. Strains were grown in modified HS medium (HS-mannitol) in which 

D-glucose, the original carbon source, was replaced by mannitol. The effect of standard HS medium 

supplemented with mannitol (HS-glucose-mannitol) was determined as well. As shown in Figure 3, JF2 was 

able to produce cellulose growing in mannitol as sole carbon source. Its BC yield was higher than that of K. 

xylinus growing on glucose. The BC production was even higher when JF2 grew with HS-glucose-mannitol. K. 

xylinus grew on mannitol, but was unable to produce cellulose. For bacterial cellulose producers, carbon 

source is used to both, increase of biomass and cellulose synthesis. The among of carbon source that is 

devoted to one or other function is both carbon source and strain depending.52–54 D-mannitol seemed to be 

a more suitable carbon source to produce cellulose than D-glucose for K. intermedius JF2. For this strain, D-

mannitol is probably transformed to D-fructose and then metabolized to BC.55  

  

Figure 3.  Bacterial cellulose production of K. intermedius JF2 and K. xylinus in HS, HS-mannitol (HS-man) and 

HS-glucose-mannitol (HS-glu-man).  

To investigate the effect of pH on growth and cellulose production, the bacteria were cultured in HS broth at 

different starting pH (from 3 to 8.5) and incubated for 7 days at 28 °C. The pH was adjusted varying the relative 

concentration of Na2PO4/citric acid. After the incubation time, the final pH was measured and the presence 
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of cellulose was determined. K. intermedius JF2 and K. xylinus were able to produce cellulose on HS medium 

with a starting pH ranging from 3.5 to 7, being 5.5 – 6 the optimum starting pH. Growth was not detected at 

starting pH of 8 and 8.5.  After 7 days of incubation a decrease on the pH of the culture was recorded. 

However, the acidification of the culture was less noticeable in K. intermedius JF2 for all the starting pH 

(results not shown). Figure 4 shows the time course profiles of pH values during bacterial growth and cellulose 

production for both strains growing on HS and HS-glu-man medium starting at optimum pH 5.5 - 6. A drop in 

pH was observed during the first three days of incubation of the strains. However, it should be noted that the 

culture of K. xylinus decreased the pH value from 6 to 3, while cultures of K. intermedius JF2 presented only 

a 1-point decrease in pH, both on HS and HS-glu-man media, corroborating the results obtained previously. 

The acidification of the culture medium can be attributed to several causes based on the metabolic activity 

of the strains during growth. It has been described that the activity of the enzyme glucose dehydrogenase 

located in the outer membrane of K. xylinus oxidizes glucose to gluconic acid extracellularly which decrease 

the pH of the medium.56,57 For some strains of Komagataeibacter, more than 70% of the initial glucose can 

be derived to gluconic acid. 58 Eventually the acidity of the medium could hamper the bacterial growth and 

the biosynthesis of BC.59 Among the strains belonging to K. intermedius the oxidation of glucose to gluconic 

acid is a variable trait.51 Our results suggested that the higher conversion yield of glucose to BC of the isolate 

K. intermedius JF2 on comparison with K. xylinus could be explained by its capability to maintain the pH of 

the medium stable during growth.   
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Figure 4.  Time course profiles of pH values during K. xylinus and K. intermedius JF2 growing on HS and HS-

glu-man.  

The dynamics of BC production was evaluated for K. xylinus and K. intermedius JF2 growing on HS and HS-glu-

man respectively, during a time course of 9 days. The amount of cellulose produced was recorded at 24 h 

intervals over the 9 days (Figure 5). The maximum cellulose yield was obtained after 6 days for K. intermedius 

JF2 and after 9 days for K. xylinus. Likewise, JF2 presented higher production efficiency than K. xylinus, 

corroborating the results previously obtained. The results suggested that strain JF2 has potential to be used 

as bacterial cellulose producer at large scale for commercial application, since it was able to accumulate more 

cellulose than K. xylinus in a shorter period of time. 
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Figure 5.  Profiles of pH values during growth of K. xylinus and K. intermedius JF2 in HS and HS-glu-man, 

respectively.  

 

Bacterial cellulose pellicles characterization 

BC membranes produced by K. intermedius JF2 and K. xylinus were characterized in terms of morphology, 

chemical structure and crystallinity by SEM, FTIR and XRD, respectively. Water absorption capacity of the BC 

membranes was also measured.  

Scanning electron microscope (SEM) analysis 

Porous structure and fibril distribution of the BC pellicles were analyzed by SEM (Figure 6). The pellicles from 

cultures of K. intermedius JF2 on HS medium exhibited a dense network of fibrils evenly distributed, similar 

to that of reference strain K. xylinus. Randomly measurements of 100 nanofibrils from SEM images analyzed 

by ImageJ software resulted on a fibril diameter size of 72 ± 12 nm and 58.2 ± 16 nm for K. intermedius JF2 

and K. xylinus respectively. Thus, the two strains grown in the same culture medium and conditions generated 

cellulose fibers with different morphological characteristics. Nanofibers from JF2 were wider and showed less 

size dispersion than nanofibers from K. xylinus (Figure 6). The morphology and size distribution of the 
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nanofibers influence the 3D-structure of the matrix of cellulose, affecting porosity and density, which in turn 

could impact the physical and mechanical properties of the resulting membrane,33 and in its applicability.  

 

Figure 6.  SEM images showing cells of K. intermedius JF2 (a) and K. xylinus (b), and bacterial cellulose pellicle 

produced from K. intermedius JF2 (c) and K. xylinus (d).  In the insert of c and d, diameter size distribution of 

fibers from K. intermedius JF2 and K. xylinus, respectively. 

FT-IR analysis 
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Composition and purity of the cellulose produced by K. intermedius JF2 was investigated by FT-IR 

spectroscopy and compared with that of K. xylinus reference strain. FT-IR spectra of BC produced by K. 

intermedius JF2 on HS, K. intermedius JF2 on HS-glu-man and K. xylinus on HS are shown in Figure 7. 

The band centred at 899 cm-1 characterizing a β-1,4-glycosidic bond, typical of β-linked glucose polymers.60 

The band at 1,050 cm-1 could be associated with ether C–O functionalities.61 The band at 1,100 cm-1 is 

associated with ester C–O bond stretching. The band at 1,160 cm-1 is assigned to cellulose C–O–C bridges.62 

The weak band found at 1,330 cm-1, can be ascribed CH2 wagging.60 The band centered at around 1,420 cm-

1 could be associated with either CH2 symmetrical bending or surface carboxylate groups. The band at 1,640 

cm-1 is due to the H–O–H bending vibration of absorbed water molecule.62 The band at 2,890 cm-1 is attributed 

to C-H stretch for sp3 carbon (strong). The bands at 3,340 cm-1 indicate intermolecular and intramolecular 

hydrogen bonds. Spectra of cellulose produced by JF2 were very similar to that from K. xylinus. Changes were 

not observed on the absorption spectra of the cellulose produced when JF2 was grown with mannitol. Results 

suggested that the membranes were free of impurities and that its chemical composition was the same 

regardless the strain and the culture media assayed. The results of cellulose absorption spectra were very 

similar to those reported previously.63,64 
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Figure 7. FTIR spectra of BC produced by K. intermedius JF2 growing on HS-glu-man (a), K. intermedius JF2 

growing on HS (b) and K. xylinus growing on HS (c). 

BC crystallinity 

Diffraction patterns of BC obtained from K. intermedius JF2 growing on HS and HS-glu-man, and K. xylinus 

grown on HS are shown in Figure 8.  The main diffraction angles  at 2Ɵ = 14,59° (1–10), 16,67° (110) and 

22,71° (200), correspond to the primary diffraction of the (1-10), (110) and (200) planes of polymorph 

cellulose I.65 The diffraction patterns were similar for the three types of samples suggesting that the 

membranes were composed of cellulose I regardless the bacterial strain and the culture media assayed.  

Crystallinity of cellulose can be determined by different methods, and the results are known to be dependent 

on the method applied. However, results obtained by each particular method are useful for comparing 

samples identically analyzed.66 The crystallinity index (CI) of BC pellicles was calculated by Segal method using 

equation (2). As shown in Table 5, cellulose produced by the new strain K. intermedius JF2 presented a higher 

CI than the reference strain, K. xylinus. When the medium was enriched with mannitol, bacterial cellulose 

from K. intermedius JF2 showed higher crystallinity index. It has been described that high CI index confer 

superior mechanical strength to the fiber of cellulose as well as improved interfacial properties.67 The higher 
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CI% of BC pellicles produced by K. intermedius JF2 suggests that the process of organization of the glucan 

chains, upon its synthesis, into cellulose fibrils could be different from that occurring in K.xylinus. These 

results agreed with the difference observed in the diameter of the fibers produced by the two strains.  

 

Figure 8.   XRD patterns of BC obtained from K. intermedius JF2 growing on HS (a), K. intermedius JF2 growing 

on HS-glu-man (b) and K. xylinus growing on HS (c). 

 

 

Table 4.  Crystallinity index (CI) of K. intermedius JF2 grown on HS, K. intermedius JF2 grown on HS-glu-man 

and K. xylinus grown on HS. CI (%) was calculated from empirical equation (1).  

K. intermedius JF2 (HS-glu-man) K. intermedius JF2 (HS) K. xylinus 

94.01 ± 0.31 89.90 ± 0.08 84.33 ± 2.4 

 

Water holding capacity (WHC) 
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WHC of the membranes produce by JF2 and K.xylinus was measured. Dried and weighted BC films were 

immersed in distilled water for 24 hours, weighted again, and the percentage of water absorbed was 

calculated.  Grown on HS, the WHC of K. intermedius JF2 was 10.1%, lower than that of the reference strain 

K. xylinus (20.9%). The lowest WHC value was found for membranes produced by K. intermedius JF2 grown 

on HS-glu-man (7.61%). Interestingly, these results are inversely correlated with those of crystallinity; 

membranes with higher CI showed less water holding capacity. Huang et al. (2010) found similar results 

modifying the structure and crystallinity of BC to enhance its ability to rehydrate. 

 

CONCLUSIONS 

In this study a novel bacterium capable of producing cellulose was isolated from wine vinegar and identified 

as a strain of Komagataeibacter intermedius, named JF2, based on its physiological characteristics, 16S rDNA 

sequence and MALDI-TOF mass spectrometry analysis. BC yield production was higher than that of reference 

strain K. xylinus, producing more cellulose in a shorter period of time. JF2 was able to produce cellulose 

growing with mannitol as the sole carbon source, obtaining better yields than growing with glucose. The 

produced BC membranes were cellulose I type, free of impurities and with a high index of crystallinity.  

Komagataeibacter intermedius JF2 presents characteristics that make it a suitable candidate as a BC producer 

at a commercial level for biotechnological applications.   
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